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We investigate the ferromagnetic (spin polarization) condensation in (2þ 1)-flavor Nambu–Jona-
Lasinio (NJL) model with nonzero current quark masses at finite temperature and density, which may be
relevant in the context of neutron stars. The spin polarization condensation arises due to a tensor-type
interaction that may be generated due to nonperturbative effects in QCD. In this investigation, we study the
interplay between the chiral condensate and spin polarization condensation for different values of tensor
coupling. Spin polarization in the case of (2þ 1) flavor is different from two-flavor case because of an
additional F8 ∼ hψ̄Σzλ

8ψi along with a F3 ∼ hψ̄Σzλ
3ψi condensate associated with the λ8 flavor generator.

We find nonzero values of the two spin condensates in the chirally restored phase. Beyond a certain
temperature, the spin polarization condensates vanish for any value of quark chemical potential. The spin
condensates affect the chiral phase transition, quark masses, and quark dispersion relation. Thermodynamic
behaviors of F3 and F8 are found to be different, and they affect the quark masses differently. We discuss
the phase diagram in the temperature and chemical potential plane in the presence of such condensates.
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I. INTRODUCTION

One of the recent interests in high-energy physics is to
study the phase diagram of strongly interacting matter. The
QCD phase diagram has been studied extensively in the
temperature (T)-baryon chemical potential ðμBÞ plane
[1,2]. The first principle lattice QCD (LQCD) simulations
give a reliable prediction about the nature of QCD phases
and phase transitions at zero baryon chemical potential and
finite temperature [3–5]. Although LQCD calculations can
be trusted at small baryon chemical potential μB ≃ 0 using
extrapolation, at relatively large baryon chemical potential,
the “fermion sign problem” [6] in LQCD prevents one from

making reliable estimates. LQCD calculations predict that
at μB ¼ 0 the nature of the transition from the confined
hadronic phase to deconfined quark gluon plasma (QGP)
phase is not a thermodynamic phase transition; rather, it is a
smooth crossover with a transition temperature Tc ∈
½149–163� MeV [7]. On the other hand, QCD-inspired
effective field theory models, e.g., the Nambu–Jona-
Lasinio model (NJL), etc., indicate that the phase transition
from the hadronic phase to the QGP phase at large baryon
chemical potential and small temperature is first order in
nature with physical quark masses. This indicates the
presence of a critical end point at the end of the first-order
chiral phase transition line in the QCDphase diagram.Apart
from the confined hadronic phase and deconfined QGP
phases, the QCD phase diagram has a very rich structure at a
low temperature and high baryon chemical potential. In this
region of the phase diagram, the possibility of various exotic
phases, such as the color superconducting phase [8–10],
quarkyonic phase [11], inhomogeneous chiral condensed
phase [12–14], etc., has been investigated.
Heavy ion collision experiments, e.g., the Relativistic

Heavy Ion Collider and LHC, give us a unique opportunity
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to explore the QCD phase diagram. Strongly interacting
QGP produced in these experiments at relativistic energies
recreates the physical conditions of the microsecond-old
Universe just after the big bang. The strongly interacting
plasma produced in these high-energy collisions can be
characterized as high-temperature and low baryon chemical
potential QGP. At high densities relative to nuclear satu-
ration density and low temperature, exotic phases of QCD
can exist, e.g., the two-flavor color superconducting phase,
color-flavor locked phase, crystalline color superconductor,
etc. Some of these high-density QCD phases can also be
explored in the upcoming heavy ion collision experiments
at moderate center-of-mass energies at Facility for
Antiproton and Ion Research and Nuclotron based Ion
Collider fAcility. Apart from these terrestrial experiments,
the interior of astrophysical ultracompact objects like
neutron stars provide an ideal condition to indirectly
explore these high-density QCD phases. Because of very
low temperature and high baryon density, in the interior of a
neutron star, various QCD phases may be realized, e.g.,
deconfined quark matter [15,16], meson condensation
in the hadronic phase [17], the two-flavor color super-
conducting phase(2SC), the color-flavor locked phase
(CFL) [8–10], etc.
Further, compact objects like neutron stars can be

strongly magnetized. Observations indicate that the mag-
netic field strength at the surface of pulsars can be of the
order of 1012–1013 G [18]. Strongly magnetized neutron
stars (magnetars) may have even stronger magnetic fields,
approximately 1015–1016 G [19–25]. Using the virial
theorem and comparing the magnetic field energy and
gravitational energy, one can estimate the physical upper
bound on the strength of the magnetic field for a gravita-
tionally bound star to be of the order 1018 G [18]. For self-
bound objects like quark stars, this bound can be even
higher [26]. The physical origin of the very strong magnetic
field in the magnetars requires reconsideration of the
common understanding that the magnetic field of a neutron
star is originated from the progenitor star [27]. Since quark
matter can be present at high densities inside the neutron
stars, the presence of a quark ferromagnetic phase in high-
density quark matter has also been suggested as a possible
explanation of large magnetic field associated with magnet-
ars [28–30]. For a possible solution to this problem, the
author in Ref. [28] examined the possible existence of spin
polarized deconfined quark matter using one-gluon-
exchange interaction between quarks in Fermi liquid theory
within the Hartree-Fock approximation. Taking the idea as
proposed in the Ref. [28], spin polarization in the quark
matter has been well explored in the subsequent literature.
In general, a collective spin polarization of charged quarks
can give rise to the ferromagnetic nature of quark matter at
high density; hence, the spin of the fermions plays the
crucial role in determining the possibility of the ferromag-
netic nature of dense quark matter. It has been shown that in

the nonrelativistic framework there is no possibility of spin
polarization in normal nuclear matter [31]. On the contrary,
using the relativistic Hartree-Fock approximation, the
possibility of spin polarization at asymptotic high density
has been suggested in Refs. [32,33]. It is important to note
that the relativistic framework may be more suitable than
the nonrelativistic approach to understanding the existence
of spin polarization. But in any case, to explore spin
polarization in quark matter at a high density or baryon
chemical potential, a relativistic approach is very natural.
In the relativistic framework, “spin density” can be

expressed in two different ways: first by the spatial compo-
nent of the axial vector (AV)mean field,ψ†Σiψ ≡ −ψ̄γ5γiψ ,
constructed out of the fermionic field (quarks) ψ and an
axial vector combination of Dirac gamma matrices and,
second, by tensor Dirac bilinear (T) ψ†γ0Σiψ ≡ −ψ̄σ12ψ .
Although AV- and T-type mean fields are different in the
massless limit of fermions, it has been shown that they are
equivalent in nonrelativistic approximation [29]. The coex-
istence of the spin polarization and color superconductivity
has been studied using the AVinteraction for quarkmatter in
the NJL model [30]. The interplay between the spin
polarization and chiral symmetry breaking at finite density
for a single quark flavor using the AV mean field has also
been studiedwithin the NJLmodel in Ref. [34]. In Ref. [34],
it has been shown that for one flavor spin polarization is
possible at finite density and zero temperature, provided the
ratio of the couplings of the axial vector channel and the
pseudoscalar channel satisfies some lower bound. It has
been argued in Ref. [34] that, due to the interplay between
spin polarization and chiral symmetry for a certain value of
chemical potential, spin polarization appears due to the large
dynamical quark masses generated by spontaneous chiral
symmetry breaking. Interestingly, it was also shown that
spin polarization plays an important role in changing the
value of the dynamical mass and that at a very high density
both dynamical quark mass and spin polarization vanish in
the chiral symmetric phase. Although in Ref. [28] the author
introduced the idea of quark spin polarization using one-
gluon-exchange interaction, in the NJL model studies,
the AV mean field has been used. Because of the Fierz
transformation, one can get AV channel interaction
between quarks from one-gluon-exchange interaction, but
the tensor Dirac bilinear representation of the spin density
operator does not appear in the Fierz transformation of the
one-gluon-exchange interaction. Hence, at asymptotically
high densities at which one-gluon-exchange interaction in
perturbative QCD is applicable, spin polarization cannot be
studied using the T-channel interaction. But for moderate
densities near the chiral phase transition density, perturbative
QCD is not applicable, and one can use QCD-inspired low-
energy effectivemodels, e.g., theNJLmodel. TheNJLmodel
is not directly related to perturbative one-gluon-exchange
interaction. In NJL model, AV- or T-channel interactions are
not written keeping in mind the perturbative nature of QCD
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and some nonperturbative effects can give rise to tensor
channel interaction. Hence, spin polarization in the tensor
channel, which can be different from the AV channel, can be
studied within the NJL model. In fact, the tensor channel
opens up a completely different point of view in looking into
the spin polarization problem of quark matter at moderate
densities, e.g., in the two-flavor NJL model, the spin
polarized phase can be shown to be present in the chiral
restored phase in which the dynamical quark mass is zero
[35,36]. This result is different than the result obtained in
Ref. [34], in which the spin polarization is not present in
chiral restored phase. Since themanifestations of theAV- and
T-channel interactions are different, the interplay between
theAV- andT-type spin polarized phases becomes interesting
to study along with the other phases expected to arise in the
high baryon density region of the QCD phase diagram
[12,30,34,35,37–41].
In the present work, we discuss the interplay between

the spin polarization condensate (hψ̄Σiψi) and the scalar
chiral condensate (hψ̄ψi) in the (2þ 1)-flavor NJL model
using only the T-type interaction for spin polarization.
Most of the earlier works used some simplified approxi-
mation to study the interplay between spin polarization
and other high-density phases, which includes the single-
flavor NJL model [34], SUð2Þ-flavor NJL model [35,40],
SUð3Þ-flavor NJL model [42] with zero current quark
mass, etc. However, for a more realistic situation, one
should consider the (2þ 1)-flavor NJL model with
different current quark masses of strange and nonstrange
quarks. Besides this, the structure of ferromagnetic
condensation for the (2þ 1)-flavor NJL model is quali-
tatively different from that of the two-flavor NJL model
as inherently two different kinds of spin polarizations that
are associated with the diagonal generators of the SUð3Þ-
flavor group are possible. The behavior of these spin
polarization condensates as a function of temperature and
quark chemical potential (μ) has been discussed exten-
sively. Since the spin polarization condensates are also
related to the quark-antiquark scalar condensates, it is
evident that the spin polarization condensates affect the
constituent mass of the quarks. In this work, spin
polarization condensates due to the tensor-type interac-
tion appear in the chiral symmetry restored phase, and
the quark masses, specifically strange quark masses, are
strongly affected by the spin polarization condensates in
the chiral symmetric phase.
This paper is organized in the following manner. We first

discuss the formalism of (2þ 1)-flavor NJL model in the
presence of tensor-type interactions in Sec. II. In Sec. II, the
derivation of the thermodynamic potential is discussed in a
mean field approach. Once the thermodynamic potential is
derived, one can get the gap equations to solve for the
condensates. After the formalism, important results and the
corresponding discussion are given in Sec. III. Finally, in
Sec. IV, we summarize our work.

II. FORMALISM

To study the spin polarization due to tensor channel
interaction for ð2þ 1Þ flavor quark matter, we start with the
NJL Lagrangian density [39,43]

L ¼ ψ̄ði=∂ − m̂Þψ þ Lsym þ Ldet þ Ltensor þ μψ̄γ0ψ ; ð1Þ

where ψ ¼ ðu; d; sÞT is the three-flavor quark field and the
diagonal current quark matrix is m̂ ¼ diagfðmu;md;msÞ. In
this work, we have assumed that, due to isospin symmetry
in the nonstrange quark sector, mu ¼ md. Strange quark
mass ms is different from the other light quark masses. The
difference between the strange and nonstrange quark
masses explicitly breaks the SUð3Þ flavor symmetry. μ is
the quark chemical potential. In the literature, different
chemical potentials for the strange and nonstrange quarks
have been considered, but the phase diagram has no
qualitative difference. In this case, we are assuming that
the quark chemical potentials of the strange and nonstrange
quarks are same. Following the representations of different
interaction terms as given in Ref. [43], in general, one
considers

Lsym ¼ g
Xa¼8

a¼0

½ðψ̄λaψÞ2 þ ðψ̄ iγ5λaψÞ2�: ð2Þ

This term has been constructed by keeping in mind the
Uð3ÞL ×Uð3ÞR chiral symmetry for the three-flavor case,
and it can be generalized to any number of flavors Nf. The
interaction term Lsym represents the four-point interaction,

where λ0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
If and λa, a ¼ 1;…ðN2

f − 1Þ are the
generators of SUðNfÞ. In the present case If is the 3 × 3

identity matrix, and λa for a ¼ 1;…8 are the Gell-Mann
matrices.
The interaction term Ldet in Eq. (1) is the ‘t Hooft

determinant interaction term. This term breaks Uð1Þ
axial symmetry explicitly and also successfully describes
the nonet meson properties [44–46]. It can be
expressed as

Ldet ¼ −Kdetf½ψ̄ð1þ γ5Þψ þ H:c:�: ð3Þ

In this interaction term, the determinant is taken in
the flavor space. This term represents the maximally
flavor-mixing 2Nf-point interaction for Nf quark fla-
vors. For the two-flavor NJL model, this term does not
introduce any new dynamics because for the two-flavor
case it gives four Fermi interaction, which is already
there. But for three or more flavors, this term generates a
new type of interaction; e.g., for the three-flavor case, it
gives rise to a six-point interaction term. The tensor
interaction that is responsible for spin polarization is
given as [39,42]
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Ltensor ¼
GT

2

X
a¼3;8

ðψ̄ΣzλaψÞ2; Σz¼
�
σz 0

0 σz

�
; ð4Þ

where σz is the third Pauli matrix. Here, we have
assumed polarization along the z axis. Note that
Ltensor is not invariant under chiral symmetry; rather,
one requires adding a similar term with the γ5 matrix to
make the tensor interaction symmetric under chiral
symmetry. Since we are not considering any condensa-
tion involving γ5, we have omitted the term that ensures
chiral invariance for the tensor interaction. Thus, the
total Lagrangian with finite chemical potential becomes

L ¼ ψ̄ði=∂ − m̂Þψ þ g
Xa¼8

a¼0

ðψ̄λaψÞ2

− Kdetf½ψ̄ð1þ γ5Þψ þ H:c:�

þ
X
a¼3;8

GT

2
ðψ̄ΣzλaψÞ2 þ μψ̄γ0ψ : ð5Þ

In the mean field approximation, expanding the oper-
ators around their expectation values and neglecting higher
order fluctuations, we obtain

ðūuÞ2 ≃ 2hūuiūu − hūui2 ¼ 2σudūu − σ2ud

ðd̄dÞ2 ≃ 2hd̄did̄d − hd̄di2 ¼ 2σudd̄d − σ2ud

ðs̄sÞ2 ≃ 2hs̄sis̄s − hs̄si2 ¼ 2σss̄s − σ2s

ðψ̄Σzλ3ψÞ2 ≃ 2hψ̄Σzλ3ψiðψ̄Σzλ3ψÞ − hψ̄Σzλ3ψi2 ¼ 2F3ðψ̄Σzλ3ψÞ − F2
3

ðψ̄Σzλ8ψÞ2 ≃ 2hψ̄Σzλ8ψiðψ̄Σzλ8ψÞ − hψ̄Σzλ8ψi2 ¼ 2F8ðψ̄Σzλ8ψÞ − F2
8; ð6Þ

where the chiral condensates or the quark-antiquark condensates are hūui ¼ hd̄di≡ σud and hs̄si≡ σs and the spin
polarization condensates are F3 ¼ hψ̄Σzλ3ψi and F8 ¼ hψ̄Σzλ8ψi. We can write the mean field Lagrangian as

L ¼ ψ̄ði=∂ − M̂ þGTF3Σzλ3 þ GTF8Σzλ8 þ μγ0Þψ − 2gðσ2ud þ σ2ud þ σ2sÞ þ 4Kσ2udσs −
GT

2
F2
3 −

GT

2
F2
8; ð7Þ

where M̂ ≡ diagðMu;Md;MsÞ, with effective masses,

Mu ¼ mu − 4gσud þ 2Kσudσs

Md ¼ md − 4gσud þ 2Kσudσs

Ms ¼ ms − 4gσs þ 2Kσ2ud: ð8Þ

For a given system at finite temperature and finite chemical potential, the most important quantity for the under-
standing of the thermodynamic behavior or the phase structure is the thermodynamic potential. Once the thermodynamic
potential for this model is known, thermodynamic quantities can be extracted using Maxwell relations. The thermodynamic
potential for the Lagrangian as given in Eq. (7) in the grand canonical ensemble at a finite temperature and finite chemical
potential can be given as

ΩðT;μ;σud;σs;F3;F8Þ¼−Nc

X
f¼u;d;s

Z
d3p
ð2πÞ3 ½ðEfþþEf−ÞþT lnð1þe−βðEfþ−μÞÞþT lnð1þe−βðEfþþμÞÞ

þT lnð1þe−βðEf−−μÞÞþT lnð1þe−βðEf−þμÞÞ�þ2gðσ2udþσ2udþσ2sÞ−4Kσ2udσsþ
GT

2
F2
3þ

GT

2
F2
8;

¼−
6

4π2
X

f¼u;d;s

Z
Λ

0

dpT

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

T

p

0

pTdpz½ðEfþþEf−ÞþT lnð1þe−βðEfþ−μÞÞ

þT lnð1þe−βðEfþþμÞÞþT lnð1þe−βðEf−−μÞÞþT lnð1þe−βðEf−þμÞÞ�þ2gðσ2udþσ2udþσ2sÞ

−4Kσ2udσsþ
GT

2
F2
3þ

GT

2
F2
8; ð9Þ

where Nc ¼ 3 is the number of colors, transverse momentum pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, and the single-particle energies are
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Euþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

u

q
þGT

�
F3 þ

F8ffiffiffi
3

p
��

2

s

Eu− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

u

q
−GT

�
F3 þ

F8ffiffiffi
3

p
��

2

s

Edþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

d

q
þGT

�
F3 −

F8ffiffiffi
3

p
��

2

s

Ed− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

d

q
−GT

�
F3 −

F8ffiffiffi
3

p
��

2

s

Esþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

s

q
þ GT

2F8ffiffiffi
3

p
�

2

s

Es− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

s

q
− GT

2F8ffiffiffi
3

p
�

2

s
: ð10Þ

The thermodynamic behavior of the condensates can be
found by solving the gap equations, which can be found from
the stationary conditions (for details, see the Appendix),

∂Ω
∂σud ¼

∂Ω
∂σs ¼

∂Ω
∂F3

¼ ∂Ω
∂F8

¼ 0: ð11Þ

Gap equations can have several roots, but the solution with
the lowest value of thermodynamic potential is taken as the
stable solution.
The NJL model Lagrangian in (3þ 1) dimensions has

operators that have mass dimension more than 4; thus, it
can shown to be a nonrenormalizable theory [47]. Thus, the
divergence coming from the 3-momentum integral of the
vacuum part cannot be removed by the renormalization
prescriptions. The model predictions inevitably depend on
the regularization procedures, and the parameter depend-
ence in each regularization method has been reported in
Refs. [48,49]. In this work, we have considered the most
frequently used three-dimensional (3D) momentum cutoff
regulation scheme to regularize the divergence in Eq. (9)
for thermodynamic potential.
In the study of spin polarization in the NJL model, the

parameter that plays the crucial role is the tensor channel
interaction GT . If one considers only vector current
interaction, e.g., one-gluon-exchange interaction in pertur-
bative QCD processes, then such a tensor interaction
cannot be generated by Fierz transformation. However,
such a tensor interaction can be generated from two-gluon-
exchange diagrams [39]. It is relevant to point out that one
can also get tensor channel interaction by Fierz trans-
formation from scalar and pseudoscalar interaction [35],

g½ðψ̄ψÞ2þðψ̄iγ5λaψÞ2�¼
g
4

�
ðψ̄ψÞ2−1

2
ðψ̄γμγνλaψÞ2þ…::

�
;

ð12Þ

which gives jg=GT j ¼ 2. In the present investigation, we can
take GT as a free parameter to study the inter-relationship
between scalar and tensor condensates. It may also be
noted that the parameters g and GT may be considered
independently to derive mesonic properties [50–52]. It has
been shown that the SUð2Þ NJL model with both positive
and negative tensor couplings can describe the phenom-
enology of mesons. Indeed, the SUð2Þ Lagrangian has been
considered with vector, axial vector, and tensor interaction
in Ref. [52], in which the gap equations are solved in the
usual Hartree approximation while mesons are described in
the random phase approximation [52]. In this work, we
have only considered GT as a free parameter with positive
values only; i.e., GT and g are of same sign. In the literature
various values have been considered, e.g., GT ¼ 2g, 1.5g
[39] as well as GT ¼ 4.0g [52]. We have also obtained our
results by taking different values of GT . Results with some
specific parameter sets have been mentioned in Sec. III.

III. RESULTS AND DISCUSSIONS

We begin the discussion with the parametrization of the
model. The parameters to be fixed are the three current
quark masses (mu, md, ms), the scalar coupling (g), the
determinant coupling (K), the tensor coupling ðGTÞ, and
the 3-momentum cutoff (Λ) to regularize divergent inte-
grals. Except for the tensor coupling GT , there are several
parameter sets available for the NJL model [43]. These fits
are obtained using low-energy hadronic properties such as
the pion decay constant and masses of the pion, kaon, and
η0 [45,53,54]. The determinant interaction is important as it
breaks Uð1ÞA symmetry and gives the correct η mass. One
may note that there is a discrepancy in determination of the
determinant coupling K. For example, in Ref. [45], the
value of the coupling differs by as much as 30% compared
to the value used in present work. This discrepancy arises
due to difference in the treatment of η0 mesons with a high
mass [43]. In fact, this leads to a nonphysical imaginary
part for the corresponding polarization diagram in the η0
meson channel. This is unavoidable because NJL is not
confining and is unrealistic in this context. Within the
above-mentioned limitations of the model and the uncer-
tainty in the value of the determinant coupling, we proceed
with the present parameter set as given in Table I [43].
Let us first note that there are four condensates,

σud, σs, F3 ≡ hūΣzui − hd̄Σzdi and F8≡ 1ffiffi
3

p ðhūΣzuiþ
hd̄Σzdi−2hs̄ΣzsiÞ, to be determined from the solution of
the gap equation (11). In this context, a comment regarding
neutron star matter (NSM) may be relevant. For NSM, we
also need to impose the charge neutrality condition for the
bulk matter. In that case, one has to solve the gap
equations (11) with the constraints imposed by the charged
neutrality condition. In the present investigation, however,
we will explore the existence of possible spin polarization
condensates at high densities without imposing the charge
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neutrality condition similarly to Refs. [35,42] but with
masses of quarks calculated self-consistently. Further, for
simplicity, we shall first consider F8 ¼ F3ffiffi

3
p so that the spin

polarization condensates for d quarks and s quarks are
treated on the same footing, i.e., hd̄Σzdi≡ hs̄Σzsi [42]. The
results in such a scenario are described below.

A. Results with F8 =
F3ffiffi
3

p

1. Chiral phase transition and the behavior of quark
masses for GT = 2g at zero temperature

Let us consider the thermodynamic potential at zero tem-
perature as a function of quark chemical potential (μ) along
with the conditionF8 ¼ F3=

ffiffiffi
3

p
[42]. InRef. [42], the authors

have takenmu¼md¼ms¼0 and considered F8 ¼ F3=
ffiffiffi
3

p
.

It is important to note that formu ¼ md ¼ ms ¼ 0 andF8 ¼
F3=

ffiffiffi
3

p
single- particle energies of the d quark and s quark

are the same and hence d and s quarks can be considered on
equal footing. This assumption is a simplification of a more
general physical situation. Note that F3 is associated with
nonstrange quarks while F8 is associated with strange and
nonstrange quarks. In a more general situation, F3 and F8

can be independent and will be shown in this work later.
However, we also consider F8 ¼ F3=

ffiffiffi
3

p
for a comparative

and qualitative study with the already existing result, e.g., in
Ref. [42]. For quantitative analysis, we consider the tensor
coupling GT ¼ 2g. Figure 1 shows the behavior of the
constituent quark masses as a function of quark chemical
potential at zero temperature in the presence as well as in the
absence of spin polarization condensate F3.
From Fig. 1, it is clear that the vacuum masses (T ¼ 0,

μ ¼ 0) for the nonstrange quarks are 0.368 GeV and the
strange quarkmass is 0.549GeV. Thevacuummasses for the
constituent quarks remain the same as the casewithGT ¼ 0,
as the tensor condensates appear only at large chemical
potential. This is the chiral symmetry broken phase in which
constituent quark masses are generated dynamically. Close
to μ ¼ μc ¼ 0.360 GeV, there is sudden drop in the masses
of u and d quarks Mu ¼ Md. Because of the flavor mixing
due to the determinant interaction, the strange quark mass
also reduces at μ ¼ μc to a value approximately 460 MeV.

This sudden change in the constituent mass indicates a first-
order phase transition. It is also expected that chiral phase
transition should occur in the (2þ 1) flavor NJLmodel near
μ ¼ 0.360 GeV at zero temperature in the absence of spin
polarization. Using the gap equations, it can be shown that at
zero temperature and zero chemical potential F3 ¼ 0 is a
solution. It turns out that at zero temperature and zero
chemical potential F3 ¼ 0 is also a stable solution, and
henceF3 does not affect the constituent quark masses at low
chemical potential at zero temperature.
We can also understand the behavior of the constituent

quarkmassesMu ¼ Md andMs in the presence and absence
of the spin polarization condensation by looking into the
behavior of thermodynamic potential as a function of quark-
antiquark condensates σud and σs and spin polarization
condensate F3 for different values of temperature T and
chemical potential μ. Contour plots of thermodynamic
potential in the σud − σs plane for different values of
chemical potential μ at zero temperature have been shown

FIG. 1. Constituent quark mass as a function of quark chemical
potential at zero temperature in the presence and absence of spin
polarization condensation. The red solid line and green dotted
line represent nonstrange and strange quark masses in the
presence of spin polarization condensate F3. The blue dashed
line and black dotted line represent nonstrange and strange quark
constituent masses in the standard (2þ 1)-flavor NJL model in
the absence of any spin polarization condensate. A sharp jump in
the value of Mu and Ms near μ ¼ 0.360 GeV indicates the first-
order chiral phase transition. In this case, we have considered the
tensor interaction coupling to be GT ¼ 2g. Comparing the green
and black lines for the strange quark, it is clear that a nonzero
value of the spin condensate affects the strange quark mass.
However, the nonstrange quark masses are almost unaffected due
to the presence of the spin polarization condensate. For GT ¼ 2g,
a nonzero value of F3 appears only near 0.480 GeV, which is
away from the chiral phase transition critical chemical potential;
hence, in this case, the chiral phase transition is unaffected by the
presence of spin polarization.

TABLE I. Parameter set considered in this work for the (2þ 1)
NJL model apart from the tensor coupling GT .

Parameter set

Parameters and couplings Value

3-momentum cutoff (Λ) Λ ¼ 602.3 × 10−3 GeV
u quark mass ðmuÞ mu ¼ 5.5 × 10−3 GeV
d quark mass ðmdÞ md ¼ 5.5 × 10−3 GeV
s quark mass ðmsÞ ms ¼ 140.7 × 10−3 GeV
Scalar coupling (g) g ¼ 1.835=Λ2

Determinant interaction (K) K ¼ 12.36=Λ5
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in Fig. 2 with the set of parameters given in Table I and
GT ¼ 2g. The darker regions in the plots show the lower
value of the thermodynamic potential. The horizontal and
vertical axes represent the nonstrange quark-antiquark
condensate σud and strange quark-antiquark condensate
σs. As may be observed in Fig. 2, for zero temperature
and μ < μc ∼ 0.360 GeV, minimization of the thermody-
namic potential gives us a unique nonzero value of the
quark-antiquark condensate. This nonzero value of both σud
and σs indicates the chiral symmetry broken phase at zero
temperature and μ ≤ 0.360 GeV. At μ ¼ 0.360 GeV, one
can see the existence of almost degenerate vacua in the
thermodynamic potential, one for σud ∼ −0.015 GeV3 and
the other at σud ∼ 0.0 GeV3. As the chemical potential is
increased, this degeneracy is lifted, and the vacuumwith σud

close to zero has the minimum value for the thermodynamic
potential. At μ ¼ 0.4 GeV, the value of σud as well asMu is
very small and is close to the current quark mass value. This
indicates that at chemical potential larger than μc ¼
0.360 GeV chiral symmetry is restored. One may note that
this restoration of chiral symmetry is partial in nature. Since
current quarkmasses of up and downquarks are nonzero, the
scalar condensate σud is not exactly zero and hence chiral
symmetry is only approximate. Also the strange quark
constituent and current masses are large, as seen in
Figs. 1 and 2, and break chiral symmetry for all values of
quark chemical potential. As μ is further increased beyond
μc, σs also approaches its (approximate) chiral limit con-
tinuously. Degeneracy in the thermodynamic potential and a
sharp jump in the order parameter (σud) indicate a first-order

FIG. 2. The figure shows the contour maps of the thermodynamics potential with the set of parameters in Table I and GT ¼ 2g at
T ¼ 0.0 GeV for different values of μ. The darker region in the plots shows the lower value of the thermodynamic potential. The
horizontal and vertical axes represents the nonstrange quark condensate σud and strange quark condensate σs, respectively. The existence
of an almost degenerate vacuum is clear from the figure near μ ¼ 0.360 GeV. Hence, the chiral phase transition near μ ¼ 0.360 is a first-
order phase transition. Spin polarization condensation F3 has no effect on the chiral phase transition. As we have shown in Fig. 3, a
nonzero value of F3 occurs near μ ¼ 0.480 GeV at T ¼ 0.0 GeV for GT ¼ 2g, which is far away from the critical quark chemical
potential for the chiral phase transition.
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FIG. 3. This figure shows the contour plots of the thermodynamic potential in the σs − F3 plane at zero temperature with different
values of quark chemical potentials (μ) for the case ofGT ¼ 2g and F8 ¼ F3=

ffiffiffi
3

p
. It is clear from the plots that nonzero spin polarization

appears at μ ¼ 0.480 GeV, reaches its maximum value near μ ¼ 0.510 GeV, and completely melts near μ ¼ 0.600 GeV.
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phase transition. Hence, the chiral transition at zero temper-
ature is of first order in nature. Up to μc, the quark number
densities remainvanishing. Beyond μc, the number densities
of light quarks become nonvanishing. The strange quark
mass starts decreasing with μ beyond μ ∼ 460 MeV, and the
strange quark density becomes nonvanishing beyond this.
This first-order nature of the chiral phase transition can also
be seen at finite temperature; however, at relatively larger
temperature, the chiral phase transition does not remain as a
first-order phase transition. In fact, the end of the first-order
transition to the crossover defines the critical end point. At
higher temperatures, beyond the critical temperature, the
quark-antiquark condensate changes smoothly across the
critical chemical potential.
As the chemical potential is increased beyond the chiral

restoration for the light quarks, it is observed that the spin
polarized condensate develops for a range of chemical
potential. In particular, as shown in Fig. 3 for zero temper-
ature, a nonzero F3 starts to develop at μ ≃ 0.480 GeV and
increases slightly with μ, becoming a maximum around
μ ≃ 0.510 GeV, beyond which it decreases and eventually
vanishes at μ ≃ 0.600 GeV. Therefore, we observe here in
Fig. 1 that the chiral transition for the light quarks is not
affected by the spin polarization condensates as the latter
exist at μ larger than μc for GT ¼ 2g. It is important to
mention that both ψ̄ψ and ψ̄γμγνψ break the chiral symmetry,
but their thermodynamic behavior is quite opposite. At zero
temperature and zero chemical potential, a nonzero value of
scalar condensation is thermodynamically stable, while the
tensor condensate vanishes. However, at high chemical
potential when the tensor condensate takes a nonzero value,
the chiral condensate vanishes but for small current quark
mass. The noninvariance of the tensor interaction under

chiral symmetry can be manifested in the change of quark
masses even if the scalar condensate vanishes for the light
quarks.
When we take GT ¼ 2g, the value of F3 is not large

enough near μ ¼ 0.360 GeV, and the chiral phase transition
is unaffected by the spin polarization. Since quark-antiquark
condensates σud and σs are intimately connectedwith theF3,
a nonzero value of F3 can change the quark dynamical mass
(see Fig. 1). Strange quark mass is more affected by the
presence of the spin polarization condensate (F3) because
the dynamical mass of the u quark becomes very small just
after the chiral phase transition; however, the strange quark
has a substantial mass even after the chiral phase transition.
Similar to the result at zero temperature, for GT ¼ 2g, the
chiral phase transition is almost unaffected in the presence of
spin polarization at finite temperature also.

2. Behavior of F3 for GT = 2g

Next, let us focus our attention to the thermodynamic
behavior of F3. Figure 3 shows the contour plots of the
thermodynamic potential in the σs − F3 plane at zero
temperature with an increasing value of the chemical
potential (μ) for GT ¼ 2g. As before, the darkest regions
in the contour plots show the global minimum of the
thermodynamic potential, and the corresponding values of
σs and F3 are the correct condensation value. It is clear from
the Fig. 3 that spin polarization is possible within the small
range of chemical potential μ ≃ 0.480–0.570 GeV at zero
temperature. From this figure, it is clear that with an increase
in chemical potentialσs decreases. In thiswork,wehavekept
thevalueofμ ≤ ΛbecauseΛ is the cutoff of the theory.When
the chemical potential is close to 0.6 GeV, both σs and F3

FIG. 4. Left plot: Dependence of constituent quark mass on the quark chemical potential at zero temperature in the presence as well as
in the absence of spin polarization condensation for different values of tensor couplings for F8 ¼ F3=

ffiffiffi
3

p
. A sharp jump in the value of

Mu and Ms near μ ¼ 0.360 GeV in both plots indicates the first-order chiral phase transition, which is expected for standard (2þ 1)-
flavor NJL model. Right plot: Variation of the spin polarization condensate with quark chemical potential at zero temperature with
different values of tensor couplings GT ¼ 2.5g and GT ¼ 2.8g. For larger tensor coupling, the tensor condensate forms at relatively
smaller chemical potential, and it remains nonzero for a wide range of chemical potential.
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become zero. For large chemical potentials(μ > 570 MeV),
spin polarization condensate completely melts along with
the other condensates. The presence of spin polarization
condensation can affect the QCD phase diagram in many
different ways. As we have already mentioned that the spin
polarization condensate coming from the tensor interaction
also breaks the chiral symmetry, an obvious effect of a large
value of spin polarization condensate should be seen in the
chiral phase transition. We have also observed that F3

decreases with increasing temperature and vanishes at a few

tens of MeV. Therefore such condensates do not affect the
critical end point.

3. Quark masses and ferromagnetic condensate
for larger tensor coupling

The left plot and the rightplot inFig. 4are forquarkmasses
and the ferromagnetic condensate, respectively, for the
tensor coupling GT ¼ 2.5g and GT ¼ 2.8g. One may note
that for larger tensor coupling the u and d quark masses are

FIG. 5. This figure shows the contour plots of the thermodynamic potential in the σs − F3 plane for finite temperature (T) and finite
chemical potential (μ) with GT ¼ 2g and F8 ¼ F3=

ffiffiffi
3

p
. Along each row as we move from left to the right, temperature has been kept

fixed, but μ is increasing; similarly, along each column, μ has been kept fixed with T increasing. Darker regions in these contour plots
show the global minimum of the thermodynamic potential. It is clear from the plots that at small temperature a nonzero value of the spin
polarization starts to appear at a smaller value of the chemical potential and it also melts at higher chemical potential. Thus, for smaller
temperature, the domain of μ where one can get nonzero spin polarization is larger. This domain of existence for the spin polarization
condensate becomes smaller with increasing temperature T for a given value of GT . In fact, when the temperature is T ¼ 0.06 GeV, we
cannot get spin polarization for any value of μ.
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not affected but the strange quark mass is significantly
affected. The ferromagnetic condensate is stronger for a
larger value of tensor coupling and survives for a longer
range of quark chemical potential. It is important to mention
that for tensor couplings greater than GT ¼ 3g the chiral
transition itself is affected. However, the requirement of
baryon matter stability places a upper bound on the value of
tensor coupling.

4. Finite temperature effect on the spin
polarization condensate F3 for GT = 2g

After demonstrating the behavior of the spin polarization
condensate as a function of chemical potential at zero

temperature for different values of the tensor coupling, let
us look into the temperature behavior of F3 for a fixed value
of GT ¼ 2g. The temperature behavior of spin polarization
condensate as well as σs is shown in Fig. 5. Figure 5 shows
the contour plots of the thermodynamic potential in the
plane of σs − F3 for different values of temperature and
chemical potential. Each row shows the behavior of the
thermodynamic potential as a function of increasing
chemical potential for a fixed temperature. On the other
hand, each column shows the behavior of the thermody-
namic potential as a function of temperature for a fixed
value of chemical potential. From the first two rows in
Fig. 5, for temperature T ¼ 0.02 GeV and 0.04 GeV, it is

FIG. 6. This figure shows the contour plots of the thermodynamic potential in the σs − F3 plane for zero temperature (T) and finite
chemical potential (μ) with different values of tensor coupling GT and F8 ¼ F3=

ffiffiffi
3

p
. In the first, second, and third rows, the tensor

couplings are taken as GT ¼ 2g, 1.8g, and 1.5g, respectively. Along each row, the temperature and GT have been kept fixed, but μ is
increasing; similarly, along each column, μ and T have been kept fixed with GT decreasing. Darker regions in these contour plots show
the global minimum of the thermodynamic potential. It is clear from the plots that at zero temperature, for a larger value of tensor
coupling, spin polarization can exist for a relatively wide range of chemical potential. With the decreasing value of tensor coupling, e.g.,
for GT ¼ 1.5g, spin polarization almost vanishes. This result can be easily extended to finite temperature. For nonzero temperature, the
existence of spin polarization requires a larger value of GT .
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clear that as the chemical potential increases the nonzero
value of spin polarization develops. It attains a maximum
value at an intermediate value of the chemical potential, and
as the chemical potential becomes very high, F3 becomes
zero. However, each column shows that with increasing
temperature the formation of the spin polarization becomes
difficult and the maximum value of F3 also decreases with
temperature. The third row in Fig. 5 shows that when the
temperature is T ¼ 0.06 GeV the value of the spin polari-
zation condensate F3 is almost zero. Hence, one can
conclude that as the temperature increases the range of
chemical potential within which spin polarization can exist
decreases. Further, there exists a temperature beyond which
spin polarization cannot occur irrespective of the value of
chemical potential for a given value of GT . Also note that
with an increase in temperature and chemical potential the
strange quark condensate (σs) decreases.

5. Threshold coupling for existence of F3

The existence of spin polarization inevitably depends
on the value of GT . GT determines the strength of the
spin polarization condensation. The dependence of F3 on
the tensor coupling has been shown in Fig. 6. Figure 6
shows the thermodynamic potential in the σs − F3 plane
as a function of chemical potential for three different
values of tensor couplings GT ¼ 2g; 1.8g, and 1.5g at zero
temperature. Along each row in Fig. 6 the contours of
thermodynamic potential have been shown for different
values of the chemical potential but keeping GT fixed. On
the other hand, in each column of Fig. 6, contours of
thermodynamic potential have been shown for various
values the tensor coupling constantGT for a given chemical
potential. The value of the spin polarization condensate
decreases with a decreasing value of GT . When GT ¼ 2g,
F3 has a substantial nonzero value at zero temperature and

(a)

(b) (c)

FIG. 7. Plots (a), (b), and (c) show the variation of F3 (red solid line) and F8 (blue dotted line) with chemical potential where F3 and
F8 are considered simultaneously in the thermodynamic potential at zero temperature for GT ¼ 2g, 2.5g, 2.8g, respectively. It is clear
from the Fig. 7 that nonzero F3 appears at a relatively smaller μ than F8. Since F8 is associated with a strange quark-antiquark
condensate, it survives even at larger chemical potential relative to the F3 condensate. It is also important to notice that with a larger
tensor coupling spin condensates appear at a relatively smaller quark chemical potential.
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μ ¼ 0.510 GeV; however, for GT ¼ 1.8g, this value starts
to decrease, and for GT ¼ 1.5g, the spin polarization
condensate F3 almost vanishes. This result for zero temper-
ature can be easily extended to a nonzero temperature. For
finite temperature, one requires a larger value ofGT , for the
spin polarization to exist. As GT increases, the threshold μ
above which F3 starts becoming nonvanishing decreases,
and the critical μ above which F3 vanishes increases. Both
these behaviors lead to a larger range of μ that supports a
nonvanishing F3 asGT increases. Further, the magnitude of
F3 increases with GT .

B. Results for independent F3, F8

We have already discussed the variation of F3 and F8

with chemical potential where we have considered F8 ¼
F3=

ffiffiffi
3

p
in the thermodynamic potential. However, for a

more general situation, we have to consider F3 and F8

simultaneously. In Figs. 7(a), 7(b), and 7(c), we have shown
the variation of F3 and F8 with chemical potential at zero
temperature forGT ¼ 2g, 2.5g, 2.8g, respectively. It is clear
from Fig. 7 that nonzero F3 appears at a relatively smaller μ
than F8. Since F8 is associated with strange quark-
antiquark condensate, it survives even at larger chemical
potential relative to the F3 condensate. It is also important
to notice that with larger tensor coupling spin condensates
appear at a relatively smaller quark chemical potential.
In Fig. 8, we have shown the qualitative phase diagram

including the spin polarized condensate for two values of
tensor coupling. The left plot of Fig. 8 shows the phase
diagram for GT ¼ 2g, while the right plot shows the same
for GT ¼ 2.2g. For these values of tensor coupling, the
chiral transition is unaffected even in the presence of spin

polarized condensates. At low chemical potential, the chiral
transition is a smooth crossover. At μ ∼ 320 MeV and
T ∼ 65 MeV, the chiral transition changes from a smooth
crossover to first-order phase transition (as shown by the
thick solid line in Fig. 8).
In Fig. 8, L2 is the critical line in the phase diagram that

separates the chiral symmetry broken and (almost) chiral
symmetry restored phase. This first-order line ends at the
critical point ðμc; TcÞ ∼ ð320; 65Þ MeV (denoted as a dot).
The lines L1 and L3 are the lower and upper spinodal lines.
The region between L1 and L2 has solutions for the gap
equation with σud ≃ 0 but has higher thermodynamical
potential. Similarly, the region between L3 and L2 has a
solution for gap equations with σud having a large non-
vanishing value, but with higher thermodynamic potential
indicating metastable phases as seen in first-order phase
transition.
Spin polarized condensates appear only at higher chemi-

cal potential in the chirally restored phase. In both the phase
diagrams of Fig. 8, the region marked by F3 corresponds to
the phase where F3 ≠ 0 and F8 ¼ 0. The region marked by
F8 corresponds to the phase where F8 ≠ 0 while F3 ¼ 0.
We find that the phase with simultaneous F3 ≠ 0 and F8≠0
is not the thermodynamically favored ground state. For
GT ¼ 2g, the F3 condensate appears at μ ∼ 450 MeV. At
μ ∼ 510 MeV, the F8 ≠ 0 state becomes favored compared
to the F3 ≠ 0 state. As the temperature increases, the
magnitude of F3 and F8 decreases, and beyond a certain
critical temperature, the condensates vanish. The critical
temperature for the spin polarized condensates shows a
nonmonototic behavior with quark chemical potential. For
the F3 condensate, the maximum critical temperature
turns out to be T ∼ 35 MeV, and for the F8 condensate,

FIG. 8. Phase diagram for GT ¼ 2g (left plot) and GT ¼ 2.2g (right plot). The line L2 corresponds to a first-order chiral phase
transition. The lines L1 and L3 are the lower and upper spinodal lines. The pink shaded region corresponds to the region of μ and T
where, the condensate F3 is nonvanishing and F8 ¼ 0. The cyan shaded region is the range of chemical potential and temperature where
the condensate F8 is nonvanishing while F3 ¼ 0 in this region.
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the same happens at T ∼ 55 MeV for chemical potentials
μ ∼ 470 MeV and μ ∼ 510 MeV, respectively. For GT ¼
2.2g, the F3 condensate appears at μ ∼ 415 MeV as a result
of higher tensor coupling. The F8 ≠ 0 state becomes
favored at μ ∼ 485 MeV. Compared to GT ¼ 2g, the
magnitudes of F3 and F8 condensates are larger in this
case. Further, it is observed that the maximum critical
temperature for both the spin polarized condensates F3 and
F8 is T ∼ 68 MeV for chemical potential μ ∼ 455 MeV
and μ ∼ 505 MeV, respectively.
We would like to comment here that in the present

investigation we have not included the diquark condensate.
The simultaneous existence of F3 and the color super-
conducting phase was shown earlier [39].
The spin polarization condensate implies an alignment of

the spin of quarks. This will lead to a magnetic field due to
the quark magnetic moment. We estimate the strength of
the effective magnetic field (Beff ) due to the spin polari-
zation condensate as [35]

μ̄qBeff ¼ GTF; μ̄q ¼
μu þ μd

2
;

μ̄u ¼
ð2
3
eÞ

2mq
; μ̄d ¼

ð− 1
3
eÞ

2mq
: ð13Þ

Here, F denotes the spin polarization condensate, and
μ̄q is the average magnetic moment of the light quarks.
For an estimation ofBeff , we takeF ∼ 0.018 GeV3 (at quark
chemical potential approximately 510 MeV) and GT ¼ 2g.
Using these values, we get eBeff ∼m2

π or 1018 G. The value
of the magnetic field on the surface of the magnetars is of
the order of 1015 G, but in the center, the strength of the
magnetic field can be higher. It is interesting to note that even
this crude estimation of the magnetic field due to the spin
polarized phase of the deconfined quark matter leads to a
correct order of magnitude estimation of the magnetic field
in the core of the magnetars.

IV. CONCLUSIONS

In this work, we have considered the (2þ 1)-flavor NJL
model in the presence of tensor interaction with nonzero
current quark masses. The original idea of the presence of
spin polarization in quark liquid was motivated considering
one-gluon-exchange interactions in perturbative QCD proc-
esses [28]. Ferromagnetic quark matter can arise due to both
axial vector–type and tensor-type interaction. Although the
axial vector–type interaction can be generated from the one-
gluon-exchange QCD interaction by Fierz transformation,
the tensor-type interactions cannot be generated using Fierz
transformation. Thus, at very high densities at which the
perturbative QCD processes are relevant, the tensor type of
interaction will not be suitable to study spin polarization in
quark matter. More importantly, at moderate densities, close
to the chiral phase transition, one expects nonperturbative
effects to play an important role. In the present investigation

within the ambit of the NJL model applied to moderate
densities, we have considered only the tensor-type four-
point interaction. We might note here that the coupling
constant of the tensor interaction is related to the scalar and
pseudoscalar channels. However, in general, this tensor
coupling constant can be independent. We take the coupling
constant of the tensor interaction GT as a parameter of the
model.We have taken various values of the tensor couplings
GT , e.g., GT ¼ 2.0g and lower, as well as relatively larger
values of GT , e.g., GT ¼ 2.5g, 2.8g, etc.
For the (2þ 1)-flavor NJLmodel, tensor-type interaction

at the mean field level leads to two types of spin polarization
condensates, F3 ¼ hψ̄Σzλ3ψi and F8 ¼ hψ̄Σzλ8ψi. Since
we have various condensates in the (2þ 1)-flavor NJL
model in the presence of tensor interaction, we take a
somewhat simplified approximation, in which F3 and F8

are not independent but rather F8 ¼ F3=
ffiffiffi
3

p
. This over-

simplification corresponds to treating down quarks on equal
footing with strange quarks, which probably can be a
reasonable approximation in asymptotic densities at which
onemay neglect the quarkmasses compared to the chemical
potentials. In fact, treating F3 and F8 independently, for
moderate densities, it is shown that the nonstrange spin
polarization condensateF3 and the one including the strange
quarks F8 do not coexist. One may note that, in general, F3

and F8 are independent due to the fact that F8 is associated
with the strange quark spin polarization condensate; on the
other hand,F3 contains only u and d quark spin polarization
condensates. Therefore, we have also considered the case in
whichF3 andF8 are treated independently.Generically, spin
polarization for moderate tensor coupling (e.g., GT ¼ 2g)
does not appear at zero temperature and zero chemical
potential; rather, it appears at high μ in the chiral
restored phase. At large chemical potential and small
temperature, the generic feature of such a spin polarized
condensate lies in affecting the strange quark mass rather
than the nonstrange quark masses for moderate tensor
coupling. Such a spin polarized condensate vanishes for
temperatures of the order of few tens ofMeVand thus can be
relevant for neutron stars and protoneutron stars. However, it
ought to be investigated whether such conclusion holds well
when charge neutrality conditions on the bulk matter are
imposed. We also find that there is a threshold for the tensor
coupling, below which the spin polarization condensates do
not develop.
Unlike the superconducting diquark condensate, the spin

polarization condensate is not a monotonic function of
chemical potential, and as the chemical potential is
increased, the magnitude becomes a maximum beyond
which it vanishes when μ is increased further. The range of
chemical potential for which such a condensate exists, as
well as the magnitude of the condensate, increases with the
strength of the tensor coupling. We estimate the magnitude
of the magnetic field corresponding to the ferromagnetic
condensate in high-density quark matter to be of the order

ABHISHEK, DAS, MISHRA, and MOHAPATRA PHYS. REV. D 100, 114012 (2019)

114012-14



of approximately m2
π ∼ 1018 G. It is important to mention

that, although the spin polarization condensate was thought
as a source of magnetic field in magnetars, magnetic field
can also be present in the neutron stars originated from the
progenitor star. External magnetic field can affect the
formation of spin condensates. In this context, it has been
shown recently that one can have a nonvanishing spin
polarization condensate for quark matter in the presence of
magnetic field [55].
In this exploratory study, we have tried to investigate

the possibility of phase transition of dense quark matter
to a spin polarized phase of quark matter within a
phenomenological (2þ 1)-flavor Nambu–Jona-Lasinio
model with the tensor coupling being a free para-
meter. However, applying it to a physical situation like
compact stars requires a careful consideration of pos-
sible other phases of dense matter like, e.g., color

superconductivity, the imposition of charge neutrality
conditions for bulk matter.
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APPENDIX

The gap equations for four independent condensates, two
chiral condensates σud and σs, and two spin polarization
condensates F3 and F8 are as follows:

∂Ω
∂σud ¼ −Nc

Z
d3p
ð2πÞ3

�
Mu

Euþ

�
1þ GTðF3 þ F8=

ffiffiffi
3

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

u

p �
ð−4gþ 2KσsÞ

�
1 −

1
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