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We apply the renormalization group optimized perturbation theory (RGOPT) to evaluate the QCD
(matter) pressure at the two-loop level considering three flavors of massless quarks in a dense and cold
medium. Already at leading order (α0s), which builds on the simple one loop (RG resummed) term, our
technique provides a nontrivial nonperturbative approximation which is completely renormalization group
invariant. At the next-to-leading order the comparison between the RGOPT and the perturbative QCD
predictions shows that the former method provides results which are in better agreement with the state-of-
the-art higher order perturbative results, which include a contribution of order α3s ln2 αs. At the same time
one also observes that the RGOPT predictions are less sensitive to variations of the arbitrary MS
renormalization scale than those obtained with perturbative QCD. These results indicate that the RGOPT
provides an efficient resummation scheme which may be considered as an alternative to lattice simulations
at high baryonic densities.
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I. INTRODUCTION

First principles evaluations aiming to describe the proper-
ties of strongly interacting matter at finite temperatures and/
or baryonic densities are highly complicated by the inherent
nonlinear and nonperturbative characteristics displayed by
quantum chromodynamics (QCD). Nevertheless, at least in
regimes of vanishing baryonic densities which concerns
high energy heavy ion collisions, this fundamental theory
can nowadays be successfully described by numerical lattice
simulations (LQCD) [1]. However, the famous sign problem
[2] for nonzero chemical potential is still preventing the
method to be reliably applied to regimes of intermediate
temperatures and baryonic densities which are relevant to
experiments such as the beam energy scan (BES) at the
Relativistic Heavy Ion Collider (RHIC) as well as CBM at
FAIR and NICA at JINR which aim to locate the eventual
QCDcritical endpoint.At the same time the knowledge of an
equation of state (EoS) that faithfully describes the cold and
dense regime is necessary for an accurate description of

compact stellar objects. Unfortunately, for the reasons
alluded above, LQCD cannot yet furnish such an EoS so
that in general the problem is partially circumvented in
different ways such as by using chiral effective theories
(CET) [3] at lowdensities and perturbativeQCD (pQCD) [4]
at ultrahigh densities. As an alternative to these two (first
principles) analytical approaches one may use effective
quark models such as the MIT bag model [5], the
Nambu–Jona-Lasinio model (NJL) [6], as well as the
quark-meson model (QMM) [7] among others. In principle,
pQCD applications should be carried out at extremely high
densities where the asymptotic freedom property assures
that the QCD coupling, αs, is small enough to justify the use
of such an approximation. A seminal pQCD work by
Freedman and McLerran [8,9] has provided the next-to-
next-to-leading order (NNLO) pressure for massless quarks
at vanishing temperatures and finite chemical potentials.
The result has then been further refined so as to include
thermal effects [10,11] and finite quarkmasses [12–14] apart
from being rederived in a way compatible with the more
modern MS renormalization scheme [15]. After more than
four decades, a new perturbative order has recently been
evaluated in Ref. [16], where the authors have determined
the coefficient of the leading-logarithmic contribution at
N3LO: α3s ln2 αs. Since the leading-logarithm soft contri-
bution at N3LO evaluated in that work gives a negligible
correction to the NNLO it was concluded that using pQCD
result as an ab-initio input in calculations of the properties of
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neutron stars [13,17–20] as well as simulation gravitational-
wave signals from neutron-star mergers is well justified.
Nevertheless, for our present purposes it is also important to
remark that in the evaluations performed in Ref. [16] the
authors have chosen the MS arbitrary scale (M) to be 2μ
(where μ is the quark chemical potential). However, it is well
known that physical observables evaluated with standard
perturbation theory, as well as those obtained with resum-
mation methods such as hard thermal loop perturbation
theory (HTLpt) [21–23], can be very sensitive to renorm-
alization scale variations. Moreover, it has been observed
notably at finite temperature [4,23,24] that the latter scale
sensitivity even increases when successive terms in the
weak-coupling expansion are considered, which is an odd
result as far as thermodynamical observables, such as the
pressure, are concerned. At vanishing temperatures and
finite baryonic densities, the scale dependence of the QCD
pressure at NLO andNNLO has been explicitly investigated
in Ref. [13]. The results show that the pressure has a rather
large renormalization scale dependence, especially below
the quark chemical potential μ ∼ 1 GeV, which corresponds
to a baryon density∼102ρ0where ρ0 ∼ 0.16 fm−3 represents
the nuclearmass density. Such dependence indicates that the
eventual nonperturbative effects remain quite important in
the lower density range relevant to neutron stars. We remark
that the renormalization scale dependence is even worse
with the HTLpt resummation at finite T, where the calcu-
lations have been pushed to the three loop level, predicting
results which agree with LQCD but only when the central
scaleM ¼ 2πT is used at μ ¼ 0 [22], while exhibiting a very
large variation from M ¼ πT to M ¼ 4πT. This is a clear
indication that renormalization group (RG) properties have
not been properly addressed in the perturbative and HTLpt
resummed evaluations. The results displayed in Ref. [23]
show that this unfortunate situation persists at finite densities
and finite temperatures when the scale is varied around
M ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π

p
.

In the present work we consider an alternative resum-
mation method which incorporates RG properties to
evaluate the QCD pressure at T ¼ 0 and finite μ values
at the two loop level. This technique, which provides
nonperturbative approximations, has been dubbed RGOPT
(renormalization group optimized perturbation theory), and
can be viewed as an extension of the standard optimized
perturbation theory (OPT) [25,26] and the screened per-
turbation theory (SPT) [27] (both related to the so called
linear δ expansion (LDE) [28]). Remark also that the
HTLpt can be seen as the gauge-invariance compatible
version of the OPT/SPT. Initially the RGOPT was
employed [29] at vanishing temperatures and densities in
the Gross-Neveu (GN) model [30]. Then, it has been
applied to QCD at T ¼ μ ¼ 0 to evaluate the basic scale
ΛMS [31,32] (equivalently the coupling αs), predicting
values compatible with the world average [33]. The method
has also been used to derive an accurate value of the quark

condensate [34]. More recently, it has been applied to the
scalar λϕ4 theory [35,36], as well as to the nonlinear sigma
model (NLSM) [37], producing results that show its
compatibility with control parameters such as the temper-
ature. The present paper is the first RGOPT application to
(cold) in-medium QCD, for a nonzero chemical potential,
so that one can analyze how the method performs in the
regime of finite baryonic densities. The latter, despite being
currently largely unaccessible to LQCD, is of utmost
importance to the description of compact stellar objects.
Our goal is twofold: first, we would like to check how our
approach compares with the N3LO pQCD results recently
obtained in Ref. [16]. Second, we aim to show how the
scale dependence within the predicted pQCD pressure can
be significantly reduced when the evaluations are per-
formed within the RGOPT, a generic feature of the method.
The paper is organized as follows. As a warm up, in the
next section we review the RGOPT approach illustrating it
with the d ¼ 1þ 1 massless Gross-Neveu model at
T ¼ μ ¼ 0. In Sec. III the method is used to evaluate
the quark contribution to the QCD pressure at vanishing
temperatures and finite densities up to the (RG optimized)
NLO two-loop level. The optimization procedure and
numerical results are presented in Sec. IV. Then in
Sec. V we present our conclusions and perspectives.

II. REVIEWING THE RGOPT
WITH THE GN MODEL

The RGOPT belongs to a class of variational methods,
reminiscent of the traditional Hartree approximation, which
are particularly suitable to tackle infrared problems that
plague massless theories. In this section the main steps of
the approach will be recalled by performing a simple lowest
order application to the massless Gross-Neveu model (GN)
in two dimensions. More details and applications of the
method can be found in Refs. [29,32,34–37]. The GN
model is described by the Lagrangian density for a fermion
field with N components given by [30]

LGN ¼ ψ̄ði∂Þψ þ g2GN
2

ðψ̄ψÞ2: ð2:1Þ

The theory described by Eq. (2.1) is invariant under the
transformation ψ → γ5ψ displaying a discrete chiral sym-
metry (CS) in addition to having a global Oð2NÞ flavor
symmetry. This simple renormalizable model has important
common features with QCD, such as asymptotic freedom
and a dynamically generated mass gap, among others. It is
exactly solvable in the large-N limit, and for arbitrary N
values the exact mass gap (at vanishing temperature) has
been obtained [38] from Bethe ansatzmethods. This allows
to confront other nonperturbative approximation schemes
that can include finite N corrections (such as the RGOPT)
to either the large- or finite-N known results.
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For convenience let us first rescale the four-fermion
interaction as g2GN ¼ gπ=N. To implement the RGOPT
requires first to deform the interaction terms of Eq. (2.1) by
introducing a Gaussian interpolating (mass) term and
rescaling the coupling: in the case of a massless theory
the RGOPT prescription is

LRGOPT
GN ¼ LGNðg → δgÞ −mð1 − δÞa; ð2:2Þ

where δ is a book-keeping parameter interpolating between
the free massive (δ ¼ 0) and interacting massless (δ ¼ 1)
theory. Remark that setting a ¼ 1 in Eq. (2.2) gives simply
the “added and subtracted” variational mass prescription as
adopted in the standard OPT/SPT/LDE [26–28]. In contrast
a crucial feature of the RGOPT is to determine [29,31,32]
the exponent a from renormalization group consistency,
giving generally a ≠ 1, as we will recap below. Note that
for the original massless model, the (free) propagator would
normally be SFðpÞ ¼ iðpÞ−1, while within the OPT or
RGOPT approaches, any perturbative evaluations are first
performed with a nonvanishing mass, thus providing an
infrared regulator massm, prior to the substitution Eq. (2.2)
(the latter being most conveniently performed after a
standard perturbative renormalization).
In the sequel of this section, to present a clearer overall

picture of the approach we also restrict ourselves to the
T ¼ μ ¼ 0 case, since the main RGOPT features that we
aim to recap are essentially determined by RG properties
(thus by the renormalization aspects of the T ¼ μ ¼ 0 part
only). Once such RG properties are fixed, including the
thermal and/or chemical potential contributions at a given
order amounts to perform consistently the very same
modifications as implied by Eq. (2.2) within those pertur-
batively calculated (massive) contributions.
We then start by evaluating the leading order Oðg0Þ

perturbative vacuum energy of the massive GN-model
(more generally we could consider the pressure, with
T ≠ 0 and/or μ ≠ 0)

EPT
0

N
¼ i
Z

d2p
ð2πÞ2 lnðp

2 −m2Þ þOðgÞ: ð2:3Þ

After renormalizing in the MS-scheme (which at this lowest
order amounts to simply a vacuum energy counterterm),
one obtains

EPT

N
¼ −

m2

2π

�
1

2
− Lm

�
þOðgÞ; ð2:4Þ

where Lm ¼ lnðm=MÞ and M is the arbitrary MS renorm-
alization scale. Next consider the RG operator

M
d
dM

¼ M
∂
∂M þ βðgÞ ∂

∂g − γmðgÞm
∂
∂m ; ð2:5Þ

with the normalization conventions for the RG coeffi-
cients [39]:

βðgÞ ¼ −b0g2 − b1g3 þOðg4Þ; ð2:6Þ

γmðgÞ ¼ γ0gþ γMS
1 g2 þOðg3Þ; ð2:7Þ

where b0 ¼ 1 − 1=N, b1 ¼ −b0=ð2NÞ, γ0 ¼ 1 − 1=ð2NÞ,
and γMS

1 ¼ −γ0=ð4NÞ. The next step is to realize that
Eq. (2.4) is not perturbatively RG-invariant: applying
Eq. (2.5) to this expression gives a remnant term of leading
order: MdE=dM ¼ −m2N=ð2πÞ ≠ OðgÞ. However this
rather well-known problem of a massive theory can be
solved most conveniently by simply subtracting a (zero
point) finite term in order to restore a RG invariant
perturbative vacuum energy,1 that lead to the RG invariant
(RGI) observable [32]

ERGI ¼ EPT −
m2

g
s0: ð2:8Þ

Now requiring Eq. (2.8) to satisfy the RG equations fixes
the s0 coefficient to

s0 ¼ −N½2πðb0 − 2γ0Þ�−1 ¼
N
2π

: ð2:9Þ

The procedure is easily generalized most conveniently
when taking higher perturbative order contributions into
account by considering a perturbative subtraction

−m2
X
k≥0

skgk−1; ð2:10Þ

where the successive si coefficients are fixed by requiring
perturbative RG invariance, consistently including higher
orders within the RG Eq. (2.5). This perturbative RG
invariance restoration is of course not specific to the d ¼
1þ 1 GN model but more generic for any massive model,
thus also in particular in four dimensions (see e.g., [40] for
high order analysis in the ϕ4 theory). Now, incorporating
those necessary subtraction terms, in order to start from a
perturbatively RG invariant quantity, is an important
necessary step prior to the specific RGOPT modification
implied by Eq. (2.2). Next, performing the replacements
Eq. (2.2) within a perturbative expression like (2.8) and
doing a power expansion to order-δk, one aims to recover
formally the massless limit, δ → 1. But the latter (re)
expansion leaves a remnant dependence on the (arbitrary)
mass m at any finite δk order, since the expression was
initially perturbative. Indeed, applying the RGOPT replace-
ments, at lowest δ0 order, to Eq. (2.8) gives

1Alternatively one finds the very same results by requiring RG
invariance at the level of bare expressions [29].
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ERGOPT

N
¼ −

m2

2π

�
1

2
− Lm

�
−
m2

Ng
ð1 − 2aÞs0: ð2:11Þ

Now a crucial step is to realize that the resulting modified
perturbative expression, Eq. (2.11), spoils the RG invari-
ance in general, in particular for the simplest “added and
subtracted mass” prescription a ¼ 1, due to the drastic
modification of the mass dependence. In contrast, the idea
is to determine the interpolation exponent a in Eq. (2.2) by
requiring rather the reduced RG equation [29] to hold:

fRG ≡M
∂ERGOPT

∂M þ βðgÞ ∂E
RGOPT

∂g ≡ 0; ð2:12Þ

in consistency with the massless limit being sought out.
This uniquely fixes the exponent as

a ¼ γ0
b0

; ð2:13Þ

a generic result also for other theories [32,34–37].
Moreover, the same value of a is taken also when consid-
ering higher orders of the δ-expansion, keeping the simple
interpolating form of Eq. (2.2), since this exponent is
universal (renormalization scheme independent).
Thus substituting a ¼ γ0=b0 into Eq. (2.11) leads to the

RGOPT lowest order result

ERGOPT

N
¼ −

m2

2π

�
1

2
− Lm

�
þ m2

2πgb0
: ð2:14Þ

It is important to note that already at this lowest order the
RGOPT-modified subtraction term clearly brings dynami-
cal (RG) information through g and b0 apart from finite N
contributions (since b0 ¼ 1 − 1=N) to an otherwise trivial
(free) vacuum energy. At this lowest order the final step
consists in fixing the parameter m, still arbitrary at this
stage, with an optimization prescription (MOP), similar to
the so-called principle of minimal sensitivity (PMS) [25],
defined by the stationarity condition

fMOP ¼
∂ERGOPT

∂m ≡ 0 ¼ m
π

�
1

b0g
þ Lm

�
: ð2:15Þ

Apart from the trivial result m̄ ¼ 0, one obtains

m̄ ¼ M exp½−1=ðb0gÞ�; ð2:16Þ

which is clearly nonperturbative and explicitly RG invari-
ant. Substituting m̄ within Eq. (2.14), the vacuum energy is
also RG invariant, and immediately gives the correct large-
N result, as was observed in Ref. [32]. To better appreciate
these RGOPT features let us now compare this result with
those obtained by the standard OPT/SPT as well as the
large-N approximations. As shown in Ref. [41], at order-δ0

the standard OPT/SPT vacuum energy (or equivalently
pressure) has no information about the interactions since it
is g-independent. Therefore the first non trivial contribution
arises at next order-δ (two loop level) and by applying the
MOP criterion one fixes the mass to

m̄OPT ¼ M exp½−1=ðgγ0Þ�; ð2:17Þ

which is not RG invariant. As for the 1=N expansion, the
first nontrivial contribution appears at order-N0 (the large-
N limit, LN) whose gap equation yields the well-known
nonperturbative mass gap

mLN ¼ M expð−1=gÞ: ð2:18Þ

At this point a remarkable property of the RGOPT
procedure over LN and standard OPT should be clear: it
does produce a scale invariant nonperturbative result,
which incorporates finite N corrections, already at the
one loop level. The same properties hold whenever adding
in-medium contributions, because the latter are not affect-
ing those RG properties which essentially rely on the
vacuum contributions. Moreover, for N → ∞ the RGOPT
also reproduces the “exact” LN result, a consistency check
of the reliability of the method. We point out that the latter
property is also observed within the standard OPT since, as
a particularity of the GN model, γ0 ¼ b0 ≡ 1 at large-N.2

The LN limit is also reproduced when considering in-
medium effects: for example for the ϕ4 model, quite
remarkably the lowest order RGOPT pressure reproduces
correctly [35] the (all-order) exact properties of the LN
limit (that in the more standard large-N derivation [43]
involve the nontrivial resummation of “daisy” and “super-
daisy” graphs, associated with plasmon infrared divergent
contributions). Yet for more involved theories such as
QCD, one does not expect the lowest δ0-order RGOPT
to be a very realistic approximation in general. This is
because it essentially relies on lowest order RG quantities,
while the other relevant contributions, e.g., in the pressure,
are essentially those from a free theory at this order.
Accordingly it appears sensible to go at least to the
NLO order to get numerically more realistic results
[32,34,36]. As we will illustrate in next sections this will
be the case also for the QCD in-medium thermodynamic
quantities considered in this work.
We will not proceed further with the GN model but to

conclude this section we mention that the RGOPT recipe
generalization to higher orders is rather straightforward, as
will be better illustrated in the next sections with the in-
medium QCD case. Once having implemented the relevant
RG subtraction coefficients in Eq. (2.10), one performs the

2The fact that, for the GN as well as other theories, the OPT
type of method does reproduce the N → ∞ limit was observed
long ago [42].
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RGOPT modification from Eq. (2.2) using the universal a
value, Eq. (2.13), expanding this to δk-order consistently
with the original perturbative order considered, and taking
the massless limit δ → 1. Finally one uses the RG
Eq. (2.12) and (or) the MOP Eq. (2.15) to obtain “non-
perturbative” approximations, in the sense that the resulting
RG-consistent dressed mass is of order ΛMS at T ¼ μ ¼ 0

[32]. At nonvanishing temperatures the dressed mass also
acquires a thermal dependence, but keeping its RG proper-
ties (see Refs. [35–37] for more detailed discussions).
Ideally one would aim to solve the two Eqs. (2.15), (2.12)
simultaneously to fix both a dressed running mass (m̄) and
a dressed running coupling (ḡ). However, as one proceeds
to higher orders both equations often develop non linear-
ities, so that an increasing number of solutions occur
a priori, moreover not guaranteed to be all real-valued.
These unwelcome features are indeed common with the
other related OPT/SPT approaches. But in the RGOPT,
Eq. (2.13) also crucially guarantees that the only acceptable
solutions are those matching the standard perturbative
behavior for g → 0 at T ¼ 0, a simple criteria that most
often selects a unique solution, even at the highest (four-
loop) order investigated so far [32,34]. Alternatively a less
complete but often more handy RG compatible criterion
requires to solving only the full RG Eq. (2.5), to fix the
dressed mass m̄ðgÞ. Next the coupling (not yet fixed at this
stage) is naturally traded for the ordinary running coupling
at the relevant perturbative order, instead of being more
nonperturbatively determined. Accordingly, the final physi-
cal quantities exhibit a more pronounced residual scale
dependence, which can be interpreted as an estimate
of the error introduced by this alternative procedure.
Nevertheless, different applications have shown that this
residual scale dependence is milder compared to the ones
produced by standard PT and also by the related OPT/SPT
approaches.

III. RGOPT EVALUATION OF THE
QCD QUARK PRESSURE

Let us now apply the RGOPT to the three flavor (dense
matter) QCD up to order-g (defining for convenience
g ¼ 4παs), in the limit of vanishing temperatures and finite
baryonic densities with μs ¼ μu ¼ μd ≡ μ, which is the

equilibrium condition for the massless case considered
here. To thus treat properly the quark sector of QCD, the
RGOPT requires to deforming the theory by rescaling the
coupling (consistently for every standard QCD interaction
terms) and a modified Gaussian interpolating (mass) term,
following the prescription

LRGOPT
QCD ¼ LQCDjg→δg −mð1 − δÞaψ̄fψf; ð3:1Þ

where f ¼ u, d, s is flavor index. The fermionic inter-
polating term proportional to m is completely similar to the
one previously discussed for the GN model. Note carefully
that in order to compare with Ref. [16] in the present work
we will investigate the case of vanishing current masses
(mu ¼ md ¼ ms ¼ 0), while m in Eq. (3.2) above will
become our variational mass upon implementing the
RGOPT replacements, just as in the GN case illustrated
in the previous Sec. II. (Accordinglym represents a generic
mass identical for the three flavors, in this initially SUð3Þ
flavor symmetric approximation.) As a parenthetical
remark, in principle a more complete and rather similar
treatment of the gluon sector is possible, by following the
hard thermal loop (HTL) prescription originally suggested
by Braaten and Pisarski [44], that essentially introduces a
gauge-invariant (nonlocal) effective Lagrangian properly
describing a gluonic (thermal) “mass” term in the HTLpt
approximation [21–23].
However, in the present work, which deals only with the

T ¼ 0 and μ ≠ 0 regime, we will apply the RGOPT to the
quark sector only so that the gluon propagator, entering our
evaluation at two-loop order, will be the usual (massless)
one used in purely perturbative QCD (thus also with
standard QCD interactions with quarks once the appro-
priate δ → 1 limit is taken, after the δ-expansion following
Eq. (3.1). This is justified by aiming to compare our results
with the purely perturbative evaluation of the cold pressure
such as in Ref. [16], also since the HTL-modified
Lagrangian is supposed to play a crucial role more
essentially once considering high temperature effects.
To order-g the relevant contributions are displayed in

Fig. 1. By combining the results of Ref. [34] for the vacuum
(μ ¼ 0) contributions with those of Ref. [12] for the in-
medium part one obtains the renormalized result

PPT
1;fðμÞ ¼ −Nc

m4

8π2

�
3

4
− Lm

�
þ Θðμ2 −m2Þ Nc

12π2

�
μpF

�
μ2 −

5

2
m2

�
þ 3

2
m4 ln

�
μþ pF

m

��

−
dAg

4ð2πÞ4 m
4

�
3L2

m − 4Lm þ 9

4

�
− Θðμ2 −m2Þ dAg

4ð2πÞ4
�
3

�
m2 ln

�
μþ pF

m

�
− μpF

�
2

− 2p4
F

�

− Θðμ2 −m2Þ dAg
4ð2πÞ4m

2ð4 − 6LmÞ
�
μpF −m2 ln

�
μþ pF

m

��
; ð3:2Þ

RENORMALIZATION GROUP IMPROVED PRESSURE FOR … PHYS. REV. D 100, 114006 (2019)

114006-5



where pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
is the Fermi momentum, Lm ¼

lnðm=MÞ, dA ¼ N2
c − 1, and Nc ¼ 3. Now, to turn the

above pressure into a RG invariant quantity, as explained
in previous section, we subtract a finite “zero-point”
contribution:

PPT
1;fðμÞ → PRGI

1;f ðμÞ ¼ PPT
1;fðμÞ −m4

X
k

skgk−1: ð3:3Þ

Since our evaluations are being carried up to two-loop, order-
g, it suffices to determine the first two coefficients s0 and s1
from applying the RG to the pressure (at T ¼ μ ¼ 0), with
the appropriate QCD β and γm RG functions. In our
normalization conventions the QCD βðgÞ and γmðgÞ func-
tions read

βðg≡ 4παSÞ ¼ −2b0g2 − 2b1g3 þOðg4Þ; ð3:4Þ

and

γmðgÞ ¼ γ0gþ γ1g2 þOðg3Þ; ð3:5Þ

where the coefficients are [45]

b0 ¼
1

ð4πÞ2
�
11 −

2

3
Nf

�
; ð3:6Þ

b1 ¼
1

ð4πÞ4
�
102 −

38

3
Nf

�
; ð3:7Þ

γ0 ¼
1

2π2
ð3:8Þ

and

γMS
1 ¼ 1

8ð2πÞ4
�
202

3
−
20

9
Nf

�
: ð3:9Þ

Applying the RG Eq. (2.5) to Eq. (3.2) and requiring the
result to vanish up to higher Oðg2Þ terms determine the
subtraction coefficients in Eq. (3.3) to

s0 ¼ −Nc½ð4πÞ2ðb0 − 2γ0Þ�−1; ð3:10Þ

and

s1 ¼ −
Nc

4

�
b1 − 2γ1

4ðb0 − 2γ0Þ
−

1

12π2

�
: ð3:11Þ

Remark that the coefficients sk, being determined solely
from the vacuum contributions, do not depend on the mass
nor on control parameters such as the temperature and
chemical potential [35–37]. Next, to implement the actual
RGOPT modification of interactions, we follow the sub-
stitution prescribed in Eq. (3.1). Like in the GN case the
next step is to fix the exponent a, by expanding to leading
order-δ0 and requiring the resulting pressure to satisfy the
reduced RG Eq. (2.12), here applied to the QCD pressure.
As expected this can be checked to yield the universal
exponent:3

a ¼ γ0
2b0

; ð3:12Þ

in agreement with previous RGOPT applications to QCD
[32,34]. The LO RGOPT pressure, per flavor, can then be
written as

PRGOPT
0;f ðμÞ ¼ Nc

m4

ð4πÞ2b0g
þ Nc

12π2

�
μpF

�
μ2 −

5

2
m2

�

þ 3

2
m4

�
Lμ −

3

4

��
; ð3:13Þ

where Lμ ≡ ln½ðμþ pFÞ=M�. Like for the GN model one
can see that the RGOPT extra terms bring in information
from RG dynamics through g and b0, to the otherwise trivial
(free gas) perturbative result. Notice that in Eq. (3.13),
assuming μ > m for most purpose below, the one-loop lnm
terms of original Eq. (3.2) have canceled, as a result of
considering the vacuum contributions given by the first term
in Eq. (3.2), such that the lnðm=MÞ is consistently replaced
by a ln½ðμþ pFÞ=M� with the same coefficient.4

Next, considering the NLO RGOPT [i.e., taking δ → 1 in
the δ1-order expansion of Eqs. (3.1), (3.3)] and after some
algebra the modified pressure (per flavor) reads:

PRGOPT
1;f ðμÞ ¼PRGOPT

0;f ðμÞ−Nc
m4

ð4πÞ2
�
γ0
b0

��
1

b0g

�

þm4

�
2
γ0
b0

− 1

�
s1

þNc
m2

8π2

�
γ0
b0

�
½m2ð1− 2LμÞþ 2μpF�

−
gdA

4ð2πÞ4
�
m4

�
1

4
− 4Lμþ 3L2

μ

�

þμ2ðμ2þm2Þþm2μpFð4− 6LμÞ
�
; ð3:14Þ

FIG. 1. Feynman diagrams contributing to the perturbative
quark pressure up to order-g.

3Notice a trivial factor 1=2 difference as compared to
Eq. (2.13) due to a convenient different normalization of bi
in Eq. (3.4).

4The very same cancellations occur in the original perturbative
expression (3.2): this is not affected by RGOPT since the
modification from (3.1) modifies all lnm terms similarly.
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where PRGOPT
0;f ðμÞ is given by Eq. (3.13). Again, assuming

μ > m for now on (except when explicitly mentioned
below), we already simplified the lnm terms at two-
loop order, as those originating from the vacuum contri-
butions cancel exactly with those similar terms of the
medium parts, so that Eq. (3.14) only depends on the
combination5 Lμ ¼ ln½ðμþ pFÞ=M�. The LO and NLO
RGOPT pressure are now ready to be optimized to generate
nonperturbative approximation results as shown in the
next section.

IV. OPTIMIZATION PROCEDURE
AND NUMERICAL RESULTS

A. One-loop (δ0) RGOPT

Considering first the lowest (δ0) one-loop order result, let
us recall that the constraint from the reduced RG Eq. (2.12)
applied to the pressure, Eq. (3.13), has already been used to
fix the exponent of the interpolating Lagrangian, see
Eq. (3.12), such that by construction the pressure already
satisfies fRG ¼ 0 exactly (at this order). Consequently the
arbitrary mass m may be fixed only by using the MOP
optimization equation:

fMOP ¼
∂PRGOPT

∂m ≡ 0: ð4:1Þ

Considering first for simplicity solely the (one-loop)
vacuum contribution in Eqs. (3.2) and (3.13) (reintroducing
for this purpose consistently the lnm present at μ ¼ 0),
one obtains

m̄ðμ ¼ 0Þ ¼ ΛMS

ffiffiffi
e

p
; ð4:2Þ

where ΛMS ¼ Me−
1

2gb0 is the one loop QCD ΛMS scale.
Thus one obtains a nonperturbative mass, proportional to
ΛMS, which is exactly RG invariant.
Including next the one-loop in-medium contribution

from Eq. (3.13), we aim to use similarly the MOP
Eq. (4.1) to now determine the μ-dependent dressed mass
m̄ðμÞ (while the reduced RG equation is still automatically
satisfied at this order for μ ≠ 0). At finite densities Eq. (4.1)
is a little more involved due to the nonlinear m-dependence
from pFðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
in Eq. (3.13). Yet, after simple

algebra the formal solution may be cast into a compact
form:

m̄2 ¼ μ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4cðm̄; μ; gÞp
− 1

2cðm̄; μ; gÞ
�
; ð4:3Þ

where6

cðm; μ; gÞ ¼
�

1

2b0g
−
1

2
þ Lμ

�
2

: ð4:4Þ

At this point we observe that the NLO subtraction s1 in
Eqs. (3.3), (3.11), while being strictly required for pertur-
bative RG invariance only at two-loop order, is formally a
one-loop Oðg0Þ contribution. It appears thus sensible to
include this known information from next RG order, which
is straightforward and provides not surprisingly a some-
what more realistic one-loop improved approximation.
Accordingly for s1 ≠ 0 the term −1=2 in Eq. (4.4) above
is simply replaced by −1=2 − 8π2s1 ¼ 11=84 (for nf ¼ 3),
which is the prescription used in the numerics below.
Equation (4.3) can be easily solved numerically but before

doing that it is instructive to examine some of its properties
in more detail. One can see first that the coupling g≡ gðMÞ
and the renormalization scale M only appear in the combi-
nation 1=ð2b0gÞ þ Lμ ≃ 1=ð2b0gÞ þ lnðμ=MÞ þ � � �, where
the dots designate M-independent terms. Therefore, recall-
ing that the (exact) one-loop running is defined as

g−1ðMÞ ¼ g−1ðM0Þ þ 2b0 ln

�
M
M0

�
; ð4:5Þ

for a reference scaleM0, it is immediate that Eq. (4.3) does
not at all depend onM. Likewise it is easy to see that the (LO)
RGOPT pressure Eq. (3.13) is itself exactly RG invariant at
this one-loop order: formally replacing m → m̄ in its
expression, m̄ is RG invariant irrespectively of its numerical
value, and the explicit gðMÞ and M in Eq. (3.13) only
appear in the very same M-independent combination
1=ð2b0gðMÞÞ þ Lμ.
For small coupling, the optimum mass m̄ admits a

perturbative expansion m̄2 ∼ μ2ðconstant × gþOðg2ÞÞ,
which has the expected form of an (in-medium) screening
mass. Nevertheless, we insist at this point that m̄ is not a
physical mass, (and is not directly related to the Debye
mass standard definition [46]), rather it represents an
intermediate variational quantity whose sole purpose is
to enter Pðm̄; g; μÞ, that defines the (optimized) physical
pressure at a given order. In fact, except for very weak
coupling, the first order expansion of m̄2 does not give a
very good approximation of the exact m̄ðμÞ: indeed, instead
of growing with no limits for arbitrary large coupling, as the
purely perturbative approximation would naively suggest,
the exact solution in Eq. (4.3) has the welcome property to
be bounded, with m̄2ðgðMÞÞ < μ2 even for large gðMÞ

5Those cancellations are however specific to the one- and
two-loop level: at higher orders lnm and lnðμþ pFÞ appear
independently, due to more “nested” divergences in the bare
calculation [13].

6Equation (4.3) suggests that m̄ would be the solution of a
simple quadratic equation if not for the nonlinear m dependence
entering Lμ ¼ ln½ðμþ pFÞ=M�. In Eq. (4.1) we have selected the
solution m2 > 0, while the other solution with

ffiffiffiffiffiffi� � �p
→ −

ffiffiffiffiffiffi� � �p
is

unphysical, giving always m2 < 0.
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(therefore consistent with the basic assumptions of the in-
medium contributions). The numerical solution m̄ at LO
RGOPT from Eq. (4.3) as a function of μ is illustrated in
Fig. 2, which among other features evidently confirms its
exact scale invariance properties.

B. NLO two-loop (δ1) RGOPT:
In-medium contribution

At NLO OðgÞ, it turns out that Eqs. (4.1) and (2.12) do
not have real solutions for arbitrary chemical potential
values. As already discussed above in Sec. II this is
expected to happen in general, starting at NLO order,
due to nonlinear dependences in the mass, if we insist to
solve those equations exactly. Therefore, one could try less
rigidly to solve the sole complete RG equation, Eq. (2.5),
for m̄ðgÞ, taking then for g more conservatively the purely
perturbative two-loop running coupling. Unfortunately
only nonreal solutions appear also in this case, if the
equation is solved for exact mðgÞ. Nevertheless this
situation can be remediated, at the price of introducing
one extra parameter, to be fixed however by a well-defined
prescription. Following Ref. [32], the idea is to modify the
perturbative coefficients, expecting in this way to recover
real solutions. But the modification should not be arbitrary,
and should be RG compatible, so a presumably sensible
prescription is to perform a (perturbative) renormalization
scheme change (RSC). With a little insight, since one is
mainly concerned with mass optimization, a simplest RSC
can be defined by modifying only the mass parameter
according to

m → m0ð1þ B1gþ B2g2 þ � � �Þ; ð4:6Þ

where the Bi parametrize arbitrary scheme changes from
the original MS-scheme.7 For an exactly known function of
m and g Eq. (4.6) would just be a change of variable not
affecting physical results. While for a perturbative series
truncated at order gk, different schemes differ formally by
remnant term of order Oðgkþ1Þ, such that the difference
between two schemes is expected to decrease at higher
orders for sufficiently weak coupling value. Now since we
aim to solve optimization equations for “exact” m and g
dependence, Eq. (4.6) actually modifies those purposefully,
when now considered as constraints for the arbitrary mass
m0. Furthermore we vary only one RSC parameter con-
sistently at the same perturbative order, such that the
relevant form of Eq. (4.6) is m → m0ð1þ B2g2Þ: thus upon
re-expanding to order-g one can easily see that the net RSC
modification to the pressure is to add the extra term
−4gm4s0B2 at two-loop order-g (and simply renaming

m0 → m afterwards the mass parameter to be determined
to avoid excessive notation changes).
Clearly a definite prescription is required in order to fix

B2. Accordingly, one requires [32] the RSC to give the real
m̄ solution the closest to the original MS-scheme: that is
mathematically expressed by requiring the “contact” of the
two curves (i.e., collinearity of the vectors tangent) para-
metrizing the relevant MOP and RG equations, considered
as functions of (m; g):

fRSC ¼ ∂fRG
∂g

∂fMOP

∂m −
∂fRG
∂m

∂fMOP

∂g ≡ 0; ð4:7Þ

where fMOP and fRG are given respectively by Eqs. (4.1)
and (2.12) (applied here to the QCD pressure). Thus,
Eq. (4.7) provides an extra constraint which completely
fixes the additional RSC parameter B2. Moreover, one
expects the RSC to remain reasonably perturbative, i.e., B2

to be moderate, which may be verified a posteriori by
inspecting that B2g2 ≪ 1.
As a first simple illustration, let us consider only the

vacuum contribution at μ ¼ 0. Applying Eq. (4.7), in
conjunction with the MOP Eq. (4.1) and taking for
g the two-loop perturbative Eq. (4.8), and for a typical
value M ≃ 1 GeV, one then obtains B̄2 ≃ −0.00224,
lnðm̄=MÞ≃−0.331, giving m̄ ≃ 700 MeV ≃ 2.1ΛMS, which
may be compared to the LO RGOPT result Eq. (4.2). Note
that αSðM ¼ 1 GeVÞ ≃ 0.42, but jB̄2g2j ∼ 0.06 is a very
moderate deviation from original MS-scheme.
We can now numerically optimize the NLO RGOPT

pressure Eq. (3.14) including the in-medium contribution
with μ ≠ 0, adopting the RSC additional prescription to
recover real m̄ðμÞ solutions for arbitrary μ values. Actually,
rather than solving the full RG, as a numerically simpler
variant we solve the MOP equation (4.3) at two-loop order
for m̄ðgÞ, taking for g the purely perturbative running
coupling, together with the RSC equation (4.7) to fix B̄2ðμÞ
at NLO. (Clearly the optimal RSC parameter B̄2 will now
be a nontrivial function of the chemical potential μ,
consistently determined by the optimization procedure).
At two-loop the analytical expression of the MOP,
Eq. (4.1), is more involved than its one-loop analogue,
so that the algebra leading to the solution Eq. (4.3) is not as
easy but it can be readily solved numerically.
In order to compare with the results given in

Refs. [13,16] we will consider the scale variation μ ≤ M ≤
4μ besides the “central” scale M ¼ 2μ. The exact two-loop
(2L) running coupling, analogue of the one-loop Eq. (4.5),
is obtained by solving for gðMÞ the relation

ln
M
ΛMS

¼ 1

2b0g
þ b1
2b20

ln

�
b0g

1þ b1
b0
g

�
; ð4:8Þ

for a givenΛMS value (this also defines the (two-loop order)
ΛMS in our normalization conventions). Equivalently to

7Equation (4.6) has also the welcome property that it does not
affect the definition of the reference QCD scale ΛMS, in contrast
with a similar perturbative change on the coupling, see [32] for
details.
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giving a ΛMS value one can give a gðM0Þ at some reference
scale, M0. Here, we have chosen αsðM0 ¼ 1.5 GeVÞ ¼
0.326 to compare precisely with the values adopted
in Ref. [16]: with (4.8) this corresponds to ΛMS ≃
0.335 GeV, a value indeed very close to the present world
average [33].
The results for the optimized NLO mass m̄ as functions

of μ and for different renormalization scale choices
are shown in Fig. 2 where they are also compared with
the LO one-loop m̄ value. One can see that, as already
explained above, m̄ðμÞ is exactly RG invariant at LO,
because it only involves the scale invariant combination
½2b0gðMÞ�−1 þ lnðμ=MÞ. In contrast the NLO m̄ðμÞ defi-
nitely displays a residual scale dependence: even for the
exact two-loop running, Eq. (4.8), the latter is not very
surprisingly no longer exactly “matched” by the optimized
NLO RGOPT mass. We will illustrate below that the
RGOPT pressure, which represents the actual physical
observable, shows a more moderate residual scale depend-
ence. More generally the RGOPT construction only guar-
antees that the optimization does not spoil the perturbative
RG invariance of the physical quantity considered, that
means up to remnant scale-dependent terms of higher order
Oðgkþ1Þ, if the original perturbative expression is available
at order gk.
Figure 3 illustrates the corresponding values of the RSC

parameter combination B2ðμÞg2ðμÞ, thus quantifying the
departure from MS-scheme. One can see that RSC remains
reasonably perturbative, although the value of jB2ðμÞj
needed to recover real solutions are increasing rapidly
for smaller μ values for the lower renormalization scale
M ¼ μ (not surprisingly since in this region the running
coupling gðMÞ becomes dangerously large).
One is now in position to compute thermodynamical

observables, such as the pressure and the quark number
density which here will be respectively normalized by the

equivalent massless free gas quantities Pfg and ρfg. These
quantities, per flavor, are respectively

Pfg ¼ Nc
μ4

12π2
; ð4:9Þ

and

ρfg ¼ Nc
μ3

3π2
: ð4:10Þ

Let us then compare the Oðg0Þ andOðgÞ RGOPT results
with the pQCD predictions at OðgÞ, Oðg2Þ [13], as well as
the most recent Oðg3 ln2 gÞ [16]. For completeness, we
recall that the relevant pQCD expression is [16]

PpQCD

Pfg
¼ 1 −

2

π
αSðMÞ − α2SðMÞ

�
0.303964 ln αSðMÞ

þ
�
0.874355þ 0.911891 ln

�
M
μ

���
− 0.266075α3SðMÞln2αS: ð4:11Þ

In Fig. 4 we show the normalized pressure predicted by the
different order approximations at the central scale choice
M ¼ 2μ as adopted in Ref. [16]. The first thing to remark is
that the RGOPT produces a nontrivial result already at
order-δ0g0, but converging quite slowly to the free gas
result as the quark chemical potential increases.
Nevertheless this can already be seen as an improvement
since at this same order g0 the pQCD result for the
normalized pressure would trivially be equal to the unity,
i.e., the free gas limit. In fact the lowest order RGOPT
cannot be expected to be a very realistic approximation in
general, because it only relies on lowest order RG quan-
tities, while the pressure dependence is essentially like the
free gas one. The efficient resummation properties of
RGOPT become more evident when one compares its
result at NLO, order-g, with the pQCD ones at the same
NLO order, since the figure shows that the NLO RGOPT

FIG. 3. The optimized RSC B̄2ðμÞg2ðμÞ quantity as a function
of the chemical potential at M ¼ μ, 2μ and 4μ at order-g.

FIG. 2. The optimized mass as a function of the chemical
potential atM ¼ μ, 2μ and 4μ at order-g0 (dot-dashed) and order-
g (continuous). For the latter the upper curve corresponds to
M ¼ μ, the central curve to M ¼ 2μ, and the lower curve
to M ¼ 4μ.
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pressure actually appears in much better agreement with
the higher order perturbative g2 and g3 ln2 g predictions.
Next we also analyze how the different approximations
perform when the arbitrary renormalization scale is varied
in the range μ ≤ M ≤ 4μ, as in Ref. [13] where the scale
dependence of pQCD results at orders g and g2 have been
analyzed.8 The results are compared in Fig. 5, where the
RGOPT appears to moderately improve the scale uncer-
tainty, at least in the range μ ≳ 1 GeV, as compared with
the same perturbative order g.
To assess more precisely the remnant scale dependence

we plot in Fig. 6 the difference of the (normalized)
pressures ΔP=Pfg ≡ ðPðM ¼ 4μÞ − PðM ¼ μÞÞ=Pfg as
function of μ, for the three approximations illustrated in
Fig. 5. The NLO RGOPT remnant scale dependence is
moderately but clearly improved as compared to NLO
pQCD for μ ≳ 0.9 GeV (giving ∼25% improvement e.g.,
for μ ≃ 2 GeV), while the NLO pQCD scale dependence
appears somewhat smaller in the lower μ range
0.5≲ μ≲ 0.9 GeV. Notice also that the NNLO pQCD
pressure has a smaller scale dependence than NLO pQCD
in a narrower and more perturbative range μ≳ 1.5 GeV. In
contrast the RGOPT scale uncertainty is clearly better than
the NNLO pQCD one in the full relevant μ range. We
remark however that the smaller remnant dependence of
NLO pQCDwithin the low-μwindow (0.5≲ μ ≲ 0.9 GeV)
is merely a side effect of the NLO pQCD pressure dropping
toward zero at lower μ values than the two other approx-
imations, as is clear from Fig. 5. Indeed not surprisingly
all three approximations exhibit a rapidly growing scale

dependence for μ values approaching the region where
PðM ≃ μÞ rapidly drops toward zero.9 But Fig. 6 also shows
that the maximal remnant dependence reached at the
respective μmin values is smaller for the RGOPT than for
NLO and NNLO pQCD. In any case one should keep in
mind that, due to the adopted common renormalization
scale choice gðM ¼ OðμÞÞ, none of the approximations is
much reliable in the nonperturbative region where
P=PfgðM ≃ μÞ ≪ 1 due to large coupling [note, e.g., that
μ < 0.8 already corresponds to αSðM ¼ μÞ > 0.5 using
Eq. (4.8)]. We thus conclude that, within the μ range where
all the approximations are very reliable perturbatively, the
NLO RGOPT remnant scale uncertainty is moderately but

FIG. 5. The normalized pressure as a function of the chemical
potential. pQCD results at NLO order-g and NNLO order-g2 are
compared with RGOPT at NLO order-g. In each case the upper
curve corresponds to M ¼ 4μ and the lower curve to M ¼ μ.

FIG. 6. The remnant scale dependences defined by the
differences ΔP=Pfg ≡ ðPðM ¼ 4μÞ − PðM ¼ μÞÞ=Pfg of (nor-
malized) pressures, as functions of the chemical potential μ.
pQCD results at NLO order-g and NNLO order-g2 are compared
with RGOPT at NLO order-g.

FIG. 4. The normalized pressure as a function of the chemical
potential at the central scale M ¼ 2μ. pQCD results at orders g,
g2, and g3 (LL term) are compared with the RGOPT results at
orders g0 (one loop) and g (two loop).

8In the original study [13] a quite common approximate form
of (4.8) was rather used, truncating terms beyond OðlnL=L2Þ,
with L≡ lnðM2=Λ2

MS
Þ. Here we compare the scale dependence

by adopting the same exact two-loop running coupling (4.8) for
all approximations, that tends to very slightly decrease the
remnant scale uncertainty for all cases.

9In Fig. 6 the three curves consistently start at their respective
minimal μmin values, defined such that PðM ≥ μminÞ ≥ 0, com-
pare with Fig. 5.
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clearly improved in relative comparison to both NLO and
NNLO pQCD (considering also that standard pQCD at
T ¼ 0, μ ≠ 0 has anyway less severe scale dependence
issues than in the high T regime).
In principle, we could also include in our NLO RGOPT

analysis the NNLO gm4s2 subtraction term of Eq. (3.3),
since being formally of order-g, similarly to what was done
at LO RGOPT [see the discussion after Eq. (4.4)]. The s2
expression is available from [34] and clearly incorporates
additional RG dependence from next (three-loop) RG
order. However we have checked that considering s2 ≠ 0
at NLO scarcely changes our results (in contrast with the
LO pressure where s1 ≠ 0 has a sizeable impact). In
particular the scale dependence is not visibly affected,
which signals that a reasonable stability has been reached at
NLO order.
In Ref. [13] the authors also analyzed the predictions for

the quark number density:

ρðμÞ≡ dPðμÞ
dμ

; ð4:12Þ

up to NNLO pQCD. Their results are reproduced and
compared with our RGOPT predictions in Fig. 7. As in the
case of the pressure a noticeable (but moderate) decrease of
the scale “uncertainty” band occurs for the NLO RGOPT
density (while the LO RGOPT results are again exactly RG
invariant for the same reasons than the LO pressure).
However the RGOPT scale dependence improvement is
less pronounced than for the pressure, which can be traced
to our use of the standard running coupling (having
renounced, as explained above, to the more complete
optimization of g and m, due to non real and involved
solutions). Indeed, for dense matter the imperfectly bal-
anced scale dependence, from the contribution of the
running gðMÞ, tends to be enhanced as compared to the
pressure since taking gðM ∼ μÞ to obtain ρðμÞ in Eq. (4.12)

involves a contribution ∝ ∂MgðMÞ on top of the explicit
derivative ∂μP term.

C. A simpler alternative NLO RGOPT prescription

While the results in Figs. 4 and 5 clearly show a better
agreement of NLO RGOPT with the state-of-the-art per-
turbative results, it may be regarded rather unsatisfactory to
have to deal with the somewhat more involved RGOPT
NLO prescription, that implies the additional constraint
from RSC Eq. (4.7) to be altogether numerically solved to
restore real solutions. Could we find a simpler and more
transparent prescription, while still capturing the main
features of the RGOPT approach? Indeed, a much simpler
alternative that surely recovers a real m̄ solution is simply to
renounce to solving the RG or MOP equations exactly, by
approximating the latter in a more perturbative fashion.
(This, however, certainly loses a part of the resummation
properties embedded in the “exact” solution, such that a
slight degradation of the remnant scale dependence is to be
expected). To explore this alternative we consider the full
RG equation (2.5), in order to incorporate the most
complete and consistent NLO RG content, but we approxi-
mate crudely its solution to its first perturbative (re)
expansion order. Similarly as in the LO case, noting first
that Eq. (2.5) would give a simply quadratic equation for
m2 in absence of the extra nonlinear m-dependence from
pF, this perturbative solution is simple:10

m̄2 ¼ 9

7π2
μpF

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

21

64

μ2

p2
F

s !
gþOðg2Þ

¼ 9

7π2

�
1 −

ffiffiffiffiffi
43

p

8

�
gμ2 þOðg2Þ: ð4:13Þ

Now, inserting this m̄ expression into the NLO RGOPT
pressure expression Eq. (3.14), with the running g → gðMÞ
as previously from Eq. (4.8), gives the results shown in
Fig. 8, which are compared with pQCD at NNLO including
the four-loop (LL) results from Eq. (4.11) (originally
obtained in Ref. [16]). We illustrate also the scale depend-
ence for the range μ ≤ M ≤ 4μ for the two expressions.
One sees the quite remarkable agreement for the central
scale choiceM ¼ 2μ (more precisely with less than ∼1.5%
differences for any μ > 0.6 GeV), while the RGOPT scale
“uncertainty” range is still slightly better even for this rather
crude approximation. Concerning the scale dependence

FIG. 7. The quark number density as a function of the chemical
potential. pQCD results at NLO order-g and NNLO order-g2 are
compared with the RGOPT at NLO order-g. In each case
the upper curve corresponds to M ¼ 4μ and the lower
curve to M ¼ μ.

10In Eq. (4.13) the factors 9=7, 21=64,
ffiffiffiffiffi
43

p
are simply nf ¼ 3

values of the specific combinations of RG coefficients bi, γi
appearing in this expression. The explicitly scale-dependent term
ln μ=M only appears at next g2-order. Note also that we
eliminated the other solution, with þ ffiffiffiffiffiffi� � �p

, as it violates the
necessary consistency m̄2 ≤ μ2 even for moderate g, and also
does not fulfill the perturbative matching, ln μ=m̄ ∼ 1=ð2b0gÞ, for
μ ≫ m̄.
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band of pQCD including the highest available perturbative
order result, Eq. (4.11), it hardly displays a visible differ-
ence with the sole NNLO, order-g2, perturbative pressure as
studied in Ref. [13]. But the net effect of the highest order
last term of Eq. (4.11), being negative, is to shift down
(very slightly) the values of the pressure for given μ and M
values. Examining Fig. 4 we further observe that going
from NLO to NNLO pQCD there is a more pronounced
decrease of the pressure for given μ values [which is clear
from the globally negative NNLO Oðg2Þ terms in
Eq. (4.11)]. Now, in Fig. 4 the exact NLO RGOPT pressure
values are sensibly lower than the other approximations,
while in contrast the approximate NLO RGOPT pressure,
obtained with the perturbative m̄ Eq. (4.13), agrees quite
neatly with Eq. (4.11). Accordingly one may hint from
those comparisons that the “exact” NLO RGOPT result
may be a more precise approximation than Eq. (4.11) to the
even higher order perturbative pressure values.

V. CONCLUSIONS

In this work we have performed the first application of
the RGOPT resummation to QCD when a control param-
eter, such as the chemical potential, is present. As discussed
this technique generates nonperturbative approximations
with consistent RG properties in a region of the QCD phase
diagram which is currently unavailable to LQCD simu-
lations. Our results have been compared to the state-of-the-
art pQCD predictions that include a α3s ln2 αs contribution.
We have confirmed in this in-medium application the
generic property that at lowest one-loop order this tech-
nique already captures nontrivial and RG invariant results
for the pressure and the quark number density. Although
numerically these lowest order results are a poor approxi-
mation in general, and converge quite slowly to the free gas
result as μ increases, they exhibit the more efficient RGOPT

resummation since, at this same order, the pQCD prediction
is trivial. At NLO order-g (two loop level) and M ¼ 2μ the
RGOPT results appear to be a very good approximation as
they show a much better agreement with the perturbative
higher orders Oðα3s ln2 αsÞ than pQCD at the same order.
Scale variations in the rangeM ¼ μ − 4μ also show that the
method reduces the scale uncertainties (although moder-
ately at two-loop order) as compared to pQCD, which is
important as far as EoS suitable to describe neutron stars
are concerned.
The scale uncertainty improvement from RGOPT thus

appears less spectacular than for other models explored at
two-loop orders at T ≠ 0, μ ¼ 0 compared with standard
perturbation and HTLpt [35–37]. But this is merely due to
the fact that standard pQCD at T ¼ 0, μ ≠ 0 has less severe
remnant scale dependence issues (as already noted in
Ref. [13]) than most other models have in the high T
regime. In contrast the NLO RGOPT scale uncertainty
appears more similarly moderate in both regimes. As
discussed in the text and in other applications (see, e.g.,
Ref. [35]) the appearance of a residual (mild in most cases)
scale dependence is unavoidable within the RGOPT
beyond LO. But it is also clear [35] that since RGOPT
maintains by construction the most possible of (perturba-
tive) RG invariance, generically the scale uncertainty bands
observed at NLO should further shrink by considering the
NNLO, Oðg2Þ, which should also provide a priori more
accurate numerical results. We remark that by combining
the three loop vacuum contributions of Ref. [34] with the
in-medium contributions of Ref. [13] this is a feasible,
although technically more involved analysis (regarding
optimization), that we intend to address in a future
investigation. Regarding the present application, where
only massless quarks have been considered, our results
indicate that this RG-consistent resummation method is
suitable to treat dense and cold QCD. Note also that it can
be easily extended to determine more realistic EoS (e.g.,
including massive quarks) which aim to describe neutron
stars. Finally, the RGOPT interpolation should be extended
to the gluonic sector for a more complete description
especially when considering high temperature effects [47].
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FIG. 8. The normalized pressure as a function of the chemical
potential. pQCD results from Eq. (4.11) at NNNLO including the
contribution g3 ln2 g (blue dotted curves) compared with the
simpler alternative NLO RGOPT (black continuous curve). In
each case the upper curve corresponds to M ¼ 4μ, the central
curve to M ¼ 2μ, and the lower curve to M ¼ μ.
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