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Axial-vector transitions of decuplet to octet baryons are parametrized at low energies guided by a
complete and minimal chiral Lagrangian up to next-to-leading order. It is pointed out that beyond the well-
known leading-order term, there is only one contribution at next-to-leading order. This contribution is
flavor symmetric. Therefore the corresponding low-energy constant can be determined in any strangeness
sector. As functions of this low-energy constant, we calculate the decay widths and Dalitz distributions for
the decays of decuplet baryons to octet baryons, pions, and photons and for the weak decay of the Omega
baryon to a cascade baryon, an electron, and an antineutrino.
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I. INTRODUCTION AND SUMMARY

One of the interesting processes of neutrino-nucleon
scattering is the production of the lowest-lying Delta state
[1-5]. On the theory side, the relevant quantities are the
vector and axial-vector form factors for the transition of a
nucleon to a Delta. While the vector transition form factors
can also be addressed in the electroproduction of a Delta on
a nucleon, information about the axial-vector transition
form factors is scarce. Of course, the situation is even worse
in the strangeness sector. At least, the decay width of the
reaction Q- — Eoe‘ﬁe has been measured [6,7].

The purpose of the present work is to study the low-
energy limit of these axial-vector transition form factors
and to point out various ways how to measure these
quantities. Recently we have established a complete and
minimal relativistic chiral Lagrangian of next-to-leading
order (NLO) for the three-flavor sector including the lowest
lying baryon octet and decuplet states [8]. Based on this
Lagrangian, we will calculate various observables that
depend on the low-energy constants (LECs) that enter
the axial-vector transition form factors.

Dealing with a chiral baryon Lagrangian at NLO means
that we carry out tree-level calculations. But why do we
bother about such NLO tree-level results, if the state of the
art seems to be one-loop calculations [2,3]? Though axial-
vector transition form factors have been calculated at the
one-loop level of chiral perturbation theory (yPT), the
numerically fairly unknown tree-level contributions have
often been formulated based on nonminimal Lagrangians.
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In this way, one assumes a too large number of to be fitted
parameters, and one misses cross relations between form
factors and also between different processes. Therefore we
have decided to go one step back and analyze the NLO
structure, i.e., tree-level structure of the axial-vector tran-
sition form factors. Of course, this can only be the first step
of a more detailed investigation that should go beyond the
NLO level.

Let us start with the introduction of pertinent axial-vector
transition form factors where we can already point out
some short-comings of previous works. With B denoting a
spin-1/2 baryon from the nucleon octet and B* a spin-3/2
baryon from the Delta decuplet, the axial-vector transitions
can be written as

(B*(p")|jalB(p)) = i, (p")T*" u(p) (1)

with ¢ = p’ — p and

I = q"q"Ho(q*) + ¢ H\(q")
+ (r"q* — 49" H1(q%) + ic"q.q"H3(q*).  (2)

The advantage of the decomposition (1), (2) lies in the fact
that contributions to the axial-vector transition form factors
H,; start only at the ith chiral order for i = 1, 2, 3. This is
easy to see because the momentum ¢ carried by the axial-
vector current is a small quantity of chiral order 1. In
particular, this implies that H5; does not receive contribu-
tions from leading order (LO) and from NLO. The
“regular” contributions to H|, start also at third chiral order,
but H, receives a contribution at LO from a Goldstone-
boson pole term.

For the following rewriting, it is of advantage to recall
the equations of motion for the spin-1/2 spinors « and the
spin-3/2 Rarita-Schwinger vector-spinors [9] u,),
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(#—mg)u(p) =0, (§' =mio)u,(p’) = 0. (3)
where mg;;o denotes the mass of the considered baryon
octet/decuplet state. Note that the mass difference m;, — mg
is counted as a small quantity.

The use of the form factor H; is not very common.
Instead of ic,,q“g, one often uses a structure p,q, — p'-
q9u; see e.g., [2,3] and references therein. The problem
with the latter structure is, however, that it looks like an
additional fourth independent term that contributes at NLO.
Instead, the decomposition (2) shows that there are only
three structures up to and including NLO—and H, receives
only a Goldstone-boson pole contribution; i.e., there are
only two independent terms up to and including NLO. The
structure p;,q, — p' - qg,, is not required up to and includ-
ing NLO. To make contact between different ways how to
parametrize the transition form factors, one can use a
Gordon-type identity,

uu(_2p//4 + (mIO + mS)yﬂ + qﬂ - i%a‘]“)u = 0, (4)

which can easily be established using the equations of
motion (3).

We can now focus on the three form factors H,, H; and
H,, which receive contributions already at LO or NLO,
respectively. Using the Lagrangians of LO and NLO from
[8] one obtains

he 1
Hy(q?) = ——=
ole’) V24— még !
ha
H, =—F—k,,
1 \/z f
H2 = —ZCEkf (5)

with the LO low-energy constant /1, and the NLO low-
energy constant cg. The flavor factor k, depends on
the considered channel, i.e., on the flavors of B, B* and
the axial-vector current. Correspondingly, mgg denotes the
mass of the Goldstone-boson that can be excited in the
considered channel. The flavor factor is extracted from
evdeTv, (a")sBs.

We deduce from (5) the following information: In the
NLO approximation, one needs for all the axial-vector
decuplet-to-octet transitions only two flavor symmetric
low-energy constants. It does not matter in which flavor
channels one determines these constants. The main part of
this paper is devoted to suggestions how to pin down the
NLO low-energy constant cg.

Obviously, cg contributes differently than /4. Thus a
minimal and complete NLO Lagrangian must contain a
cg-type structure. It is missing, for instance, in [10]. It
might be interesting to explain why this low-energy con-
stant has an index “E” for “electric”. At low energies, i.e.,
in the nonrelativistic limit for the baryons, the dominant
contribution for the H, form factor stems from y° and from

TABLEI. Determination of 4, from different decay channels of
decuplet baryons. We used mixed states in the case of the A —
N decay. The errors come from the experimental uncertainties of
the particle masses, decay widths, and branching ratios.

Decay hy

A — Nr 2.87 +£0.05
5t > ArnT 2.39 4+ 0.03
> = (Za) T 22+0.1
20 = (Br)? 2.00 + 0.06

spatial v. This selects the combination g/a® — ¢°a/, which
constitutes an electric axial-vector field strength.

We close the present section by determining /4. The
corresponding structure of the LO Lagrangian gives rise to
decays of decuplet baryons to pions and octet baryons.
From each of the measured decay widths, one can extract
an estimate for /4. This is provided in Table I, which is in
agreement with [11]. Note that this is an approximation
for the decay widths that is accurate up to and including
NLO—because there are no additional contributions at
NLO [8]. One cannot expect to obtain always the very same
numerical result for /,. But the spread in the obtained
values can be regarded as an estimate for the neglected
contributions that appear beyond NLO. Indeed, those
contributions break the flavor symmetry.

In Sec. II we present the basics of the relevant LO and
NLO Lagrangian of baryon octet plus decuplet and
Goldstone-boson octet yPT. We also specify the numerical
values of the previously determined LECs. This is the first
part of the paper. In Sec. III, we specify the relevant
interaction terms of the Q= — =07, decay, and we also
present the LO and NLO decay width predictions (as a
function of cg). Section IV is outlined similarly to Sec. III
but in the case of B(J = 3/2) — B(J = 1/2)yx processes.
We close by showing the ¢y dependence of the single
differential decay width of 20 - E~ 7%y and finally give
some concluding remarks.

II. CHIRAL LAGRANGIAN

The relevant part of the LO chiral Lagrangian for
baryons including the spin-3/2 decuplet states is given
by [8,12-16]

1 = /.
Lo on = w(B(iP — ms))B)
T (17 (DTY) ™ = g 1) (TV)5°)

D F
+ Etr(BJ’”Vs{”wB}) + 5“(37’”75[”,“ B])

hA ade T b pc Re dabc
+ﬁ(€ TZbc(uM)dBe+€udeBc(uﬂ)bTu )
Hy - >Ta
AT s (T (©
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with tr denoting a flavor trace. For mesons the well-known
LO chiral Lagrangian is given by [17-19]

o _Fz
Lineson = Ttr(uyuﬂ +)(+>’ (7)

with y = u'yu’ + uy'u and y = 2By(s + ip) obtained
from the scalar and pseudoscalar sources s and p. The low-
energy constant B is essentially the ratio of the light-quark
condensate and the square of the pion-decay constant; see,
e.g., [18-21].

We have introduced the totally antisymmetrized products
of two and three gamma matrices [22],

1
y =Sty = —io (8)
and
Hva 1 Mo U O Vo, 0y A oy U
e S A S U
A e S e )
1 :
=5 = +ie Py, )
respectively. Our conventions are ys:=iy’y!y?y® and
€o123 = —1 (the latter in agreement with [22] but opposite

to [15,23]). If a formal manipulation program is used to
calculate spinor traces and Lorentz contractions a good
check for the convention for the Levi-Civita symbol is the
last relation in (9).

The spin-1/2 octet baryons are collected in (Bj, is the
entry in the ath row, bth column)

1 50, 1 +
\/52 +\/6A z p
B= by -5 +A om0 (10)
== =0 -2
= =) \/(.’A

The decuplet is expressed by a totally symmetric flavor
tensor 7%°¢ with

1

T111:A++ T112:_A+
9 \/§ bl

T122 _ %AO, T222 — A_,

T113 — Lz*Jr T123 LE*O T223 — 1 T
3 N N
1 1

T133 — _E*O T233 k= T333 EYe) (11)

V3 VA

The Goldstone bosons are encoded in

20+ e V2rt V2Kt
o = V2= =%+ \/%17 V2K° |,
- 20 2
V2K V2K - AN
u? == U = exp(i®/F,), u, = iut(V,U)u’ = u.

(12)

The fields have the following transformation properties
with respect to chiral transformations [12,19]:

U — LUR?, u — Luh™ = huR",
u, — huﬂhT, B — hBh',
T — hhb ST Ty = (WA )5 (W)ETY, .

(13)

In particular, the choice of upper and lower flavor indices is
used to indicate that upper indices transform with # under
flavor transformations while the lower components trans-
form with A".

The chirally covariant derivative for a (baryon) octet is
defined by

D'B = 0"B + [I*, B], (14)
for a decuplet T by
(DpT)abc = ayTabc 4 (F”)Z,T”/bc 4 (Fy)llz/Tab’c
+ (T)e, Tk (15)
for an antidecuplet by
(DHT) gy = T e — (T* )Z/Ta’bc — (I )Z,Tab’c
— (M) T apers (16)
and for the Goldstone boson fields by
V,U:=0,U~-iv,+a,)U+iU(v,—a,) (17)
with

r,:= ! (u™(8, —i(v, + a,))u

2
+u(0, —i(v, —aﬂ))u"'), (18)

where v and a denote external vector and axial-vector
sources.

In (7), y, includes the mass term when replacing the
scalar source s by the quark mass matrix. As for the baryon
masses, mg) [mjg)] in (6) denotes the masses of the octet
(decuplet) baryons in the chiral limit. At NLO, octet and
decuplet flavor breaking terms appear (containing y, ) that
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are responsible for splitting the baryon masses such that
they are sufficiently close to the physical masses [8,24,25].
Therefore, we use the physical masses in practice.

Standard values for the coupling constants are F, =
92.4 MeV, D =0.80, F =0.46. For the pion-nucleon
coupling constant this implies g, = F + D = 1.26. In
the case of H,, we use estimates from large-N, consid-
erations: Hy = %gA ~227 [1523] or Hy =9F -3D =
1.74 [14,26], since we lack a simple direct observable to pin
it down. Numerically we use H, =~ 2.0.

At NLO, we have five terms that contribute to the decays
of interest [8]: two octet sector terms that are given by

bM,Dtr(B{fMD’ G/HJB}) + bM,Ftr(B[fiy’ GﬂDB])’ (19)
one term from the decuplet sector given by
dMi(T/t)abc (flj-y)fiTgbd’ (20)

and finally two decuplet-to-octet transition terms given by

. N d h n
lCMeadeBg},ﬂyS (fiy)be/l ¢

+ iC€aq BSy, (f*)ITe¢ + H.c. (21)
The field strengths f%” are given by
= uFut £ uTFiRYu (22)
with
Figp =0 (0" £a¥) — 0 (v £ a*) — i[v" £ ¥, v* £ a].
(23)
Interactions with external forces are studied by the replace-

ment of the vector and axial-vector sources v¥, a*. For
electromagnetic interactions we have the replacement [20],

(e}
oS O

v —>eAﬂ

! (24)

S O wi
|

S W=
|
W=

with the photon field A, and the proton charge e; and for
weak interactions mediated by the W-bosons we have the
replacement [20],

0 Vud Vux
v”—aﬂa—%w,f 0 0 0 |+He (25
0 0 0

with the W-boson field Wj, the Cabibbo-Kobayashi-
Maskawa matrix elements V,,, V, [27], and the weak
gauge coupling g, (related to Fermi’s constant and the
W mass).

The values of the low-energy constants by p/r and dy
are determined by fitting the calculated and measured
magnetic moments of the octet and decuplet baryons,
respectively. The results are: by, p ~ 0.321 GeV~l, b MF R
0.125 GeV~!, and d), ~ —1.16 GeV~!. Furthermore, from
the radiative decay of a decuplet baryon to an octet baryon
and a photon, one obtains ¢, = 4-1.92 GeV~!. The values
of the above NLO LECs come from [8]. Next we present
two types of decay channels that can be used to determine
cg and the sign of ¢, starting with Q= — =07,

In view of the absence of data that one can use to help pin
down cg and the sign of c;,; we stress that the purpose
of this paper is to motivate such experiments and not to
explore the uncertainties of already determined LECs.
Therefore, we stick to the central values of those LECs
for numerical results.

III. DECAY PROCESS Q- — El-7,

There are two contributing tree-level diagrams at NLO in
xPT for the decay of the Omega baryon decaying into a
cascade baryon, an electron, and an electron antineutrino.
These are shown in Fig. 1.

At LO, we have three contributing terms: the ~h, term
from (6), the kinetic term for the mesons in (7), as well as
the standard weak charged-current interaction term [20].
Going to NLO, we also have the ~cy /g terms in (21).
When calculating the decay width we used Mathematica
and FeynCalc to perform the traces of the gamma
matrices [28,29]. The resulting partial decay width at
NLO contains terms proportional to h%, c%, c¢3, and
hycg. Figure 2 illustrates the calculated and measured
branching ratio. We use the values of the LECs described
in Sec. II together with h, = 2.0, i.e., the value of h,
obtained from fitting the partial decay width of E* — Ex to
data, again see Table I.

We then fit the NLO branching ratio to the measurement,
resulting in cz: (0.5+1) GeV™! and (=5+1) GeV~..
The error comes from the experimental uncertainty of the
branching ratio. We cannot distinguish between the two
solutions of ¢y by only considering the integrated decay
width, and likewise, we cannot pin down the sign of ¢y,
since the partial decay width contains no linear c,; term.

0

FIG. 1. Diagrams contributing to the decay of Q™ — E’¢77,.
These two diagrams are the only two topologically distinct
diagrams at NLO, but note that the QEW-vertex comes from
three terms.
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FIG. 2. NLO branching ratio of Q= — E%~7, as a function of
cg, together with the LO result and the experimental value [7].
The gray box illustrates the measurement uncertainty.

We can instead study the distribution of the double
differential decay width to obtain more information. In
Fig. 3 we illustrate the double differential decay dis-
tribution for the four different solutions of ¢); and cg in
the frame where the electron and antineutrino goes back

to back, i.e., 121 +7$2 = 0. We chose to work with the
kinematic variables m?(e~7,) and cos(6), where 0 is the
angle between the three-momenta of the cascade baryon
and the electron. With enough statistics, it would be
possible to distinguish between all four cases, and even
with less statistics, it could be possible to at least determine
the relative sign of ¢, and cj, depending on where one

0.06

1.0 1.0

0.04

0.5 0.5

0.04

& %o.us S %
:‘;’ 0.0 | @ 0.0 |
8 8
0.02
-0.5 -0.5 0.02
0.01
-1.0: -1.0
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
m3(eV,) [GeV?] )] m?(e7V,) [GeV?] 0
(@) cpr = 1.92 GeV™1, (b) car = 1.92 GeV !,
ce =05 GeV! cp = —5 GeV!
1.0 1.0 0.06
0.04
0.5 i 0.5 i
@ §0.03 § %0.04
o 0.0 » 0.0
8 8
0.02
-05 -0.5 0.02
0.01
—1. -1.0
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
m3(eV,) [GeV?] 0 m?(e7V,) [GeV?] 0
(©) epr = —1.92 GeV™1, (d) epr = —1.92 GeV™1,
ce =05 GeV™! cg =—5 GeV™!
FIG. 3. The double differential decay distribution of Q~ —

E%0,e~ for the two solutions of ¢ and for different signs of c,;.
The scale of the double differential decay distribution is linear
with an arbitrary normalization.

finds the majority of events in the Dalitz plots [i.e., closer to
cos(0) =1 or cos(d) = —1]. Note also that there is an
apparent antisymmetry such that c; - —cj, is equivalent
to cos(@) — —cos(f). This is, however, only approxi-
mately true when the lepton masses are small compared
to the hadron masses. In the case of vanishing lepton
masses, we find that all linear terms of cos(6) in the double
differential decay width are proportional to c;,. This
phenomenon is called forward-backward asymmetry [30].

IV. DECAY PROCESSES
B(J=3/2) > B(J=1/2)yn

For the decay of a decuplet baryon into an octet baryon, a
pion and a photon we have six diagrams at NLO in yPT.
These diagrams are shown in Fig. 4. The interaction terms
are given by all terms in (6), (7), (19), (20), and (21).

As before, we use Mathematica and FeynCalc to perform
the traces of the gamma matrices. Furthermore, we explic-
itly checked that the Ward identity for the electromagnetic
current holds, that is M, k* = 0 for all decays.

Concerning the values of the different LECs, we used
h, = 2.4, being the average value of Table I, together with
cy = +1.92 GeV™! and cg = 0.5 GeV~!. The decays
contain infrared divergences resulting from final-state
radiation that, in the limit of vanishing photon energy,
can make a propagating particle on shell [22]. Therefore,
we used a cutoff of the photon energy at 25 MeV (in the

FIG. 4. Diagrams contributing to the decay of a decuplet baryon
into an octet baryon, a pion and a photon.
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TABLE II.  Branching ratios at LO and NLO of all energetically possible B*(J = 3/2) — Bry decays allowed by flavor symmetry,
except ** — Axty that run over the pole of X0, The second column is showing the LEC dependence at NLO.

Decay LEC dependence at NLO BR at LO BR at NLO
=2 > E_JTOJ/ hA, dM. bM.D’ bM,F 8.2 x 107° 8.6 x 107°
=2 > Eoff}’ haHy, cppocpody, by p 1.4 x 107 14107
B0 5 B aty ha.D,F,cy, cp.byp, bur 1.2 %1073 1.2 %1073
=20 Eoﬂ'o}/ hA,HA.D,F, CMabM,D 0 1.9 x 107°
>t — ¥taly ha,Hy,D,cp,dpyy, by p. by p 8.9 x 1077 1.2x 1076
p s —>Zoﬂ'+y hA,HA,F,CM,CE,dM,bM,D 3.6 x ]0_5 3.7 x 10_5
= = 22l hy,dyrs barps by r 6.3 x 1077 6.6 x 1077
> 5 X Y hA7HA5CM5CE5dM’bM,D 44 x 107 4.5 x 1075
>0 5 ¥tn 4 hy,Hy, D, F,cy, CEvbM.DvbM.F 5.9x 107> 5.9x 107>
>0 2775+7 hy,D,F,cy,cg, bM.DvbM.F 33x 107 3.4 %107
20 5 3070y ha,D.cp. by p 0 2.6x 1078
=0 - Azl ha.D,cy by p 0 3.6 x107°
ATt = prty ha,Ha,cprscpodyrs barps by p 1.7 x 1073 1.8 x 1073
At > paly ha, Hy. D, F,cpr,dyg, by ps by p 5.6 x107? 7.2 x 107
At = naty ha,Hy, D, F,cyp, g dyg, by p 7.5 % 107 7.6 x 10~
A = pry hy,Hy,D,F,cp,dp. by p, by r 1.0 x 1073 1.0 x 1073
AO — nady ha,Hy. D, F,cpr, by p 0 7.6 x 107°
A~ > nn7y haHy, ey cp,dy, by p 23 x 1073 2.3 x 1073

frame where p + g = 0), roughly corresponding to the
lowest detectable photon energy at the upcoming PANDA
experiment (Antiproton ANnihilation in DArmstadt) [31-33]
and the Beijing Spectrometer III [34]. This cutoff can be
arbitrarily chosen to match the photon energy resolution
of any experiment. In Table II, we have collected the
predictions of all energetically possible decays and their
branching ratios at LO and NLO as well as the LEC
dependence.

Looking at Table II we see that decay widths containing
only neutral states vanish at LO, which is only natural since
neutral hadrons do not interact with photons at LO. Con-
tributions with LO LECs appear at NLO since the ampli-
tudes contain structures which are proportional to products
of LO and NLO LECs, e.g., diagram 3 gives terms like
~haby p, but with absent pure LO contributions. Further-
more, it is reassuring that the branching ratios of these
neutral decays are small at NLO since they vanish at LO;
indicating that the NLO contribution is, in general, a small
correction.

The branching ratios of decays with neutral pions in the
final state are small due to the same reason, that is, since the
pion-pion-photon vertex forbids neutral pions, the other-
wise large contribution of the pion propagator in diagram 2
disappear.

Let us briefly investigate the possible ranges of the
different LECs due to their uncertainty, starting with H,.
Varying the value of H, by £0.3 changes the decay widths
insignificantly (much less than 1%), except in the cases of
20 - 2%% and A° — nz' which change by 10% and
2%, respectively. We also considered c,; = —1.92 GeV~!,
which changes the decay widths by a few percents (often

much less) in the case of decays involving charged states.
The four decays with only neutral states (and vanishing
decay width at LO) changed significantly (up to 80%). But
since they vanish at LO they are prone to be more sensitive
to the values of the NLO LECs.

Once data are available, we can use these radiative
three-body decays to further investigate cg. For this
purpose, the decays =~ — 2077y and E0 - E~ 7ty are
of most interest, since they both have a relatively large
branching ratio of ~10™3 and because of the small (total)
decay width of cascade baryons (as compared to broad

70
ce=05 [GeVl]

) [GeV™]

------ cg=-5[GeV]

—_
=
=

10® drE0-n*E y)/dm?(r*

2.14 2.16 2.18 2.20 222 224 226
m*(*E7) [GeV?]

FIG. 5. TImpact of the two solutions of cg on the single dif-
ferential decay width of Z*0 = E~z %y using ¢y = +1.92GeV~L.
We plot the single differential decay width down to a photon
energy of 50 MeV (otherwise the cg-dependence is hard to
display). The gray intervals come from the uncertainty of the two
solutions of c.
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Delta baryons). We find that the decay widths of these two
cascade decays decrease by around 20% when changing to
the negative cg solution. In Fig. 5 we consider how the
single differential decay width of 2 — E~z%y changes
when varying cy.

We note that at low photon energies both solutions of cg
converge, in the region where the single differential decay
width blows up, due to the infrared divergence. Instead,
it is at higher photon energies, i.e., lower m?(ztE7) =
MZ% — 2MzE,, where we can distinguish between the two
possible cg.

To conclude, we provide two types of decay channels
that can be used to probe the axial-vector transition of a

decuplet to an octet baryon, parametrized by cg. The most
promising decays for this purpose are Q~ — Z'¢7,,
2 — 2%y, and ¥ - E-z"y. Moreover, by studying
the double differentiable decay distribution of the Omega
decay, one can determine the sign of c¢;,. We hope that such
experiments can be carried out at PANDA and in part at
BES III.
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