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Axial-vector transitions of decuplet to octet baryons are parametrized at low energies guided by a
complete and minimal chiral Lagrangian up to next-to-leading order. It is pointed out that beyond the well-
known leading-order term, there is only one contribution at next-to-leading order. This contribution is
flavor symmetric. Therefore the corresponding low-energy constant can be determined in any strangeness
sector. As functions of this low-energy constant, we calculate the decay widths and Dalitz distributions for
the decays of decuplet baryons to octet baryons, pions, and photons and for the weak decay of the Omega
baryon to a cascade baryon, an electron, and an antineutrino.
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I. INTRODUCTION AND SUMMARY

One of the interesting processes of neutrino-nucleon
scattering is the production of the lowest-lying Delta state
[1–5]. On the theory side, the relevant quantities are the
vector and axial-vector form factors for the transition of a
nucleon to a Delta. While the vector transition form factors
can also be addressed in the electroproduction of a Delta on
a nucleon, information about the axial-vector transition
form factors is scarce. Of course, the situation is even worse
in the strangeness sector. At least, the decay width of the
reaction Ω− → Ξ0e−ν̄e has been measured [6,7].
The purpose of the present work is to study the low-

energy limit of these axial-vector transition form factors
and to point out various ways how to measure these
quantities. Recently we have established a complete and
minimal relativistic chiral Lagrangian of next-to-leading
order (NLO) for the three-flavor sector including the lowest
lying baryon octet and decuplet states [8]. Based on this
Lagrangian, we will calculate various observables that
depend on the low-energy constants (LECs) that enter
the axial-vector transition form factors.
Dealing with a chiral baryon Lagrangian at NLO means

that we carry out tree-level calculations. But why do we
bother about such NLO tree-level results, if the state of the
art seems to be one-loop calculations [2,3]? Though axial-
vector transition form factors have been calculated at the
one-loop level of chiral perturbation theory (χPT), the
numerically fairly unknown tree-level contributions have
often been formulated based on nonminimal Lagrangians.

In this way, one assumes a too large number of to be fitted
parameters, and one misses cross relations between form
factors and also between different processes. Therefore we
have decided to go one step back and analyze the NLO
structure, i.e., tree-level structure of the axial-vector tran-
sition form factors. Of course, this can only be the first step
of a more detailed investigation that should go beyond the
NLO level.
Let us start with the introduction of pertinent axial-vector

transition form factors where we can already point out
some short-comings of previous works. With B denoting a
spin-1=2 baryon from the nucleon octet and B� a spin-3=2
baryon from the Delta decuplet, the axial-vector transitions
can be written as

hB�ðp0ÞjjμAjBðpÞi ¼ ūνðp0ÞΓμνuðpÞ ð1Þ

with q ¼ p0 − p and

Γμν ¼ qμqνH0ðq2Þ þ gμνH1ðq2Þ
þ ðγμqν − =qgμνÞH2ðq2Þ þ iσμαqαqνH3ðq2Þ: ð2Þ

The advantage of the decomposition (1), (2) lies in the fact
that contributions to the axial-vector transition form factors
Hi start only at the ith chiral order for i ¼ 1, 2, 3. This is
easy to see because the momentum q carried by the axial-
vector current is a small quantity of chiral order 1. In
particular, this implies that H3 does not receive contribu-
tions from leading order (LO) and from NLO. The
“regular” contributions to H0 start also at third chiral order,
but H0 receives a contribution at LO from a Goldstone-
boson pole term.
For the following rewriting, it is of advantage to recall

the equations of motion for the spin-1=2 spinors u and the
spin-3=2 Rarita-Schwinger vector-spinors [9] uν,
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ð=p −m8ÞuðpÞ ¼ 0; ð=p0 −m10Þuνðp0Þ ¼ 0; ð3Þ

where m8=10 denotes the mass of the considered baryon
octet/decuplet state. Note that the mass differencem10 −m8

is counted as a small quantity.
The use of the form factor H3 is not very common.

Instead of iσμαqαqν one often uses a structure p0
μqν − p0·

qgμν; see e.g., [2,3] and references therein. The problem
with the latter structure is, however, that it looks like an
additional fourth independent term that contributes at NLO.
Instead, the decomposition (2) shows that there are only
three structures up to and including NLO—andH0 receives
only a Goldstone-boson pole contribution; i.e., there are
only two independent terms up to and including NLO. The
structure p0

μqν − p0 · qgμν is not required up to and includ-
ing NLO. To make contact between different ways how to
parametrize the transition form factors, one can use a
Gordon-type identity,

ūνð−2p0
μ þ ðm10 þm8Þγμ þ qμ − iσμαqαÞu ¼ 0; ð4Þ

which can easily be established using the equations of
motion (3).
We can now focus on the three form factors H0, H1 and

H2, which receive contributions already at LO or NLO,
respectively. Using the Lagrangians of LO and NLO from
[8] one obtains

H0ðq2Þ ¼ −
hAffiffiffi
2

p 1

q2 −m2
GB

kf;

H1 ¼
hAffiffiffi
2

p kf;

H2 ¼ −2cEkf ð5Þ
with the LO low-energy constant hA and the NLO low-
energy constant cE. The flavor factor kf depends on
the considered channel, i.e., on the flavors of B, B� and
the axial-vector current. Correspondingly, mGB denotes the
mass of the Goldstone-boson that can be excited in the
considered channel. The flavor factor is extracted from
ϵadeT̄ν

abcðaμÞbdBc
e.

We deduce from (5) the following information: In the
NLO approximation, one needs for all the axial-vector
decuplet-to-octet transitions only two flavor symmetric
low-energy constants. It does not matter in which flavor
channels one determines these constants. The main part of
this paper is devoted to suggestions how to pin down the
NLO low-energy constant cE.
Obviously, cE contributes differently than hA. Thus a

minimal and complete NLO Lagrangian must contain a
cE-type structure. It is missing, for instance, in [10]. It
might be interesting to explain why this low-energy con-
stant has an index “E” for “electric”. At low energies, i.e.,
in the nonrelativistic limit for the baryons, the dominant
contribution for the H2 form factor stems from γ0 and from

spatial ν. This selects the combination qja0 − q0aj, which
constitutes an electric axial-vector field strength.
We close the present section by determining hA. The

corresponding structure of the LO Lagrangian gives rise to
decays of decuplet baryons to pions and octet baryons.
From each of the measured decay widths, one can extract
an estimate for hA. This is provided in Table I, which is in
agreement with [11]. Note that this is an approximation
for the decay widths that is accurate up to and including
NLO—because there are no additional contributions at
NLO [8]. One cannot expect to obtain always the very same
numerical result for hA. But the spread in the obtained
values can be regarded as an estimate for the neglected
contributions that appear beyond NLO. Indeed, those
contributions break the flavor symmetry.
In Sec. II we present the basics of the relevant LO and

NLO Lagrangian of baryon octet plus decuplet and
Goldstone-boson octet χPT. We also specify the numerical
values of the previously determined LECs. This is the first
part of the paper. In Sec. III, we specify the relevant
interaction terms of the Ω− → Ξ0e−ν̄e decay, and we also
present the LO and NLO decay width predictions (as a
function of cE). Section IV is outlined similarly to Sec. III
but in the case of BðJ ¼ 3=2Þ → BðJ ¼ 1=2Þγπ processes.
We close by showing the cE dependence of the single
differential decay width of Ξ�0 → Ξ−πþγ and finally give
some concluding remarks.

II. CHIRAL LAGRANGIAN

The relevant part of the LO chiral Lagrangian for
baryons including the spin-3=2 decuplet states is given
by [8,12–16]

Lð1Þ
baryon ¼ trðB̄ði=D −mð8ÞÞBÞ

þ T̄μ
abcðiγμναðDαTνÞabc − γμνmð10ÞðTνÞabcÞ

þD
2
trðB̄γμγ5fuμ; BgÞ þ

F
2
trðB̄γμγ5½uμ; B�Þ

þ hA
2

ffiffiffi
2

p ðϵadeT̄μ
abcðuμÞbdBc

e þ ϵadeB̄e
cðuμÞdbTabc

μ Þ

−
HA

2
T̄μ
abcγνγ5ðuνÞcdTabd

μ ð6Þ

TABLE I. Determination of hA from different decay channels of
decuplet baryons. We used mixed states in the case of the Δ →
Nπ decay. The errors come from the experimental uncertainties of
the particle masses, decay widths, and branching ratios.

Decay hA

Δ → Nπ 2.87� 0.05
Σ�þ → Λπþ 2.39� 0.03
Σ�þ → ðΣπÞþ 2.2� 0.1
Ξ�0 → ðΞπÞ0 2.00� 0.06
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with tr denoting a flavor trace. For mesons the well-known
LO chiral Lagrangian is given by [17–19]

Lð1Þ
meson ¼ F2

π

4
trðuμuμ þ χþÞ; ð7Þ

with χ� ¼ u†χu† � uχ†u and χ ¼ 2B0ðsþ ipÞ obtained
from the scalar and pseudoscalar sources s and p. The low-
energy constant B0 is essentially the ratio of the light-quark
condensate and the square of the pion-decay constant; see,
e.g., [18–21].
We have introduced the totally antisymmetrized products

of two and three gamma matrices [22],

γμν ≔
1

2
½γμ; γν� ¼ −iσμν ð8Þ

and

γμνα ≔
1

6
ðγμγνγα þ γνγαγμ þ γαγμγν

− γμγαγν − γαγνγμ − γνγμγαÞ

¼ 1

2
fγμν; γαg ¼ þiϵμναβγβγ5; ð9Þ

respectively. Our conventions are γ5 ≔ iγ0γ1γ2γ3 and
ϵ0123 ¼ −1 (the latter in agreement with [22] but opposite
to [15,23]). If a formal manipulation program is used to
calculate spinor traces and Lorentz contractions a good
check for the convention for the Levi-Civita symbol is the
last relation in (9).
The spin-1=2 octet baryons are collected in (Ba

b is the
entry in the ath row, bth column)

B ¼

0
BB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCA: ð10Þ

The decuplet is expressed by a totally symmetric flavor
tensor Tabc with

T111 ¼ Δþþ; T112 ¼ 1ffiffiffi
3

p Δþ;

T122 ¼ 1ffiffiffi
3

p Δ0; T222 ¼ Δ−;

T113 ¼ 1ffiffiffi
3

p Σ�þ; T123 ¼ 1ffiffiffi
6

p Σ�0; T223 ¼ 1ffiffiffi
3

p Σ�−;

T133 ¼ 1ffiffiffi
3

p Ξ�0; T233 ¼ 1ffiffiffi
3

p Ξ�−; T333 ¼ Ω: ð11Þ

The Goldstone bosons are encoded in

Φ ¼

0
BB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCA;

u2 ≔ U ≔ expðiΦ=FπÞ; uμ ≔ iu†ð∇μUÞu† ¼ u†μ:

ð12Þ

The fields have the following transformation properties
with respect to chiral transformations [12,19]:

U → LUR†; u → Luh† ¼ huR†;

uμ → huμh†; B → hBh†;

Tabc
μ → hadh

b
ehcfT

def
μ ; T̄μ

abc → ðh†Þdaðh†Þebðh†ÞfcT̄μ
def:

ð13Þ

In particular, the choice of upper and lower flavor indices is
used to indicate that upper indices transform with h under
flavor transformations while the lower components trans-
form with h†.
The chirally covariant derivative for a (baryon) octet is

defined by

DμB ≔ ∂μBþ ½Γμ; B�; ð14Þ

for a decuplet T by

ðDμTÞabc ≔ ∂μTabc þ ðΓμÞaa0Ta0bc þ ðΓμÞbb0Tab0c

þ ðΓμÞcc0Tabc0 ; ð15Þ

for an antidecuplet by

ðDμT̄Þabc ≔ ∂μT̄abc − ðΓμÞa0a T̄a0bc − ðΓμÞb0b T̄ab0c

− ðΓμÞc0c T̄abc0 ; ð16Þ

and for the Goldstone boson fields by

∇μU ≔ ∂μU − iðvμ þ aμÞU þ iUðvμ − aμÞ ð17Þ

with

Γμ ≔
1

2
ðu†ð∂μ − iðvμ þ aμÞÞu

þ uð∂μ − iðvμ − aμÞÞu†Þ; ð18Þ

where v and a denote external vector and axial-vector
sources.
In (7), χþ includes the mass term when replacing the

scalar source s by the quark mass matrix. As for the baryon
masses, mð8Þ [mð10Þ] in (6) denotes the masses of the octet
(decuplet) baryons in the chiral limit. At NLO, octet and
decuplet flavor breaking terms appear (containing χþ) that
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are responsible for splitting the baryon masses such that
they are sufficiently close to the physical masses [8,24,25].
Therefore, we use the physical masses in practice.
Standard values for the coupling constants are Fπ ¼

92.4 MeV, D ¼ 0.80, F ¼ 0.46. For the pion-nucleon
coupling constant this implies gA ¼ F þD ¼ 1.26. In
the case of HA, we use estimates from large-Nc consid-
erations: HA ¼ 9

5
gA ≈ 2.27 [15,23] or HA ¼ 9F − 3D ≈

1.74 [14,26], since we lack a simple direct observable to pin
it down. Numerically we use HA ≈ 2.0.
At NLO, we have five terms that contribute to the decays

of interest [8]: two octet sector terms that are given by

bM;DtrðB̄ffμνþ ; σμνBgÞ þ bM;FtrðB̄½fμνþ ; σμνB�Þ; ð19Þ

one term from the decuplet sector given by

dMiðT̄μÞabcðfμνþ ÞcdTabd
ν ; ð20Þ

and finally two decuplet-to-octet transition terms given by

icMϵadeB̄e
cγμγ5ðfμνþ ÞdbTabc

ν

þ icEϵadeB̄e
cγμðfμν− ÞdbTabc

ν þ H:c: ð21Þ

The field strengths fμν� are given by

fμν� ≔ uFμν
L u† � u†Fμν

R u ð22Þ

with

Fμν
R;L ≔ ∂μðvν � aνÞ − ∂νðvμ � aμÞ − i½vμ � aμ; vν � aν�:

ð23Þ

Interactions with external forces are studied by the replace-
ment of the vector and axial-vector sources vν, aν. For
electromagnetic interactions we have the replacement [20],

vμ → eAμ

0
BB@

2
3

0 0

0 − 1
3

0

0 0 − 1
3

1
CCA ð24Þ

with the photon field Aμ and the proton charge e; and for
weak interactions mediated by the W-bosons we have the
replacement [20],

vμ − aμ → −
gwffiffiffi
2

p Wþ
μ

0
B@

0 Vud Vus

0 0 0

0 0 0

1
CAþ H:c: ð25Þ

with the W-boson field Wþ
μ , the Cabibbo-Kobayashi-

Maskawa matrix elements Vud, Vus [27], and the weak
gauge coupling gw (related to Fermi’s constant and the
W mass).

The values of the low-energy constants bM;D=F and dM
are determined by fitting the calculated and measured
magnetic moments of the octet and decuplet baryons,
respectively. The results are: bM;D ≈ 0.321 GeV−1, bM;F ≈
0.125 GeV−1, and dM ≈ −1.16 GeV−1. Furthermore, from
the radiative decay of a decuplet baryon to an octet baryon
and a photon, one obtains cM ≈�1.92 GeV−1. The values
of the above NLO LECs come from [8]. Next we present
two types of decay channels that can be used to determine
cE and the sign of cM, starting with Ω− → Ξ0e−ν̄e.
In view of the absence of data that one can use to help pin

down cE and the sign of cM; we stress that the purpose
of this paper is to motivate such experiments and not to
explore the uncertainties of already determined LECs.
Therefore, we stick to the central values of those LECs
for numerical results.

III. DECAY PROCESS Ω − → Ξ0e− ν̄e
There are two contributing tree-level diagrams at NLO in

χPT for the decay of the Omega baryon decaying into a
cascade baryon, an electron, and an electron antineutrino.
These are shown in Fig. 1.
At LO, we have three contributing terms: the ∼hA term

from (6), the kinetic term for the mesons in (7), as well as
the standard weak charged-current interaction term [20].
Going to NLO, we also have the ∼cM=E terms in (21).
When calculating the decay width we used Mathematica
and FeynCalc to perform the traces of the gamma
matrices [28,29]. The resulting partial decay width at
NLO contains terms proportional to h2A, c2E, c2M and
hAcE. Figure 2 illustrates the calculated and measured
branching ratio. We use the values of the LECs described
in Sec. II together with hA ¼ 2.0, i.e., the value of hA
obtained from fitting the partial decay width of Ξ� → Ξπ to
data, again see Table I.
We then fit the NLO branching ratio to the measurement,

resulting in cE: ð0.5� 1Þ GeV−1 and ð−5� 1Þ GeV−1.
The error comes from the experimental uncertainty of the
branching ratio. We cannot distinguish between the two
solutions of cE by only considering the integrated decay
width, and likewise, we cannot pin down the sign of cM
since the partial decay width contains no linear cM term.

FIG. 1. Diagrams contributing to the decay of Ω− → Ξ0e−ν̄e.
These two diagrams are the only two topologically distinct
diagrams at NLO, but note that the ΩΞW-vertex comes from
three terms.
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We can instead study the distribution of the double
differential decay width to obtain more information. In
Fig. 3 we illustrate the double differential decay dis-
tribution for the four different solutions of cM and cE in
the frame where the electron and antineutrino goes back
to back, i.e., k⃗1 þ k⃗2 ¼ 0. We chose to work with the
kinematic variables m2ðe−ν̄eÞ and cosðθÞ, where θ is the
angle between the three-momenta of the cascade baryon
and the electron. With enough statistics, it would be
possible to distinguish between all four cases, and even
with less statistics, it could be possible to at least determine
the relative sign of cM and cE, depending on where one

finds the majority of events in the Dalitz plots [i.e., closer to
cosðθÞ ¼ 1 or cosðθÞ ¼ −1]. Note also that there is an
apparent antisymmetry such that cM → −cM is equivalent
to cosðθÞ → − cosðθÞ. This is, however, only approxi-
mately true when the lepton masses are small compared
to the hadron masses. In the case of vanishing lepton
masses, we find that all linear terms of cosðθÞ in the double
differential decay width are proportional to cM. This
phenomenon is called forward-backward asymmetry [30].

IV. DECAY PROCESSES
B(J = 3=2) → B(J = 1=2)γπ

For the decay of a decuplet baryon into an octet baryon, a
pion and a photon we have six diagrams at NLO in χPT.
These diagrams are shown in Fig. 4. The interaction terms
are given by all terms in (6), (7), (19), (20), and (21).
As before, we use Mathematica and FeynCalc to perform

the traces of the gamma matrices. Furthermore, we explic-
itly checked that the Ward identity for the electromagnetic
current holds, that is Mμkμ ¼ 0 for all decays.
Concerning the values of the different LECs, we used

hA ¼ 2.4, being the average value of Table I, together with
cM ¼ þ1.92 GeV−1 and cE ¼ 0.5 GeV−1. The decays
contain infrared divergences resulting from final-state
radiation that, in the limit of vanishing photon energy,
can make a propagating particle on shell [22]. Therefore,
we used a cutoff of the photon energy at 25 MeV (in the

FIG. 2. NLO branching ratio of Ω− → Ξ0e−ν̄e as a function of
cE, together with the LO result and the experimental value [7].
The gray box illustrates the measurement uncertainty.

0
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0
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0

0.01
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FIG. 3. The double differential decay distribution of Ω− →
Ξ0ν̄ee− for the two solutions of cE and for different signs of cM.
The scale of the double differential decay distribution is linear
with an arbitrary normalization.

FIG. 4. Diagrams contributing to the decay of a decuplet baryon
into an octet baryon, a pion and a photon.
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frame where p⃗þ q⃗ ¼ 0), roughly corresponding to the
lowest detectable photon energy at the upcoming P̄ANDA
experiment (AntiprotonANnihilation in DArmstadt) [31–33]
and the Beijing Spectrometer III [34]. This cutoff can be
arbitrarily chosen to match the photon energy resolution
of any experiment. In Table II, we have collected the
predictions of all energetically possible decays and their
branching ratios at LO and NLO as well as the LEC
dependence.
Looking at Table II we see that decay widths containing

only neutral states vanish at LO, which is only natural since
neutral hadrons do not interact with photons at LO. Con-
tributions with LO LECs appear at NLO since the ampli-
tudes contain structures which are proportional to products
of LO and NLO LECs, e.g., diagram 3 gives terms like
∼hAbM;D, but with absent pure LO contributions. Further-
more, it is reassuring that the branching ratios of these
neutral decays are small at NLO since they vanish at LO;
indicating that the NLO contribution is, in general, a small
correction.
The branching ratios of decays with neutral pions in the

final state are small due to the same reason, that is, since the
pion-pion-photon vertex forbids neutral pions, the other-
wise large contribution of the pion propagator in diagram 2
disappear.
Let us briefly investigate the possible ranges of the

different LECs due to their uncertainty, starting with HA.
Varying the value of HA by �0.3 changes the decay widths
insignificantly (much less than 1%), except in the cases of
Ξ�0 → Ξ0π0γ and Δ0 → nπ0γ which change by 10% and
2%, respectively. We also considered cM ¼ −1.92 GeV−1,
which changes the decay widths by a few percents (often

much less) in the case of decays involving charged states.
The four decays with only neutral states (and vanishing
decay width at LO) changed significantly (up to 80%). But
since they vanish at LO they are prone to be more sensitive
to the values of the NLO LECs.
Once data are available, we can use these radiative

three-body decays to further investigate cE. For this
purpose, the decays Ξ�− → Ξ0π−γ and Ξ�0 → Ξ−πþγ are
of most interest, since they both have a relatively large
branching ratio of ∼10−3 and because of the small (total)
decay width of cascade baryons (as compared to broad

TABLE II. Branching ratios at LO and NLO of all energetically possible B�ðJ ¼ 3=2Þ → Bπγ decays allowed by flavor symmetry,
except Σ�� → Λπ�γ that run over the pole of Σ0. The second column is showing the LEC dependence at NLO.

Decay LEC dependence at NLO BR at LO BR at NLO

Ξ�− → Ξ−π0γ hA; dM; bM;D; bM;F 8.2 × 10−6 8.6 × 10−6

Ξ�− → Ξ0π−γ hA;HA; cM; cE; dM; bM;D 1.4 × 10−3 1.4 × 10−3

Ξ�0 → Ξ−πþγ hA;D; F; cM; cE; bM;D; bM;F 1.2 × 10−3 1.2 × 10−3

Ξ�0 → Ξ0π0γ hA;HA;D; F; cM; bM;D 0 1.9 × 10−6

Σ�þ → Σþπ0γ hA;HA;D; cM; dM; bM;D; bM;F 8.9 × 10−7 1.2 × 10−6

Σ�þ → Σ0πþγ hA;HA; F; cM; cE; dM; bM;D 3.6 × 10−5 3.7 × 10−5

Σ�− → Σ−π0γ hA; dM; bM;D; bM;F 6.3 × 10−7 6.6 × 10−7

Σ�− → Σ0π−γ hA;HA; cM; cE; dM; bM;D 4.4 × 10−5 4.5 × 10−5

Σ�0 → Σþπ−γ hA;HA;D; F; cM; cE; bM;D; bM;F 5.9 × 10−5 5.9 × 10−5

Σ�0 → Σ−πþγ hA;D; F; cM; cE; bM;D; bM;F 3.3 × 10−5 3.4 × 10−5

Σ�0 → Σ0π0γ hA;D; cM; bM;D 0 2.6 × 10−8

Σ�0 → Λπ0γ hA;D; cM; bM;D 0 3.6 × 10−6

Δþþ → pπþγ hA;HA; cM; cE; dM; bM;D; bM;F 1.7 × 10−3 1.8 × 10−3

Δþ → pπ0γ hA;HA;D; F; cM; dM; bM;D; bM;F 5.6 × 10−5 7.2 × 10−5

Δþ → nπþγ hA;HA;D; F; cM; cE; dM; bM;D 7.5 × 10−4 7.6 × 10−4

Δ0 → pπ−γ hA;HA;D; F; cM; dM; bM;D; bM;F 1.0 × 10−3 1.0 × 10−3

Δ0 → nπ0γ hA;HA;D; F; cM; bM;D 0 7.6 × 10−6

Δ− → nπ−γ hA;HA; cM; cE; dM; bM;D 2.3 × 10−3 2.3 × 10−3

FIG. 5. Impact of the two solutions of cE on the single dif-
ferential decay width of Ξ�0→Ξ−πþγ using cM¼þ1.92GeV−1.
We plot the single differential decay width down to a photon
energy of 50 MeV (otherwise the cE-dependence is hard to
display). The gray intervals come from the uncertainty of the two
solutions of cE.
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Delta baryons). We find that the decay widths of these two
cascade decays decrease by around 20% when changing to
the negative cE solution. In Fig. 5 we consider how the
single differential decay width of Ξ�0 → Ξ−πþγ changes
when varying cE.
We note that at low photon energies both solutions of cE

converge, in the region where the single differential decay
width blows up, due to the infrared divergence. Instead,
it is at higher photon energies, i.e., lower m2ðπþΞ−Þ ¼
M2

Ξ − 2MΞEγ , where we can distinguish between the two
possible cE.
To conclude, we provide two types of decay channels

that can be used to probe the axial-vector transition of a

decuplet to an octet baryon, parametrized by cE. The most
promising decays for this purpose are Ω− → Ξ0e−ν̄e,
Ξ�− → Ξ0π−γ, and Ξ�0 → Ξ−πþγ. Moreover, by studying
the double differentiable decay distribution of the Omega
decay, one can determine the sign of cM. We hope that such
experiments can be carried out at P̄ANDA and in part at
BES III.
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