
 

Sound velocity and tidal deformability in compact stars

Yong-Liang Ma 1,* and Mannque Rho2,†
1Center for Theoretical Physics and College of Physics, Jilin University, Changchun, 130012, China
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The sound velocity vs and dimensionless tidal deformability Λ are analyzed using the pseudo-conformal
model we developed before. In contrast to the conclusion obtained in the previous works in the literature,

our model with the upper bound of the sound velocity vs ¼ 1=
ffiffiffi
3

p
, the so-called conformal sound velocity,

set in at a density relevant to compact stars ≳2n0 where n0 is the normal nuclear matter density,
can accommodate all presently established nuclear matter and compact-star properties including the
maximum star-mass constraint ≃2.3 M⊙. This observation is associated with a possible emergence of
pseudoconformal structure in compact star matter—in which the trace of energy-momentum tensor is a
nearly density-independent nonzero constant—brought in by a topology change at 2.0≲ n1=2=n0 ≲ 4.0
commensurate with a possible change of degrees of freedom from hadrons.
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I. THE PROBLEM

The equation of state (EoS) of dense nuclear matter is an
extremely important but not well-understood subject in
nuclear physics and astrophysics. It is closely related to the
phase structure of QCD under extreme conditions. At this
moment, it is well accepted that nuclear matter up to the
nuclear saturation density n0 can be described by using
the equation of state derived from such hadrodynamics
as effective density functionals, chiral effective field
approaches and others. However, when the density of
nuclear matter is increased to ≳2n0, the situation is totally
unclear. It is exciting that the possible empirical constraint
has begun to come from the observation of compact stars,
especially in the present post-Newton era since the obser-
vation of a binary neutron star merger [1].
Recently, an issue concerning the upper bound of the

sound velocity vs was raised in the theoretical construction
of the EoS at high baryon density. Naive causality con-
sideration sets the bound to vs ≤ 1 (in units of c ¼ 1).
However, if we consider an extreme case in which the
nuclear matter is made of ultrarelativistic massless par-
ticles, the constraint is brought down to vs ≤ 1=

ffiffiffi
3

p
, the

upper bound in a system with conformal symmetry.
Whether or not such an upper bound can be saturated in
dense nuclear matter should be settled by observation.
A recent analysis in Ref. [2] argues that, in combination
with the EoS of hadronic matter that describes correctly
the nuclear matter properties around n0, the existence of
neutron stars with mass ∼2.0 M⊙ [3,4] is not consistent

with bound vs ≤ 1=
ffiffiffi
3

p
. This “no-go” argument has been

given support by several other works, e.g., Refs. [5–7].
Furthermore exceeding from the conformal velocity in
certain standard nuclear model results has been suggested
to be associated with a generic feature of scalar extensions
of general relativity [8].
The purpose of this note is to show that, contrary to the

no-go arguments cited above which seems to be well
accepted by the general community, the pseudoconformal
model (PCM) we proposed in Refs. [9–11]—which is
drastically different—is fully consistent with the present
observation of massive neutron stars and tidal deformability
in the detection of gravitation waves [12]. Whether or not
this scenario will survive the scrutiny from forthcoming
astrophysical data is an open issue for the future.
The PCM for dense nuclear matter we proposed is based

on the scale-chiral effective theory of QCD in which, in
addition to the pseudo-Numbu-Goldstone boson pion, the
nucleon field figures as the matter field as in the standard
chiral perturbation theory, the lowest-lying vector mesons ρ
and ω are incorporated as hidden local symmetry (HLS)
fields and a light scalar meson is introduced as the dilaton.
We call this bsHLS Lagrangian. Once this bsHLS is
matched to QCD via correlators [13], its low energy
constants can be endowed with the condensates of QCD
such as hq̄qi, hG2i, etc. The condensates of QCD should
get modified when the vacuum is changed by the density,
rendering the parameters of the effective theory density
dependent. This density dependence, referred to as “intrin-
sic density dependence (IDD),” gets additional density-
dependent corrections from renormalization group (RG)
decimation from the matching scale down to an effective
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nuclear interaction scale in baryonic matter, referred to as
“induced density dependence (DDinduced).” The combined
density dependence will be denoted as IDD�. The resulting
effective field theory [9–11] encodes the following ele-
ments in the effective density functional in modeling QCD
that the approach provides.

(i) Topology: Topology figures in the description of
nuclear matter at high density in which the nucleons
are compressed such that the nuclear matter can be
regarded as a crystal matter. In QCD, baryons at high
density can be described as skyrmion matter put on
crystal lattice. This is justified in the largeNc limit (for
reviews, see e.g., Refs. [14,15]). A robust conclusion
obtained in the skyrmion approach, absent in non-
topological approaches, i.e., standard chiral perturba-
tion theory, is the topology change from the crystal
matter of skyrmions into a crystal matter of half-
skyrmions. The density at which this topology change
takes place is denoted as n1=2. This density, thus far
accessible neither from theory nor from experiments,
is found to be in the range 2≲ n1=2=n0 ≲ 4. This
comes from the analysis of the sound velocity of stars
in conjunction with the tidal deformability [10,11].
The most crucial outcome of the present work is

that in going from the skyrmion matter to the half-
skyrmion matter, parity doubling in the nucleon
structure arises [16]. Parity doubling is not in QCD
in the matter-free vacuum, so the process involved
here is an emergence of hidden symmetry of QCD. It
exposes the possible origin of the nucleon mass. The
nucleon mass tends to a constant m0 ∼ ð0.6–0.9ÞmN
wheremN is the free-space nucleon mass and remains
density-independent constant up to a putative decon-
finement density. This observation has an important
consequence on the trace of energy-momentum tensor
as mentioned below.

(ii) Scale symmetry: The scale symmetry provides a
powerful access to the scalar meson with a mass
∼600 MeV in an effective field theory [17]. It can be
regarded as the Nambu-Goldstone boson, dilaton χ,
of the spontaneous breaking of scale symmetry
triggered by its explicit breaking, i.e., the trace
anomaly. When the trace anomaly is totally attrib-
uted to the dilaton potential term, which appears
to be a fairly good approximation in low-energy
nuclear dynamics [9,18], one can write

VðχÞ ¼ m2
χf2χ
4

�
χ

fχ

�
4
�
ln

χ

fχ
−
1

4

�
ð1Þ

which yields

hδVi ¼ −hθμμi ¼ m2
χ

4f2χ
hχ4i: ð2Þ

(iii) Local flavor symmetry: The local flavor symmetry
provides a powerful approach to include the vector
mesons in the chiral effective field theory through
the gauge principle such that both the vector mesons
and the pion can be treated on the same footing.
Although this local flavor symmetry is broken in
the matter-free vacuum, renormalization-group
analysis shows that at high density the ρ-nucleon
coupling goes to zero, together with the mρ going to
zero [19,20].

Implementing the above principal features into the EFT
Lagrangian bsHLS, the topology change density n1=2
provides the separation between Region-I (R-I) for the
density regime n < n1=2 and Region-II (R-II) for n ≥ n1=2.
In R-I, the bsHLS is essentially equivalent to the standard
EFT (SEFT) anchored on chiral symmetry—with the
advantage of having the vector mesons appearing at the
leading order and the IDD� in the parameters, which in
SEFT would require going to higher orders. In R-II,
however, with the input from the topology change, the
structure is drastically different from the SEFT with the
effects from emerging symmetries. What is also important
in R-II is that a possible change of degrees of freedom
(d.o.f.) is encoded therein. As argued in [9,11], this region
could mimic the changeover from baryons to strongly-
coupled quarks and gluons as described in [21]. This
connection could be considered as a Cheshire-Cat phe-
nomena developed in 1980s [11,22].

II. THE PSEUDOCONFORMAL MODEL (PCM)

As a consequence of the parity-doubling together with
the intervention of the hidden symmetries (the scale and
flavor local symmetries), the vacuum expectation value
of the trace of the energy momentum tensor (TEMT) θμμ
becomes a nearly1 density-independent nonzero constant
in R-II, i.e., n≳ n1=2

hθμμi ¼ ϵ − 3P ∝ fðm0Þ ð3Þ

withm0 being the chiral invariant nucleon mass. Therefore,
the derivative with respect to density of θμμ

∂
∂n hθ

μ
μi ¼ ∂ϵðnÞ

∂n ð1 − 3v2sÞ ð4Þ

(where v2s ¼ ∂PðnÞ
∂n = ∂ϵðnÞ

∂n ) vanishes. Since ∂ϵðnÞ
∂n ≠ 0 in the

range of densities involved, we immediately obtain

1We say nearly because we are ignoring the light-quark
masses. We have not verified that there is no density dependence
arising from the chiral symmetry-breaking effect. We are rea-
sonably certain, however, that such a density dependence, if there
is any, would not be important since m0 is quite substantially big
compared with the pion mass.
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vs ¼
1ffiffiffi
3

p ; ð5Þ

which is usually associated with the sound velocity in a
conformal symmetric system. Here, however, since the
TEMT is not equal to zero, we call it “pseudoconformal
sound velocity.”
It was shown in [9] that the pseudoconformal sound

velocity comes out in the highly successful V lowk renorm-
alization group approach [23] based on bsHLS described
above for n1=2 ¼ 2.0n0. The full V lowk RG result is exactly
reproduced by R-I described by the V lowk RG treatment and
by R-II given by the formula of pseudoconformality

E=A ¼ −mN þ Xαx1=3 þ Yαx−1; n≳ n1=2; ð6Þ

where x ¼ n=n0 and X, Y are parameters given by the
pressure and chemical potential matched between R-I

(given by V lowk) and R-II (given by (6)) at n1=2 for
α ¼ ðN − ZÞ=ðN þ ZÞ. We assume that this PCM is
applicable for n1=2 > 2n0.

III. STAR PROPERTIES

We first look at the density dependence of the sound
velocity. Our results are plotted in Fig. 1. From this figure,
we see that at high density, in all three cases of n1=2,

vs → 1=
ffiffiffi
3

p
, the conformal limit. But the sound velocities

are different at intermediate densities for different values
of n1=2. Especially, for n1=2 ≃ 4.0n0, vs > 1, violating
causality. This reinforces the upper bound n1=2 < 4.0n0
arrived at with the pressure bound given by presently
available heavy-ion data in Ref. [11].
Figure 1 tells us that for n < 2.0n0, the three choices

of n1=2 yield the same sound velocity. Therefore, to see
the correlation between the sound velocity and the tidal
deformability, the central density of the neutron star should
be ≳2.0n0. Explicitly, to see the correlation between the
sound velocities for n1=2 ¼ 2.0n0 and 3.0n0 and the tidal
deformability, the central density of the neutron star should
be ≳2.0n0 while to see the correlation between the sound
velocities for n1=2 ¼ 3.0n0 and 4.0n0 and the tidal deform-
ability, the central density of the neutron star should
be ≳3.0n0.
Now we turn to the tidal deformability in conjunction

with the sound velocity. Listed in Table I are the star
properties for different massive stars. We see that, for the
star M1.4 (here and in what follows the subindex stands for
the mass of the star in unit of solar mass), since the central
density is 2.0n0 < ncent ≤ 2.3n0, when n1=2 is changed
from 2.0n0 to 3.0n0, the tidal deformability is reduced and
the size shrinks. However, when n1=2 is changed from 3.0n0
to 4.0n0, neither the tidal deformability nor the star size is
affected. A similar analysis applies to other stars in the
table. It is surprising that the tidal deformability and the
radius of the star are nearly independent of the location
of n1=2 > 2n0.

IV. DISCUSSION

We have found, as summarized in this note, that in
contrast to what was found in the literature, the PCM,
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FIG. 1. Sound velocity as a function of density in neutron
matter (upper panel) and symmetric matter (lower panel).

TABLE I. Properties of compact stars with different masses and n1=2=n0.

ncent=n0 Λ=100 R=km

M=M⊙ n1=2 ¼ 2.0 n1=2 ¼ 3.0 n1=2 ¼ 4.0 n1=2 ¼ 2.0 n1=2 ¼ 3.0 n1=2 ¼ 4.0 n1=2 ¼ 2.0 n1=2 ¼ 3.0 n1=2 ¼ 4.0

1.40 2.02 2.30 2.30 7.85 6.52 6.52 13.0 12.8 12.8
1.60 2.61 2.54 2.54 2.85 2.90 2.90 12.8 12.8 12.8
1.80 3.11 2.84 2.81 1.21 1.30 1.30 12.8 12.8 12.8
2.00 4.50 3.60 3.21 0.37 0.55 0.55 11.5=12.2 12.6 12.7
2.20 … … 4.00 … … 0.20 … … 12.3
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which works well for normal nuclear matter density, gives
vs → 1=

ffiffiffi
3

p
—the conformal limit—at a density ≳n1=2 and

accommodates massive neutron stars up to 2.23 M⊙, which
is consistent with the present observation.2 In addition to
the constraint from the massive star, the tidal deformability
obtained is consistent with the presently available empirical
bound from the gravitational wave observation both for
Λ1.4 and radius R1.4. The information coming from the
sound velocity and tidal deformability pins down the
topology change density to 2.0n0 < n1=2 < 4.0n0. This
can be taken as a signal for the change of d.o.f. from normal
baryon (skyrmion) to an “exotic” fermion (half-skyrmion),
such a change of d.o.f. being required to accommodate the
(pseudo-)conformal velocity as argued in [5]. The topology
change could be a dual picture to the baryons-to-quark
continuity argued to be present at the same range of density.
Although thus far our pseudoconformal structure at

n > n1=2 ∼ 2n0 is not torpedoed by theory or experiments,
it is so drastically different from the standard one typified
by chiral effective field theories with baryons and (pseudo-)
Goldstone bosons as the only relevant d.o.f. and also
various sophisticated energy density functionals that we
are compelled to search for what could obstruct the PCM
scenario. One near future source for such an obstruction
could be the on-going LIGO/Virgo observations of gravity
waves. Should the Λ1.4 be tightened to a much smaller
value than what we have, i.e., 650, the PCM giving the

pseudoconformal velocity, would be in tension. At the
moment going down a lot more seems difficult to accom-
modate. Another is the observation made by Ref. [8] where
it has been argued that there will be a sign change from
negative to positive of the TEMT in scalar-tensor theories
of gravity at high density relevant to massive compact stars
and the positiveness is related to the condition that
v2s > 1=3. This observation would be vindicated by the
analyses of [2,5–7] which disfavor the bound v2s ≤ 1=3.
Our model gives a counter-example to this possibility. In
our PCMmodel, when n1=2 is larger than certain value, say,
n1=2 ≳ 3.0n0, there is a sign change in the TEMP, becoming
positive at n1=2. This is shown in Fig. 2 for n1=2 ¼ 3.5n0. In
addition, as argued in Ref. [5], the conformal speed of
sound could be approached only at an asymptotic density
> 50n0 due to the vanishing of the TEMT approaching
the UV fixed point of QCD. However, in our PCM, the
density independence of the TEMT—in the range of
densities relevant to compact stars—makes the sound speed
pseudoconformal for n > n1=2. How our PC sound speed at
n ∼ ð3–7Þn0 goes over to the truly conformal sound speed
at n > 50n0 (approaching perhaps the color-flavor-locked
state) remains to be understood.
We finally want to say is that, although it is straightfor-

ward to extend our framework to include strangeness which
has been discussed for several decades, we will not cover it
in the work because, due to the paucity of experimental
information and consistent theoretical tools up to date,
there is no generally accepted scenarios (see e.g., Ref. [25]
for a comprehensive discussion.)
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Note added.—After this paper was submitted, Jeong,
Mclerran and Sen suggest to regard the Quarkyonic matter
as a Fermi sphere of quark matter surrounded by a shell of
nucleon in matter [26]. Both pictures agree that there
are deconfined quasiparticles at ð2–4Þn0, ours in terms
of half-skyrmions, most likely deconfined, and Ref. [26] in
terms of deconfied quarks as constituent quarks. In addi-
tion, in both pictures, the sound velocity could approach to
v2s → 1=3—the conformal limit—at n > 2.0n0.
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FIG. 2. Trace of the energy momentum tensor as a function of
density with n1=2 ¼ 3.5n0 in PCM.

2There are approaches in the literature that hybridize hadronic
models at low density and quark models at high density [24].
Such models inevitably include phase transitions and conse-
quently different predictions.
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