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We evaluate ratios of the χc1 decay rates to η (η0, K−) and one of the f0ð1370Þ, f0ð1710Þ, f2ð1270Þ,
f02ð1525Þ,K�

2ð1430Þ resonances, which in the local hidden gauge approach are dynamically generated from
the vector-vector interaction. With the simple assumption that the χc1 is a singlet of SU(3), and the input
from the study of these resonances as vector-vector molecular states, we describe the experimental ratio
Bðχc1 → ηf2ð1270ÞÞ=Bðχc1 → η0f02ð1525ÞÞ and make predictions for six more ratios that can be tested in
future experiments.
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I. INTRODUCTION

The topic of hadronic resonances is capturing the
attention of hadron physics and gradually the field is piling
up more evidence that some hadronic states stand for a
molecular interpretation in terms of more elementary
hadrons. Recent reviews on the topic can be seen in [1,2].
A good laboratory to see such states in the light quark

sector is the decay of charmonium states into three lighter
mesons. Indeed the cc̄ states can be considered as an SU(3)
singlet, in the sameway that an ss̄ state is an isospin singlet.
With the SU(3) matrices for the mesons one can construct
SU(3) invariants, which provide trios of mesons with a
certain weight. If a given resonance is formed from the
interaction of pairs of mesons, the picture to produce them
is to produce first these mesons and then let them interact
through final state interaction where the resonances will be
formed. This picture has been thoroughly used. Indeed, in
[3] the J=ψ → ϕðωÞf0ð980Þðf0ð500ÞÞ decays were studied
producing ϕðωÞ andKK̄, ππ, ηη pairs and allowing theKK̄,
ππ, ηη pairs to interact to produce the f0ð500Þ, f0ð980Þ
states, which are well described within the chiral unitary
approach as dynamically generated from the interactions of
these pairs of mesons [4–7]. A different formalism of the

same problem, although equivalent, is used in [8], which is
then followed in [9]. The same J=ψ decay into three
mesons is considered in [10] with J=ψ → VPP, but letting
the VP pairs interact to form an axial-vector meson.
A mixture of the SU(3) trace hVPPi and hVihPPi was
used and it was shown to correspond to the same structures
developed in [3] and [8] and there it was used to describe
successfully the BESIII data on the J=ψ → ηðη0Þh1ð1380Þ
decay [11]. The hVPPi term was shown to be the one
corresponding to the dominant one in [3,8].
The dominance of the three meson matrix trace seems

to be quite general in these processes since in the study of
the χc1 → ηπþπ− reaction leading to the formation of the
f0ð500Þ, f0ð980Þ and a0ð980Þ resonances [12], the hPPPi
production structure was found largely dominant and the
final state interaction of the different PP pairs led to the
production of these scalar resonances [13,14].
We have described processes that proceed as a first step

from the VPP and the PPP production. The processes
proceeding from VVV production were studied in [15] in
the J=ψ → ϕðωÞf2ð1270Þ and related reactions. In this
case one of the vectors ϕðωÞ acts as a spectator and the
remaining VV pair produces the f2ð1275Þ, f02ð1525Þ
resonances, which according to [16,17] are produced
mostly from the ρρ and K�K̄� interaction, respectively.1
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1The ability of the methods used in Refs. [16,17] to obtain the
tensor states has been questioned in [18] and [19]. In [20] and
[21], a thorough discussion of these works has been done,
showing that the methods proposed cannot be extrapolated to
the energies where the tensor states appear. At the same time an
improved method is proposed that provides couplings of the
resonances to the coupled channels practically identical to those
of [16,17] which we use here.
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A fresh look to this latter problem from the new perspective
of hVVVi and hVVihVi production vertices, including
more experimental data, has been given in [22], where a
detailed discussion on molecular states is made in the
Introduction.
As to processes proceeding with VVP production we can

have two cases. One of them corresponds to having a V as
spectator and VP interacting producing an axial vector
meson. An example of this is the χc1 decay to ϕh1ð1380Þ
[23], which has been described successfully along the lines
described above with the hVVPi structure [24]. There is
only one more case to be studied which corresponds to
the same structure but now the P will be a spectator and
the VV will interact to form the vector-vector molecular
states of [16,17], f2ð1270Þ, f02ð1525Þ, f0ð1370Þ, f0ð1710Þ,
K�

2ð1430Þ. We undertake this work here and compare the
results with the few data available on η (η0, K̄) production
together with one of these resonances.

II. FORMALISM

We study reactions that can be compared with present
results in the PDG [25]. This includes χc1 decays with η; η0
production and some of the f0, f2 resonances, but we
shall make predictions for related decays which are likely
to be measured in the near future. As advanced in the
Introduction, we introduce the hVVPi and hVVihPi struc-
tures in the primary step, where V, P are the SU(3) vector
and pseudoscalar matrices (corresponding to qq̄) given by

V ¼

0
B@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CA; ð1Þ

P¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p K0

K− K̄0 − 1ffiffi
3

p ηþ
ffiffi
2
3

q
η0

1
CCCA; ð2Þ

where we have assumed the η, η0 mixing according to [26].
The algebra for hVVPi is trivial, and isolating the terms
containing η, η0 or K− we find the production structures:

1Þ η∶ ηffiffiffi
3

p fρ0ρ0 þ ρþρ− þ ρ−ρþ þ ωω − ϕϕg; ð3Þ

2Þ η0∶ η0ffiffiffi
6

p fρ0ρ0 þ ρþρ− þ ρ−ρþ þ ωωþ 3K�þK�−

þ 3K�0K̄�0 þ 2ϕϕg; ð4Þ

3ÞK−∶ K−
��

ρ0ffiffiffi
2

p þ ωffiffiffi
2

p
�
K�þ þ ρþK�0 þ K�þϕ

�
: ð5Þ

In order to connect with the isospin formalism of [16,17]
we write the isospin states with the unitary normalization
with our phase convention, ð−ρþ; ρ0; ρ−Þ, (K�þ; K�0),
(K̄�0;−K�−), as

jρρ; I ¼ 0i ¼ −
1ffiffiffi
6

p jρ0ρ0 þ ρþρ− þ ρ−ρþi; ð6Þ

jωω; I ¼ 0i ¼ 1ffiffiffi
2

p jωωi; ð7Þ

jϕϕ; I ¼ 0i ¼ 1ffiffiffi
2

p jϕϕi; ð8Þ

����ρK; I ¼
1

2
; I3 ¼

1

2

�
¼ −

ffiffiffi
2

3

r
ρþK�0 −

ffiffiffi
1

3

r
ρ0K�þ: ð9Þ

Taking into account the symmetry factor n! for produc-
tion of n identical particles we find the weights for primary
production of the different components as

hðηÞρρ ¼ −
ffiffiffi
1

2

r
; hðηÞωω ¼

ffiffiffi
2

3

r
; hðηÞϕϕ ¼ −

ffiffi
2
3

q
;

hðηÞK�K̄� ¼ 0; hðη
0Þ

ρρ ¼ −
1

2
; hðη

0Þ
ωω ¼

ffiffiffi
1

3

r
;

hðη
0Þ

ϕϕ ¼ 2ffiffiffi
3

p ; hðη
0Þ

K�K̄� ¼ −
ffiffiffi
3

p

2
; hðK

−Þ
ρK� ¼ −

ffiffiffi
3

2

r
;

hðK
−Þ

ωK� ¼
ffiffiffi
1

2

r
; hðK

−Þ
ϕK� ¼ 1: ð10Þ

In addition we will also consider the hVVihPi structure,
which could mix with the expected dominant hVVPi one
with some small admixture. Now we have

hVVihPi¼
�

ηffiffiffi
3

p þ 4η0ffiffiffi
6

p
�
ðρ0ρ0þρþρ−þρ−ρþþωωþϕϕ

þ2K�þK�−þ2K�0K̄�0Þ: ð11Þ

We see that there is no contribution for K− production
with this term and we find the weights for η, η0 production as

h0ðηÞρρ ¼ hðηÞρρ ; h0ðηÞωω ¼ hðηÞωω; h0ðηÞϕϕ ¼ −hðηÞϕϕ;

h0ðηÞK�K̄� ¼ −
ffiffiffi
2

3

r
; h0ðη

0Þ
ρρ ¼ 4hðη

0Þ
ρρ ; h0ðη

0Þ
ωω ¼ 4hðη

0Þ
ωω ;

h0ðη
0Þ

ϕϕ ¼ 2hðη
0Þ

ϕϕ ; h0ðη
0Þ

K�K̄� ¼ 8

3
hðη

0Þ
K�K̄� : ð12Þ
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We will assume a structure

hVVPi þ βhVVihPi; ð13Þ

and, hence, in order to take into account the second term of
Eq. (13) one simply has to substitute

hðηÞi → hðηÞi þ βh0ðηÞi ; hðη
0Þ

i → hðη
0Þ

i þ βh0ðη
0Þ

i : ð14Þ
Note that there is no contribution to K− production from
the hVVihPi structure. The final state interaction is taken
into account as described diagrammatically in Fig. 1.
Analytically the mechanism of Fig. 1 leads to the χc1

decay amplitude

t0ðηÞR ¼
X
i

hðηÞi GiðMRÞgR;i; ð15Þ

and the same for η0, K− production, where hðηÞi are the
weights given in Eq. (10), GiðMRÞ is the loop function for
the pair of intermediate vectors, and gR;i are the couplings
of the resonance R to the different ViV 0

i intermediate
channels. All these magnitudes are evaluated in [16,17]
and for completeness they are given here in Table I. When
considering the combination of Eq. (13) we shall make the
replacement of Eq. (14).
At this point it is worth refreshing what has been learned

since the original papers in the VV interaction of
Refs. [16,17]. In these works the vector exchange as a
source of interaction was used, in addition to a contact term,
following the local hidden gauge approach [27–30]. An
approximation was done in [16,17] consisting on elimi-
nating the q2 dependence in the ½q2 −m2

V �−1 propagator of
the vector exchange term. In Ref. [18] relativistic correc-
tions were done in addition, and the q2 dependence of
the vector exchange propagators was kept, but another
approximation was done, the “on shell” approximation
assuming that the nonexchanged vector particles were on
shell, p2

i ¼ m2
V , which is certainly not the case for external

bound states and particles in the loops. As a consequence of
this, the potential and the amplitudes developed singular-
ities in the bound region which were found unphysical

in [20] and [19]. Hopes of a solution using theN=Dmethod
and dispersion relations methods were raised in [18,19],
and in [19] a detailed discussion of the method was made.
Yet, the approximations done there were shown to lead to
problems, since in [21] the method was shown not to
converge below the energy where the “on-shell” singularity
appeared in [18].
From these discussions two good points appeared:

(a) All methods give the same results at low energies, for
instance for predictions of the f0ð1370Þ state as a ρρ
bound state.

(b) At lower energies below the “on-shell” singularity of
Ref [18] the methods could not be trusted and the
“on-shell” factorization should not be used. This is
the case of the f2ð1270Þ, whose mass falls below the
singular “on-shell” energy.

The need for an approach that does not rely at all on the
“on-shell” factorization became apparent and this step was
given in [20]. In this latter work the loop functions of the
problem using the contact term and the vector exchanged
terms, described in Fig. 2, were exactly evaluated, keeping
the full relativistic propagators in all the loops, and an
effective potential was defined

Veff ¼ Vc þ Ṽex ð16Þ

with

Ṽex ¼ Vexð−M2
ρÞGρ;eff ð17Þ

where Vex is the static vector exchange potential (for ρ
exchange in this case) of Ref. [16] and Gρ;eff ¼ tex=GðsÞ
with tex, the exact amplitude for the loop function of the
exchange term of the diagram of Fig. 2(b), and GðsÞ the
ordinary ρρ loop function (including the convolution due to
the ρ mass distribution). This was done in a way such that
VeffGVeff gives the full set of amplitudes of Fig. 2 [including
also Fig. 2(d)], and then the T matrix was obtained bymeans
of this effective potential as

T ¼ ½1 − VeffG�−1Veff : ð18Þ

The method overcomes the difficulties of all previous
methods and shows that there are no singularities when
the propagators are taken exactly inside the loop, and poles
both for the f0 and f2 resonances are found.
What is of relevance for the present work is that this

method provides a potential Veff , a bit smaller than the one
used in [16], which is natural since it incorporates the q2

dependence of the vector exchange, neglected in [16]. Yet,
the effective methods require a final regularization of the
loops which is done with a cutoff in the three momentum,
and the freedom is taken to use this cutoff (always in a
natural range of energies) to fine tune the mass of a
resonance in this case f2ð1270Þ of the ρρ interaction.

FIG. 1. Mechanism for χc1 decay into ηðη0; K−Þ and the
resonance R, via intermediate Vi, V 0

i production and coupling
of these states to the resonance.
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When this is done, what was found in [20] was that the
couplings of the f2ð1270Þ to ρρ differed in less than 10%
from the one obtained in [16] and in a much smaller
fraction for the f0ð1370Þ. This remarkable agreement in
spite of the nontrivial improvements of the Veff method
were attributed in [20] to the memory of the systems on the
Weinberg compositeness condition [31], which links the
coupling to the binding for small binding energies, plus
the fact that even if apparently the f2ð1270Þ resonance is
quite bound, it is not so much when one considers the mass
distributions of the two ρ mesons.
In view of the facts discussed above, we use the

couplings obtained in [16,17], yet, with generous errors
that allow us to find final results for the problems at work
of the χc1 decays, and estimate reasonable uncertainties.
Advancing results, we should also note that the largest
uncertainties do not come from the uncertainties of the
couplings but from the unknown β parameter that we shall
discuss below. Thus, the estimations of errors due to the
uncertainties of the couplings of Table I is more than
sufficient for the present work.
We still have to make some considerations concerning

the spin of the VV states and angular momentum con-
servation of the production vertex. The χc1 has JPC ¼ 1þþ,
the ηðη0Þ0−þ and the vector-vector states that we consider
are 0þþ, 2þþ.C-parity is conserved but in order to conserve
parity and total angular momentum we need a P-wave.
Since we require S-wave for the propagation of the two
vectors, the momentum involved must be the one of the
pseudoscalar. Thus

tðηÞR ¼ t0ðηÞR ϵ⃗χc1 · p⃗η; ð19Þ
and similarly for the other cases, where

jp⃗ηj ¼
λ1=2ðM2

χc1 ;M
2
η;M2

RÞ
2Mχc1

: ð20Þ

In addition we should take into account that the ViV0
i pair is

produced with spin 0 or 2 for which the proper amplitudes
are provided in [16,17]. However, their consideration only
introduces spin factors after summing over spins, and since
we only compare rates for VV 0 states with the same spin,
f0ð1370Þ with f0ð1710Þ, f2ð1270Þ with f02ð1525Þ etc., it is
unnecessary to consider these extra factors. Note that we
have studied the flavor dependence of the production vertex
to relate the different components, but the production rate
could be different for the production of VV 0 pairs with

different spin. The P-wave structure of Eq. (19) is impor-
tant since it introduces a p⃗2

ηðp⃗2
η0 ; p⃗

2
K−Þ factor in jtRj2 and this

factor is quite different for η or η0 for instance.
The decay width is given by

ΓðηÞ
R ¼ 1

8π

1

M2
χc1

Cjt0ðηÞR j2p2
ηpη; ð21Þ

with pη given by Eq. (20), and similarly for the other cases.
In Eq. (21) C is a global normalization constant, which
cancels in the ratios that we discuss.

III. RESULTS

In the PDG we find the following branching ratios

Bðχc1 → ηf2ð1270ÞÞ ¼ ð6.7� 1.1Þ × 10−4; ð22Þ

Bðχc1 → η0f0ð1710ÞÞ ¼ ð7þ7
−5Þ × 10−5; ð23Þ

Bðχc1 → η0f02ð1525ÞÞ ¼ ð9� 6Þ × 10−5: ð24Þ

We can only test the ratio

R1¼
Bðχc1→ ηf2ð1270ÞÞ
Bðχc1→ η0f02ð1525ÞÞ

¼ ½3.7−26� ðcentroid at 7.4Þ:

ð25Þ

Unfortunately, the errors in the measurements are very
large, but even then we can test our formalism, which has
no free parameters for this ratio if we take first β ¼ 0. For
this evaluation it is also important to consider the theo-
retical errors. We take the same errors in gi, Gi discussed
in [15] and shown in Table I. To calculate the errors in R1

we generate random numbers for gi,Gi within the restricted
range and evaluate R1 each time. After several runs we
evaluate the average value of R1 and its dispersion. We find

Rth
1 ðβ ¼ 0Þ ¼ ½1.1� 0.3�; ð26Þ

which is still lower than Eq. (25), indicating that some
admixture of the hVVihPi structure is needed.
Before we proceed to include the contribution of the new

term it is interesting to make the following observation.
In [17] it was found (see Table I) that the f0ð1370Þ and
f2ð1270Þ couple mostly to ρρ but very weakly to K�K̄�,
while f0ð1710Þ and f02ð1525Þ couple mostly to K�K̄�.
If we look at the weights hðηÞ in Eq. (10) we see that

hðηÞK�K̄� ¼ 0. The K�K̄� pair is not primary produced with the

(a) (b) (c) (d)

FIG. 2. Diagrams appearing at one-loop level with the contact and ρ exchange terms [20].
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η and hence the f2ð1710Þ and f02ð1525Þ resonance would
not be produced. This is not the case for η0 since in Eq. (10)
we find that hðη

0Þ
K�K̄� ¼ −

ffiffi
3

p
2

and the f0ð1710Þ and f02ð1525Þ
can be produced, and are indeed observed. The fact that in
the PDG we do not find branching ratios for ηf0ð1710Þ,
ηf02ð1525Þ would then find a natural explanation in the
dominance of the hVVPi structure. Note that if we consider
the hVVihPi structure, the coefficient h0ðηÞK�K̄� is no longer
zero. The possibly very small ηf0ð1710Þ, ηf02ð1525Þ rates
would point out to a small admixture of the hVVihPi term.
We can improve the ratio of Eq. (26) by taking a value of

β ¼ −0.28; ð27Þ
and we find

Rth
1 ðβ ¼ −0.28Þ ¼ 7.1: ð28Þ

It is easy to make one estimate of this value of β based on
the dominance of the ρρ channel in the f2ð1270Þ and the

K�K̄� channel in the f02ð1525Þ. By using the values hðηÞρρ ,

h0ðηÞρρ on one side and hðη
0Þ

K�K̄� , h
0ðη0Þ
K�K̄� we find the extra factor

for the ratio Rth
1 of Eq. (26),

�
1þ β

1þ 8
3
β

�
2

; ð29Þ

which for β ¼ −0.267 renders Rth
1 to the value of 7.1 in

agreement with the results of Eq. (28).
With the caveat of large uncertainties in the predictions,

given the wide range of Eq. (25), we can make predictions
for other ratios using the value of β in the Eq. (27) and also
the value β ¼ 0 in parenthesis

R2 ¼
B½χc1 → ηf02ð1525Þ�
B½χc1 → ηf2ð1270Þ�

¼ 0.16ð3.8 × 10−3Þ;

R3 ¼
B½χc1 → ηf0ð1710Þ�
B½χc1 → ηf0ð1370Þ�

¼ 0.060ð2.3 × 10−2Þ;

R4 ¼
B½χc1 → η0f0ð1370Þ�
B½χc1 → η0f0ð1710Þ�

¼ 0.060ð0.54Þ;

R5 ¼
B½χc1 → η0f2ð1270Þ�
B½χc1 → η0f02ð1525Þ�

¼ 4.6 × 10−4ð0.81Þ;

R6 ¼
B½χc1 → K−K�þ

2 ð1430Þ�
B½χc1 → ηf2ð1270Þ�

¼ 10.3ð4.2Þ;

R7 ¼
B½χc1 → ηf0ð1370Þ�
B½χc1 → η0f0ð1710Þ�

¼ 10.9ð1.1Þ; ð30Þ

and we associate an error of about 30% to all these ratios for
a given value of β.
We can see that R1 is very sensitive to the value of β, but

some of the other ratios are not so sensitive. The exper-
imental situation should improve in the future and one
can make the predictions more accurate. To facilitate the
comparison of our predictions with future measurements,

we present in Fig. 3 the results of the different ratios as a
function of β.
The fact that the parameter β is negative makes the

results more sensitive to the value of β, in particular for
values around −0.3. We also find that the behavior with
β is different for different ratios, some increase with β
and others decrease. It would be most convenient to have
some other ratios measured to pin down the value of β with
some precision and make our predictions more constrained.
Only then shall we be able to appreciate the predictive power
of the theory. We hope that the experimental situation
is improved in the coming years and the present work should
be a motivation to carry out these measurements.

IV. CONCLUSIONS

We have studied reactions of χc1 decay going to η (η0,K−)
and one of the resonances f0ð1370Þ, f2ð1270Þ, f0ð1710Þ,
f02ð1525Þ and K�

2ð1430Þ. For this we have assumed that
these resonances are dynamically generated from the vector-
vector interaction which was studied in detail in [16,17] and
more recently in [20]. Then the mechanism of production
proceeds via a primary production of a VVP structure with
P ¼ η; η0; K− and the VV interact later to produce the given
resonance. Based on the simple assumption that a cc̄ state is a
singlet of SUð3Þ, in the same way as an ss̄ state is a singlet
of isospin, we have constructed invariants with the SUð3Þ
matrices for vectors V and pseudoscalars P. The study of
previous related processes indicated the dominance of the
hVVPi structure in the production vertex, with a possible
admixture of hVVihPi. With the limited experimental
information that we have at our disposal we could confirm
this hypothesis and reproduced the ratio R1 ¼ Bðχc1 →
ηf2ð1270ÞÞ=Bðχc1 → η0f02ð1525ÞÞ which unfortunately
has still large errors. We could then determine six more
ratios which are predictions of the model, some of which are
more stable under the changes within the experimental
uncertainties of the R1 ratio. We hope that in the near future
someof these ratios aremeasured to test the predictions of the
model and the underlying hypothesis that the resonances

FIG. 3. Ratio Ri as a function of β.
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considered are indeed dynamically generated from the VV
interaction.
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