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We consider top-quark mass effects in the Higgs-interference contribution to Z-boson pair production in
gluon fusion. While this production mechanism is formally of next-to-next-to leading order, its contribution

is numerically important above the top threshold M?%, = 4m?. This region is essential to constrain the width
of the Higgs boson, and good control over the top-quark mass dependence is crucial. We determine the
form factors that are relevant for the interference contribution at two-loop order using a method based on a
conformal mapping and Padé approximants constructed from the expansions of the amplitude for large top

mass and around the top threshold.
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I. INTRODUCTION

A direct measurement of the Higgs boson width I'y is
not possible at the LHC or even the envisioned next
generation of collider experiments. However, indirect
constraints can be obtained at the LHC by studying the
process pp - H — ZZ(— 4l) on the Higgs boson peak
where the cross section depends on the combination
Gi1409t122/Tr and off the peak where the measurement
of the cross section constrains the product gfiggg%ﬂz of the
effective Higgs boson-gluon coupling g, and the Higgs
boson-Z boson coupling g7, as proposed in [1-3]." The
same strategy can be employed with WW final states [6].
The latest studies from the LHC experiments give an upper
limit of 14.4 MeV at 95% C.L. from the ZZ final state at
ATLAS [7] and the value 3.2°7% MeV from the combi-
nation of VV final states in CMS [8], close to the SM
prediction T3M = 4.10 + 0.06 MeV [9]. Measurements of
the Higgs boson signal at large invariant mass can also be
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'Note that the indirect way of constraining the Higgs width is
not entirely model-independent [4,5].
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used to directly constrain physics beyond the Standard
Model in the Higgs sector [10—-13].

Here, we focus on the loop-induced continuum gluon
fusion process gg — ZZ and in particular its interference
with the off-shell Higgs contribution gg - H* — ZZ.
Despite the narrow width of the Higgs boson, these
interference effects are sizable with 10% of the Higgs
signal stemming from the off-shell region where the
invariant mass of the two decay products is greater than
2my [1] and higher-order corrections are required to
control the uncertainties. The Higgs-mediated amplitude
only depends on two scales, the mass m, of the quark in the
loop and the invariant mass M, of the final state. Next-to-
leading order (NLO) corrections with the full quark-mass
dependence have been known for some time [14—-17], and
the top-quark mass dependence at next-to-next-to leading
order has been reconstructed very recently [18] (see also
[19]). On the other hand, the continuum amplitude depends
on four scales m,, mz, Mz, and the transverse momentum
pr of one of the Z bosons, and the exact result is only
known at leading order (LO) [20] while an analytic NLO
calculation appears extremely challenging. In the massless
limit m, = 0, the two-loop amplitude has been determined
in [21-23] and the NLO cross section in [24]. Recently,
also the quark-gluon channel has been included [25].

The contribution from top quarks at two-loop order
has been computed in a large-mass expansion (LME)
[24,26,27] and is known up to 1/m)?>. While the con-
tribution from massless quarks dominates the inter-
ference correction at small invariant masses, the top-quark
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contribution is of the same size near the top threshold
My, = 4m? and dominates in the large invariant-mass
regime. Since the LME ceases to provide a reliable
description above the top threshold, the authors of [27]
have improved their prediction by a conformal mapping
and the construction of Padé approximants based on the
available number of LME coefficients. In [28], we have
extended this method by considering the expansion around
the top threshold in addition to the LME and demonstrated
that the top-mass effects can be reproduced correctly by
comparing results for the two-loop amplitude for gg - HH
with the numerical calculation performed in Refs. [29-3 l].2
In this work, we consider the form factors of the
continuum g¢gg — ZZ amplitude that are relevant for
the interference contribution at one and two loops. The
nonanalytic terms in the expansion around the top
threshold are computed up to at least order (1 — z)*, where
7= M?2,/(4m?) + i0, and used to construct Padé approx-
imants. Together with the exactly known real NLO top
quark [27,38] and the massless quark corrections [21-25],
this is sufficient to determine the full NLO interference
contribution with realistic top-quark mass dependence.

II. FORM FACTORS FOR INTERFERENCE

Up to the two-loop level, the amplitude for the
top-mediated nonresonant continuum production process
g(u, A, p1) + g(v. B, py) = Z(a, p3) + Z(B. ps) receives
contributions from both box and double-triangle diagrams;
see Fig. 1. The latter are known for arbitrary quark masses
[27,39] and will not be discussed in the following.

The box amplitude |B;f ;) has a complicated tensor
structure [20-22,40]. However, the interference with the
Higgs-mediated amplitude is described by a single form
factor. Adopting the conventions of [27], it takes the form

5AB

B) =5 (P12 = AP (03)PL (1) Bl
(1)

with Ny = N2 -1 and P (p) = —g* + p®p”/m%. The
form factor can be decomposed into a vector and axial-
vector part

By = 9w

~ dcos’6y v7Byy) + a?|Bas)). (2)

where a, = 1/2 and v, = 1/2 —4/35sin?> @y, denote the
axial-vector and vector couplings for an up-type quark.
Mixed v,a, terms are forbidden by charge conjugation
symmetry. The order in the strong coupling constant «; is
indicated as follows:

2Recently, an independent numerical calculation [32], several
approximations [33-36] which are consistent with the earlier
results and a combined result [37] have appeared.
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FIG. 1. Examples for box (left) and double-triangle (right) top-
mediated contributions to gg — ZZ.
gy _ % g0y, (%) 50
B) = B+ () B+ O

with i = VV,AA. At order o2, the renormalized form
factors contain IR divergences, which cancel in the combi-
nation with real corrections, and we define the finite
remainder by applying the subtraction [417°

) e’e [2C, ¢ Pol a0
g e (5) +eEn @

%CA —%Tfl’ll,CA :3’Tf :%,n[ :5, and the

form factors |Bf 12)

where ) =
) are defined in d = 4 — 2¢ dimensions.
The one-loop form-factors |f>’,(-1)> are already finite; we

define | F 5”) = |Bl(-1)> for the sake of a consistent notation.

A. The amplitude near threshold

Above the top threshold at z = 1, the top quarks in the
loop can go on shell which manifests as nonanalytic terms in
the expansion of the form factors in Z = 1 — z, generating a
sizable imaginary part. As shown in [28], the knowledge of
these terms alone provides very valuable information for the
determination of top-quark mass effects in our approach.
The calculation of the nonanalytic terms is significantly
simpler than that of the analytic contributions and was
described in detail in [28] for the three leading nonanalytic
expansion terms of the one- and two-loop form factors for
gg — HH. For gg — ZZ, we expand the amplitude up to
high orders in 7 = 1 — z and therefore use the expansion by
regions [42,43] to expand the full-theory diagrams instead of
an effective field theory approach where a large number of
effective vertices is required due to the deep expansion. We
use QGRAF [44] to generate the Feynman diagrams which are
processed and expanded using private FORM [45] code. The
integration-by-parts reduction [46] is performed with FIRE
[47] which is based on the Laporta algorithm [48].

Our results are given in Appendix A and an ancillary
Mathematica file [49]. They are of the form

)l

(n.0)

a: 'z,

NERANE

)(l

1
Z b In(—42)| Bz, (S)

I|
S

n

*Note that this subtraction differs at order €* from the one
given in Eq. (2.14) of [27].
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where 71, is n modulo 2, the coefficients are functions
of the dimensionless variables r, = m%/M%, and %=
(p% + m%)/M2%,. We use the symbol < to indicate that
terms which are analytic in Z and currently unknown have
been dropped on the right-hand side.

Threshold logarithms In 7 and logarithms In(—4z) related
to massless cuts in the amplitude first appear at two-loop
order. While we generally compute the expansion coef-
ficients up to n = 8, i.e., expand up to z*, we find that for
the massless-cut contribution proportional to In(—4z) more
input is required to achieve a reliable Padé approximation.
We therefore compute the corresponding coefficients bgjr‘lm)
up ton =9.

As in Higgs pair production, there is no S-wave con-
tribution to the form factors relevant for the interference
and the leading nonanalytic terms involve the zZ-suppressed
P-wave Green function [50].

B. Behavior for 7 - o

In addition to the LME and threshold expansions, we can
exploit scaling information in the small-mass limit m, — 0
which corresponds to z — oo. This does not require an
additional calculation in this region but relies solely on the
symmetries of QCD. The absence of infrared 1/m, power
divergences as m; — 0 implies that the form factors can
only show logarithmic behavior as 7 — co. Below we show
that the difference

|BAA—VV> = |8AA> - |va> (6)

vanishes as z — oo. To prove this, we note that chirality is
conserved in massless QCD and hence the four-point
correlator of two vector currents, a left-handed and a
right-handed current, which we denote in short by [V,V,V-
A,V+A], vanishes in the limit of zero quark masses.* Using
that the correlator [V,V,V,A] vanishes due to charge con-
jugation, we immediately conclude that [V,V,V,V]-
[V,V,A,A] - 0 as z > co. We exploit this below and

reconstruct the top-mass dependence of | F %) and | F X/)Q -

\F S/l)v> where we have one additional condition for the latter.

III. THE METHOD

We approximate the box form factors (2) using our

approach from [28]. First, we introduce subtraction
functions si/z‘),,sia in such a way that the combinations

| F 52)) - sl(-2> retain their analytic structure for |z| < 1 but

have threshold expansions which are free of logarithms
In(Z) up to the highest known order, ie., up to z*.

*To make the double-triangle contribution, shown in Fig. 1,
anomaly free, we have to consider doublets of quarks and not just
a single (top) quark, but we omit this technicality here since the
double-triangle contribution is known and not considered below.

The construction of such subtraction functions is detailed
in [28], and we give the ones we explicitly need in
Appendix B. Note that even after this subtraction the
threshold and large mass expansions of the two-loop form
factors still receive contributions proportional to a single
logarithm L, = In(—4z) from diagrams with massless cuts.
We therefore split the subtracted two-loop form factors into
a constant and a logarithmic part and construct separate
approximants for each part.

The top mass dependence is contained in the variable z
and the conformal transformation [51]

)

T op 7

Z =
is used to map the entire complex z plane onto the unit disc
|| < 1. The physical branch cut for z > 1 corresponds to
the perimeter of this disc. Further cuts arise outside the
physical region for z <7 and z <7, where s, 7, u are the
usual partonic Mandelstam invariants. These cuts are
mapped onto negative values of w.

We then reconstruct the logarithmic and nonlogarithmic
parts of the form factors using Padé approximants

n i
i=0 4i®

[n/m](0) = w

(8)

where the n + m + 1 coefficients a;, b; can be fixed by
imposing the condition that the expansion of Eq. (8) in the
LME and threshold region must reproduce the known
coefficients for given, fixed values of r; and %. The small-
mass behavior discussed in Sec. II B is not used to further
constrain the Padé coefficients, but is taken into account by
a rescaling of the Padé ansatz. Hence, we use approxima-
tion functions of the form

1) __ln/ml(e)
Pasyy(@) = 1+ agoz(w)’
® _ [n/m](w) [k/1](w)
Pisvv(@) = 1 +agoz(w) 1+agz(w) *
+ 551 (z(w)) = s (z(w)),
(1) ¢y — 2(@)ln/m](@)
Pyy(@) = 1+ agoz(@)
@, _ zw)n/m(®)  2(o)k/])(o)
Pyy(w) = 1 +agpz(w) 14+ ag;z(w) t
+ siv((w)), ©)

where Pﬁxjja—vv is used to approximate the difference
between the axial-vector and vector form factors, whereas

the vector form factors in isolation are approximated using
Pi/"), The limit z — oo corresponds to w — —1 where the
approximants in Eq. (8) approach a constant value. Thus,
the rescaling equation (9) enforces the correct asymptotic
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behavior for z — oo discussed in Sec. II B and provides us
with free parameters ag ; that can be varied in addition to
the polynomial degrees n, m, k, and [ to assess the stability
of the approximation. We note that these variations are
performed independently for all the terms in Eq. (9). Our
final ansitze for the form factor approximation are then
©)
(@) + Pyy

(@), (10)

1EY) (2(0))) = PY)_yy

~

P (z2()) = P (@). (11)
It should be noted that our ansatz does not account for
and cannot reproduce the aforementioned 7- and u-channel
branch cuts in the unphysical region @ < 0. Even in the
physical region not much is known from first principles
concerning the convergence behavior of Padé approxima-
tion. In the absence of exact results, our approximation
could be compared to, we therefore rely on heuristic
arguments.

The approximation method used in this work was shown
to reliably reproduce the exact NLO correction for the very
similar scenario of di-Higgs production [28]. The main

difference is the structure of the couplings to the produced
bosons in the considered box diagrams. However, as will
be shown in Sec. 1V, this difference appears to have no
visible impact when applying the method at LO and the
convergence behavior at NLO indeed turns out to be similar
to the case of di-Higgs production. We find that including
more input terms in the construction of the approxima-
tion stabilizes the prediction and reduces the estimated
uncertainty.

IV. RESULTS

Before showing our results at NLO for the form factors,
we can compare the LO form factors constructed as
discussed in the previous sections with the full analytic
result. We choose as input for the on-shell Z-boson and top
quark masses

mz = 91.1876 GeV, m, =173 GeV ~ (12)
and show results for two different values of % in Fig. 2.
The plots contain the maximum information we have
available from the LME at LO (see [27]) and our threshold
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FIG.2. The form factors |F E,l‘),) (upper row) and |F ﬁ&) (lower row) at LO for ¥ = 0.09 (left side) and ¥ = 0.25 (right side) as a function
of the invariant mass of the Z-boson pair. ¥ = 0.25 corresponds to the maximum possible transverse momentum for a given invariant
mass. The dark blue and light blue points correspond to the real and imaginary parts of the Padé approximants from Egs. (10) and (11);
the solid lines are the full result and the shaded regions are Padé approximants that were constructed using only the information from the

LME (cf. text for details).
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FIG.3. The NLO form factors |F E,z‘),) (upper row) and |F’ 5\2/2) (lower row) for ¥ = 0.09 (left side) and X = 0.25 (right side) as a function
of the invariant mass of the Z-boson pair. The conventions are the same as in Fig. 2 with the points and shaded regions corresponding to

the Padé approximation constructed from the LME only.

expansion. By construction the Padé ansatz in Eq. (8) may
contain poles anywhere in the complex @ plane whereas
the functions it approximates are analytic apart from the
branch cuts discussed in Sec. IIL° Since we aim to
reconstruct the form factors in the timelike region, we
exclude approximants that exhibit poles for

Re(z(w)) >0 and |w| < 1.2.

(13)
We obtain an uncertainty estimate for our results in the
following way. For every phase space point, we calculate
the mean and standard deviation for each contributing Padé
approximant in Eq. (9). To this end, we vary the rescaling
parameters ag; in the region

aRJ» S [01, 10] (14)
and vary [n/m] within |n — m| < 3, where n + m + 1 is the
number of available constraints. We construct 100 variants
for each Padé approximant. Our final prediction then

>For the case of the more well-behaved heavy-quark vacuum
polarization, it was found that the poles in the Padé approximants
mimic the physical branch cut [52].

follows from the sum of the mean values of the Padé
approximants, with an uncertainty obtained by adding the
individual errors in quadrature.

Figure 2 shows the Padé approximants from Eqgs. (10)
and (11) for the LO form factors |F 8&) and |F E&) including
our uncertainty estimate as points with error bars. We
observe good agreement with the full results, which are
indicated by the solid lines, up to large values of the
invariant mass Mz, of the Z-boson pair. The error remains
small throughout the whole invariant mass range, increas-
ing somewhat toward large M ;. The behavior for different
values of X is similar. To demonstrate the importance of
including the threshold expansion, we also show an
approximation based solely on the LME as shaded regions.
For this, we adopt the prescription given in Ref. [27] and
show the envelope of the [2/2], [2/3], [3/2], and [3/3] Padé
approximants which we have constructed without applying
the rescaling of Eq. (9) or the pole criterion Eq. (13). We
note that the resonant structure near z = 1 in the upper right
plot showing the vector form factor for maximal transverse
momentum is caused by a pole near w = 1 in the [3/3] Padé
approximant. In our full results, from Eqs. (10) and (11),
we apply the criterion Eq. (13) to exclude approximants
which feature such resonances in the timelike region z > 0.
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FIG. 4. Logarithmic (log) and nonlogarithmic contributions to the vector and axial-vector form factors.

We conclude that the threshold expansion is essential for
the reconstruction of the full top mass dependence above
the top quark threshold.

We now turn to the NLO form factors. In Fig. 3, we show
the results for the virtual corrections to the form factors

|F %) (upper panel) and |F f@) (lower panel) for two values
of %. Note that we do not include the double-triangle
contribution to the form factors, as they have been
computed analytically in [27]. As at LO, we include only
the top quark contributions. The uncertainty associated
with the Padé construction increases with M,,. Since we
input information mainly at low M ,, this behavior is
expected. With the exception of the vector form factor

|F ﬁ,) for small transverse momenta (upper left panel in
Fig. 3), we find that the Padé approximation based on the
LME alone does not yield a realistic reconstruction of the
top-quark mass effects of the form factors. In particular,
the important axial-vector form factor suffers from very
large uncertainties. We remark though that in [27] for the
NLO cross section the Padé prediction was improved by a
reweighting with the full LO cross section.

We note that |F %} shows a small oscillation in the
region of large M, when the transverse momentum of the
Z bosons is small as is evident from the upper left plot in
Fig. 3. We trace the appearance of the second peak back
to the contribution proportional to L, stemming from
diagrams with massless cuts. As shown in Fig. 4, this
logarithmic contribution is numerically important in the
vector form factor for large M, but significantly smaller
than the nonlogarithmic contribution in the axial-vector
form factor. In general, we find that the contribution
proportional to L, shows worse convergence behavior than
the nonlogarithmic terms when including more and more
terms in the LME and the threshold expansion. This is
shown in Fig. 5 where we compare our results from Fig. 3
to the Padé approximants obtained with the same procedure
but only using threshold input up to the order z> and Z°.

We observe good convergence in the case of the axial-
vector form factor. On the other hand, the O(z%) approxi-
mation for the vector form factor does not feature the
oscillatory behavior described above and there is no over-
lap with the full approximation in a significant part of the
phase space. However, the O(z%) and O(z*) results are in
good agreement with the full approximation where we have
also included the O(z°) term in the coefficient of the
logarithm L, to verify that this stabilization persists with
the addition of higher orders in the threshold expansion. We
conclude from this discussion, that the Padé approximation
can be improved systematically when including higher
orders in the various expansions. Nevertheless, we believe

that the prediction for |F %) should be taken with a grain of
salt above M, > 500 GeV because of the slower con-
vergence. We note also that we find very similar con-
vergence behavior as in the case of Higgs boson pair
production, discussed in [28]. As we found here for ZZ, the
contributions from diagrams proportional to L, and hence
massless cuts converge worse than the nonlogarithmic
pieces.

In Fig. 6, we show the virtual corrections to the form

factor v}|F 2y + a}|13£‘22> as it enters in the interference
term with the Higgs boson exchange. We expect a large
suppression of the vector contribution since v} < a]% and
the LME of the vector form factor only starts one order
higher [27]. Indeed, we find that vF|F %) has to be
amplified by a factor of 300 to be comparable to the
axial-vector contribution, cf. the dashed lines in Fig. 6.
This clearly demonstrates that the interference term will be
dominated by |F fj ), and we therefore choose not to modify
the uncertainty estimate for the vector form factor. The fact
that |F %} is negligible compared to |F£sz)> allows us to
make trustworthy predictions for the interference with the
Higgs production with subsequent decay to Z bosons up to
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FIG.5. The NLO form factors | F §,2‘>,> (upper row) and |F ﬁ) (lower row) for ¥ = 0.09 as a function of the invariant mass of the Z-boson
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M,, — oo, even though as stated above we trust our results

for |F§,2‘>,> only for M,; <500 GeV.

The numerical implementation of the form factors is
available as a FORTRAN routine on request and can be
combined with existing computations of the massless loop
contributions and the real corrections for the interference of
the Higgs exchange with decay to ZZ with the continuum
background.

V. CONCLUSIONS AND OUTLOOK

We have considered top-quark mass effects in the con-
tinuum process gg — ZZ, focusing on the form factors rele-
vant for the NLO interference with the production of a Higgs
boson and its subsequent decay into two Z bosons. We have
presented a Padé-based approximation using information
from an expansion around a large top quark mass and an
expansion around the top quark pair production threshold.

At LO, we have shown that our Padé construction
approximates very well the full top mass dependence of
the form factors for the whole range of the invariant mass
M, of the Z bosons. At NLO, we provide a new prediction
with very small uncertainties at small and moderate M,
with an increased uncertainty toward large M ;,. We expect
that adding more information into the Padé construction at
large M,, would improve the description also in this
region.

Our results can be combined both with virtual correc-
tions mediated by massless loops and the real corrections.
The latter constitute a one-loop process and can therefore
be computed with well-established techniques. The Padé
construction can also be applied to the remaining form
factors contributing to gg — ZZ, which do not interfere
with the Higgs signal.

We note also that while in this work we have applied our
method to the production of on-shell Z bosons, there is no
obstruction for applying it also to off-shell Z-boson
production. Indeed, the LME for off-shell Z-boson pro-
duction is already known up to the order z* [24]. While a
calculation of the full top mass dependence for on-shell Z
bosons with numerical methods seems to be feasible with
current techniques in a reasonable timeframe (see [53,54]),
a computation of the off-shell form factors appears to be
beyond the current state-of-the-art.

(3,0) 4-71'
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APPENDIX A: THRESHOLD EXPANSION
OF FORM FACTORS

In the following, we give explicit expressions for the
coefficients in the threshold expansions of the form factors.
For convenience, we quote the definition already given in

(A1)

0o 1
~ -1 n.m n.m _n -
FVZ5T N B 4 b n(-4z))E Wz (A2)

where i € {VV,AA} and 71, is n modulo 2. The coefficients
a, b are most conveniently written in terms of the two

2 2
. . . m ~
dimensionless ratios r, = M—gz and r, = Mp—gz =X-—rz. We

define the loop integral measure as

dil
[dl) = e (A3)
1m2
and use the shorthand notation
Cy = / [dl] ! (A4)
’ Pl(l+q)? - 1[(l+q—pz)?—1]

(n.1)

iln

with ¢*> =1, p% = 4r%,q - p; = 1. The coefficients b
and bgiz’m) vanish. Furthermore, coefficients with m = 0
and even n do not contribute to the imaginary part and are

therefore not listed here. We have calculated the remaining
(7.0)

n0 pn.m
5 bi iln

coefficients a; up to n = 8 and the coefficients b
up to n =9, obtaining the following results:

W =3 (=1 + 6r; — 1872 + 1673), (AS)
2
a2 = T [014+210r, — 95813 + 233673 — 296874 + 147275 + 8r,, (1 = 2r,)2(1 = 2r, + 412)],  (A6)
15(1 = 2ry)*r;
7.0 T
— 7888967 + 2695687 + 161, (1 —2rz)*(39 — 234r, + 672r% — 920r3, + 592r})]. (A7)
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(2,1) - 3271'2 3
p&D = =278 (=1 + 6ry — 182 + 1613), (A8)

(.0) _ n
b0 = - S 2, —ar2 [<2(1 = 2r,)(1 = 4r)[=136 + 322 + 168In(2)]r,, (1 — 2r, + 4r2)

—64Cy(1 = 2r,)2(1 = 4ry)*(=1 = Try + 34r% — 4475, + 8r%)

= 2 /(1=
+64r,(1 = 4r,)? ) [—Z arctan <—1( er)rZ) (9 — 457, + 702 — 5673 + 32r4)
Tz —4rz

— (1 =2r2)(1 = 4r,)[192 + 922 — 56 In(2) — 17287, — 907%r, + 560 1n(2)r, + 625612 + 384712
—20161n(2)rZ — 1248073, — 8167273, + 3584 In(2)r3 + 1203274, + 5767%r%, — 3584 In(2)r%, — 204873

+128(1 = 2r;) In(2 — 4r,)(2 = 23r, + 98r% — 18475, + 152r5, — 11215, + 9615)], (A9)
b = 0. (A10)

p(D =0, (Al1)

b = Lz (=3 + 307, — 134r% + 3283 — 464r% + 25615 + 4(1 = 2r,)2r, (1 = 2r, + 412)],  (A12)

45(1 = 2ry)*rs

(5,0) T ,
bia” = —(1=2r,)(1 —4r,)[21472 — 60757* — 1045201n(2) — 643776
A 4050(1 —2r,)>(1 —4rz)3r%[ ( rz)( rz)| /4 n(2) ry

+ 1093507, + 1881360 1n(2)r, + 7528432r% — 8559007217 — 14848320 1n(2)r% — 442821761

+ 38178007%r3 + 67172160 1n(2) 73, + 141881152r% — 105580807 % — 187708800 1n(2)7%,

— 24578713673, + 181353607213 + 3199411201n(2) 75, + 20214988875 — 177638407275,

— 302008320 1n(2) 7S — 3568844877 + 73267207 r}, + 117350400 1n(2)r}, — 2506752075

— 18(1 = 2r,)(1 — 4ry)r, [2136 + 3752% — 3601n(2) — 37584r, — 52507°r; + 50401n(2)r,

+ 263040r% + 300007272 — 28800 1n(2)r% — 91564873, — 94200713, + 22080 1n(2)r3

+ 154662475 + 18456072 1% + 4243201n(2)r% — 110387273, — 2188807775,

— 1320960 1n(2)r3, 4 54681675 + 1113607275 + 768000 1In(2)r$, — 16384077

+ Co(1 = 2rz)(1 = 4r)[46080(1 — 2r;)*r, (2 — 9rz + 201y — 12r}, — 8% + 1613

—2880(1 —2r,)(1 —4rz) (31 — 99r, — 1242r% + 891213, — 2369674 + 29840r3 — 1660875, + 21767r7)]
+ry(1—4ry) 1:—Zrzarctan (27%1__2:;)’2) [960(1 — 4r,)(~687 + 88431,

— 46162r% + 12635673 — 195416r% + 17430473, — 9536075, + 30720r))

—46080(1 — 2r)?r,, (=6 + 45r; — 15212 + 2643, — 17614 + 1613)]

+ (1 =2r,) In(2 — 4r,)[1920(=170 + 3251r, — 26282r% + 11719673 — 31489674

+ 52446473, — 54944075 + 394688r), — 24051275, 4 96768r5,)

—92160(1 — 2r)?r,, (-1 + 13r; — 70r% + 20073, — 280r% + 12873)]]. (A13)

b(5.0) o 167[

AAYIH—m(—l+4rz+6rm_)(l—2rz+4r%), (A14)

(5’1) - 3271’

AL = W [53 — 318r, + 84612 — 84873, — 1087, (1 —=2r; + 4r2)], (A15)
z
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6,1 32%2
1(4A ) = W [19 —266r; + 17301% - 65041% + 14648r4z - 19072r% + 12128r% — 2816r}
+ 4(1 - 2rZ)2rpT(9 —54r, + 168r% - 208;% + 128r§)], (A16)
(7,0) T 2
by’ = [(1 — rZ)(l — 2rZ)(1 — 4rz)[—48296976 + 13069357

793800(1 — r,)(1 —2r,)7 (1 —4r,)*r%

+ 685465201n(2) + 13811636167, — 3398031021, — 17822095201n(2)r, — 199539871842

+ 39628764077 % + 20934631200 In(2)r% + 178890721728r3 — 274300992073,

— 146825159040In(2)r3, — 1038970811008r% + 125463794407 r}, + 682278602880 In(2)r%,

+ 3951328802304r5, — 398328235202%r3, — 2194951852800 In(2)r3, — 9798614287104r5

+ 8930017152072 7% + 4941762577920 1n(2)rS + 15459576751104r) — 1401004684807 1),

— 7665966120960 In(2)r7, — 14595082354688r%, + 1476418406407 15, + 7817008496640 In(2)rS,
+ 712472656281675, — 9437976576075, — 4715940741120 1n(2)r5, — 1110704586752r)°

+ 2735824896077}’ + 1270490726400 In(2) L’ — 1005767884807 ]

+2(1 = rz)(1 = 2rz)(1 — 4ry)r, [12875128 — 24825157 — 32397960 In(2) — 3227126567,

+ 546153307°r, + 7127551201n(2)r, + 348121788812 — 53088966077 r% — 70457755201n(2)r%
— 2189076224073 + 301674240073, + 41557608960 In(2)r3, + 89967740544 r% — 111284560807 r%,
— 162222883200 In(2)r, — 2515128721927, + 2778841296073, + 434414211840 In(2)r3,

+ 4770154726407 — 4713043104077 15 — 795771594240 In(2)r$, — 5925547274247),

+ 525738124807%r7 + 963913574400 In(2)r}, + 4376164679687 — 3523032576075,
—7056382771201In(2)r% — 137703424000r% + 108186624007 r), + 235343216640 In(2)r3,

— 82575360007]

+201600(1 = 2ry)*(1 — 4r;)*[—356 + 32% + 5201In(2)]r3 (=1 + rz)(1 —2rz; + 4r%)

+ Co(1 = r2)(1 =2r,)*(1 = 4r,)?[=20160(1 — 4r,)(1773 — 13705r, — 1549452 + 54286073,

— 267276074 + 665252813, — 9490464+, + 7595840r], — 2952064+, + 311808r%,)

+ 645120(1 = 2ry)*r,, (96 — 601r, + 1800r% — 4344r3, + 7592r — 5664r3, — 32r5 + 1600r7)]

1 - 2,/(1—
+ry(1—4r,) |~ Z arctan <M> [~6720(1 — 4r,)(35337 — 6164967,
ry 1- 2rZ

+ 472240172 — 2089635873 + 5906944875 — 11135355273, + 14204520075

— 1224274887} + 70734336715, — 2643865675, + 5122048r)0)

—215040(1 — rz)(1 — 2r2)%r,, (—1044 + 10253r, — 432167

+ 10420473 — 1589127 + 15083273, — 7097675 + 940877)]

—1In(2 —4rz)(1 = rz)(1 = 2r,)[13440(9662 — 255657r, + 30118067% — 2084137673,

+ 9413967214 — 29177942473, + 63545913675 — 98219136077, + 108481779215

— 87400371279, + 5383951367} — 253452288r! + 66985984r1?)

+430080(1 — 2r,)?r, (=251 + 4211r, — 309507 + 13267613, — 370528,

+ 69971273, — 87190475 + 6471687 — 22016075, + 18432r)]], (A17)
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8
BT — T (<14 4ry+ 67, )(39 — 234r, + 672% — 92013 + 592r%), (A18)
' 35(1 = 2rz)%r; r
(7‘1) - 1677.'
— 4rpT(1 169 — 7014r, + ZOOOOr% — 27624}’% + 17840r‘})}, (A19)
(8.1) 327 2 3 4
b = [233 — 4194r, + 34914r; — 1748561, + 57526475

— 127827255 + 190316875 — 1816064r% + 99276875 — 2355207
+4(1 = 2r)%r, (11 = 110r, + 572r% — 154475, + 228875, — 118473, + 192r9)
—64(1 =2ry)*r3 (1 =2r; 4+ 4r%)], (A20)

(9.0) —2r

M = 3501 2r, 03
— 6105601} — 2r,, (8183 — 81830r, + 37365213 — 96440073, + 1472912/% — 122441655, + 45792075
+320012, (1= 2r,)(1 = 2r7 +412)] (A21)

2621 — 36694r, + 22512413 — 719321673, + 17273444 — 231740815 + 175788875

for the expansion of the axial-vector component. The corresponding coefficients in the expansion of the vector part read

(3,0) 167z

= % 2_5r). A22
8
aly) = 34 -217r, + 49213 — 41213 + 8(1 - 2r,)r, ], (A23)
15(1 = 2r,) r
a7 2T 1131413549k, 4 5724002 — 12429673 + 14105674 — 7003255
105(1 = 2r,)°
+16(1 = 2r7)2r, (11 =72r; + 14812)], (A24)
12872

b2 — (2-5ry). (A25)

T,
p3O = - z [4(1 = 2r,)(1 — 4r,)(136 + 212% + 56 In(2) — 6807,
9(1 =2r,)3(1 —4r,)?
—1387%r, — 4481n(2)r; + 480r% + 2167°r% + 896 In(2)r% + 512r3)
—8(1 =2rz)(1 = 4rz)*(—=136 + 37* 4+ 1681n(2))r,,
—128Cy(1 = 2r,)*(1 — 4rz)*(=3 + 4r2)

1 - 2 /(1=
+64(1 —4r,)?, [— Zarctan (M) (=5 + 461, — 9612 +3213)
ry 1 - 27"2

+512(1 = 2r7) In(2 = 4r;) (2 = 231, + 861% — 11273 + 2414)], (A26)
by =0, (A27)
b3 =0, (A28)
12872
bl = (2= 11, +36r% — 5613 +4(1 = 2r,)%r,,), (A29)

YV 45(1 = 2rp)t
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(5.0) _
Vv

6.1)
vy

T 2025(1 = rp)(1 = 2r2)5(1 = 4ry)>

z [—2(1 = 2r,)(1 = 4r,)(1 = r,)(186008 — 63457 — 177000 1In(2)

—2712968r, + 888307%r, + 2535360 In(2)r, + 15732800r% — 4984207°r% — 142411201n(2)r%
— 457257923 + 1443960723, + 39511680 In(2)r3, + 6843238474, — 224640071},
—550118401n(2)r} — 4598220873 + 15379202%r3, + 31488000 1n(2)r3, + 6266880r,)

+36(1 = 2rz)(1 —4rz)(1 — rz)r,, (—8024 4 5857% 4 11400 In(2) + 97248r, — 69007,
—1300801In(2)r; — 384928r% + 288607 r% + 505440 1n(2)r% + 532224r3 — 494407°r3,
—7180801n(2)r3, — 88576r% + 278407 r% 4+ 192000 In(2)r% — 40960r3)

+ Co(1 = 71,)(1 =2r,)*(1 — 4r,)[2880(1 — 4r,)(53 — 5641, + 200072 — 23683 — 33675 + 1088r3)
—46080(1 — 2r;)?r, (3 — 24r; + 40r% + 8r3)]

+ (1 =rz)(1 =2rz)In(2 — 4r,)[-3840(—80 + 1549r, — 1253872

+ 5434073, — 134752r% + 18726415, — 12675255 + 24192r))

—92160(1 = 2r;)*r, (=1 + 16r, — 64r} + 80r3)]

+ /];—Zrzarctan (27”(1__2;”? [480(1 — 4r,)?(=318 + 4749r, — 2988212

+ 10346073, — 21204075, + 249152r5, — 14489675 + 3072077

+23040(1 = 2r,)*(1 = 4rz)(1 = rz)r,, (=5 + 54r; — 184r% + 20015, + 16r3)]],

(50) 64
bVV,ln = m(—l + 4VZ + 61"pr),

b(5’1) - 1287

— (1524 103r,— 108r, ),
44 135(1—2rz)2( 10Tz o)

12872
315(1 = 2r,)°

(7.0) r 2
b = - —(1-2 1-4 1- 122096632 — 127575
vV 198450(1 - 2r2)7(1 - 4rz)4(1 - rz)2 { ( rZ)( VZ)( rZ)[ d

— 92998920 In(2) — 2848934592r, + 16301257%r, + 21559381201In(2)r, + 2902977959212
— 21527102%r% — 21749266560 In(2)r% — 1697384507843, — 745416007°r3,

+ 125261747520In(2)r3, + 628426159680r% + 59091984072, — 453823735680 1n(2)r%,

— 1530688965120r5, — 208956888073 + 1072845164160 In(2)r3, + 2460756033152r5

+ 3889861920729 — 1656277002240 In(2) 5, — 25334305367047r7 — 344578752071},

+ 1613260615680 In(2)r7 + 153842168422475 + 69431040075, — 902101401600 In(2) 7%,
— 4453931008007% + 4354560007 r% + 220520939520 In(2)r% + 251441971207
—2(1=2rz)(1 = 4rz)(1 = rz)?r,, [8486296 — 7852957z — 111997201In(2) — 222273632r,

+ 177773407 r; 4 267660960 1n(2) r, + 246932409612 — 1733130002272 — 2810969280 1n(2)r%
— 1492644710473 + 9413712007%r3, + 16619420160 1n(2)r3, + 5280141811274 — 3062631600721,

— 58795390080 In(2)r}, — 1083035427843, + 5922262080713, 4+ 122121377280 1n(2) 73,

114013-12
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(=58 + 6197, — 26241 + 554073, — 5552r% + 164875 + 4(1 = 2r,)2r, (=5 + 617 + 3213)),
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+ 1168058716167 — 62301657607%r$ — 134713743360 In(2)r$ — 4817465344077,

+ 27046656007 r}, 4 58835804160 1In(2)r}, — 206438400075

+201600(1 — 2r,)3(1 — 4rz)*(1 — rz)?[=356 + 37> + 5201n(2)]r2,

+ Co(1 = r2)2(1 = 2r2)*(1 — 4r,)?[10080(1 — 4r,) (1879 — 297087, + 1869482

— 59284873, + 96820874 — 66310473, — 579207, + 15590477)

—322560(1 — 2ry)*r,, (85 — 896r, + 3708r5 — 717613, + 5312r, + 800r)]

+ (1 = 4ry)? l:—zrzarctan (%) [~1680(1 — 4r;) (14088 — 2620507,

+2162807r% — 1051693473 + 3361766415 — 7423438475, + 11484484875

— 1218681287, + 829489928 — 318223367, + 51220487

—53760(1 — rz)(1 = 2rz)*r, (504 — 7341r, + 44374r% — 14218073,

+ 25305674 — 22936073, + 6870475, + 94087r7)]

+1In(2 — 4rz) (1 = r;)?(1 = 2r,)[13440(2522 — 688931, + 83278612 — 586962413, + 26678552r%
— 8156424073, + 1694560967 — 23506457677 + 205653632r5 — 984442889 + 16746496r))
+215040(1 — 2r)?r,,, (17 = 772r; + 9460r% — 5166413

+ 146272r% — 21299253, + 12416075 + 9216r3)]], (A34)

70 _ 32
bVV.ln —m(—l+4rz+6rp7_><11—7272+148F%), (A35)

b(7’ 1 ) 6471'

W = st =2y [~2128 + 128177, — 254283 + 1606073, + 4r, (—413 + 2408r, — 446013)],  (A36)
—_ rZ

8,1 ]2877.'2
b = T [—430 + 6217r, — 3879672 + 13561613 — 28697614 + 367712r5, — 26163275 + 747527,
+dr, (1 =2r)2(=43 +290r, — 764r% + 80813, + 48r%) — 64r3 (1 —2r,)%, (A37)
b0 = 8z 187 + 564r, — 191122 + 9264073, — 18689674 + 1526407
Vv,ln—m[ +564rz — rzy + rz7 = rz + rz
+ 7y, (—482 — 129921, + 95984 — 23334473, 4 228960r%) — 3200(1 — 2r;)212,]. (A38)

APPENDIX B: SUBTRACTIONS

In this Appendix, we give the functions s; with i € {VV, AA} used to subtract the threshold logarithms. We write them in
terms of auxiliary subtraction functions s,, n € N, i.e.,

20 =Y Cousala). (B1)

. . =1 _n _ _n . . .
where the coefficients C;,, are constants and snzx z2In(z) + O(z%]) in the threshold region. We construct these auxiliary
functions based on the known analytical results for the vacuum polarization function. The subtraction functions and their
threshold expansions are
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16(1 — z)IT2(z)

$2(2) = = 37
z—1 8 3/2 1 ) 8 5/2
=< (1-2)In(1-2) —;(1 -2) +§(1 —2)%In(1 —z) —%(—5 +181In(2))(1 — z)
16 S 2 1
_ - _ /2 _ _= _ \3 _ - _ _ 2\7/2
,,(1 z)*?In(1 - z) 3 (1-z)0°In(1-2)+ 6757r(14653 262801n(2))(1 — z)
548
_E(l —2)"2In(1-2z) =2(1 = z2)*In(1 — 2) + O((1 — 2)°/?), (B2)
8 547%(1—z)MID*(z) — 41z
4@ =512 2
- 4 1
21 =221 - 2) —%(1 —z)%? +3 (- 2)?In(1 - 2) —9—2(2 +1In(512))(1 — 2)7/2
16 2
—3, ! ~2)?In(1 - 2) +3(1 —2)*In(1 - 2) + O((1 - 2)*?), (B3)
32(1 = z)3G(z)I*(z) 656
SS(Z) - = 2 3
3rnz 8lnz
—1[ 11 3 s o
= —§—|—ln(8) +2—”2(—2—|—7C3) (1-20%+ (1 =2)%In(1 - z)
1 76 + 924 11
-=(1-2z)PIn(1-2) +22 <—145 +2641n(2). +w>(1 —7)7? +€(1 —2)?1n(1 - 2)
28 4 9/2
—3, (1 =2 In(l —2) + O((1 = 2)"%), (B4)
~16(1-z2)°0We(z) 328 6404
s6(2) = 373 + 81727  6757°z
= 8 7
=(1-2) (1 - 2) - (1= z)'? +3(1- 2)*In(1 = 2) + O((1 - 2)°/?), (B5)
) 32(1 - 2)*G(x)lT ()~ 656 131672
s = - -
T 3773 817°22 60757z
i 11 3 2
= —g T + 55 (=2+76)| (1 - 2)2+(1-2)"In(1 - z) - (1= z)*In(1 —2) + O((1 - 2)°7), (B6)
@ 16(1 — z)*1M 2 (2) N 328 27412 N 7773424
s = - -
s1 37 817770 2025777 | 4961257z
= (1-2)*In(1 - 2) + O((1 - 2)°/2). (B7)

where we have used the symbol < to denote that terms analytical in (1 — z) have been dropped on the right-hand side, and

we only use subtractions for the logarithmic terms, hence no subtraction functions s;(z) and s3(z) are necessary. We have
used

(B8)

o JI=1/z-1
6z) = 22/1— 1/zln<\/1 iy 1)’

and TT(D is the well-known two-loop correction to the vacuum polarization [55] in the convention of [56]. The functions s;
in Egs. (B2)—~(B7) are constant as z — 0 and only diverge logarithmically as 7 — .
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