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The tensor-Pomeron model is applied to low-x deep inelastic lepton-nucleon scattering
and photoproduction. We consider c.m. energies in the range 6–318 GeV and Q2 < 50 GeV2. In
addition to the soft tensor Pomeron, which has proven quite successful for the description of soft
hadronic high-energy reactions, we include a hard tensor Pomeron. We also include f2-Reggeon
and a2-Reggeon exchange. The sum of these latter exchanges turns out to be particularly relevant for
real-photon-proton scattering at c. m. energies in the range up to 30 GeV. The combination of all
these exchanges permits a description of the absorption cross sections of real and virtual photons on
the proton in the same framework. In particular, a detailed comparison of this two-tensor-Pomeron
model with the latest HERA data for x < 0.01 is made. Our model gives a very good description of
the transition from the small-Q2 regime where the real or virtual photon behaves hadronlike to the
large-Q2 regime where hard scattering dominates. Our fit allows us, for instance, a determination
of the intercepts of the hard Pomeron as 1.3008ðþ73

−84Þ, of the soft Pomeron as 1.0935ðþ76
−64Þ, and of the

f2 plus a2 Reggeons. We find that in photoproduction the hard Pomeron does not contribute within
the errors of the fit. We show that assuming a vector instead of a tensor character for the Pomeron
leads to the conclusion that it must decouple in real photoproduction and in the DIS structure
functions.

DOI: 10.1103/PhysRevD.100.114007

I. INTRODUCTION

In this article we will be concerned with the structure
functions of deep inelastic electron- and positron-proton
scattering (DIS). They are given by the absorptive part of
the forward virtual Compton amplitude, that is, the ampli-
tude for the elastic scattering of a virtual photon on a
proton. The high-energy, or small Bjorken-x, behavior of
these structure functions has first been observed exper-
imentally in [1,2] and has since then been a subject of

extensive experimental and theoretical research; see e.g.,
[3] for a review.
It is not our aim here to address the various theoretical

approaches to the small-x structure of the proton. We shall
concentrate on a particular aspect of the approach based on
Regge theory. In Regge theory, elastic hadron-hadron
scattering is dominated, at high energies and small angles,
by Pomeron exchange. The same applies to total cross
sections which, by the optical theorem, are related to the
forward scattering amplitudes. For reviews of Pomeron
physics see [4–7]. In the application of Regge theory the
Pomeron has often been assumed to be describable as a
vector exchange. For example, the two-Pomeron approach
to low-x DIS introduced in [8–10] makes use of two vector
Pomerons, a hard one and a soft one. However, the
assumption of a vector character for the Pomeron has
problems, as we shall also demonstrate again in the present
paper. In [11] it has been argued that in general the
Pomeron should be a tensor Pomeron, that is, an exchange
object which can be treated effectively as a rank-2
symmetric tensor. In the present study we use a two-
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Pomeron model with two tensor Pomerons, a hard one and
a soft one, instead of two vector Pomerons.1 With this
model we perform a fit to the available data for photo-
production in the center-of-mass energy range 6 <

ffiffiffi
s

p
<

209 GeV and to the latest HERA data for low-x deep
inelastic lepton-nucleon scattering for center-of-mass ener-
gies in the range 225–318 GeVand for x < 0.01. As wewill
see, the exchange of a tensor Pomeron involves for the
virtual photon γ�-Pomeron coupling two functions which
are in essence related to the γ�-proton cross sections σT and
σL, respectively. It is a special aim of our investigations to
fit with our model simultaneously σT and σL. Given the
large kinematic range and the quality of the experimental
data a successful fit using tensor Pomerons will therefore be
a nontrivial result.
In [11] the tensor Pomeron was introduced for soft

reactions and many of its properties were derived from
comparisons with experiment. Further applications of the
tensor-Pomeron concept were given for photoproduction of
pion pairs in [13] and for a number of exclusive central-
production reactions in [14–22]. In [23] the helicity
structure of small-jtj proton-proton elastic scattering was
calculated in three models for the Pomeron: tensor, vector,
and scalar. Comparison with experiment [24] left only the
tensor Pomeron as a viable option. In the present paper we
go beyond the regime of soft scattering to DIS. In accord
with [8] we shall now consider two Pomerons, but of the
tensor type: a soft one, P1, which is identical to the tensor
Pomeron of [11], and a hard one, P0. From fits to the
structure functions of DIS, going down in Q2 to photo-
production ðQ2 ¼ 0Þ, we shall be able to extract the
properties of P0 and P1 and their couplings to virtual
photons. Since we shall consider data going down in c.m.
energy to around 6 GeV we shall also include f2 Reggeon
(f2R) and a2 Reggeon (a2R) exchange in the theoretical
description. Following [11], the f2R and a2R exchanges will
also be treated as the effective exchanges of symmetric
tensors of rank 2.
In our study we discuss further clear evidence against

the hypothesis that the Pomeron has vector character. We
show that a vector Pomeron necessarily decouples in real
Compton scattering. We also show that a vector Pomeron
can give only zero contribution to the electromagnetic
structure functions of DIS. A tensor Pomeron, in contrast,
gives nonvanishing contributions to real and virtual
Compton scattering and can successfully describe the data.
Our paper is organized as follows. In Sec. II we review

the kinematics of DIS and some general relations for the
DIS structure functions. In Sec. III our Ansatz for the
exchange of the tensor Pomerons and the Reggeons is

introduced. The resulting expressions for the real and
virtual photon-proton cross sections are derived. The vector
Pomeron and its decoupling in real and forward-virtual
Compton scattering are discussed in Sec. IV. Section V
presents the comparison of our tensor-Pomeron model with
experimental data. We discuss our findings in Sec. VI.
Section VII gives our conclusions. Appendix A lists the
effective propagators and vertices for the two Pomerons and
for the f2R and a2R Reggeons. In Appendix Bwe discuss the
formulas for the case of a vector Pomeron. InAppendixCwe
present the parametrizations for the coupling functions
occurring in our approach. In Appendixes D, E, and F we
give details of our fit procedure and of the fit results.

II. KINEMATICS AND GENERAL RELATIONS
FOR STRUCTURE FUNCTIONS IN DIS

We want to consider electron- and positron-proton
inelastic scattering (Fig. 1)

eðkÞ þ pðpÞ → eðk0Þ þ Xðp0Þ: ð2:1Þ

The kinematic variables for the reaction (2.1) are standard;
see for instance [25]:

s ¼ ðpþ kÞ2;
q ¼ k − k0;

Q2 ¼ −q2;

W2 ¼ p02 ¼ ðpþ qÞ2;

ν ¼ p · q
mp

¼ W2 þQ2 −m2
p

2mp
;

x ¼ Q2

2mpν
¼ Q2

W2 þQ2 −m2
p
;

y ¼ p · q
p · k

¼ W2 þQ2 −m2
p

s −m2
p

: ð2:2Þ

Furthermore, we define the ratio ϵ of longitudinal and
transverse polarisation strengths of the virtual photon

ϵ ¼ 2ð1 − yÞ − y2δðW2; Q2Þ
1þ ð1 − yÞ2 þ y2δðW2; Q2Þ ð2:3Þ

where

δðW2; Q2Þ ¼ 2m2
pQ2

ðW2 þQ2 −m2
pÞ2

: ð2:4Þ

For given W2 > m2
p and Q2 ≥ 0 the kinematic limits for y

and ϵ are

0 ≤ y ≤
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δðW2; Q2Þ

p ð2:5Þ
1Obviously, one could add further Pomeron exchanges

with various intercepts, or choose one Pomeron with a scale-
dependent intercept; see e.g., [12]. In the present study we will
consider only the two-Pomeron model.
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corresponding to

1 ≥ ϵ ≥ 0: ð2:6Þ

Clearly, for W2 > m2
p the value y ¼ 0 (ϵ ¼ 1) can only be

reached for s → ∞; see (2.2).
The reaction effectively studied in DIS is the absorption

of the virtual photon on the proton; see Fig. 1. The total γ�p
absorption cross sections are related to the absorptive parts
of the virtual forward Compton scattering amplitude. In the
following, we shall therefore study the forward virtual
Compton scattering on a proton (see Fig. 2),

γ�νðqÞ þ pðp; λÞ → γ�μðqÞ þ pðp; λ0Þ: ð2:7Þ

The momenta are indicated in brackets and λ, λ0 ∈
f1=2;−1=2g are the helicity indices of the protons. We
define the amplitude for reaction (2.7) as

Mμν
λ0λðp;qÞ

¼ i
2πmp

Z
d4xe−iqxhpðp;λ0ÞjT�ðJμð0ÞJνðxÞÞjpðp;λÞi:

ð2:8Þ
Here mp is the proton mass, T* denotes the covariantized
time-ordered product, and JμðxÞ is the hadronic part of the
electromagnetic current. The absorptive part of Mμν

λ0λ (2.8),
averaged over the proton helicities, gives the hadronic
tensor and the structure functions of DIS,

Wμνðp; qÞ ¼
X
λ0;λ

1

2
δλ0λ

1

2i
½Mμν

λ0λðp; qÞ − ðMνμ
λλ0 ðp; qÞÞ��

¼ W1ðν; Q2Þ
�
−gμν þ qμqν

q2

�

þ 1

m2
p
W2ðν; Q2Þ

�
pμ −

p · q
q2

qμ
�

×

�
pν −

p · q
q2

qν
�
: ð2:9Þ

We shall also use the total γ�p absorption cross sections
σT and σL for transversely and longitudinally polarized
virtual photons. With e > 0 the proton charge and Hand’s
convention for the flux factor [26] these read

σTðW2;Q2Þ¼ 2πmp

W2−m2
p
e2W1ðν;Q2Þ;

σLðW2;Q2Þ¼ 2πmp

W2−m2
p
e2

×

�
W2ðν;Q2Þν

2þQ2

Q2
−W1ðν;Q2Þ

�
: ð2:10Þ

III. STRUCTURE FUNCTIONS IN THE
TENSOR-POMERON APPROACH

We shall now assume that for large W2, and respec-
tively small x, the virtual Compton amplitude (2.8) is
dominated by the exchange of the two Pomerons, P0 and
P1, plus the f2R and a2R Reggeons; see Fig. 3. In order to
calculate the diagram shown there we need the effective
propagators for P0 and P1 as well as the vertex functions
Pjpp and Pjγ

�γ� (j ¼ 0, 1), and the analogous quantities
for f2R and a2R. Our Ansätze for these quantities are listed
in Appendix A. It is now straightforward to calculate the
analytic expression corresponding to the diagram of
Fig. 3. Since all four exchanges are tensor exchanges,
the resulting expressions have a similar structure. We find

FIG. 1. Deep inelastic lepton-proton scattering.

FIG. 2. Forward virtual Compton scattering on a proton.

FIG. 3. Low-x forward virtual Compton scattering with ex-
change of the soft (P1) and hard (P0) Pomeron plus the f2R and
a2R Reggeons.
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i2πmpe2M
μν
λ0λðp; qÞ ¼

X
j¼0;1

gμμ
0
gνν

0
iΓðPjγ

�γ�Þ
μ0ν0κρ ðq; qÞiΔðPjÞκρ;κ0ρ0 ðW2; 0Þūðp; λ0ÞiΓðPjppÞ

κ0ρ0 ðp; pÞuðp; λÞ

þ ½gμμ0gνν0iΓðf2Rγ�γ�Þ
μ0ν0κρ ðq; qÞiΔðf2RÞκρ;κ0ρ0 ðW2; 0Þūðp; λ0ÞiΓðf2RppÞ

κ0ρ0 ðp; pÞuðp; λÞ þ ðf2R → a2RÞ�: ð3:1Þ

Let us now discuss the contribution of the Reggeons
f2R and a2R. These charge conjugation C ¼ þ1
Reggeons have practically the same trajectory but the
f2R couples much more strongly to the proton than the
a2R; see [4,11]. In the following we shall assume, as in
[11], the same trajectory for the f2R and a2R. We can
then treat the f2R and a2R contributions together, and we
shall denote the sum of the two as the Rþ contribution.
It is expected that in Compton scattering on the proton
the f2R contribution will be much larger than the a2R
contribution; see [4]. To disentangle the f2R and a2R
contributions we would need good data on the absorp-
tion cross sections for real and virtual photons on
neutrons in addition to those on protons. Of course,
the assumption of identical trajectories and, in parti-
cular, identical intercepts for the f2R and a2R is not
necessary. It would be straightforward to generalize our
formalism to the more general case and to treat these
two Reggeons as separate contributions with different
parameters.

With the expressions from Appendix A we obtain

Mμν
λ0λðp;qÞ¼

1

2πmp
δλ0λ

X
j¼0;1;2

½2âjðQ2ÞΓð0Þμνκρðq;−qÞ

− b̂jðQ2ÞΓð2Þμνκρðq;−qÞ�

× ð−i3βjppÞð−iW2α̃0jÞϵj
1

2W2
ð4pκpρ−gκρm2

pÞ:
ð3:2Þ

The meaning of the quantities occurring here and in the
following is summarized in Table I. The detailed behavior
of the γ�γ� coupling functions is not predicted by the
model. They are assumed to be smooth functions ofQ2 and
will be parametrized with the help of spline functions. Note
that quantities with indices j ¼ 0, 1, and 2 always refer to
the hard Pomeron, the soft Pomeron, and the sum of the f2R
and a2R Reggeons, respectively. The tensor functions
ΓðlÞμνκρ (l ¼ 0, 2) are defined in (A13) and (A14). Using
(2.9) we get from (3.2)

Wμνðp; qÞ ¼
1

2πmpW2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

�

×

��
−gμν þ

qμqν
q2

�
½b̂jðQ2Þð4ðp · qÞ2 − 2q2m2

pÞ − 2âjðQ2Þð−q2Þð4ðp · qÞ2 − q2m2
pÞ�

þ
�
pμ −

p · q
q2

qμ
��

pν −
p · q
q2

qν
�
ð−4q2Þb̂jðQ2Þ

�
;

ð3:3Þ
such that

W1ðν;Q2Þ¼ 1

2πmpW2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

�
½b̂jðQ2Þð4ðp ·qÞ2þ2Q2m2

pÞ−2Q2âjðQ2Þð4ðp ·qÞ2þQ2m2
pÞ� ð3:4Þ

and

W2ðν; Q2Þ ¼ mp

2πW2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

�
4Q2b̂jðQ2Þ: ð3:5Þ

Writing W1 (3.4) in terms of the variables Q2 and W2 we get

W1ðν; Q2Þ ¼ ðW2 −m2
pÞ2

2πmpW2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

��
b̂jðQ2Þ

�
1þ 2Q2

W2 −m2
p
þQ2ðQ2 þ 2m2

pÞ
ðW2 −m2

pÞ2
�

− 2Q2âjðQ2Þ
�
1þ 2Q2

W2 −m2
p
þQ2ðQ2 þm2

pÞ
ðW2 −m2

pÞ2
��

: ð3:6Þ
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From (3.5) and (3.6) we get for σT and σL (2.10) with αem ¼ e2=ð4πÞ the fine structure constant,

σTðW2; Q2Þ ¼ 4παem
W2 −m2

p

W2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

��
b̂jðQ2Þ

�
1þ 2Q2

W2 −m2
p
þQ2ðQ2 þ 2m2

pÞ
ðW2 −m2

pÞ2
�

− 2Q2âjðQ2Þ
�
1þ 2Q2

W2 −m2
p
þQ2ðQ2 þm2

pÞ
ðW2 −m2

pÞ2
��

; ð3:7Þ

σLðW2; Q2Þ ¼ 4παem
W2 −m2

p

W2
Q2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

�

×

�
2âjðQ2Þ

�
1þ 2Q2

W2 −m2
p
þQ2ðQ2 þm2

pÞ
ðW2 −m2

pÞ2
�
þ b̂jðQ2Þ 2m2

p

ðW2 −m2
pÞ2

�
: ð3:8Þ

From (3.7) and (3.8) we finally get for the structure functions F2 ¼ νW2 and FL

F2ðW2;Q2Þ¼ Q2

4π2αem
ð1−xÞ½1þ2δðW2;Q2Þ�−1½σTðW2;Q2ÞþσLðW2;Q2Þ�

¼Q2

π
ð1−xÞ½1þ2δðW2;Q2Þ�−1W

2−m2
p

W2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

�
b̂jðQ2Þ

�
1þ 2Q2

W2−m2
p
þQ2ðQ2þ4m2

pÞ
ðW2−m2

pÞ2
�
;

ð3:9Þ

FLðW2; Q2Þ ¼ Q2

4π2αem
ð1 − xÞσLðW2; Q2Þ

¼ Q4

π
ð1 − xÞW

2 −m2
p

W2

X
j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

�

×

�
2âjðQ2Þ

�
1þ 2Q2

W2 −m2
p
þQ2ðQ2 þm2

pÞ
ðW2 −m2

pÞ2
�
þ b̂jðQ2Þ 2m2

p

ðW2 −m2
pÞ2

�
: ð3:10Þ

Let us now discuss our results (3.2)–(3.10). We first note
that with our Ansatz for the soft and hard Pomeron plus Rþ
Reggeon all gauge-invariance relations for the virtual
Compton amplitude are satisfied. Indeed, we find from
(3.2) and (A16)

qμM
μν
λ0λðp; qÞ ¼ 0;

qνM
μν
λ0λðp; qÞ ¼ 0: ð3:11Þ

Also, σLðW2; Q2Þ vanishes proportional to Q2 for Q2 → 0,
whereas σTðW2; 0Þ gives the Pomeron plus Rþ Reggeon
part of the total γp cross section for real photons,

σTðW2; 0Þ ¼ σγpðW2Þ

¼ 4παem
W2 −m2

p

W2

×
X

j¼0;1;2

3βjppðW2α̃0jÞϵj cos
�
π

2
ϵj

�
b̂jð0Þ:

ð3:12Þ

For this soft process the contributions from the soft
Pomeron P1 (j ¼ 1) plusRþ Reggeon (j ¼ 2) are expected
to dominate.

TABLE I. Notation for the parameters of our Ansatz with hard and soft Pomeron and Rþ (f2R plus a2R) Reggeon exchange. The
propagators and vertices containing these parameters are given in detail in Appendix A.

Hard Pomeron P0 Soft Pomeron P1 Reggeon Rþ
Intercept α0ð0Þ ¼ 1þ ϵ0 α1ð0Þ ¼ 1þ ϵ1 α2ð0Þ ¼ 1þ ϵ2
Slope parameter α00 α01 α02
W2 parameter α̃00 α̃01 α̃02
pp coupling parameter β0pp β1pp β2pp
γ�γ� coupling functions â0ðQ2Þ, b̂0ðQ2Þ â1ðQ2Þ, b̂1ðQ2Þ â2ðQ2Þ, b̂2ðQ2Þ

TENSOR POMERON AND LOW-x DEEP INELASTIC … PHYS. REV. D 100, 114007 (2019)

114007-5



For large Q2, on the other hand, we expect the hard
Pomeron P0 to give the main contribution to σT and σL. For

W2 ≫ Q2 ≫ m2
p ð3:13Þ

we get, therefore, from (3.7) and (3.8) the following
approximate relations:

σTðW2;Q2Þ≅ 4παem3β0ppðW2α̃00Þϵ0

×cos
�
π

2
ϵ0

�
½b̂0ðQ2Þ−2Q2â0ðQ2Þ�; ð3:14Þ

σLðW2; Q2Þ ≅ 4παemQ23β0ppðW2α̃00Þϵ0

× cos

�
π

2
ϵ0

�
2â0ðQ2Þ; ð3:15Þ

and

σLðW2; Q2Þ
σTðW2; Q2Þ ≅

2Q2â0ðQ2Þ
b̂0ðQ2Þ − 2Q2â0ðQ2Þ : ð3:16Þ

This shows that in the limit (3.13) σLðW2; Q2Þ determines
the function â0ðQ2Þ while σTðW2;Q2ÞþσLðW2;Q2Þ deter-
mines the function b̂0ðQ2Þ.

IV. COMPTON AMPLITUDE AND
VECTOR POMERON

In this section we shall first show that for real Compton
scattering on a proton the exchange of a vector-type
Pomeron PV gives an amplitude that vanishes identically.
We investigate the reaction

γðq; εÞ þ pðp; λÞ → γðq0; ε0Þ þ pðp0; λ0Þ ð4:1Þ

for real photons, q2 ¼ q02 ¼ 0, and consider the diagram
of Fig. 4 with vector Pomeron exchange. The kinematic
variables are the c.m. energyW and the momentum transfer
squared,

W2 ¼ ðpþ qÞ2 ¼ ðp0 þ q0Þ2;
t ¼ ðp − p0Þ2 ¼ ðq0 − qÞ2: ð4:2Þ

The PVpp vertex and the PV propagator are standard;
see e.g., Appendix B of [14] and (B1) and (B2) of the
present paper. The important task is to find the structure of
the PVγγ vertex. Using the constraints of Bose symmetry
for the photons, of gauge invariance, and of parity con-
servation in the strong and electromagnetic interactions we
derive in Appendix B for the PVγγ vertex function the
expression

ΓðPVγγÞ
μνρ ðq0;−qÞ ¼ Â2ðtÞ½q0μð−q0νqρ þ ðq0 · qÞgνρÞ

− ð−qμq0ρ þ ðq0 · qÞgμρÞqν�
− Â3ðtÞq0μqνðq0ρ − qρÞ
þ Â4ðtÞð−qμq0ν þ ðq0 · qÞgμνÞðq0ρ − qρÞ:

ð4:3Þ
Here μ, ν, and ρ are the Lorentz indices for the outgoing
photon, the incoming photon, and the vector Pomeron PV ,
respectively. The ÂjðtÞ (j ¼ 2, 3, 4) are invariant functions.
Applying now (B1), (B2), and (4.3) to the amplitude for

reaction (4.1) we find from the diagram of Fig. 4

hγðq0; ε0Þ; pðp0; λ0ÞjT jγðq; εÞ; pðp; λÞiPV

¼ −ε0�μΓðPVγγÞ
μνρ ðq0;−qÞενΔðPV ÞρσðW2; tÞ

× ūλ0 ðp0ÞΓðPVppÞ
σ ðp0; pÞuλðpÞ

¼ 0: ð4:4Þ
Here we have used

q0 · ε0 ¼ 0; q · ε ¼ 0 ð4:5Þ

and

ðq0−qÞρūλ0 ðp0ÞγρuλðpÞ¼ ðp−p0Þρūλ0 ðp0ÞγρuλðpÞ¼ 0:

ð4:6Þ

Thevector Pomeron exchange hence gives zero contribution
for real Compton scattering. In particular, this implies that a
vector Pomeron exchange cannot contribute to the total
photoabsorption cross section σγpðW2Þ which is propor-
tional to the absorptive part of the forward Compton
amplitude. On the other hand, we see from (3.12) that
our tensor exchanges give nonzero contributions to σγp for
b̂jð0Þ ≠ 0. And this will indeed be the case in our fits shown
in Sec. V below. We think that the decoupling of a vector
Pomeron in real Compton scattering is another strong
argument against treating the Pomeron as an effective vector
exchange. We note that this vector Pomeron decoupling is
closely related to the famous Landau-Yang theorem [27,28]

V

p(p, λ) p(p′, λ′)

γ(q′, ε′)γ(q, ε)

p − p′

qq ′

FIG. 4. Real Compton scattering on a proton with exchange of a
vector Pomeron PV .

DANIEL BRITZGER et al. PHYS. REV. D 100, 114007 (2019)

114007-6



which says that amassivevector particle cannot decay to two
real photons; see Appendix B.
As a second important result we can show with similar

methods that a vector Pomeron cannot contribute to the
forward virtual Compton amplitude; see (B24)–(B26) of
Appendix B. We conclude then that a vector Pomeron
exchange can only give a zero contribution to the structure
functions W1;2 and to the cross sections σT and σL of DIS;
see (2.9) and (2.10).

V. COMPARISON WITH EXPERIMENT

In this section we compare our theoretical Ansatz for the
tensor-Pomeron and Rþ-Reggeon exchanges, as explained
in Sec. III, to experiment by making a global fit. For this fit
we use the HERA inclusive DIS data [29] from four
different center-of-mass energies,

ffiffiffi
s

p ¼ 225, 251, 300,
and 318 GeV. We require

Q2 < 50 GeV2 and x < 0.01: ð5:1Þ

For the photoproduction cross section we use the measure-
ments from H1 [30] at W ¼ 200 GeV and ZEUS [31] at
W ¼ 209 GeV. In addition, we include in the analysis data
at intermediate W (40 GeV < W < 150 GeV) from astro-
particle observations [32] and at low W (6 GeV < W <
19 GeV) from a tagged-photon experiment at Fermilab [33].
The directly measured quantity at HERA is the reduced

cross section defined as

σredðW2;Q2;yÞ¼ Q4x
2πα2em½1þð1−yÞ2�

d2σ
dxdQ2

ðep→ eXÞ:

ð5:2Þ

Expressing this in terms of σT and σL (2.10) we get

σredðW2; Q2; yÞ ¼ 1þ ð1 − yÞ2 þ y2δðW2; Q2Þ
1þ ð1 − yÞ2

× ½1þ 2δðW2; Q2Þ�−1 Q2

4π2αem
ð1 − xÞ

× ½σTðW2; Q2Þ þ σLðW2; Q2Þ
− f̃ðW2; Q2; yÞσLðW2; Q2Þ�; ð5:3Þ

where

f̃ðW2; Q2; yÞ ¼ 1 − ϵ ¼ y2½1þ 2δðW2; Q2Þ�
1þ ð1 − yÞ2 þ y2δðW2; Q2Þ :

ð5:4Þ

Alternatively, we can express σred through the structure
functions (3.9) and (3.10),

10 210
W [GeV]

0

50

100

150

200

250

]bμ  [ pγσ

pγσTensor pomeron fit 
Reggeon exchange contribution
FNAL tagged photon beam
Astroparticle data
H1
ZEUS

FIG. 5. Comparison of the global fit to the photoproduction
cross sections [30–33]. The Reggeon contribution is indicated.
The experimental uncertainties of the fit are indicated as
shaded bands.

TABLE II. Fit values obtained for the Pomeron and Reggeon intercepts and default values used for the other parameters;
see Appendix A.

Parameter Default value used Fit result

P0 Intercept α0ð0Þ ¼ 1þ ϵ0
ϵ0 ¼ 0.3008ðþ73

−84Þ
Slope parameter α00 ¼ 0.25 GeV−2

W2 parameter α̃00 ¼ 0.25 GeV−2

pp coupling parameter β0pp ¼ 1.87 GeV−1

P1 Intercept α1ð0Þ ¼ 1þ ϵ1
ϵ1 ¼ 0.0935ðþ76

−64Þ
Slope parameter α01 ¼ 0.25 GeV−2

W2 parameter α̃01 ¼ 0.25 GeV−2

pp coupling parameter β1pp ¼ 1.87 GeV−1

Rþ Intercept α2ð0Þ ¼ 0.485ðþ88
−90Þ

Slope parameter α02 ¼ 0.9 GeV−2

W2 parameter α̃02 ¼ 0.9 GeV−2

pp coupling parameter β2pp ¼ 3.68 GeV−1
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σredðW2; Q2; yÞ ¼ 1þ ð1 − yÞ2 þ y2δðW2; Q2Þ
1þ ð1 − yÞ2

× fF2ðW2; Q2Þ − f̃ðW2; Q2; yÞ
× ½1þ 2δðW2; Q2Þ�−1FLðW2; Q2Þg:

ð5:5Þ
Now we discuss the parameters of our model; cf. Table I.

For the soft Pomeron P1 we take the default values from
(A3) for

α01 ¼ α̃01 ¼ 0.25 GeV−2 ð5:6Þ
and leave

ϵ1 ¼ α1ð0Þ − 1 ð5:7Þ
as a fit parameter. The P1pp coupling parameter β1pp is
fixed to (A11). For our hard Pomeron P0 we also use, for
lack of better information,

α00 ¼ α̃00 ¼ 0.25 GeV−2; β0pp ¼ β1pp ¼ 1.87 GeV−1

ð5:8Þ

and leave

ϵ0 ¼ α0ð0Þ − 1 ð5:9Þ
as a fit parameter. The Pomeron-γ�γ� coupling functions

âjðQ2Þ and b̂jðQ2Þ ðj ¼ 0; 1Þ ð5:10Þ
are determined from the fit. These functions are para-
metrized with the help of cubic splines as explained in
Appendix C. Note that only the products

βjppâjðQ2Þ and βjppb̂jðQ2Þ ð5:11Þ

can be determined from our reaction. For Rþ ¼ f2R þ a2R
exchange we leave α2ð0Þ ¼ 1þ ϵ2 as fit parameter and use
for α02, α̃

0
2, and β2pp the default values from (A22), (A25),

and (A29). The function b̂2ðQ2Þ, defined in (A31) and
parametrized according to (C2), is determined from the fit.
The function â2ðQ2Þ, cf. (A30), is set to zero, which is
justified in our case since for the photoproduction cross
section â2ð0Þ does not contribute; see (3.12). For Q2 > 0,
on the other hand, the data to which we fit are at sufficiently
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FIG. 6. Comparison of the fit to DIS cross sections at center-of-mass energy 225 GeV. We also show the soft contribution (soft
Pomeron plus Rþ Reggeon) and the contribution of the structure function F2 in the reduced cross section; see (5.5). The experimental
uncertainties of the fit are indicated as shaded bands.
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high W such that the whole contribution of the Rþ
exchange is very small there. With â2ðQ2Þ ¼ 0 we neglect
in essence the possibleRþ-exchange contribution to σL; see
(3.8). The fit parameters for the Pomeron and Rþ Reggeon
properties are summarized in Table II. The Ansätze for the
Pomeron- and Rþ Reggeon-photon coupling functions are
discussed in Appendix C. The fit procedure is explained in
Appendix D and the fit results for the parameters of our
model are given in Table IV in Appendix E. Further
quantities occurring in our formulas are the fine structure
constant αem, the proton mass mp, and M0 used in various
places for dimensional reasons. We have

αem ¼ 0.0072973525664;

mp ¼ 0.938272 GeV;

M0 ¼ 1 GeV: ð5:12Þ
Our global fit has 25 parameters which are, however,

not all of the same quality. The most important parameters
are the three intercepts, α0ð0Þ ¼ 1þ ϵ0, α1ð0Þ ¼ 1þ ϵ1,
and α2ð0Þ; see Table II. Then we have the values of the
Pomeron-γ�γ� and Rþ-γ�γ�coupling functions at Q2 ¼ 0,

that is, b̂jð0Þ (j ¼ 0, 1, 2) and âjð0Þ (j ¼ 0, 1) which give
another five parameters. The falloff of these coupling
functions with Q2 involves the remaining 17 parameters.
Herewe have some freedom in choosing e.g., more or fewer
spline knots for the functions b̂jðQ2Þ (j ¼ 0, 1). We find it
convenient to useN ¼ 7 spline knots; see Appendix C 2 and
Table IV in Appendix E.
Let us now show our fit results starting with photo-

production in Fig. 5. The fit is very satisfactory. The Rþ
Reggeon contribution is also indicated. It is found to be
important for W < 30 GeV.
In Figs. 6–11 we show our fit results for the HERA data.

Here we indicate also the soft contribution (soft Pomeron
plus Rþ Reggeon). The contribution of the Rþ component
for the HERADIS data which we use (x < 0.01) is found to
be very small from the fits and, plotted separately, would
hardly be visible in Figs. 6–11. The quality of our global fit,
which has 25 parameters, is assessed in Table III and is
overall found to be very satisfactory. The experimental
uncertainties indicated as shaded bands in Fig. 5 and the
following figures correspond to one standard deviation; see
Appendix D.
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FIG. 7. Comparison of the fit to DIS cross sections at center-of-mass energy 251 GeV. We also show the soft contribution (soft
Pomeron plus Rþ Reggeon) and the contribution of the structure function F2 in the reduced cross section; see (5.5). The experimental
uncertainties of the fit are indicated as shaded bands.

TENSOR POMERON AND LOW-x DEEP INELASTIC … PHYS. REV. D 100, 114007 (2019)

114007-9



We now want to discuss in detail the results of our fit. We
start with the intercepts of the Pomerons and of the Rþ
Reggeon. From our global fit the soft Pomeron (P1)
intercept comes out as

α1ð0Þ ¼ 1þ ϵ1; ϵ1 ¼ 0.0935
	þ76

−64



: ð5:13Þ

This is well compatible with the standard value ϵ ≈ 0.08 to
0.09 obtained from hadronic reactions; see for instance
Chapters 3 of [4] and [11]. The value of the Rþ intercept is
found to be

α2ð0Þ ¼ 0.485
	þ88

−90



ð5:14Þ

and is in agreement with the determinations from [4,11]
which quote α2ð0Þ ¼ 0.5475. For the hard Pomeron P0 we
find

α0ð0Þ ¼ 1þ ϵ0; ϵ0 ¼ 0.3008

�þ73

−84

�
: ð5:15Þ

This is again a very reasonable value.
Next, let us turn to photoproduction; see Fig. 5. The

photoproduction is dominated by soft Pomeron exchange
in the energy range investigated, 6 GeV < W < 209 GeV.

The Rþ Reggeon contribution is important for W ≲
30 GeV and is needed there in order to get a good fit to
the data. The hard Pomeron P0 gives only a very small
contribution. In fact, there is no evidence for a nonzero
contribution of the hard Pomeron to the photoproduction
cross section in the energy range investigated here. At
W ¼ 200 GeV, for instance, the fitted contributions to the
photoproduction cross section are

170.4þ4.2
−4.0 μb for the soft Pomeron P1;

0.002þ0.086
−0.002 μb for the hard Pomeron P0;

0.84þ0.99
−0.58 μb for the Rþ Reggeon:

For lower W values the relative contribution of the
hard Pomeron to photoproduction is even smaller due
to ϵ0 > ϵ1.
In Figs. 6–11 we show the comparison of our global fit

with the HERA DIS data. Note that in Figs. 6, 7, 9, and 11,
we also show the extrapolation of our fit to the region
50 GeV2 ≤ Q2 ≤ 90 GeV2. The HERA data in this region
are not included in the fit but still reasonably well described
by it. In our global fit we have as parameters also the
Pomeron-γ�γ� coupling functions âjðQ2Þ and b̂jðQ2Þ
(j ¼ 0, 1); see Table I, (A18) and (A19). The latter are
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FIG. 8. Comparison of the fit to DIS cross sections at center-of-mass energy 300 GeV, at low Q2 < 1.5 GeV2. We also show the soft
contribution (soft Pomeron plus Rþ Reggeon) and the contribution of the structure function F2 in the reduced cross section; see (5.5).
The experimental uncertainties of the fit are indicated as shaded bands.
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parametrizedwith the help of cubic splines; seeAppendixC.
In Figs. 12–15 we show the fit results for these functions
which are discussed further in Appendixes D and E. Note
that above Q2 ¼ 50 GeV2 the displayed curves are extrap-
olations beyond the last spline knot. In essence, these
functions are extrapolated using simple power laws in
Q2; see (C3), (C5) and (C6) in Appendix C.
Let us now point out some salient features of our global

fit to HERA DIS data (Figs. 6–11).
We see from Figs. 8 and 10 that the soft Pomeron P1

dominates σred for Q2 ≲ 1 GeV2. For higher Q2 (Figs. 6,
7, 9, 11) the soft component slowly decreases relative to
the hard one. For the c.m. energies

ffiffiffi
s

p
investigated, the

soft and hard components are of similar size near
Q2 ≈ 5 GeV2. Dominance of the hard component (P0)
can only be seen for Q2 ≳ 20 GeV2. Thus, our fit tells us

that the soft Pomeron (P1) contribution is essential for
an understanding of the HERA data for Q2 < 50 GeV2

and x < 0.01.
In Figs. 6–11 we have also indicated the contribution

of the structure function F2 alone to σred; see (5.5). At fixed
s andQ2, largeW corresponds to large y; see (2.2). At large
y the negative term −f̃σL in σred [see (5.3) and (5.4)]
becomes important. The turning away of the data from the
lines “F2 component” therefore indicates a sizable con-
tribution from the longitudinal cross section σL. Our model
gives a good description of this feature of the data.
Another way to assess the importance of σL is to consider

the ratio

RðW2; Q2Þ ¼ σLðW2; Q2Þ
σTðW2; Q2Þ : ð5:16Þ
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FIG. 9. Comparison of the fit to DIS cross sections at center-of-mass energy 300 GeV, at high Q2 ≥ 1.5 GeV2. We also show the soft
contribution (soft Pomeron plus Rþ Reggeon) and the contribution of the structure function F2 in the reduced cross section; see (5.5).
The experimental uncertainties of the fit are indicated as shaded bands.
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Our fit results for R and for FL (3.10) are shown in Fig. 16.
Within the fit Ansatz, the ratio R ¼ σL=σT of longitudinal
to transverse cross sections depends on Q2 and W.
Figure 16 shows the dependence of R and of the structure
function FL on Q2 at fixedW. In both panels, H1 data [34]
are shown for comparison with our global fit results. The
H1 data are extracted in a model-independent way directly
from H1 cross sections measured at a fixed Q2 and x but
different center-of-mass energies. The W corresponding to
the H1 data is around 200 GeV, the extreme values are
W ¼ 232 GeV at Q2 ¼ 1.5 GeV2 and W ¼ 193 GeV at
Q2 ¼ 45 GeV2. The same H1 cross section data [34] also
contribute strongly to the HERA data combination of DIS
cross sections [29], which is used as input to our fit. Still,
the fit predicts R and FL somewhat above the H1 data. The
H1 R and FL data however have a sizable point-to-point
correlated uncertainty, which for FL is of order 0.045 as
indicated. Moreover, the determinations of R in the fit or
directly from H1 cross sections probe different aspects of
the data.
In the H1 extraction from data, the structure function F2

is a free parameter for each point in Q2 and W, which
basically is set by the measurements at high center-of-mass
energies

ffiffiffi
s

p ¼ 318 GeV andW ¼ 200 GeV (Fig. 11). The
structure function FL and the ratio R are then determined
largely by the data points at low

ffiffiffi
s

p ¼ 225 GeV and
W ¼ 200 GeV (Fig. 6).
In contrast, F2 in our fit is determined largely by data

from lower W and the power exponents ϵi. The functions

FL and R are then determined from all center-of-mass
energies together at their respective largestW; however, the
most precise data at largest W (Fig. 11) contribute most.
In Appendix F we present further discussions of the ratio

R (5.16). We show in particular that the rather large value of
R resulting from the fit is not affected much by making
different assumptions for the fit parameters.

VI. DISCUSSION

In this article we developed a two-tensor-Pomeron
model and used it for a fit to data from photoproduction
and from HERA deep inelastic lepton-nucleon scattering
at low x. The c.m. energy range of these data is 6 to
318 GeV, the Q2 range 0 to 50 GeV2. For the theoretical
description we also included the Rþ ¼ f2R þ a2R
Reggeon exchange which turned out to be relevant for
energies ≲ 30 GeV. The fit parameters were the intercepts
of the two Pomerons and of the Reggeon, and their
coupling functions to real and virtual photons. The fit
turned out to be very satisfactory and allowed us to
determine, for instance, the intercepts of the hard
Pomeron (P0), of the soft Pomeron (P1) and of the Rþ
Reggeon. We obtained very reasonable numbers for these
intercepts; see Table II. The real photoabsorption cross
section σγp is found to be dominated by soft Pomeron
exchange with, at lower energies, a contribution from Rþ
Reggeon exchange. Within the errors of our fit a hard
Pomeron contribution is not visible for photoproduction.
But as Q2 increases the hard Pomeron becomes more and
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FIG. 10. Comparison of the fit to DIS cross sections at center-of-mass energy 318 GeV, at lowQ2 < 1.5 GeV2. We also show the soft
contribution (soft Pomeron plus Rþ Reggeon) and the contribution of the structure function F2 in the reduced cross section; see (5.5).
The experimental uncertainties of the fit are indicated as shaded bands.
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FIG. 11. Comparison of the fit to DIS cross sections at center-of-mass energy 318 GeV, at highQ2 ≥ 1.5 GeV2. We also show the soft
contribution (soft Pomeron plus Rþ Reggeon) and the contribution of the structure function F2 in the reduced cross section; see (5.5).
The experimental uncertainties of the fit are indicated as shaded bands.

TABLE III. Partial χ2 and number of data points per dataset, goodness of fit, number of degrees of freedom and fit
probability for our tensor-Pomeron fit. The partial χ2 numbers for the individual DIS center-of-mass energies (upper
part of the table) do not add up to the number quoted for all HERA DIS data. This is expected because correlated
uncertainties between the different center-of-mass energies also contribute.

Dataset χ2 Number of points

DIS
ffiffiffi
s

p ¼ 225 GeV 104.98 91
DIS

ffiffiffi
s

p ¼ 251 GeV 113.12 118
DIS

ffiffiffi
s

p ¼ 300 GeV 60.38 71
DIS

ffiffiffi
s

p ¼ 318 GeV 271.82 245
HERA DIS data, all

ffiffiffi
s

p
553.77 525

H1 photoproduction 0.23 1
ZEUS photoproduction 0.03 1
Cosmic ray data 0.62 4
Tagged photon beam 33.29 30
All datasets 587.94 NDF ¼ ð561–25Þ, probability 6.0%
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more important. Hard and soft Pomerons give contribu-
tions of roughly equal size for Q2 ≈ 5 GeV2, but the soft
contribution is still clearly visible for Q2 ≈ 20 GeV2.
Our results indicate that in the energy and Q2 range

investigated the γ�-proton absorption cross sections rise
with energy asW2ϵ1 for lowQ2 and change toW2ϵ0 for high
Q2. Here ϵ1 ≈ 0.09 and ϵ0 ≈ 0.30 are the intercepts minus

one of the Pomerons P1 and P0; see Table II. It has been
realized already a long time ago (see for instance [35]) that
parton densities in hadrons become large in high-energy or
low-x scattering. This can give rise to parton recombination
and saturation, potentially taming the growth of cross
sections at high energies. At the energies investigated here
we find no indication that the rise of the γ�-proton
absorption cross sections levels off. The question can be
asked if the γ�p cross sections could continue to rise
indefinitely for higher and higherW. We note first that there
is no Froissart-like bound for the rise of the γ�p cross
sections since γ� is not an asymptotic hadronic state. Thus,
there is no nonlinear unitarity relation for the γ�p cross
sections which would be a prerequisite for the derivation of
a Froissart-like bound. The γ�p cross sections may well
stop to rise at higher W due to saturation effects, but this
will then, in our opinion, not be related to the Froissart-
Martin-Lukaszuk bound [36–38] which applies to hadronic
cross sections. We see no rigorous theoretical argument
against an indefinite rise of the γ�p cross sections with W.
Note that these “γ�p cross sections” are in reality current-
current correlation functions. The standard folklore of
quantum field theory (QFT) is that such functions should
be polynomially bounded which is clearly fulfilled in our
case. Some time ago, one of us investigated theoretically
the low-x behavior of the γ�p cross sections in QCD [39].
There, arguments were given that identify two regimes in
low-x DIS, one for low Q2 and one for high Q2. It was
argued that, in the high-Q2 region of low x, DIS could be
related to a critical phenomenon where, for instance, ϵ0
would be one of the critical exponents. In such a picture it
would be natural to have a power rise with W for the γ�p
cross sections σT and σL. But to know the actual behavior
of σT and σL forW values higher than those available today
we will have to wait for future experiments.
We can obtain further support for the view that low-x

DIS at high enough Q2 can be understood as a critical
phenomenon from our present results. We see from (3.14)
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and (3.15) and the fit results for âjðQ2Þ and b̂jðQ2Þ
(j ¼ 0, 1) summarized in Tables IV and V that for Q2 ≳
20 GeV2 the γ�p cross sections are well represented by
simple power laws in Q2 and W2:

σTðW2; Q2Þ þ σLðW2; Q2Þ ∝ b̂0ðQ2ÞðW2Þϵ0
∝ ðQ2Þ−η0ðW2Þϵ0 ; ð6:1Þ

σLðW2; Q2Þ ∝ Q2â0ðQ2ÞðW2Þϵ0
∝ ðQ2Þ−δ0ðW2Þϵ0 : ð6:2Þ

Here we have from (C3), (C5), (C6), and Tables IV
and V

δ0 ¼ 2.51
	þ68

−57




η0 ¼ −n0;7 ¼ 0.967ð73Þ: ð6:3Þ

Such simple power laws (6.1) and (6.2) were, indeed,
suggested in [39]. The quantities δ0 and η0 are in this view,
together with ϵ0, critical exponents.
In our work we have paid particular attention to describing

and fitting not only the structure function F2, which is
proportional to σT þ σL, but the reduced cross section σred
[(5.3) and (5.4)] which contains all experimentally available
information on σT and σL separately. Our fit results for R ¼
σL=σT indicate that it is rather large, R≳ 0.4 for 1 GeV2 ≲
Q2 ≲ 10 GeV2 even taking the one standard deviation errors
into account; see Fig. 16 and also Fig. 17 in Appendix F. We
note that such a large value ofR, taken at face value, presents
problems for the standard color-dipole model of low-x DIS.
In the framework of this model two of us derived a rigorous
upper limit of R ≤ 0.37248; see [40,41] and references
therein. The derivation of this bound uses only the standard
dipole-model relations, in particular, the expressions for the
photon wave functions at lowest order in the strong coupling
constant αs and the non-negativity of the dipole-proton cross
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sections. The then available H1 data for R from [42] were
compared with this and related bounds in [43]. A very
conservative conclusion from our findings concerning R in
the present paper is, therefore, as follows. If one wants to
be sure to be in a kinematic region where the color-dipole
model can be applied in the HERA energy range one
should limit oneself to Q2 ≳ 10 GeV2. Below Q2 ≈
10 GeV2 corrections to the standard dipole picture, as
listed and discussed e.g., in [40], may become important.
There is, however, a strong caveat concerning the R deter-
mination from our fit to σred. We use our explicit tensor
Pomeron model and, thus, our R values are not derived in a
model-independent way. We cannot exclude the possibility
that a differentmodel may give somewhat different results for
R from a fit to σred.

The next topic we want to address briefly concerns the
twist expansion for the structure functions of DIS; see for
instance [44]. Note that the twist expansion is, in essence,
an expansion in inverse powers of Q2. Thus, it only makes
sense for sufficiently large Q2 and, certainly, cannot be
extended down toQ2 ¼ 0. It is well known that the leading
twist-2 terms correspond to the QCD-improved parton
picture with parton distributions obeying the famous
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evo-
lution equations [45–47]. In our framework the question
arises how the hard and soft Pomeron contributions will
contribute to leading and higher twists. It is tempting to
associate, at large enough Q2, the hard Pomeron contri-
bution with leading twist 2 and the soft Pomeron contri-
bution with higher twists. Indeed, the latter vanishes
relative to the former for large Q2 where the ratios of
the Pjγ

�γ� coupling functions âjðQ2Þ and b̂jðQ2Þ for the
soft (j ¼ 1) and hard (j ¼ 0) Pomeron behave as

â1ðQ2Þ
â0ðQ2Þ ∝ ðQ2Þδ0−δ1 ≈ ðQ2Þ−3;

b̂1ðQ2Þ
b̂0ðQ2Þ ∝ ðQ2Þn1;7−n0;7 ≈ ðQ2Þ−1.2; ð6:4Þ

seeTables IVandV.This point of view, as expressed above, is
close to what was advocated in [48]. Following [48] we

TABLE IV. Parameters obtained in the fit to HERA DIS and
photoproduction data. The uncertainties on the least significant
digits, determined using the MINOS algorithm, are indicated in
brackets. Here log is understood as the natural logarithm, that is,
to base e.

Fit parameter Result

ϵ0 0.3008ðþ73
−84Þ

ϵ1 0.0935ðþ76
−64Þ

α2ð0Þ 0.485ðþ88
−90Þ

logðc2=GeV−1Þ −0.38ðþ36
−35Þ

logðd2=GeV−2Þ −1.35ðþ34
−35Þ

logða0=GeV−1Þ −6.95ðþ29
−25Þ

logðm2
0=GeV

2Þ 1.41ðþ27
−31Þ

logðδ0Þ 0.92ðþ24
−26 Þ

logða1=GeV−1Þ −3.92ðþ18
−20Þ

logðm2
1=GeV

2Þ −0.31ðþ20
−19Þ

logðδ1Þ 1.72ðþ59
−48Þ

logðb̂0ð0 GeV2Þ=GeV−1Þ −14.2ðþ30
−39Þ

logðb̂0ð0.3 GeV2Þ=GeV−1Þ −7.02ðþ69
−87Þ

logðb̂0ð1 GeV2Þ=GeV−1Þ −4.83ðþ15
−16Þ

logðb̂0ð3 GeV2Þ=GeV−1Þ −5.09ð11Þ
logðb̂0ð10 GeV2Þ=GeV−1Þ −5.669ð þ99

−101Þ
logðb̂0ð25 GeV2Þ=GeV−1Þ −6.268ðþ89

−91Þ
logðb̂0ð50 GeV2Þ=GeV−1Þ −6.899ðþ78

−80Þ
logðb̂1ð0 GeV2Þ=GeV−1Þ −1.017ðþ56

−57Þ
logðb̂1ð0.02 GeV2Þ=GeV−1Þ −0.874ðþ91

−89Þ
logðb̂1ð0.08 GeV2Þ=GeV−1Þ −1.032ðþ71

−75Þ
logðb̂1ð0.4 GeV2Þ=GeV−1Þ −1.574ðþ48

−47Þ
logðb̂1ð2 GeV2Þ=GeV−1Þ −2.871ðþ34

−33Þ
logðb̂1ð10 GeV2Þ=GeV−1Þ −4.668ð70Þ
logðb̂1ð50 GeV2Þ=GeV−1Þ −7.87ð29Þ

TABLE V. Spline parameters characterizing the coupling func-
tions b̂j obtained in the fit to HERA and photoproduction data;
see (C4). The Hessian uncertainties on the two least significant
digits are indicated in brackets. The quantities n0;7 and n1;7
determine the large-Q2 behavior of the coupling functions
b̂0ðQ2Þ and b̂1ðQ2Þ, respectively, in the extrapolation region
Q2 ≥ 50 GeV2; see (C5) and (C6).

i q20;i A0;i B0;i C0;i D0;i

1 0 GeV2 −14.2ð39Þ 12.0(61) 0 −3.5ð22Þ
2 0.3 GeV2 −7.0ð12Þ 6.9(31) −7.4ð46Þ 2.7(22)
3 1 GeV2 −4.83ð48Þ 0.37(46) −1.09ð66Þ 0.43(30)
4 3 GeV2 −5.09ð36Þ −0.55ð20Þ 0.11(23) −0.060ð90Þ
5 10 GeV2 −5.67ð30Þ −0.54ð12Þ −0.10ð13Þ −0.041ð61Þ
6 25 GeV2 −6.27ð25Þ −0.822ð78Þ −0.210ð90Þ 0.102(44)
7 50 GeV2 n0;7 ¼ −0.967ð73Þ

i q21;i A1;i B1;i C1;i D1;i

1 0 GeV2 −1.02ð18Þ 0.29(47) 0 −0.17ð27Þ
2 0.02 GeV2 −0.87ð26Þ 0.04(12) −0.35ð57Þ 0.13(30)
3 0.08 GeV2 −1.03ð24Þ −0.28ð22Þ 0.01(27) −0.056ð83Þ
4 0.4 GeV2 −1.57ð16Þ −0.59ð11Þ −0.23ð12Þ 0.053(45)
5 2 GeV2 −2.87ð12Þ −0.925ð84Þ 0.02(11) −0.090ð58Þ
6 10 GeV2 −4.67ð21Þ −1.55ð24Þ −0.41ð20Þ 0.085(42)
7 50 GeV2 n1;7 ¼ −2.21ð52Þ
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would then conclude that higher twist effects—the soft
Pomeron contribution—stay important for x < 0.01 up to
Q2 ≈ 20 GeV2. Certainly, it will be worthwhile to study in
more detail the connection of our two-tensor-Pomeronmodel
with the description of the HERA data using parton dis-
tribution functions and with the DGLAP and BFKL
(Balitsky-Fadin-Kuraev-Lipatov) [49,50] evolution equa-
tions. For example, the value (5.15) for the hard Pomeron
intercept obtained in our fit is very close to typical values
obtained from BFKL dynamics in next-to-leading logarith-
mic approximation [51,52], indicating that our hard Pomeron
is at least consistent with BFKL dynamics. Based only on
this, however, it would seem premature to identify our hard
Pomeron with the BFKL Pomeron. The study of exclusive
reactions might be a promising starting point for investigat-
ing in more detail the relation of our two-tensor-Pomeron
model to perturbative high-energy dynamics, in particular
concerning the hard Pomeron. But this clearly goes beyond
the scope of the present work.
Aswe have stated in the Introduction it is not our aim here

to give a comparison of the various theoretical approaches to
low-x DIS physics. Let us just briefly comment on some
recent fits to the HERA low-x data where various methods
were used. In [42] a so-called λ-fit in which F2 is approxi-
mated by a power law in x with a Q2-dependent exponent
was presented. The Ansatz was then extended by adding in
this exponent a “λ0 term” proportional to ln x. Furthermore, a
fit based on DGLAP evolution as well as dipole model fits
were presented. In [53] a higher-twist Ansatzwas added to a
DGLAP fit. Dipole models were used e.g., in [54], and
DGLAP fits with BFKL-type low-x resummation improve-
ment in [55] and [56]. However, in all these approaches the
limit Q2 → 0, that is the photoabsorption cross section, is
not included in the considerations. Typically, a minimumQ2

of order 3.5 GeV2 is imposed.2 In our approach, on the other
hand, photoabsorption is treated in the same framework as
DIS, allowing a detailed investigation of the transition from
hard to soft scattering.

VII. CONCLUSIONS

In summary, we have presented a fit, based on a two-
tensor-Pomeron model, to photoproduction and low-x deep
inelastic lepton-nucleon scattering data from HERA. We

have determined the intercepts of the soft and hard
Pomeron and of the Rþ ¼ f2R þ a2R Reggeon, obtaining
very reasonable numbers; see Table II.
The two-tensor-Pomeron model allows us to describe the

transition fromQ2 ¼ 0 and lowQ2, where the real or virtual
photon acts hadronlike and the soft Pomeron dominates, to
high Q2, the hard scattering regime dominated by the hard
Pomeron. The transition region where both Pomerons
contribute significantly was found to be roughly 0 < Q2 <
20 GeV2. For the photoproduction cross section σγpðWÞwe
found no significant contribution from the hard Pomeron.
Thus, σγpðWÞ is, in the c.m. energy range 6 GeV < W <
209 GeV, dominated by soft-Pomeron exchange with a
significant f2Rþa2R Reggeon contribution forW<30GeV.
In the high-Q2 and low-x regime of DIS we found a good

representation of the γ�p cross sections σT þ σL and σL as
products of simple powers in Q2 and W2; see (6.1)–(6.3).
This may suggest that low-x phenomena at high enoughQ2

may have an interpretation as a critical phenomenon as
suggested in [39].
In contrast to our tensor-Pomeron model which gives an

excellent description of the real and virtual photoabsorption
cross sections we found that a vector Ansatz for the
Pomeron, that is, a Pomeron with vector-type couplings,
is ruled out as it gives zero contribution there; see Sec. IV
and Appendix B.
We are looking forward to further tests of our two-

tensor-Pomeron model at future lepton-proton scattering
experiments in the low-x regime, for instance at a future
Electron-Ion-Collider [59] or a Large Hadron Electron
Collider LHeC [60]. A topic which could be addressed
at an electron-ion collider is the measurement of the real
and virtual photon cross sections for the neutron, to be
extracted from deuterium data. The contributions of the
hard and soft Pomeron and of the f2R-Reggeon exchanges
should be identical for the proton and the neutron. The a2R-
Reggeon contribution should change sign when going from
the proton to the neutron. Thus, with proton and neutron
data the f2R and a2R contributions could be disentangled.
Furthermore, good measurements of σL and R ¼ σL=σT for
the proton and neutron would be very welcome since these
quantities are potentially very promising for a discrimina-
tion between different models, while at present the exper-
imental errors are large even for the proton data.

ACKNOWLEDGMENTS

The authors thank M. Maniatis for providing templates
for some of the diagrams in this article. O. N. thanks A.
Donnachie and P. V. Landshoff for correspondence and M.
Diehl for discussions. Preliminary results of this study were
presented by O. N. at the conference EDS Blois 2017 in
Prague and at the meeting “QCD—Old Challenges and
New Opportunities” at Bad Honnef in September 2017.
Thanks go to the organizers of these meetings for the
friendly and stimulating atmosphere there.

2We would like to point out that it is not surprising that dipole
model fits have difficulties for very low Q2. At low momenta, the
use of the lowest order photon wave functions becomes ques-
tionable. In addition, most dipole models (including the ones
mentioned above) use Bjorken-x as the energy variable of the
dipole-proton cross section. This means that for Q2 ¼ 0, which
implies x ¼ 0, the dipole-proton cross section is constant and,
thus, has no energy dependence. Consequently, also the total
photoabsorption cross section σγpðWÞ can, in these models, have
no energy dependence—in contradiction to experiment; see Fig. 5.
Indeed, it has been argued in [40,57,58] that in the dipole-proton
cross section W should be used as the energy variable.
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APPENDIX A: EFFECTIVE PROPAGATORS AND VERTICES

For the soft Pomeron P1 we use the effective propagator as given in (3.10) and (3.11) of [11],

ðA1Þ

The P1 trajectory function is taken as linear in t,

α1ðtÞ ¼ 1þ ϵ1 þ α01t: ðA2Þ
For the slope parameter α01 and the parameter α̃01 multiplying
the squared energy s we take the default values from [11],

α01 ¼ 0.25 GeV−2;

α̃01 ¼ α01: ðA3Þ

The intercept parameter ϵ1 is in our work left free to
be fitted. From our fits described in Sec. V we find (see
Table II)

ϵ1 ¼ 0.0935
�þ76

−64

�
: ðA4Þ

For the hard-Pomeron propagator our Ansatz is similar to
(A1) and (A2),

ðA5Þ

with

α0ðtÞ ¼ 1þ ϵ0 þ α00t; ðA6Þ
and the parameter ϵ0 to be determined from experiment. For
α00 and α̃00 we take, for lack of better knowledge, the same
values as for the soft Pomeron,

α00 ¼ α̃00 ¼ 0.25 GeV−2: ðA7Þ

From the fits in Sec. V we get (see Table II)

ϵ0 ¼ 0.3008

�þ73

−84

�
: ðA8Þ

The Ansatz for the P1pp vertex is given in (3.43)
of [11]. Making an analogous Ansatz for the hard
Pomeron we get

ðA9Þ
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Here βjpp are coupling constants of dimension GeV−1 and

FðjÞ
1 ðtÞ are form factors normalized to

FðjÞ
1 ð0Þ ¼ 1: ðA10Þ

The standard value for the coupling constant of the soft
Pomeron to protons is

β1pp ¼ 1.87 GeV−1; ðA11Þ

see (3.44) of [11]. The traditional choice for the form

factor Fð1Þ
1 ðtÞ is the Dirac electromagnetic form

factor of the proton even if it is clear that this cannot
be strictly correct; see the discussion in Chapter 3.2 of
[4]. But this is not relevant for our present work where
we only need the form factors at t ¼ 0 where they
are equal to 1; see (A10). For lack of better knowledge
we take

β0pp ¼ β1pp: ðA12Þ

For the processes that we consider in the present
paper this gives no restriction for our fits since
only the products βjppâjðQ2Þ and βjppb̂jðQ2Þ enter as
parameters.
For our Ansatz for the Pjγ

�γ� vertices we need the rank-4
tensor functions defined in (3.18) and (3.19) of [11],

Γð0Þ
μνκλðk1;k2Þ¼ ½ðk1 ·k2Þgμν−k2μk1ν�

×

�
k1κk2λþk2κk1λ−

1

2
ðk1 ·k2Þgκλ

�
; ðA13Þ

Γð2Þ
μνκλðk1; k2Þ ¼ ðk1 · k2Þðgμκgνλ þ gμλgνκÞ

þ gμνðk1κk2λ þ k2κk1λÞ − k1νk2λgμκ

− k1νk2κgμλ − k2μk1λgνκ − k2μk1κgνλ

− ½ðk1 · k2Þgμν − k2μk1ν�gκλ: ðA14Þ

We have for i ¼ 0, 2

ΓðiÞ
μνκλðk1;k2Þ¼ΓðiÞ

μνλκðk1;k2Þ¼ΓðiÞ
νμκλðk2;k1Þ

¼ΓðiÞ
μνκλð−k1;−k2Þ; ðA15Þ

kμ1Γ
ðiÞ
μνκλðk1; k2Þ ¼ 0;

kν2Γ
ðiÞ
μνκλðk1; k2Þ ¼ 0; ðA16Þ

ΓðiÞ
μνκλðk1; k2Þgκλ ¼ 0: ðA17Þ

Now we can write down our Ansatz for the Pjγ
�γ� vertices

in analogy to the Pρρ vertex in (3.47) of [11]:

ðA18Þ

Here the coupling parameters ajγ�γ� and bjγ�γ� have di-
mensions GeV−3 and GeV−1, respectively. In our present
work only the values of these parameters for

q2 ¼ q02 ¼ −Q2; t ¼ 0

enter. Therefore, we set, pulling out also a factor e2,

ajγ�γ� ð−Q2;−Q2; 0Þ ¼ e2âjðQ2Þ;
bjγ�γ� ð−Q2;−Q2; 0Þ ¼ e2b̂jðQ2Þ;

j ¼ 0; 1: ðA19Þ

Our Ansätze for the effective propagators and the vertices
for f2R- and a2R-Reggeon exchanges are as follows. For
both the f2R and the a2R propagators we set [see (3.12) and
(3.13) of [11]]
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ðA20Þ

α2ðtÞ ¼ α2ð0Þ þ α02t ðA21Þ
with α2ð0Þ as a fit parameter. For α02 and α̃02 we take the default values from (3.13) of [11]:

α02 ¼ 0.9 GeV−2;

α̃02 ¼ α02: ðA22Þ
Our fit gives (see Table II)

α2ð0Þ ¼ 0.485

�þ88

−90

�
ðA23Þ

which is nicely compatible with the default value from (3.13) of [11]: α2ð0Þ ¼ 0.5475.
The f2Rpp vertex is given in (3.49) and (3.50) of [11] as

ðA24Þ

gf2Rpp ¼ 11.04; M0 ¼ 1 GeV: ðA25Þ

The a2Rpp vertex as given in (3.51) and (3.52) of [11] has the same structure with

ga2Rpp ¼ 1.68: ðA26Þ

The Ansatz for the f2Rγð�Þγð�Þ and a2Rγð�Þγð�Þ vertices for real and virtual photons will be taken with the same structure as
for f2γγ [see (3.39) and (3.40) of [11] ],

ðA27Þ

and similarly for a2R in the place of f2R. In the present work we need this vertex only for

DANIEL BRITZGER et al. PHYS. REV. D 100, 114007 (2019)

114007-20



q0 ¼ q; q2 ¼ −Q2 ≤ 0: ðA28Þ

Since we have taken the same Ansatz for the f2R and a2R
propagators we can, for the reactions studied here, combine
the contributions of these Reggeons together into one term.
We define

β2pp ¼ 1

3M0

gf2Rpp ¼ 3.68 GeV−1 ðA29Þ

[see (A25)] and

e2β2ppâ2ðQ2Þ ¼ gf2Rpp
3M0

af2Rγ�γ� ð−Q2;−Q2; 0Þ

þ ga2Rpp
3M0

aa2Rγ�γ� ð−Q2;−Q2; 0Þ; ðA30Þ

e2β2ppb̂2ðQ2Þ ¼ gf2Rpp
3M0

bf2Rγ�γ� ð−Q2;−Q2; 0Þ

þ ga2Rpp
3M0

ba2Rγ�γ� ð−Q2;−Q2; 0Þ: ðA31Þ

Inserting all these expressions for the effective propa-
gators and vertices in (3.1) we arrive at (3.2) which
expresses the virtual forward Compton amplitude as a
sum of three terms. These correspond to the contributions
from the two Pomerons, hard (j ¼ 0) and soft (j ¼ 1), and
from the Reggeons f2R and a2R together (j ¼ 2).

APPENDIX B: FORMULAS FOR A
HYPOTHETICAL VECTOR POMERON

In this appendix we collect the necessary formulas for the
(hypothetical) vector Pomeron couplings to protons and real
and virtual photons. These formulas are used in Sec. IV.

1. Vector Pomeron couplings

The PVpp vertex and the PV propagator are standard;
see e.g., [4] and Appendix B of [14]. We have

ðB1Þ

with βPVpp ¼ 1.87 GeV−1, M0 ¼ 1 GeV, and

ðB2Þ

In (B1) F1ðtÞ is a form factor normalized to F1ð0Þ ¼ 1. In
(B2) αPV

ðtÞ is the vector Pomeron trajectory function and
α0PV

is the slope parameter. The numerical values for these
quantities play no role in the following and in Sec. IV. For
the PVγ

�γ� vertex we assume that it respects the standard
rules of QFT. We have, orienting here for simplicity both
photons as outgoing,

ðB3Þ

For this vertex function we have the constraints of Bose
symmetry for the two photons,

ΓðPVγ
�γ�Þ

μνρ ðk1; k2Þ ¼ ΓðPVγ
�γ�Þ

νμρ ðk2; k1Þ; ðB4Þ

and of gauge invariance,

kμ1Γ
ðPVγ

�γ�Þ
μνρ ðk1; k2Þ ¼ 0;

kν2Γ
ðPVγ

�γ�Þ
μνρ ðk1; k2Þ ¼ 0: ðB5Þ

The vertex PVγ
�γ� should also respect parity invariance.

We have then 14 tensors, constructed from k1, k2 and the
metric tensor, at our disposal:

k1μk1νk1ρ; k1μk1νk2ρ; k1μk2νk1ρ; k1μk2νk2ρ;

k2μk1νk1ρ; k2μk1νk2ρ; k2μk2νk1ρ; k2μk2νk2ρ;

gμνk1ρ; gμρk1ν; gνρk1μ; gμνk2ρ; gμρk2ν; gνρk2μ:

ðB6Þ

Toconstruct themost general vertex (B3)wehave tomultiply
these tensors with invariant functions depending on k21, k

2
2,

and ðk1 þ k2Þ2 and take their sum. In the following, however,
we shall only consider the case k21 ¼ k22. With the require-
ment (B4) we obtain then the following general form for
ΓðPVγ

�γ�Þ:
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ΓðPVγ
�γ�Þ

μνρ ðk1;k2Þ
¼A1ðk1μk1νk1ρþk2μk2νk2ρÞþA2ðk1μk1νk2ρþk2μk2νk1ρÞ
þA3ðk1μk2νk1ρþk1μk2νk2ρÞþA4ðk2μk1νk1ρþk2μk1νk2ρÞ
þA5ðgμνk1ρþgμνk2ρÞþA6ðgμρk1νþgνρk2μÞ
þA7ðgνρk1μþgμρk2νÞ; ðB7Þ

with coefficient functions

Aj ¼ Ajðk21; ðk1 þ k2Þ2Þ; j ¼ 1;…; 7: ðB8Þ

Imposing gauge invariance we find, using (B5), the relations

k21A1 þ ðk1 · k2ÞA4 þ A5 þ A6 ¼ 0;

ðk1 · k2ÞA1 þ k21A3 ¼ 0;

k21A2 þ ðk1 · k2ÞA4 þ A5 ¼ 0;

ðk1 · k2ÞA2 þ k21A3 þ A7 ¼ 0;

ðk1 · k2ÞA6 þ k21A7 ¼ 0: ðB9Þ

2. Real photons

Now we specialize for real photons and assume a
general, nonvanishing product of their 4-momenta,

k21 ¼ k22 ¼ 0; k1 · k2 ≠ 0: ðB10Þ

This gives

A1 ¼ 0;

A6 ¼ 0;

A5 ¼ −ðk1 · k2ÞA4;

A7 ¼ −ðk1 · k2ÞA2 ðB11Þ

and hence the final form for ΓðPVγγÞ:

ΓðPVγγÞ
μνρ ðk1; k2Þ ¼ Â2½k1μðk1νk2ρ − ðk1 · k2ÞgνρÞ

þ ðk2μk1ρ − ðk1 · k2ÞgμρÞk2ν�
þ Â3k1μk2νðk1ρ þ k2ρÞ
þ Â4ðk2μk1ν − ðk1 · k2ÞgμνÞðk1ρ þ k2ρÞ;

ðB12Þ

where the remaining coefficient functions depend only on
ðk1 þ k2Þ2,

Âj ¼ Ajð0; ðk1 þ k2Þ2Þ≡ Âjððk1 þ k2Þ2Þ; j ¼ 2; 3; 4:

ðB13Þ

The replacements k1 → q0 and k2 → −q lead to the vertex
function (4.3). Inserting this in the expression for the

Compton amplitude corresponding to the diagram in
Fig. 4 gives a vanishing result; see (4.4).
We note that this type of vertex function (B12) would

also describe the parity conserving decay of a vector
particle of spin parity JP ¼ 1− to two real photons. In
accord with the famous Landau-Yang theorem [27,28],
(B12) gives zero for the corresponding amplitude. Indeed,
consider the decay of such a vector particle

Vðk; εÞ → γðk1; ε1Þ þ γðk2; ε2Þ; ðB14Þ

where

k21¼ k22 ¼ 0; k¼ k1þk2;

k2¼m2
V; k · ε¼ 0; k1 · ε1¼ k2 · ε2¼ 0: ðB15Þ

With (B12) we find then

hγðk1; ε1Þ; γðk2; ε2ÞjT jVðk; εÞi
¼ ε�μ1 ε�ν2 ΓðPVγγÞ

μνρ ðk1; k2Þερ ¼ 0: ðB16Þ

Note that the Landau-Yang theorem applies to the decay of
a massive vector particle to two photons. In our present
discussion, the vector Pomeron exchanged in the t-channel
plays the role of the massive vector particle.
In conclusion, the same reasoning which leads to the

Landau-Yang theorem shows that a vector Pomeron cannot
couple in real Compton scattering. But clearly, the behavior
of the total γp absorption cross section as measured shows
that the Pomeron does couple in real Compton scattering.
The tensor Pomeron model describes this coupling without
problems in a satisfactory way; see Sec. V, Fig. 5.

3. Virtual photons

Next we consider vector Pomeron exchange for virtual
Compton scattering. Here we have again the vertex function
(B7) describing thePVγ

�γ� coupling and we assume that we
have k21 ¼ k22 ¼ −Q2 < 0 as is relevant for DIS. We now
have to solve (B9) for k21 ≠ 0 taking into account that the
functions Ajðk21; ðk1 þ k2Þ2Þ of (B8) can have no kinematic
singularities at k21 ¼ 0. Considering a diagrammatic expan-
sion of the PVγ

�γ� vertex function we see that it cannot
contain internal photon lines. These would correspond to
higher order corrections in αem in DIS. Now we can invoke
the famous Landau conditions for singularities of Feynman
amplitudes; see for instance Chapter 18 of [61].We find then
that, indeed, thePVγ

�γ� vertex function can have no internal
zero-mass-particle lines which, put on shell, could give rise
to a singularity at k21 ¼ 0.
From the second equation in (B9) we get

A3ðk21; ðk1 þ k2Þ2Þ ¼ −
k1 · k2
k21

A1ðk21; ðk1 þ k2Þ2Þ: ðB17Þ
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A3 can have no pole at k21 ¼ 0. Therefore we must
have

A1ðk21; ðk1 þ k2Þ2Þ ¼ k21Ã1ðk21; ðk1 þ k2Þ2Þ; ðB18Þ

with Ã1 a regular function at k21 ¼ 0. From (B17) we
get then

A3ðk21; ðk1 þ k2Þ2Þ ¼ −ðk1 · k2ÞÃ1ðk21; ðk1 þ k2Þ2Þ: ðB19Þ

The general solution of (B9) can now be expressed by the
three functions

Ã1ðk21; ðk1 þ k2Þ2Þ; A2ðk21; ðk1 þ k2Þ2Þ;
A4ðk21; ðk1 þ k2Þ2Þ ðB20Þ

and reads as follows, where we suppress the arguments of
the functions Ã1, A2, and A4:

A1 ¼ k21Ã1;

A2 ¼ A2;

A3 ¼ −ðk1 · k2ÞÃ1;

A4 ¼ A4;

A5 ¼ −k21A2 − ðk1 · k2ÞA4;

A6 ¼ −ðk21Þ2Ã1 þ k21A2;

A7 ¼ ðk1 · k2Þðk21Ã1 − A2Þ: ðB21Þ

Inserting this in (B7) we find the general form of the
PVγ

�γ� vertex, remembering that we consider k21 ¼ k22, as

ΓðPVγ
�γ�Þ

μνρ ðk1; k2Þ ¼ Ã1ðk21; ðk1 þ k2Þ2Þ
�
−
1

2
ðk1 þ k2Þ2k1μk2νðk1 þ k2Þρ þ k21½k1μðk1 þ k2Þνk1ρ þ ðk1 þ k2Þμk2νk2ρ�

þ 1

2
ðk1 þ k2Þ2k21ðgμρk2ν þ gνρk1μÞ− ðk21Þ2½gμρðk1 þ k2Þν þ gνρðk1 þ k2Þμ�

�

þA2ðk21; ðk1 þ k2Þ2Þfk1μk1νk2ρ þ k2μk2νk1ρ − k21gμνðk1 þ k2Þρ −
1

2
ðk1 þ k2Þ2½gμρk2ν þ gνρk1μ�

þ k21½gμρðk1 þ k2Þν þ gνρðk1 þ k2Þμ�g þA4ðk21; ðk1 þ k2Þ2Þ
�
k2μk1ν −

1

2
ðk1 þ k2Þ2gμν þ k21gμν

�
ðk1 þ k2Þρ:

ðB22Þ

For a hypothetical vector-Pomeron contribution to the
forward virtual Compton amplitude we find in analogy
to (3.1)

i2πmpe2M
μν
λ0λðp; qÞjPV

¼ gμμ
0
gνν

0
iΓðPVγ

�γ�Þ
μ0ν0ρ ðq;−qÞiΔðPVÞρρ0 ðW2; 0Þ

× ūðp; λ0ÞiΓðPVppÞ
ρ0 ðp; pÞuðp; λÞ: ðB23Þ

Note that in the definition of the vertex function

ΓðPVγ
�γ�Þ

μνρ ðk1; k2Þ in (B3) we have oriented both k1 and k2
as outgoing. Therefore, we have here

k1¼ q; k2¼−q; k21¼ k22¼ q2¼−Q2; ðB24Þ

and thus

k1 þ k2 ¼ 0: ðB25Þ

It is easy to see from (B22) that for k1 þ k2 ¼ 0 the vertex

function ΓðPVγ
�γ�Þ

μνρ vanishes,

ΓðPVγ
�γ�Þ

μνρ ðk1; k2Þjk1þk2¼0 ¼ 0: ðB26Þ

In this way we have shown that the exchange of a
Pomeron with vector couplings cannot give a nonzero
contribution to the forward virtual Compton amplitude.
Using (2.9) and (2.10) this implies that a vector-Pomeron
exchange cannot give a nonzero contribution to the
structure functions W1 and W2, respectively the cross
sections σT and σL, of DIS.

APPENDIX C: PARAMETRIZATION FOR
COUPLING FUNCTIONS

1. Reggeon exchange parametrization

For the Rþ Reggeon, which is expected to contribute
only at low W and low Q2, the following assumptions are
made:

â2ðQ2Þ ¼ 0; ðC1Þ

b̂2ðQ2Þ ¼ c2 exp ½−Q2=d2�; ðC2Þ

with two fit parameters. The parameter c2 describes the
magnitude of the Rþ-Reggeon exchange contribution in
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photoproduction. The exponential function containing the
parameter d2 > 0 causes the Reggeon contribution to
vanish rapidly with increasing Q2.

2. Pomeron exchange parametrization

For the two tensor-Pomeron exchanges Pj, j ¼ 0 and
j ¼ 1, the functions Q2âjðQ2Þ are parametrized as

Q2âjðQ2Þ ¼ aj
Q2

m2
j

�
δj þQ2=m2

j

δj þ 1

�−1−δj
: ðC3Þ

For δj > 0, this function has a maximum at Q2 ¼ m2
j with

magnitude aj. For small Q2, the function increases propor-
tionally to Q2. The parameter δj > 0 defines the power
exponent by which the function drops with large Q2.
The functions b̂jðQ2Þ for j ¼ 0 or j ¼ 1 are parame-

trized with the help of cubic splines sj with N ¼ 7 knots
each. Between two knots, zj;i and zj;iþ1, the spline sjðzÞ is
given by third-order polynomials

sjðzÞ ¼ Aj;i þ Bj;iðz − zj;iÞ þ Cj;iðz − zj;iÞ2
þDj;iðz − zj;iÞ3 for zj;i ≤ z ≤ zj;iþ1; ðC4Þ

with coefficients Aj;i, Bj;i, Cj;i, Dj;i (i ¼ 1;…; N − 1) and
knot positions zj;i (i ¼ 1;…; N). The function b̂jðQ2Þ is
given by exp½sjðzÞ� using the argument z ¼ lnððQ2 þ
q2j;0Þ=M2

0Þ with M0 ¼ 1 GeV. The offset q2j;0 ensures that
z is finite for Q2 ¼ 0. The knot positions zj;i ¼ logððq2j;i þ
q2j;0Þ=M2

0Þ are given using fixed positions in Q2, denoted
q2j;i and ranging from q2j;1 ¼ 0 to q2j;7 ¼ 50 GeV2. The
offset is taken to be equal to the first nonzero position,
q2j;0 ¼ q2j;2. For the fit, the 2 × 7 function values b̂jðq2j;iÞ are
taken as free parameters. Given j, the 4 × ðN − 1Þ spline
parameters Aj;i, Bj;i, Cj;i and Dj;i are determined from the
fit parameters using the usual constraints on the spline to be
continuous up to the second derivatives. The end-point
conditions are chosen such that the second derivatives of
sjðzÞ vanish for both z ¼ zj;1 and z ¼ zj;7.
For predictions at large Q2, the functions b̂jðQ2Þ are

continued for Q2 > q2j;N using the spline properties at the
end point zj;N ,

b̂jðQ2Þ¼ b̂jðq2j;NÞ
�
Q2þq2j;0
q2j;N þq2j;0

�nj;N

forQ2 ≥ q2j;N; ðC5Þ

where nj;N ¼ dsj
dz

����
zj;N

: ðC6Þ

Similarly, for cases where q2j;1 > 0, the function is defined
in the region −q2j;0 < Q2 < q2j;1 as

b̂jðQ2Þ¼ b̂jðq2j;1Þ
�
Q2þq2j;0
q2j;1þq2j;0

�Bj;0

for −qj;0<Q2<q2j;1:

ðC7Þ

A special case is given by q2j;1 > 0, q2j;0 ¼ 0 and Bj;0 < 0.

In this case b̂jðQ2Þ → 0 for Q2 → 0. In all cases discussed
above, the resulting function b̂j is defined for all Q2 >
−q2j;0 and is continuous up to the second derivative over the
full allowed Q2 range.

APPENDIX D: FIT PROCEDURE

A fit with 25 free parameters is made using the ALPOS

package [62], an interface to Minuit [63]. The goodness-of-
fit function is defined as

χ2ðhÞ ¼
X
i;j

ðlog σHERAi − log σredðQ2
i ; xi; yi; hÞÞðV−1

HERAÞij

× ðlog σHERAj − log σredðQ2
j ; xj; yj; hÞÞ

þ
X
i;j

ðlog σPHPi − log σTðWi; hÞÞðV−1
PHPÞij

× ðlog σPHPj − log σTðWi; hÞÞ; ðD1Þ

where σHERAi with i ¼ 1;…; 525 are measurements of
reduced cross sections from HERA [29] and Q2

i , xi, yi
are the corresponding kinematic variables. The prediction
σredðQ2

i ; xi; yi; hÞ depends on the kinematic variables and
on the vector h of the 25 fit parameters. The data covariance
matrix includes two types of relative uncertainties, point-
to-point uncorrelated, ui, and point-to-point correlated from
a source k, cki. The elements of the resulting covariance
matrix are ðVHERAÞij ¼ δijðuiÞ2 þ

P
k ckickj, where δij is

the Kronecker symbol. There are 169 sources k of
correlated uncertainties in the HERA data.
A total of 36 photoproduction data points are included

in a similar manner. The measurements are denoted σPHPi
with i ¼ 1;…; 36 and the corresponding energies are Wi.
The predictions are σTðWi; hÞ. The covariance matrix V−1

PHP
receives uncorrelated and correlated contributions in anal-
ogy to the HERA data discussed above. There are two
photoproduction measurements from H1 and ZEUS at high
W [30,31] and four astroparticle measurements at inter-
mediate W [32]. These six data points are not correlated to
the other data points. The 30 low-W data points from
Fermilab [33] have a single correlated contribution in
addition to their uncorrelated uncertainties, a 0.7% nor-
malization uncertainty.
The function χ2ðhÞ is minimized with respect to h to

estimate the parameters. For the fit parameters, asymmetric
experimental uncertainties are obtained using the MINOS

[63] algorithm. For all other quantities shown in this
paper, uncertainties are determined as follows. The HESSE
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algorithm [63] determines the symmetric covariance matrix
V of the parameter vector h at the minimum ĥ of the log-
likelihood function. Using an eigenvalue decomposition, the
matrix V is written in terms of dyadic products of orthogonal
uncertainty vectors δhi, V ¼ P

i δhiδh
T
i . Asymmetric

uncertainties, þΔfup and −Δfdn, of a generic quantity
fðhÞ are then estimated as follows:

Δfup ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðmax ½fðĥþ δhiÞ; fðĥ − δhiÞ� − fðĥÞÞ2
r

;

ðD2Þ

Δfdn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðmin ½fðĥþ δhiÞ; fðĥ − δhiÞ� − fðĥÞÞ2
r

:

ðD3Þ

The uncertainties obtained in this way are termed “Hessian
uncertainties” or “one standard deviations” in this paper.

APPENDIX E: FIT RESULTS

The goodness of fit found after minimizing and the
partial χ2 numbers calculated for individual data sets are
summarized in Table III. An acceptable fit probability
of 6% is observed. There is no single dataset which
contributes much more than expected to χ2. The resulting
25 parameters at the minimum are summarized in
Table IV with their MINOS uncertainties. For technical
reasons, most fit parameters actually are defined as the
logarithm of the corresponding physical quantity. The
intercept parameter ϵ1 ¼ 0.0935ðþ76

−64Þ of the soft Pomeron
exchange is compatible with independent extractions, for
example with measurements of the Pomeron trajectory
from hadronic reactions (see [4] for a review) and from ρ
photoproduction data [64]. The spline coefficients char-
acterizing the functions b̂j are summarized in Table V,
with their Hessian uncertainties [cf. (D2) and (D3)]. The
coupling functions âjðQ2Þ, Q2âjðQ2Þ and b̂jðQ2Þ are
shown in Figs. 12–15. The âj are not constrained very
well by the data. The function â0 is poorly known at
low Q2 ≲ 2 GeV2, while â1 has large uncertainty at large
Q2 ≳ 5 GeV2. The functions b̂j are much better con-
strained by data. The coupling function b̂1 of the soft
Pomeron is well measured over the whole kinematic
range investigated here. The determination of the cou-
pling function b̂0 of the hard Pomeron suffers from
increasing experimental uncertainties at very low
Q2 ≲ 0.3 GeV2. In that kinematic region the DIS cross
section is governed by the soft contribution in the
experimentally accessible W range.
It is interesting to observe that the two functions b̂j each

reach a maximum at some positive Q2 as shown in Fig. 15.
For b̂0 the maximum is at Q2 ¼ 1.27ðþ29

−30Þ GeV2 with

amplitude b̂0 ¼ 0.0082ðþ39
−36Þ GeV−1. For b̂1 it is at Q2 ¼

0.0225ðþ57
−59Þ GeV2 with amplitude b̂1 ¼ 0.42ð11Þ GeV−1.

However, experimental data are sparse in the vicinity of the
maximum of b̂1, so the experimental evidence for such a
maximum is not very strong. From the theory point of view
such a behavior of b̂0ðQ2Þ and b̂1ðQ2Þ is easy to under-
stand. b̂0ðQ2Þ is essentially zero at Q2 ¼ 0 and must fall
with Q2 for large Q2; see (3.9). Thus it must have a
maximum somewhere and it is reasonable that this comes
out in theQ2 ≈ 1 GeV2 region. For b̂1ðQ2Þ we observe that
it governs σT þ σL for smallQ2; see (3.7) and (3.8). But σL
starts proportional to Q2 for Q2 increasing from zero. For
larger Q2 the soft contribution to σT þ σL will fall with Q2

increasing. Thus, if the initial rise with Q2 in σL is not
immediately compensated by a fall in σT we expect a
maximum for b̂1ðQ2Þ.
The fit results shown in Table IV indicate that the hard

Pomeron contribution to the photoproduction cross section,
proportional to b̂0ðQ2 ¼ 0Þ, is compatible with zero, such
that there is no evidence for a nonzero contribution of the
hard component to the photoproduction cross section in the
energy range investigated here. We further observe that
the f2R and a2R Reggeons contribute visibly only to the
low-W photoproduction data.
A comparison of the fit results to photoproduction data is

shown in Fig. 5. The data are well described by the fit.

APPENDIX F: ALTERNATIVE FITS

In this section, alternative fits are studied. In this way we
want to check the stability of our results under changes of
the assumptions entering the fits.

1. Fit with xFitter

To cross-check the results obtained with the nominal fit
discussed in the main text, a fit using the xFitter package
[65,66] is performed. For this purpose, the tensor Pomeron
model, as described in this paper, has been implemented
and will be included in future releases of the package.
Similarly to the nominal analysis, theQ2 dependence of the
b̂jðQ2Þ functions is parametrized using cubic spline func-
tions, however with five instead of seven knots compared to
the nominal fit. Due to the reduced number of spline knots,

TABLE VI. Parameter values obtained in an alternative xFitter
fit for the Pomeron intercept parameters and the Reggeon
intercept.

Fit parameter Result

ϵ0 0.3067(71)
ϵ1 0.0831(70)
α2ð0Þ 0.394(78)

TENSOR POMERON AND LOW-x DEEP INELASTIC … PHYS. REV. D 100, 114007 (2019)

114007-25



the total number of free parameters is 21 instead of 25 for
the nominal fit.
The fit is performed to the same data sample, with the

same kinematic cuts as in the nominal analysis. The
goodness-of-fits function is taken as in [29], which differs
from the one given in Eq. (D1) in the treatment of statistical
uncertainties, that are considered to follow Poisson dis-
tribution. Given that for the fitted phase space the statistical
uncertainties are small compared to the systematic ones,
this difference should have a small impact on the result. The
minimization is performed using Minuit [63] while the
evaluation of uncertainties uses an improved method
introduced in [67].

The fit yields results comparable to the nominal analysis.
The quality of the fit is good with χ2=NDF¼595=
ð561−21Þ, corresponding to a p-value of 5%. The values
of the main parameters are summarized in Table VI. They
are similar to the nominal fit.

2. Fit without hard Pomeron in photoproduction

The nominal fit with 25 parameters indicates that the
hard component b̂0ðQ2Þ vanishes for Q2 → 0. A fit is
performed where the spline knot at Q2 ¼ 0 is moved to
q201 ¼ 0.1 GeV2 and the offset is set to zero, q200 ¼ 0. In the
region below the new first knot q201, the function b̂0ðQ2Þ is
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FIG. 17. The goodness of fit χ2 and the ratio R ¼ σL=σT of longitudinal to transverse cross sections are studied in fits with 24 free
parameters as a function of ϵ0 and ϵ1. The upper panels show χ2 as a function of ϵ1 (left) and ϵ0 (right). The middle panels show
RðQ2 ¼ 5 GeV2Þ as a function of ϵ1 (left) and ϵ0 (right). The lower panel shows the R distribution as a function of Q2 for extreme
choices of the ϵj. For this study, the energy W is set to 200 GeV.
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extrapolated using Eq. (C7). ForQ2 ¼ 0 it is set to zero. This
fit results in a goodness of fit χ2 ¼ 587.90, very similar to
that of the default 25-parameter fit presented in Table III.
There is no significant change to any of the fit parameters.

3. Studies of the ratio R

The ratio R determined in the 25-parameter fit is found to
be above 0.4 in a range of Q2 from about 1 GeV2 to about
10 GeV2. The magnitude of R is strongly correlated to the
parameters describing the functions âjðQ2Þ. However,

there are also correlations to other parameters, most notably
to the slopes ϵj. Fits with fixed ϵ0 or ϵ1 have been
performed to study the impact on χ2 and R; see Fig. 17.
The scans cover large parameter ranges with a goodness of
fit up to and above χ2 ¼ 600, corresponding to parameter
variations by more than three standard deviations. The
resultingR, however, is not affected by so much. Thus, with
all necessary caution, we think we can say that the HERA
data, fitted with our two-Pomeron model, prefer a relatively
large value for R in the above Q2 range.
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