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Motivated by the 2.8σ discrepancy observed between the BABAR measurement and the standard model
prediction of the CP asymmetry in τ → KSπντ decays, as well as the prospects of future measurements at
Belle II, we revisit this observable in this paper. Firstly, we reproduce the known CP asymmetry due to
K0 − K̄0 mixing by means of the reciprocal basis, which is convenient when a KSðLÞ is involved in the final
state. As the Kπ tensor form factor plays a crucial role in generating a nonzero direct CP asymmetry that
can arise only from the interference of vector and tensor operators, we then present a dispersive
representation of this form factor, with its phase obtained in the context of chiral theory with resonances,
which fulfills the requirements of unitarity and analyticity. Finally, the τ → KSπντ decays are analyzed both
within a model-independent low-energy effective theory framework and in a scalar leptoquark scenario. It
is observed that the CP anomaly can be accommodated in the model-independent framework, even at the
1σ level, together with the constraint from the branching ratio of τ− → KSπ

−ντ decay; it can be, however,
marginally reconciled only at the 2σ level, due to the specific relation between the scalar and tensor
operators in the scalar leptoquark scenario. Once the combined constraints from the branching ratio and the
decay spectrum of this decay are taken into account, these possibilities are, however, both excluded, even
without exploiting further the stronger bounds from the (semi)leptonic kaon decays under the assumption
of lepton-flavor universality, as well as from the neutron electric dipole moment and D − D̄ mixing under
the assumption of SUð2Þ invariance of the weak interactions.

DOI: 10.1103/PhysRevD.100.113006

I. INTRODUCTION

As the Kobayashi-Maskawa ansatz [1] for CP violation
in the quark sector of the standard model (SM) is far too
small to explain the observed baryon asymmetry of the
Universe [2–5], we need to look for other sources of CP
violation in different ways. This makes the CP-violating
observables particularly interesting probes of new physics
(NP) beyond the SM. In this respect, the hadronic decays
of the τ lepton, besides serving as a clean laboratory for
testing various low-energy aspects of the strong interac-
tion [6,7], may also allow us to explore nonstandard
CP-violating interactions [8–10].
In this paper, we shall focus on the CP asymmetry in

τ → KSπντ decays. After the initial null results from CLEO

[11] and Belle [12], a nonzero CP asymmetry was reported
for the first time by the BABAR Collaboration, with the
result given by [13]

AQ ¼ Γðτþ → ½πþπ−�“KS”
πþν̄τÞ−Γðτ−→ ½πþπ−�“KS”

π−ντÞ
Γðτþ→ ½πþπ−�“KS”

πþν̄τÞþΓðτ−→ ½πþπ−�“KS”
π−ντÞ

¼ ð−0.36�0.23�0.11Þ%; ð1:1Þ
where the first uncertainty is statistical and the second
systematic. The subscript “KS” indicates that the intermedi-
ate KS is reconstructed in terms of a πþπ− final state with
invariant mass aroundMK and at a decay time close to theKS
lifetime. Within the SM, as there is no direct CP violation in
hadronic τ decays at the tree level in weak interaction,1 this
asymmetry arises solely from the CP violation in K0-K̄0

mixing [15,16], and is calculated to be [17,18]

ASM
CP ¼

R t2
t1 dt½ΓðK0ðtÞ → ππÞ − ΓðK̄0ðtÞ → ππÞ�R t2
t1 dt½ΓðK0ðtÞ → ππÞ þ ΓðK̄0ðtÞ → ππÞ�

≈ ð3.32� 0.06Þ × 10−3; ð1:2Þ
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1The direct CP asymmetry generated by the second-order
weak interaction is estimated to be of order 10−12, and can be
therefore neglected safely [14].
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whereK0ðtÞ [K̄0ðtÞ] denotes the time-evolved state identified
at time t ¼ 0 as a pure K0 [K̄0], and the second line is
obtained after neglecting the small correction from directCP
violation in K → πþπ− decays and when t1 ≪ τS and τS ≪
t2 ≪ τL [τSðLÞ being the KSðLÞ lifetime]. Such a CP asym-
metry was first predicted by Bigi and Sanda [17] but with a
sign mistake [18]. As emphasized by Grossman and Nir [18]
(see also Ref. [19]), in the calculation of thisCP asymmetry,
the interference between the amplitudes of intermediate KS
and KL is as important as the pure KS amplitude, and hence
the measured CP asymmetry depends sensitively on the
decay time interval over which it is integrated. After taking
into account the KS → πþπ− decay-time dependence of the
event selection efficiency, the BABAR Collaboration
obtained a multiplicative correction factor, 1.08� 0.01,
for the CP asymmetry, with the resulting experimental data
given by Eq. (1.1) and the corresponding SM prediction
changed to ASM

CP ¼ ð0.36� 0.01Þ% [13]. Thus, a 2.8σ
discrepancy is observed between the BABAR measurement
and the SM prediction and, if confirmed with a higher
precision by Belle and/or Belle II [20], would be a clear NP
signal.
Such a CP anomaly, together with the prospects of future

measurements at Belle II [20], has motivated several studies
of possible direct CP asymmetries in τ → KSπντ decays
due to nonstandard interactions [21–26]. As argued in
Refs. [21,24], due to the lack of a relative strong phase, an
explanation with scalar operators is already excluded,2 and
only the interference of vector and tensor operators can
provide a possible strong phase difference, leaving new
tensor interactions as the only potential NP explanation.
Here, whether the tensor interaction is admissible to
account for the anomaly or not depends crucially on the
Kπ tensor form factor. In Refs. [21,28,29], the tensor form
factor was assumed to be a real constant, which is
motivated by the analysis of Kl3 (K → πlνl with
l ¼ e, μ) data [16], and the relative strong phase, being
now just the phase of the vector form factor, was found to
be large enough to produce a sizable CP asymmetry. This
assumption was, however, pointed out to be incorrect by
Cirigliano, Crivellin, and Hoferichter [24]. They demon-
strated that, as the same spin-1 resonances contributing to
the vector form factor will equivalently contribute to the
tensor one, the crucial interference between vector and
tensor phases is suppressed by at least 2 orders of mag-
nitude due to Watson’s final-state interaction theorem [30],
and the amount of CP asymmetry that a tensor operator
can produce is, therefore, strongly suppressed [24]. Such a

conclusion is, however, based on the assumption that the
inelastic contributions to the phases of vector and tensor
form factors are of similar size but potentially opposite in
sign [24].
In order to obtain sensible constraints on nonstandard

interactions from τ → KSπντ decays, the exact distributions
of the Kπ form factors, including both their moduli and
phases, as a function of s ¼ q2, the invariant mass squared
of the Kπ final state, are needed. For the vector and scalar
form factors, either the Breit-Wigner parametrizations
[31–34] or the dispersive representations [35–44] can be
used, with the relevant parameters determined via a
successful fit to the measured Kπ invariant mass spectrum
[31]. For the tensor form factor, however, there exists no
experimental data that can guide us to construct it, and we
have to rely on theory. While a q2-independent tensor form
factor or its normalization [45] can be derived from the
leading-order chiral perturbation theory (χPT) [46–49] with
tensor sources [50,51], we have to get its q2 dependence by
solving numerically the dispersion relation [25,52], with its
phase obtained in the context of chiral theory with
resonances (RχT) [53,54]. It should be mentioned that
the tensor form factor given in Ref. [52] is derived at the
lowest chiral order [being Oðp4Þ in the chiral counting
[50] ] of RχT and fails to satisfy the unitarity requirement,
which could be compensated by including the contributions
from the next-to-leading-order (NLO) χPT Lagrangian with
tensor sources. Although the spin-1 resonances can be
described equivalently by vector or antisymmetric tensor
fields [53,54], it will be shown that the former is more
convenient in describing the interactions of tensor currents
with the resonances. The unitarity property will also be
satisfied automatically when the NLO [being Oðp6Þ in the
chiral counting [50] ] terms with the model II prescription
[54] are properly taken into account. In this paper,
motivated by these two observations and following
Refs. [25,52], we shall present an alternative dispersive
representation of the tensor form factor, with its phase
obtained in the context of RχT, which fulfills the require-
ments of unitarity and analyticity.
Taking as inputs the three-times-subtracted (for the

vector form factor) [37,38] and the coupled-channel (for
the scalar form factor) [39–41] dispersive representations,
together with our result of the tensor form factor, we shall
then analyze the τ → KSπντ decays both within a model-
independent low-energy effective theory framework and in
a scalar leptoquark (LQ) scenario [55]. It will be shown that
the CP anomaly can be accommodated in the model-
independent framework, even at the 1σ level, together with
the constraint from the branching ratio of τ− → KSπ

−ντ
decay. In the LQ scenario, however, this anomaly can be
marginally reconciled only at the 2σ level, due to the
specific relation between the scalar and tensor operators.
Once the combined constraints from the branching ratio
and the decay spectrum of this decay are taken into account,

2Although the interference of vector and scalar operators could
still contribute to the CP asymmetry due to long-distance QED
corrections [27], the scalar contribution is strongly suppressed
and will be of little phenomenological relevance when the
constraint from the τ → KSπντ branching ratio is taken into
account [24].
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these possibilities are, however, both excluded, even with-
out exploiting further the stronger bounds from the (semi)
leptonic kaon decays [56] under the assumption of lepton-
flavor universality, as well as from the neutron electric
dipole moment (EDM) and D-D̄ mixing under the
assumption of SUð2Þ invariance of the weak interactions
[24]. It is therefore quite difficult to explain such a CP
anomaly within the frameworks considered here.
Our paper is organized as follows: In Sec. II, we

recalculate the CP asymmetry due to K0-K̄0 mixing by
means of the reciprocal basis, and reproduce the result
given in Ref. [18]. In Sec. III, the τ → KSπντ decays are
analyzed both within the model-independent framework
and in the scalar LQ scenario. Section IV is devoted to the
calculation of the Kπ tensor form factor in the context of
χPT with tensor sources and RχT with the spin-1 reso-
nances described by the conventional vector fields.
Numerical results and discussions are then presented in
Sec. V. Our conclusions are finally made in Sec. VI. For
convenience, all the input parameters used throughout this
paper are collected in the Appendix.

II. CP ASYMMETRY IN τ → KSπντ
DECAYS WITHIN THE SM

Before discussing the CP asymmetry in τ → KSπντ
decays within the SM, one should first notice that the
τþ (τ−) decay produces initially a K0 (K̄0) state due to the
ΔS ¼ ΔQ rule, and the relevant Feynman diagrams at
the tree level in weak interaction are shown in Fig. 1. As the
involved CKM matrix element Vus is real and the strong
phase must be the same in these two CP-related processes,
the transition amplitudes within the SM should satisfy

Aðτþ → K0πþν̄τÞ ¼ Aðτ− → K̄0π−ντÞ: ð2:1Þ

Due to the K0-K̄0 mixing, on the other hand, the exper-
imentally reconstructed kaons are the mass (jKSi and jKLi)
rather than the flavor (jK0i and jK̄0i) eigenstates, which, in
the absence of CP violation in the system, are related to
each other via [57]

jKS;Li ¼
1ffiffiffi
2

p ðjK0i � eiζjK̄0iÞ; ð2:2Þ

where ζ is the spurious phase brought about by the CP
transformation, CPjK0i ¼ eiζjK̄0i [57]. Then, one can get

Γðτþ → KS;Lπ
þν̄τÞ ¼

1

2
Γðτþ → K0πþν̄τÞ;

Γðτ− → KS;Lπ
−ντÞ ¼

1

2
Γðτ− → K̄0π−ντÞ; ð2:3Þ

which, when taken together with Eq. (2.1), would indicate
that there exists no CP asymmetry in τ → KSπντ decays
within the SM. Furthermore, the contribution from second-
order weak interaction is estimated to be of order 10−12, and
can be therefore neglected safely [14].
Once the CP violation in K0-K̄0 mixing [15,16] is

included, however, a nonzero CP asymmetry would appear
in τ → KSπντ decays, as elaborated in Refs. [17,18]. In
order to see this clearly, we shall follow the convention
specified in Ref. [57] and recalculate this asymmetry by
means of the reciprocal basis [57–64]. In the presence of
CP violation but with CPT invariance still assumed, the
two mass eigenkets are now given by [57]

jKS;Li ¼ pjK0i � qjK̄0i; ð2:4Þ

with the normalization jpj2 þ jqj2 ¼ 1, and the correspond-
ing mass eigenbras read [57]

hK̃S;Lj ¼
1

2
ðp−1hK0j � q−1hK̄0jÞ; ð2:5Þ

which form the so-called reciprocal basis (hK̃Sj, hK̃Lj) that
is featured by both the orthornormality and the complete-
ness conditions [57]:

hK̃SjKSi ¼ hK̃LjKLi ¼ 1; hK̃SjKLi ¼ hK̃LjKSi ¼ 0;

jKSihK̃Sj þ jKLihK̃Lj ¼ 1: ð2:6Þ

Then, the time-evolution operator for the K0-K̄0 system is
determined by

FIG. 1. Tree-level Feynman diagrams for the decay τþ → K0πþν̄τ (left) as well as its CP-conjugated mode τ− → K̄0π−ντ (right)
within the SM.

CP ASYMMETRY IN τ → KSπντ DECAYS … PHYS. REV. D 100, 113006 (2019)

113006-3



expð−iHtÞ ¼ e−iμStjKSihK̃Sj þ e−iμLtjKLihK̃Lj; ð2:7Þ

where μS ¼ MS − i=2ΓS and μL ¼ ML − i=2ΓL are the two
eigenvalues of the 2 × 2 effective Hamiltonian H used to
describe the K0-K̄0 mixing.
The intermediate KS in τ → KSπντ decays is not directly

observed in experiment, but reconstructed via a πþπ− final
state with Mππ ≈MK and a time difference t ≈ τS between
the τ and the K decay [18]. However, as the CP symmetry

is violated in K0-K̄0 mixing [15,16], the final state πþπ−
can be obtained not only from KS but also from KL, for
long decay times of kaons. As a consequence, the complete
amplitude for the process τþ → ½πþπ−�πþν̄τ involves the
amplitude for the initial τþ decay into the intermediate state
KS;Lπ

þν̄τ, the time-evolution amplitude for this state, and
finally the amplitude for the decay into ½πþπ−�πþν̄τ.
Suppressing the reference to πþν̄τ, we can therefore write
the complete amplitude as [64]

Aðτþ → KS;L → πþπ−Þ ¼ hπþπ−jTjKSie−iμSthK̃SjTjτþi þ hπþπ−jTjKLie−iμLthK̃LjTjτþi

¼ 1

2p
hπþπ−jTjKSie−iμSthK0jTjτþi þ 1

2p
hπþπ−jTjKLie−iμLthK0jTjτþi; ð2:8Þ

in which Eq. (2.5) and the ΔS ¼ ΔQ rule have been used to obtain the second line. Then, the complete time-dependent
decay width for τþ → ½πþπ−�πþν̄τ can be written as3

Γðτþ → ½πþπ−�πþν̄τÞ ¼ jhK0jTjτþij2 jhπ
þπ−jTjKSij2
4jpj2

× ½e−ΓSt þ jηþ−j2e−ΓLt þ 2jηþ−je−Γt cosðϕþ− − ΔmtÞ� ð2:9Þ

¼ Γðτþ → K0ÞΓðK0ðtÞ → πþπ−Þ; ð2:10Þ

where Γ ¼ ΓLþΓS
2

and Δm ¼ ML −MS denote respectively
the average width and the mass difference of the K0 − K̄0

system, while the CP-violating amplitude ratio ηþ− is
defined as

ηþ− ¼ hπþπ−jTjKLi
hπþπ−jTjKSi

; ð2:11Þ

with jηþ−j ¼ ð2.232� 0.011Þ × 10−3 and ϕþ− ¼ ð43.51�
0.05Þ° [16]. From Eq. (2.9) and the corresponding decay
width for the CP-conjugated process τ− → ½πþπ−�π−ντ
[obtained from Eq. (2.9) by replacing p andþ2jηþ−jwith q
and −2jηþ−j, respectively], one can see that, for the sum of
the two decay widths, both the interference (the last) and

the pure KL (the second) term are suppressed compared
to the pure KS (the first term in the bracket) contribution.
For the difference of the two decay widths, however, the
interference between the amplitudes of KS and KL is found
to be as important as the pure KS amplitude [18].
The time dependence of the decay width in Eq. (2.9)

makes the measurement of the CP asymmetry in τ →
KSπντ decays sensitive to the experimental cuts [18]: one
has to take into account not only the efficiency as a function
of the kaon decay time, but also the kaon energy in the
laboratory frame to account for the time dilation.
Parametrizing all these experiment-dependent effects by
a function FðtÞ [18], one can write the total CP asymmetry
as [21]

ACPðt1; t2Þ ¼
Γτþ

R t2
t1 dtFðtÞΓðK0ðtÞ → πþπ−Þ − Γτ−

R t2
t1 dtFðtÞΓðK̄0ðtÞ → πþπ−Þ

Γτþ
R t2
t1 dtFðtÞΓðK0ðtÞ → πþπ−Þ þ Γτ−

R t2
t1 dtFðtÞΓðK̄0ðtÞ → πþπ−Þ ¼

Aτ
CP þ AK

CPðt1; t2Þ
1þ Aτ

CPA
K
CPðt1; t2Þ

; ð2:12Þ

where Γτ� ¼ Γðτ� → K0ðK̄0Þπ�ν̄τðντÞÞ instead of Γðτ� → KSπ
�ν̄τðντÞÞ as defined in Ref. [21], while Aτ

CP and AK
CPðt1; t2Þ

are defined, respectively, as

3Our expression of the decay width is slightly different from that given in Ref. [18], because the latter corresponds to the time-
dependent decay width of K0 decaying into the 2π system with isospin I ¼ 0, which contains both the πþπ− and π0π0 components,

h2π; I ¼ 0j ¼
ffiffi
2
3

q
hπþπ−j −

ffiffi
1
3

q
hπ0π0j. As the intermediateKS is reconstructed via the πþπ− final state in experiment [13], one has to use

ηþ− instead of ϵ ¼ h2π;I¼0jTjKLi
h2π;I¼0jTjKSi.
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Aτ
CP ≡ Γðτþ → K0πþν̄τÞ − Γðτ− → K̄0π−ντÞ

Γðτþ → K0πþν̄τÞ þ Γðτ− → K̄0π−ντÞ
; ð2:13Þ

AK
CPðt1; t2Þ≡

R t2
t1 dtFðtÞ½ΓðK0ðtÞ → πþπ−Þ − ΓðK̄0ðtÞ → πþπ−Þ�R t2
t1 dtFðtÞ½ΓðK0ðtÞ → πþπ−Þ þ ΓðK̄0ðtÞ → πþπ−Þ� : ð2:14Þ

Here Aτ
CP denotes the direct CP asymmetry induced by

potential NP dynamics, while AK
CPðt1; t2Þ represents the

indirect CP asymmetry originating from theK0-K̄0 mixing.
Within the SM, Γτþ ¼ Γτ− , implying that Aτ

CP ¼ 0, and
only AK

CPðt1; t2Þ makes a nonzero contribution [17,18].
Plugging into Eq. (2.14) the expressions of the time-

dependent decay widths ΓðK0ðtÞ → πþπ−Þ and ΓðK̄0ðtÞ →
πþπ−Þ [see Eqs. (2.9) and (2.10)] and neglecting all the
terms suppressed by Oðjηþ−j2Þ, one can finally reproduce
the result given in Ref. [18],4

ASM
CP ≈þ2ℜeðϵÞ ¼ 3.32 × 10−3 for t1 ≪ Γ−1

S

and Γ−1
S ≪ t2 ≪ Γ−1

L ; ð2:15Þ

in which the approximations with jηþ−j≈2ℜeðϵÞffiffi
2

p , ϕþ− ≈ 45°,

Γ ≈ ΓS
2
, and Δm ≈ ΓS

2
[63], as well as a particular efficiency

function FðtÞ [18],

FðtÞ ¼
�
1; t1 < t < t2
0; otherwise

; ð2:16Þ

have been used. The SM CP asymmetry in Eq. (2.15), after
being multiplied by the correction factor 1.08� 0.01 [13],

is then changed to be ð0.36� 0.01Þ%, as obtained by the
BABAR Collaboration [13].

III. τ → KSπντ DECAYS IN THE PRESENCE
OF NP DYNAMICS

WhenNP dynamics beyond the SMare present, a nonzero
directCP asymmetry Aτ

CP can exist and hence contributes to
the total CP asymmetry ACPðt1; t2Þ. As neither the pseudo-
scalar nor the axial-vector interaction can produce the Kπ
final state due to the parity conservation in strong interaction,
and the scalar interaction cannot create a nonzero direct CP
asymmetry due to the lack of a relative strong phase, we are
left only with the tensor interaction as a possible mechanism
[21,24]. In this section, we shall firstly start with a model-
independent low-energy effective Lagrangian that contains
all the potential NP operators contributing to the τ → KSπντ
decays, and analyze the tensor operator contribution to Aτ

CP.
Then, we shall discuss Aτ

CP in a scalar LQ scenario, which
also contains the relevant operators.

A. Model-independent analysis

For the strangeness-changing hadronic τ decays, the most
general model-independent effective Lagrangian at the
characteristic scale μτ ¼ mτ can be written as [24,25,65]5

Leff ¼ −
GFVusffiffiffi

2
p fð1þ ϵLÞτ̄γμð1 − γ5Þντ · ūγμð1 − γ5Þsþ ϵRτ̄γμð1 − γ5Þντ · ūγμð1þ γ5Þs

þ τ̄ð1 − γ5Þντ · ū½ϵS − ϵPγ5�sþ ϵT τ̄σμνð1 − γ5Þντ · ūσμνð1 − γ5Þsg þ H:c:

¼ −
GFVusffiffiffi

2
p ð1þ ϵL þ ϵRÞfτ̄γμð1 − γ5Þντ · ū½γμ − ð1 − 2ϵ̂RÞγμγ5�s

þ τ̄ð1 − γ5Þντ · ū½ϵ̂S − ϵ̂Pγ5�sþ 2ϵ̂T τ̄σμνð1 − γ5Þντ · ūσμνsg þ H:c:; ð3:1Þ

where GF is the Fermi constant, and σμν ¼ i
2
½γμ; γν�. The

effective couplings ϵi parametrize the nonstandard contri-
butions and can be generally complex, with the SM case
recovered when all ϵi ¼ 0. We have also introduced the
notations ϵ̂i ¼ ϵi=ð1þ ϵL þ ϵRÞ for i ¼ R, S, P, T, with the
corresponding quark currents possessing definite parities

and being therefore convenient to describe the vacuum to
Kπ matrix elements due to the parity conservation [25].
Here we have assumed Lorentz and SUð3ÞC ×Uð1Þem
invariance, as well as the absence of light nonstandard

4If the KL contributions to the decay width in Eq. (2.9) were
neglected, on the other hand, one would obtain a result which is
of the same magnitude but opposite in sign with the prediction
made in Ref. [17].

5This is adopted from the most general flavor-dependent low-
energy effective Lagrangian governing the semileptonic dj →
uilνl transitions, which can be found, e.g., in Refs. [66–68].
It should be noted that, once the lepton-flavor universality is
assumed, the effective couplings ϵi in Eq. (3.1) would also
receive the constraints from (semi)leptonic kaon [56] and
hyperon [69] decays.
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particles when constructing Leff .
6 Right-handed and

wrong-flavor neutrino contributions have also been ne-
glected in Eq. (3.1), because they do not interfere with the
SM amplitudes.

Starting with Eq. (3.1) and working in the rest frame of
the τ lepton, one can then obtain the differential decay
width of the decay τ− → K̄0π−ντ [24,25],

dΓðτ− → K̄0π−ντÞ
ds

¼ G2
FjFþð0ÞVusj2m3

τSEW
384π3s

j1þ ϵL þ ϵRj2
�
1 −

s
m2

τ

�
2

λ1=2ðs;M2
K;M

2
πÞ

× ½XVA þℜeϵ̂SXS þℜeϵ̂TXℜeT þ ℑmϵ̂TXℑmT þ jϵ̂Sj2XS2 þ jϵ̂T j2XT2 �; ð3:2Þ

where s¼ðpKþpπÞ2, and λðs;M2
K;M

2
πÞ ¼ ½s − ðMK þMπÞ2�½s − ðMK −MπÞ2�. The product jFþð0ÞVusj ¼ 0.21654ð41Þ

is determined most precisely from the analysis of semileptonic kaon decays [73,74]. SEW ¼ 1.0201ð3Þ encodes the short-
distance electroweak correction [75] and is simply written as an overall constant [25]. We have also introduced the
following quantities:

XVA ¼ 1

2s2

�
3jF̃0ðsÞj2Δ2

Kπ þ jF̃þðsÞj2
�
1þ 2s

m2
τ

�
λðs;M2

K;M
2
πÞ
�
; ð3:3Þ

XS ¼
3

smτ
jF̃0ðsÞj2

Δ2
Kπ

ms −mu
; ð3:4Þ

XℜeT ¼ −
6

smτ

���� FTð0Þ
Fþð0Þ

����jF̃TðsÞjjF̃þðsÞj cos ½δTðsÞ − δþðsÞ�λðs;M2
K;M

2
πÞ; ð3:5Þ

XℑmT ¼ −
6

smτ

���� FTð0Þ
Fþð0Þ

����jF̃TðsÞjjF̃þðsÞj sin ½δTðsÞ − δþðsÞ�λðs;M2
K;M

2
πÞ; ð3:6Þ

XS2 ¼
3

2m2
τ
jF̃0ðsÞj2

Δ2
Kπ

ðms −muÞ2
; ð3:7Þ

XT2 ¼ 4

s

���� FTð0Þ
Fþð0Þ

����
2

jF̃TðsÞj2
�
1þ s

2m2
τ

�
λðs;M2

K;M
2
πÞ: ð3:8Þ

Here we have split FiðsÞ ¼ Fið0ÞF̃iðsÞ (with i ¼ þ; 0; T corresponding to the vector, scalar, and tensor form factors,
respectively) into Fið0Þ (form factors at zero momentum transfer) and F̃iðsÞ (the corresponding normalized form factors),
with FiðsÞ defined, respectively, as [25]

hK̄0ðpKÞπ−ðpπÞjs̄γμuj0i ¼
�
ðpK − pπÞμ −

ΔKπ

s
qμ
�
FþðsÞ þ

ΔKπ

s
qμF0ðsÞ; ð3:9Þ

hK̄0ðpKÞπ−ðpπÞjs̄uj0i ¼
ΔKπ

ms −mu
F0ðsÞ; ð3:10Þ

hK̄0ðpKÞπ−ðpπÞjs̄σμνuj0i ¼ iFTðsÞðpμ
Kp

ν
π − pν

Kp
μ
πÞ; ð3:11Þ

where qμ ¼ ðpK þ pπÞμ, ΔKπ ¼ M2
K −M2

π , and the equa-
tion of motion has been used in Eq. (3.10).
The differential decay rate of the CP-conjugated process

τþ → K0πþν̄τ is obtained from Eq. (3.2) by changing the
sign of the term ℑmϵ̂T , which implies that only this term
contributes to the direct CP asymmetry. From the definition

6One should keep in mind that, unless some NP between μτ ¼
mτ and the electroweak scale v ¼ 246 GeV is assumed, the low-
energy effective Lagrangian given by Eq. (3.1) comes generally
from an SUð2Þ-invariant form [70–72]. This implies that the
effective tensor operator contributing to τ → KSπντ decays is also
constrained by other processes—for example, by the neutron
EDM and D-D̄ mixing [24].
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of Eq. (2.13), the direct CP asymmetry due to nonstandard
tensor interaction can finally be written as [24,25]

Aτ
CP ¼ 2ℑmϵ̂TG2

FjFþð0ÞVusj2SEW
256π3m2

τΓðτ → KSπντÞ
���� FTð0Þ
Fþð0Þ

����
×
Z

m2
τ

sKπ

ds
λ3=2ðs;M2

K;M
2
πÞðm2

τ − sÞ2
s2

× jF̃þðsÞjjF̃TðsÞj sin ½δTðsÞ − δþðsÞ�; ð3:12Þ

where sKπ ¼ ðMK þMπÞ2, and δTðsÞ and δþðsÞ are
the strong phases of the tensor and vector form
factors, respectively. The decay width Γðτ− → KSπ

−ντÞ,
as well as the branching ratio Bðτ− → KSπ

−ντÞ ¼
Γðτ− → KSπ

−ντÞ=Γτ, with Γτ being the total decay width
of the τ− lepton, are obtained by integrating Eq. (3.2) over s
from sKπ to m2

τ .

B. Analysis in the scalar LQ scenario

In this section, we study the direct CP asymmetry in the
scalar LQ scenario [55], which was proposed by Bauer and
Neubert to address the RDð�Þ , RK, and ðg − 2Þμ anomalies,
and can also generate the required tensor operator. In this
scenario, only a single TeV-scale scalar LQ ϕ, transforming
as ð3; 1;− 1

3
Þ under the SM gauge group, is added to the SM

particle content, and its couplings to fermions are described
by the Lagrangian [55]

Lϕ
int ¼ Q̄c

LλLiτ2Lϕ� þ ūcRλRlRϕ
� þ H:c:; ð3:13Þ

where λL;R are the Yukawa coupling matrices in flavor
space, QL and L denote the left-handed quark and lepton
doublet, while uR and lR are the right-handed up-type
quark and lepton singlet, with ψc ¼ Cψ̄T and ψ̄c ¼ ψTC
(C ¼ iγ2γ0) being the charge-conjugated spinors.
With the SM as well as the tree-level ϕ-mediated con-

tributions included, the resulting effective Hamiltonian
governing the τ → KSπντ decays can be written as

Heff ¼
GFVusffiffiffi

2
p f½1þ CVðμϕÞ�τ̄γμð1 − γ5Þντ · ūγμð1 − γ5Þs

þ CSðμϕÞτ̄ð1 − γ5Þντ · ūð1 − γ5Þs
þ CTðμϕÞτ̄σμνð1 − γ5Þντ · ūσμνð1 − γ5Þsg
þ H:c:; ð3:14Þ

where CVðμϕÞ, CSðμϕÞ, and CTðμϕÞ denote the Wilson
coefficients of the corresponding operators at the matching
scale μϕ ¼ Mϕ and are given, respectively, as [55,76]

CVðμϕÞ ¼
λL�uτ λLsντ

4
ffiffiffi
2

p
GFVusM2

ϕ

;

CSðμϕÞ ¼ −4CTðμϕÞ ¼ −
λR�uτ λLsντ

4
ffiffiffi
2

p
GFVusM2

ϕ

; ð3:15Þ

in which all the couplings λL;Rij are generally complex, with
i and j denoting the flavors of quarks and leptons,
respectively. In order to resum the potentially large loga-
rithmic effects, these Wilson coefficients should be evolved
down to the characteristic scale μτ ¼ mτ. The vector current
is conserved, and hence the corresponding Wilson coef-
ficient is scale independent, while the evolution of the
scalar (CS) and tensor (CT) ones at the leading logarithmic
approximation can be written schematically as [77]

CS;TðμτÞ ¼ RS;Tðμτ; μϕÞCS;TðμϕÞ; ð3:16Þ

with the corresponding evolution functions RS;Tðμτ; μϕÞ
given by

RS;Tðμτ; μϕÞ≡
�
αsðmbÞ
αsðμτÞ

� γS;T

2β
ð4Þ
0

�
αsðmtÞ
αsðmbÞ

� γS;T

2β
ð5Þ
0

�
αsðμϕÞ
αsðmtÞ

� γS;T

2β
ð6Þ
0 ;

ð3:17Þ

where β
ðnfÞ
0 ¼ 11 − 2nf=3 is the leading-order coefficient

of the QCD beta function, with nf being the number of
active quark flavors, and γS ¼ −8 [78] and γT ¼ 8=3 [79]
are the leading-order anomalous dimensions of the scalar
and tensor currents, respectively.
Matching the relevant terms of the effective Hamiltonian

[Eq. (3.14)] onto that of the model-independent effective
Lagrangian [Eq. (3.1)] at the same scale μτ ¼ mτ, we get

ϵL ¼ CVðμτÞ; ϵR ¼ 0;

ϵS ¼ ϵP ¼ CSðμτÞ; ϵT ¼ CTðμτÞ;

ϵ̂R ¼ 0; ϵ̂T ¼ ĈT ≡ CTðμτÞ
1þ CVðμτÞ

;

ϵ̂S ¼ ϵ̂P ¼ ĈS ≡ CSðμτÞ
1þ CVðμτÞ

¼ −4
RSðμτ; μϕÞ
RTðμτ; μϕÞ

ĈT: ð3:18Þ

Due to the specific relation CSðμϕÞ ¼ −4CTðμϕÞ at the
matching scale μϕ ¼ Mϕ, we are actually left with only one
effective coupling ĈT in the scalar LQ scenario. This
feature makes a sensitive difference compared to the
model-independent case, as will be discussed later.

IV. FORM FACTORS IN τ → KSπντ DECAYS

To set bounds on the nonstandard interactions, one
needs to have a precise knowledge of the Kπ form factors
introduced in Eqs. (3.9)–(3.11). To this end, one of the most
appropriate approaches is the dispersive representation of
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these form factors, which warrants the properties of
unitarity and analyticity. In this section, we shall first
recapitulate the Kπ vector and scalar form factors, and then
present a calculation of the tensor form factor in the context
of χPT with tensor sources and RχT with bothK�ð892Þ and
K�ð1410Þ included.

A. Brief review of the vector and scalar form factors

For the normalized vector form factor F̃þðsÞ, we
shall adopt the optimal three-times-subtracted dispersion
relation [37,38]

F̃þðsÞ ¼ exp

�
λ0þ

s
M2

π−
þ 1

2
ðλ00þ − λ02þÞ

s2

M4
π−

þ s3

π

Z
scut

sKπ

ds0
δþðs0Þ

ðs0Þ3ðs0 − s − iϵÞ
	
; ð4:1Þ

where one subtraction constant is fixed by Fþð0Þ ¼ 1,
while the other two, λ0þ and λ00þ, describe the slope and
curvature of F̃þðsÞ, respectively, when performing its
Taylor expansion around s ¼ 0, and hence encode the
dominant low-energy behavior of F̃þðsÞ. As the calculation
of λ0þ and λ00þ requires the perfect knowledge of the form-
factor phase δþðsÞ up to infinity, which is unrealistic, it
becomes more suitable to treat them as free parameters that
capture our ignorance of the higher-energy part of the
dispersion integral [37,38]. The constants λ0þ and λ00þ can
then be determined by fitting to the experimental data
[37,38,42].7 With such a procedure, the subtraction terms
cannot cancel perfectly the polynomial terms coming from
the dispersion integral, and the use of the three-times-
subtracted dispersion representation would thus spoil the
asymptotic behavior of the vector form factor in the limit
s → ∞ [81–83]. This deficiency is, however, considered to
be acceptable, because the vector form factor is employed
only up to about

ffiffiffi
s

p
≃ 1.7 GeV, which is still in the

resonance region [37,38]. The three-times-subtracted
dispersion representation of F̃þðsÞ has also been checked
explicitly to be a decreasing function of s within the entire
range applied, which renders this approach credible [38].
The procedure proposed in Refs. [37,38] is featured by

the fact that the subtraction terms reduce the sensitivity of
the dispersion integral to the higher-energy contribution,
with the associated constants being less model dependent,
and the impact of our ignorance of the form-factor
phase δþðsÞ at relatively higher energies turns out to be
very small. This makes it reasonable to determine the
form-factor phase δþðsÞ in the context of RχT with the

two vector resonances K�ð892Þ and K�ð1410Þ included
[35–38]. Notice that, in the elastic region below roughly
1.2 GeV, the phase δþðsÞ equals the scattering phase δ1=21 ðsÞ
of the Kπ system with spin 1 and isospin 1=2, as required
by Watson’s theorem [30]. The cutoff scut introduced in
Eq. (4.1) is used to quantify the suppression of the higher-
energy part of the integral, and the stability of the numerical
results has been checked by varying scut in the range
mτ <

ffiffiffiffiffiffiffi
scut

p
< ∞ [37,38].

Detailed information on the Kπ vector form factor can
also be obtained from the measured τ → KSπντ spectrum
[31]. This is, however, possible only for its modulus but not
for its phase, as the extraction of the latter requires a fit
function that preserves the analytic structure of the form
factor. Indeed, the phase fitted via a superposition of Breit-
Wigner functions with complex coefficients cannot be
physical, as it does not vanish at threshold and violates
Watson’s theorem long before the resonance K�ð1410Þ
starts to play an effect [24]. Thus, one cannot rely on the
formalism developed in Ref. [31] to study the CP asym-
metry in τ → KSπντ decays.
For the scalar form factor, a thorough description that

takes into account analyticity, unitarity, and the large-NC
limit of QCD, as well as the couplings to Kη and Kη0
channels has been presented in Ref. [40] and later
updated in Refs. [41,84,85]. Here we shall employ such
a coupled-channel dispersive representation, with the
relevant numerical tables obtained via a combined analysis
of the τ− → KSπ

−ντ and τ− → K−ηντ decays [42].
8

B. Calculation of the Kπ tensor form factor

Unlike for the vector and scalar form factors, there exist
no experimental data to guide us to construct the tensor
form factor, and we have to rely on theory to perform this
task. In this section, following Refs. [25,52], we present a
new calculation of the Kπ tensor form factor.

1. Result at the lowest chiral order
of χPT with tensor sources

When the external tensor field t̄μν ¼ P
8
a¼0

λa
2
t̄μνa , with

λ0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
13×3, and λ1;…;8 being the eight Gell-Mann

matrices, is switched on, the lowest-order [Oðp4Þ in the
chiral counting] χPT Lagrangian can be written as [50,51]

LχPT
4 ¼ Λ1htμνþ fþμνi − iΛ2htμνþ uμuνi

þ Λ3htμνþ tþμνi þ Λ4htμνþ i2; ð4:2Þ
where h� � �i denotes the trace in flavor space and, among the
four operators, only the one with the coefficient Λ2 contrib-
utes to the τ → KSπντ decays. The building blocks tμνþ ¼
u†tμνu†þutμν†u and uμ¼i½u†ð∂μ−irμÞu−uð∂μ−ilμÞu†� are

7If the phase δþðsÞ were exactly known, these two constants
could also be determined by the spectral sum rules dictated by the
asymptotic behavior of F̃þðsÞ [80], but in this case the three-
times-subtracted dispersion representation given by Eq. (4.1)
would reduce to the standard once-subtracted version.

8We thank Pablo Roig for providing us with these necessary
numerical tables obtained in Ref. [42].
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built out of the unitary nonlinear representation of the
pseudo-Goldstone fields, uðϕaÞ ¼ exp ð i

2Fπ
ϕaλaÞ [86,87],

where ϕa ¼ ðπ; K; ηÞ, Fπ ¼ 92.3ð1Þ MeV is the physical
pion decay constant [16], and lμ and rμ are the left- and right-
handed sources, respectively. The chiral tensor sources tμν

and tμν† are related to t̄μν via [50]

t̄μν ¼ Pμναβ
L tαβ þ Pμναβ

R t†αβ; tμν ¼ Pμναβ
L t̄αβ; ð4:3Þ

in whichPμναβ
R ¼ 1

4
ðgμαgνβ − gμβgνα þ iϵμναβÞ, with the con-

vention ϵ0123 ¼ þ1 for the Levi-Civita tensor ϵμναβ, and the
algebraic identity σμνγ5 ¼ i

2
ϵμναβσαβ has been used to get the

relation Pμναβ
L ¼ ðPμναβ

R Þ†.
Taking the functional derivative of Eq. (4.2) with respect

to the tensor source t̄μν, with all the other external sources
set to zero, expanding uðϕaÞ in powers of ϕa, and then
taking the suitable hadronic matrix element, one can finally
get [25,45,52]



K̄0ðpKÞπ−ðpπÞ

����δL
χPT
4

δt̄μν

����0
�
¼ i

Λ2

F2
π
ðpμ

Kp
ν
π −pν

Kp
μ
πÞ: ð4:4Þ

This, together with Eq. (3.11), fixes the normalization
FTð0Þ ¼ Λ2

F2
π
at the lowest chiral order in χPT. Although the

low-energy constantΛ2 cannot be determined from the χPT
itself, its value can be inferred either from other low-energy
constants using the short-distance constraint in Eq. (4.13)
(see the next section for more details) or from the lattice
result for the normalization FTð0Þ [88]. Here we shall resort
to the lattice result, FTð0Þ ¼ 0.417ð15Þ [88], to determine
Λ2 ¼ 11.1� 0.4 MeV, which is consistent within errors
with that quoted in Refs. [16,52,89,90] for the ππ channel.9

This value of Λ2 will be used in our numerical analysis.

2. Including the spin-1 resonances
in the context of RχT

As the invariant mass squared s in τ → KSπντ decays
varies from the Kπ threshold sKπ up to m2

τ , contributions to
the form factors from light resonances, giving therefore the
s dependence of these form factors, should also be included
for a refined analysis. As the spin-1 resonances can be
described equivalently by vector or antisymmetric tensor
fields [53,54], the same resonances that contribute to FþðsÞ
will also appear in FTðsÞ. To discuss the chiral couplings of
these resonances to the pseudo-Goldstone fields in the
presence of tensor currents, we shall use the more conven-
tional vector representation of these spin-1 degrees of
freedom, named the model II prescription in Ref. [54].

Explicitly, the RχT Lagrangian that is linear in the octet
vector field V̂μ and contains the couplings to the tensor
source at the lowest chiral order can be constructed as [54]

LII ¼ LkinðV̂μÞ −
1

2
ffiffiffi
2

p ðfVhV̂μνf
μν
þ i þ igVhV̂μν½uμ; uν�iÞ

− fTVhV̂μνt
μν
þ i; ð4:5Þ

with the kinetic spin-1 part given by [54]

LkinðV̂μÞ ¼ −
1

4
hV̂μνV̂

μν − 2M2
VV̂μV̂

μi; ð4:6Þ

where V̂μν ¼ ∇μV̂ν −∇νV̂μ, with the covariant deriva-
tive defined by ∇μV̂ν ¼ ∂μV̂ν þ ½Γμ; V̂ν� and Γμ ¼
1
2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�. Here, fμνþ ¼ uFμν

L u† þ
u†Fμν

R u is expressed in terms of the field strength tensors
Fμν
L ¼∂μlν−∂νlμ−i½lμ;lν� and Fμν

R ¼∂μrν−∂νrμ−i½rμ;rν�,
which are associated with the non-Abelian external fields
lμ and rμ, respectively. The last term in Eq. (4.5) is added to
describe the interactions between spin-1 vector resonances
and external tensor fields. The three couplings fV , gV , and
fTV are all real and given, respectively, as [54]

fV ¼ FV

MV
¼

ffiffiffi
2

p
Fπ

MV
; gV ¼ GV

MV
¼ Fπffiffiffi

2
p

MV

;

h0jūð0Þσμνsð0ÞjVðpÞi ¼ ifTVðϵμpν − ϵνpμÞ; ð4:7Þ

where the first two result from the equivalence of the
model I and II prescriptions for the spin-1 resonances
[54], while fTV is determined from the one-particle to
vacuum matrix element [91].
With Eq. (4.5) in hand, the effective action SII for a

single vector meson exchange can then be written as [54]

SII ¼
1

2

Z
dxdyhJμνIIðxÞΔII

μν;ρσðx − yÞJρσIIðyÞi; ð4:8Þ

where the antisymmetric current JμνII and the resonance
propagator ΔII

μν;ρσ are defined, respectively, by [54]

JμνII¼
1

2
ffiffiffi
2

p ðfVfμνþ þigV ½uμ;uν�ÞþfTVt
μν
þ ; ð4:9Þ

ΔII
μν;ρσðx − yÞ ¼

Z
d4k
ð2πÞ4

e−ik·ðx−yÞ

k2 −M2
V þ iϵ

× ½gμρkνkσ − gμσkνkρ − ðμ ↔ νÞ�: ð4:10Þ

From the effective action SII given by Eq. (4.8), one can
easily derive the resonance contribution to the Kπ tensor
form factor due to the exchange of the lightest vector
resonance K�ð892Þ [25,52]. After including also the

9When comparing the values of Λ2 quoted in Refs. [16,52,
89,90], one should keep in mind the different conventions
used for Λ2. Our convention is consistent with that used in
Refs. [50,52].
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lowest-order χPT contribution given by Eq. (4.4), one then
obtains the Kπ tensor form factor

FTðsÞ ¼
Λ2

F2
π

�
1þ

ffiffiffi
2

p
fTVgV
Λ2

s
M2

K� − s

�
; ð4:11Þ

with the corresponding Feynman diagrams in the context of
χPT and RχT depicted in Fig. 2.
In the large-NC limit within RχT, although an infinite

tower of resonances with the same quantum numbers as
that of K�ð892Þ should in principle be included in the
computation of resonance-exchange amplitudes, it turns
out that only the second state K�ð1410Þ will actually play a
crucial role in the inelastic region [92]. Accordingly,
Eq. (4.11) should be changed to

FTðsÞ ¼
Λ2

F2
π

�
1þ

ffiffiffi
2

p
fTVgV
Λ2

s
M2

K� − s
þ

ffiffiffi
2

p
fT0V g

0
V

Λ2

s
M2

K�0 − s

�
;

ð4:12Þ

where g0V and fT0V are the counterparts of the corresponding
unprimed couplings introduced in Eq. (4.5). We require
further that FTðsÞ decrease at least as 1=s when s → ∞
[81–83], resulting therefore in the short-distance constraint

fTVgV þ fT0V g
0
V ¼ Λ2ffiffiffi

2
p : ð4:13Þ

As the resonance exchange amplitudes are dominated by
the first pole, one can then determine Λ2 from Eq. (4.13) in
terms of the known values of fTV and gV . Taking as inputs
Fπ¼92.3MeV andMV¼770MeV, we get Λ2≃

ffiffiffi
2

p
fTVgV≃ffiffiffi

2
p

F2
π=MV≃15.6MeV, which is compatible with the

lattice result Λ2 ¼ 11.1� 0.4 MeV [88].
Analogous to the case for the vector form factor with the

same two resonances included [37], the tensor form factor
given by Eq. (4.12) can also be rewritten as

FTðsÞ ¼
Λ2

F2
π

�
M2

K� þ βs
M2

K� − s
−

βs
M2

K�0 − s

�
; ð4:14Þ

where the mixing parameter, β ¼ −
ffiffiffi
2

p
fT0V g

0
V=Λ2 ¼ffiffiffi

2
p

fTVgV=Λ2 − 1, is introduced to characterize the relative
weight of the two resonances, and plays the same role as the
parameter γ does for the vector form factor [37]. Although
the parameter β cannot be determined directly from data for
the moment, we can estimate it from the fitted value of γ
with a three-times-subtracted dispersion representation of
the vector form factor [37,38,42]. To this end, one needs to
first find out the relation between the RχT couplings fT0V
and f0V ≃

ffiffiffi
2

p
F0
V . The large-NC asymptotic analysis of

hVVi, hTTi, and hVTi correlators suggests that a pattern
with possible alternation in sign,

ξn ¼
fTVn
fVn

¼ ð−1Þn 1ffiffiffi
2

p ; ð4:15Þ

exists for the whole JPC ¼ 1−− excited states [91]. While
ξK� is now confirmed to be positive [93–97], the sign of ξK�0

cannot be determined yet. Keeping both of these two
possibilities, one can then derive the relation10

β

γ
¼ −

ffiffiffi
2

p
fT0V g

0
V=Λ2

−F0
VG

0
V=F

2
π

¼ ð−1Þn
ffiffiffi
2

p
F2
π

MV 0Λ2

; ð4:16Þ

where MV 0 ≃Mρ0 ¼ 1440 MeV in the limit of SUð3Þ
flavor symmetry. Thus, together with Λ2 ¼ 11.1 MeV
and Fπ ¼ 92.3 MeV, one can express the parameter β in
terms of γ via

β ≃�0.75γ; ð4:17Þ

where both positive and negative signs of ξK�0 will be
considered in this paper. Intriguingly, our estimate,
β ≃ −0.75γ, gives also a support for the assumption made
in Ref. [24] that the inelastic contributions to the phases
of vector and tensor form factors are of similar size but
potentially opposite in sign.
As in the case for the vector form factor [35,37], the

denominator in Eq. (4.14) should be modified by including
the energy-dependent width γnðsÞ (proportional to the
imaginary part of the one-loop contribution in the context
of χPT [35,48,49]) and also by shifting the pole mass (due
to the real part of the loop contribution) of the resonances,
as required by analyticity [52]. After factoring out the
normalization FTð0Þ at s ¼ 0, one arrives at the reduced
tensor form factor F̃TðsÞ≡ FTðsÞ=FTð0Þ, which is now
given explicitly as

F̃TðsÞ ¼
m2

K� − κK�H̃Kπð0Þ þ βs
DðmK� ; γK� Þ −

βs
DðmK�0 ; γK�0 Þ ; ð4:18Þ

FIG. 2. Feynman diagrams contributing to FTðsÞ at the lowest
chiral order of χPT (left) and from the lightest vector resonance
[K�ð892Þ] exchange in the context of RχT (right). The crossed
circles denote the insertion of a tensor current, and the blob
represents the interaction vertex of a vector resonance (double
line) with two pseudoscalar mesons (dashed line).

10Here we have used the relation g0V ¼ G0
V=MV 0 , which

also results from the equivalence of models I and II for the
spin-1 degrees of freedom [54].
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with the normalization FTð0Þ and the denominator
Dðmn; γnÞ defined, respectively, by

FTð0Þ ¼
Λ2

F2
π

m2
K�

m2
K� − κK�H̃Kπð0Þ

; ð4:19Þ

Dðmn; γnÞ≡m2
n − s − κnℜeH̃KπðsÞ − imnγnðsÞ: ð4:20Þ

Here the parameters mn and γn denote the unphysical mass
and width, respectively, to be distinguished from the
physical mass Mn and width Γn that are obtained from
the pole position in the complex s plane [35,37]. Explicit
expressions for the one-loop function H̃KπðsÞ, the energy-
dependent width γnðsÞ, and the dimensional constant κn can
be found in Refs. [35,37].
Our result of F̃TðsÞ given by Eq. (4.18) is quite similar to

that of the reduced vector form factor F̃þðsÞ obtained in
Ref. [37], except for the different normalization factors, as
well as the different relative weight parameters introduced
to characterize the inelastic contributions. In the elastic
region below roughly 1.2 GeV [37], one needs to set β ¼
γ ¼ 0 and hence obtains F̃TðsÞ ¼ F̃þðsÞ, which then
implies that δTðsÞ ¼ δþðsÞ, as required by the unitarity
relation and the fact that the K�ð892Þ resonance is
described equivalently by a vector or an antisymmetric
tensor field [53,54]. Furthermore, according to Watson’s
theorem [30], the phases of both FþðsÞ and FTðsÞ in the
elastic region should coincide with the P-wave Kπ phase
shift δ1=21 ðsÞ. In such a case, no direct CP asymmetry in
τ → KSπντ decays will be predicted due to the lack of
strong phase differences between vector and tensor form
factors [24]. Beyond the elastic region, however, a nonzero
strong phase difference can be generated due to the
different relative weight parameters in these two form
factors, as will be shown in the next section.

3. Dispersive representation of the tensor form factor

In order to connect all the information on the form
factors inferred from χPT at low energies, from the
resonance dynamics in the intermediate energy region
[Oð1 GeVÞ], as well as from the short-distance QCD
properties in the asymptotic regime [81–83], one can resort
to the dispersive representation of the form factors, which
fulfills the analyticity and unitarity requirements [98–100]
and, at the same time, suppresses the less-known higher-
energy contributions [37,38].
In the elastic region below roughly 1.2 GeV, the

dispersion relation for the vector and tensor form factors
admits the well-known Omnès solution [24]

Fþ;elaðsÞ¼Fþð0ÞΩðsÞ; FT;elaðsÞ¼FTð0ÞΩðsÞ; ð4:21Þ

with the Omnès factor [101] given by

ΩðsÞ ¼ exp

�
s
π

Z
∞

sKπ

ds0
δ1=21 ðs0Þ

s0ðs0 − s − iϵÞ
�
; ð4:22Þ

where the relation δTðsÞ ¼ δþðsÞ ¼ δ1=21 ðsÞ in the elastic
region has been used. As Watson’s final-state interaction
theorem is no longer valid starting from the threshold of
inelastic states (most notably Kππ [24]), one must find a
sensible way to determine the strong phase difference in
the inelastic region, so as to predict a nonzero direct CP
asymmetry in τ → KSπντ decays. In this regard, our
expression of F̃TðsÞ given by Eq. (4.18) and that of
F̃þðsÞ given by Eq. (4.1) in Ref. [37] are advantageous,
because they remain valid even beyond the elastic approxi-
mation, and the two form-factor phases can be calculated
from the relations [35,37,42]

tanδTðsÞ¼
ℑm½F̃TðsÞ�
ℜe½F̃TðsÞ�

; tanδþðsÞ¼
ℑm½F̃þðsÞ�
ℜe½F̃þðsÞ�

; ð4:23Þ

in which the inelastic effects are indicated by the mixing
parameters β and γ, respectively.
It should be noted that the form-factor phases given

by Eq. (4.23) are valid only in the τ-decay region
sKπ < s < m2

τ . For the higher-energy region, these phases
become generally unknown, but should be guided
smoothly to π (modulo 2π) according to the asymptotic
behavior of the form factors at large s [81–83]. Our
ignorance of the form-factor phases at relatively higher
energies also makes the numerical implementation of the
dispersive integrals sensitive to the choice of the cutoff
scut. For the vector form factor, once the three-times-
subtracted dispersion representation [see Eqs. (4.1)] is
adopted, the impact of this deficiency would be marginal,
implying that the higher-energy contribution is well sup-
pressed [37,38,42]. For example, an input with a larger
error band, δþðsÞ¼π�π, at s ≥ scut has been assumed
in Ref. [80], but the use of a three-times-subtracted
dispersion relation makes the integrand converge rapidly,
and hence the result becomes almost insensitive to this
large error assignment. Furthermore, the stability of the fit
results has been checked explicitly by varying the cutoff
scut in a wide range mτ <

ffiffiffiffiffiffiffi
scut

p
< ∞ [37,38]. It has also

been demonstrated that the choice scut ¼ 4 GeV2 is
preferred, because such a cutoff, on the one hand, is large
enough not to spoil the priori infinite interval of the
dispersive integral and to avoid the spurious singularity
effect generated at s ¼ scut and, on the other hand, is low
enough to give a good description of the form-factor phase
within the interval considered [102]. Due to the lack of
precise low-energy information on the tensor interaction,
however, one cannot apply these strategies to the tensor
form factor [25,52]. Consequently, we shall simply use
the once-subtracted dispersive representation [24,25,52]

CP ASYMMETRY IN τ → KSπντ DECAYS … PHYS. REV. D 100, 113006 (2019)

113006-11



F̃TðsÞ ¼ exp

�
s
π

Z
∞

sKπ

ds0
δTðs0Þ

s0ðs0 − s − iϵÞ
	
; ð4:24Þ

together with the following simple model for the phase
δTðsÞ [103]:

δTðsÞ ¼
�
arctan½ℑmF̃TðsÞ

ℜeF̃TðsÞ�; sKπ < s < scut

nTπ; s ≥ scut
; ð4:25Þ

where the phase is now made explicit even in the inelastic
region, instead of the assumed relation δTðsÞ ¼ −δþðsÞ in
the same region [24]. We have also introduced the
quantity nT, with its deviation from unity, to account
for our estimate of the uncertainty resulting from the
higher-energy contributions. In addition, the default
choice with scut ¼ 4 GeV2 and δTðsÞ ¼ π for s > scut will
be assumed in our numerical analysis.
To estimate the systematic uncertainty associated with

our model for the tensor form factor, we proceed as
follows11: by fixing nT ¼ 1 to see the sensitivity of the
modulus of the normalized tensor form factor with respect
to scut, with the three choices scut ¼ m2

τ , 4, and 9 GeV2, and
by fixing scut ¼ 4 GeV2 to see the sensitivity with respect
to nT , with the three choices nT ¼ 1, 1.3, and 0.7. Our
numerical results with β ¼ þ0.75γ (the case with β ¼
−0.75γ is quite similar) are shown in Fig. 3, from which it
can be seen that, in our model, the modulus of the
normalized tensor form factor is almost insensitive to the
choice of the cutoff scut when fixing nT ¼ 1, while it
becomes rather sensitive to the choice of nT when fixing
scut ¼ 4 GeV2, especially in the higher-energy region. This
implies that the once-subtracted dispersive representation is

not optimal, as is generally expected. But the lack of data
sensitive to the tensor form factor makes it impossible to
increase the number of subtractions for the moment.
To see the behaviors of the vector and tensor form

factors both in the elastic and in the inelastic region,
we show their moduli and phases as well as the ones
predicted by the Omnès factor ΩðsÞ in Figs. 4 and 5,
corresponding, respectively, to the two different choices
given by Eq. (4.17). As the cutoff scut has been fixed at
scut ¼ 4 GeV2, we consider the uncertainties of the form-
factor phases only from the input parameters. From Figs. 4
and 5, one can see that both the moduli and the phases of
the normalized form factors are consistent with the ones
obtained from ΩðsÞ in the energy region up to about
1.2 GeV, which is roughly the threshold of the inelastic
region. The deviations from the ones predicted by ΩðsÞ in
the higher-energy region, on the other hand, serve as an
indication of the size of the inelastic contribution from the
second resonance [24]. It is also observed that, unlike in the
case of the vector form factor, the modulus of the tensor
form factor is almost unaffected by the inelastic effect, and
is therefore similar to that obtained with ΩðsÞ. The inelastic
effects on the form-factor phases are, however, rather
significant, and a strong phase difference in the inelastic
region is indeed obtained, especially in the β ¼ −0.75γ
case. This is welcome for resolving the CP anomaly
observed in τ → KSπντ decays, as will be discussed in
the next section.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we discuss the numerical effects of
the two NP scenarios introduced in Sec. III on the
branching ratio Bðτ− → KSπ

−ντÞ and the CP asymmetry
ACPðτ → KSπντÞ. For each observable, the theoretical
uncertainties are obtained by varying each input parameter
within the corresponding range and then adding the
individual errors in quadrature [104–107].

FIG. 3. Dependence of the modulus of the normalized tensor form factor on scut with fixed nT ¼ 1 (left) and on nT with fixed
scut ¼ 4 GeV2 (right), in the β ¼ þ0.75γ case.

11These results are shown only for the purpose of making a
comparison with that given in Ref. [25], and will not be
considered in the subsequent numerical analysis.
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A. Results in the model-independent framework

As the τ− → K̄0π−ντ decay width, which is obtained by
integrating Eq. (3.2) over the invariant mass squared s
within the kinematic regime sKπ ≤ s ≤ m2

τ , depends on the
nonstandard scalar and tensor interactions, it could also set
bounds on these effective couplings [21–26]. In order to
enhance the sensitivity to these nonstandard interactions,
we introduce the observable [25]

Δ≡Γ− Γ0

Γ0

¼ aℜeϵ̂S þ bℜeϵ̂T þ cℑmϵ̂T þ djϵ̂Sj2 þ ejϵ̂T j2;

ð5:1Þ

which is defined as the relative shift induced by these
interactions, with Γ and Γ0 standing for the τ → KSπντ
decay widths with and without these nonstandard contri-
butions, respectively. The coefficients a, b, c, d, and e are
calculated to be

a ∈ ½0.27; 0.34�; d ∈ ½0.84; 1.12�; ð5:2Þ

b ∈ ½−4.46;−4.02�; c ∈ ½−0.005; 0.015�;
e ∈ ½6.0; 7.4�; for β ¼ þ0.75γ; ð5:3Þ

b ∈ ½−4.68;−4.24�; c ∈ ½0.026; 0.046�;
e ∈ ½6.8; 8.3�; for β ¼ −0.75γ: ð5:4Þ

It can be seen that our values of the coefficients a and d,
characterizing, respectively, the linear and the quadratic
terms of the nonstandard scalar contributions, are consis-
tent with those of α and γ obtained in Ref. [25], while the
values of the tensor coefficients are quite different due to
the different forms of the Kπ tensor form factor used. The
numerical difference between scalar (a and d) and tensor
(b and e) coefficients by about 1 order of magnitude
implies a slightly larger sensitivity to the tensor than to the
scalar contribution, as noted already in Ref. [25]. It is also

FIG. 4. Energy dependence of the moduli (left) and phases (right) of the normalized form factors, compared with the ones predicted by
the Omnès factor ΩðsÞ, with the bands resulting from the uncertainties of the input parameters, in the β ¼ þ0.75γ case.

FIG. 5. Same as in Fig. 4, but in the β ¼ −0.75γ case.
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observed that, although the real part of the interference
between vector and tensor contributions is of similar
magnitude to the pure tensor term, the imaginary part of
the interference is almost negligible for both the β ¼
þ0.75γ and β ¼ −0.75γ cases. This can be understood
from the fact that the real and the imaginary part of this
interference term are proportional to ℜe½FTðsÞFþðsÞ�� and
ℑm½FTðsÞFþðsÞ�� [see Eqs. (3.5) and (3.6)], which in the
elastic region are reduced to ∼jFTðsÞjjFþðsÞj and ∼0,
respectively, with jFTðsÞjjFþðsÞj being of similar size as
jFTðsÞj2 [25]. However, since only the imaginary part
contributes to the direct CP asymmetry, its nonzero value is
crucial in determining the observable ACPðτ → KSπντÞ.
For the CP asymmetry ACPðτ → KSπντÞ, the following

subtle points should be clarified [13,26]. As the signal
channel τ− → π−KSð≥0π0Þντ (C1) is contaminated by the
two background channels τ− → K−KSð≥0π0Þντ (C2) and
τ− → π−K0K̄0ντ (C3), the decay-rate asymmetry, A ¼
ð−0.27� 0.18� 0.08Þ%, measured by the BABAR
Collaboration [13], is actually related to the signal asym-
metry A1 as well as the two background asymmetries A2

and A3 via [13]

A ¼ f1A1 þ f2A2 þ f3A3

f1 þ f2 þ f3
¼ f1 − f2

f1 þ f2 þ f3
AQ; ð5:5Þ

where f1, f2, and f3 denote the fractions of the channels
C1, C2, and C3, respectively, in the total selected sample,
with the corresponding numbers given in Table I of
Ref. [13]. Within the SM, A1 ¼ −A2 because the KS state
is produced via a K̄0 in channel C1 but via a K0 in channel
C2, and A3 ¼ 0 because of the cancellation between theCP
asymmetries due to the K0 and K̄0 states in channel C3. To
extract the CP asymmetry AQ given by Eq. (1.1) from the
measured decay-rate asymmetryA, these relations between
A1, A2, and A3 have been assumed by the BABAR
Collaboration [13], as given by the second line in
Eq. (5.5). In the presence of NP contributions, however,
A1 ≠ −A2 in general, and any theoretical prediction should
be, therefore, compared with the measured quantity A,
instead of AQ [26]. Assuming the NP contribution affects
only the channel C1, and we can then write the three CP
asymmetries as [26]

A1 ¼ ASM
1 þ ANP

1 ¼ ASM
CP þ ANP

1 ;

A2 ¼ ASM
2 ¼ −ASM

1 ¼ −ASM
CP;

A3 ¼ ASM
3 ¼ 0; ð5:6Þ

where the SM prediction ASM
CP ¼ ð0.36� 0.01Þ% is

obtained after taking into account the KS → πþπ−
decay-time dependence of the event selection efficiency
[13]. Combining ASM

CP with the measured decay-rate asym-
metryA ¼ ð−0.27� 0.18� 0.08Þ% [13], we can therefore
obtain the constraint on ANP

1 , and then on the nonstandard
tensor coupling.

We now apply the observable Δ to put constraints on the
nonstandard scalar and tensor interactions. Since the
effective couplings ϵ̂S and ϵ̂T are both considered to be
complex, there are four degrees of freedom, ℜeϵ̂S, ℑmϵ̂S,
ℜeϵ̂T , and ℑmϵ̂T , at our disposal. Combining our predic-
tion for the branching ratio,

Bðτ− → KSπ
−ντÞSM ¼ ð0.421� 0.022Þ%; ð5:7Þ

with the experimental result measured by the Belle
Collaboration [108],

Bðτ− → KSπ
−ντÞExp

¼ ð0.416� 0.001ðstat:Þ � 0.008ðsyst:ÞÞ%; ð5:8Þ
we obtain the allowed regions, Δ ∈ ½−0.07; 0.05� and
Δ ∈ ½−0.12; 0.10�, by varying both the theoretical and
experimental uncertainties at 1σ and 2σ, respectively. To
set boundsonone of the couplings ϵ̂S and ϵ̂T , we shall assume
the other to be zero, and our final results are shown in Fig. 6
for both the β ¼ þ0.75γ and β ¼ −0.75γ cases. It can be
clearly seen that, under the constraint from the observableΔ,
the allowed region of ϵ̂S is larger than that of ϵ̂T , which is
consistent with our previous observation that a slightly larger
sensitivity to the tensor than to the scalar contribution is
preferred by the branching ratio. It is also observed that,
while the imaginary parts of the allowed regions of both ϵ̂S
and ϵ̂T are nearly symmetric about the axes, the real parts are
not, but with the preference ℜeϵ̂S < 0 and ℜeϵ̂T > 0.
As only the interference between vector and tensor

operators can provide a potential NP explanation of the
CP anomaly observed in τ → KSπντ decays [21,24], we
now focus on the tensor coupling ϵ̂T . To check if the region
of ϵ̂T allowed by the branching ratio is compatible with that
required by the CP asymmetry, we now add the constraint
from the measured decay-rate asymmetry A by the BABAR
Collaboration [13], and our final results are shown in Fig. 7
for both the β ¼ þ0.75γ and β ¼ −0.75γ cases. One can see
that, in both of these two cases, there exist common regions
of the tensor coupling ϵ̂T that can accommodate both the
branching ratio Bðτ− → KSπ

−ντÞ and the CP asymmetry
ACPðτ → KSπντÞ simultaneously, even at the 1σ level. It is
also observed that the β ¼ −0.75γ case is even preferred, in
which a larger allowed region of ϵ̂T is obtained due to the
slightly larger phase difference between the vector and
tensor form factors, as mentioned already in the last section.

B. Results in the scalar LQ scenario

In the scalar LQ scenario, due to the specific relation
CSðμϕÞ ¼ −4CTðμϕÞ at the matching scale μϕ ¼ Mϕ, we
are actually left with only one effective coupling ĈT , and a
more severe constraint on it is therefore expected than in the
model-independent case.
Referring to Eq. (3.18), and by fixing Mϕ ¼ 1 TeV

and μτ ¼ mτ, one obtains ĈS ≃ −9.84ĈT at the μτ scale.
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This implies that the scalar contribution is enhanced
relative to that from the tensor operator in such a scenario.
Under the constraints from the branching ratio Bðτ− →
KSπ

−ντÞ and the CP asymmetry ACPðτ → KSπντÞ, our
final allowed regions of ĈT are shown in Fig. 8. One can
see that there is no common region allowed simultane-
ously by these two observables at the 1σ level, and only a
small region is allowed in the β ¼ −0.75γ case at the 2σ
level. This implies that the scalar LQ scenario can hardly
account for the observed CP anomaly under the constraint
from the measured branching ratio, except for the mar-
ginal region obtained in the β ¼ −0.75γ case at the
2σ level.

C. Constraints from other observables and processes

It should be noted that in both of the two scenarios
discussed above, we have assumed that the nonstandard
scalar and tensor operators contribute only to the τ → KSπντ
decays, and only the branching ratio Bðτ− → KSπ

−ντÞ and
the CP asymmetry ACPðτ → KSπντÞ have been considered
to constrain the corresponding effective couplings. We now
discuss the constraints on these nonstandard interactions
from other observables and processes.
As pointed out already in Refs. [25,109], the τ− →

KSπ
−ντ decay spectrum measured by the Belle Colla-

boration [31] can also provide very complementary con-
straints on these nonstandard interactions. Under the

FIG. 6. Constraints on ϵ̂S for ϵ̂T ¼ 0 (left), as well as on ϵ̂T for ϵ̂S ¼ 0 in both the β ¼ þ0.75γ (middle) and β ¼ −0.75γ (right) cases,
from the branching ratio Bðτ− → KSπ

−ντÞ by varying it at both 1σ and 2σ intervals.

FIG. 7. Constraints on ϵ̂T from the branching ratio Bðτ− → KSπ
−ντÞ (blue and cyan regions obtained at 1σ and 2σ, respectively) as

well as the decay-rate asymmetry A (red and pink regions at 1σ and 2σ, respectively), in both the β ¼ þ0.75γ (left) and β ¼ −0.75γ
(right) cases.
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combined constraints from the branching ratio and the decay
spectrumof this decay, the best fit values ϵ̂S ¼ ð1.3� 0.9Þ ×
10−2 and ϵ̂T ¼ ð0.7� 1.0Þ × 10−2 have been obtained in
Ref. [25]. Assuming that ℜeϵ̂SðTÞ ∼ ℑmϵ̂SðTÞ ∼ ϵ̂SðTÞ,

12 one
can see that these values are smaller by at least 1 order of
magnitude than our results obtained under the constraint
from only the branching ratio (see Fig. 6). This implies that,
once the combined constraints from the branching ratio and
the decay spectrum are taken into account, the allowed value
of the tensor coupling ϵ̂T will be insufficient to explain the
CP anomaly, which demands that ℑmϵ̂T shoxauld be of the
order Oð10−1Þ at least (see Figs. 7 and 8) [24].
If the lepton-flavor university (LFU) is further assumed,13

the effective operators given by Eq. (3.1), but with the τ
lepton replaced by the electron andmuon flavors, would also
contribute to other strangeness-changing processes. In this
case, our bounds on the nonstandard scalar and tensor
couplings would be not competitive with that obtained from
the (semi)leptonic kaon [56] and hyperon [69] decays, due to
the larger systematic theory uncertainty inherent to the

current framework for hadronic τ decays, especially in
the inelastic region. For example, the global fit results, ϵ̂S ¼
ð−3.9� 4.9Þ × 10−4 and ϵ̂T ¼ ð0.5� 5.2Þ × 10−3, from the
(semi)leptonic kaon decays [56], are already much stronger
than our bounds shown in Figs. 7 and 8.
It is also noted that, unless some NP between the

electroweak and the low-energy scale is assumed, the
effective Lagrangian specified by Eq. (3.1) comes generally
from an SUð2Þ-invariant form [70–72]. Thus, the demand of
SUð2Þ invariance of the weak interactions naturally relates
the tensor operator relevant for τ → KSπντ to the neutral-
current tensor operator relevant for the neutron EDM and
the D-D̄ mixing, as pointed out already in Ref. [24]. This
also brings the tensor coupling required by the CP asym-
metry ACPðτ → KSπντÞ to be already in conflict with the
bounds from these two observables, leading to the claim
that it is extremely difficult to explain the CP anomaly in
terms of ultraviolet complete NP scenarios [24].
Based on the above observations, we conclude therefore

that it is quite difficult to explain the CP anomaly within
the two frameworks considered here, as claimed already in
Refs. [24,25].

VI. CONCLUSION

In this paper, motivated by the 2.8σ discrepancy
observed between the BABAR measurement and the SM
prediction of the CP asymmetry in τ → KSπντ decays, as
well as the prospects of future measurements at Belle II, we
have studied this observable within the model-independent
low-energy effective theory framework and in the scalar
LQ scenario, both of which contain a nonstandard tensor
operator that is necessary to produce a nonvanishing direct
CP asymmetry in the decays considered. Our main con-
clusions are summarized as follows:

FIG. 8. Constraints on ĈT in the scalar LQ scenario. The other captions are the same as in Fig. 7.

12The couplings ϵ̂S and ϵ̂T are assumed to be real in Ref. [25].
As the modulus of the tensor form factor is almost unaffected by
the inelastic effect and is quite consistent with that obtained with
the Omnès factor ΩðsÞ (see Figs. 4 and 5), similar numerical
results as that obtained in Ref. [25] are expected, even though a
different phase, δTðsÞ ¼ δþðsÞ in Ref. [25] versus Eq. (4.25) in
this work, has been adopted for the tensor form factor.

13Although the LFU is hinted to be violated by the current data
on B-meson decays (see Refs. [110–113] and references therein
for recent reviews), there exists up to now no compelling
evidence for its violation in the strangeness sector [16]. Actually,
the charged-current anomalies observed in semileptonic B decays
become already the least compelling hints for the LFU violation
by the latest Belle data [114].
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(1) By employing the reciprocal basis, which is found to
be most convenient when a KS or KL is involved in
the final state, we have reproduced the known CP
asymmetry due to K0-K̄0 mixing, as predicted first
by Bigi and Sanda [17] but with a sign mistake, and
then corrected by Grossman and Nir [18].

(2) As the Kπ tensor form factor plays a crucial role in
generating a nonzero direct CP asymmetry that can
arise only from the interference of vector and tensor
operators, we have presented a new calculation of
this form factor in the context of χPT with tensor
sources and RχT with both K�ð892Þ and K�ð1410Þ
included. For these spin-1 vector resonances, we
have used the more conventional vector representa-
tion instead of the description based on antisym-
metric tensor fields. A once-subtracted dispersive
representation of this form factor has also been
presented, which naturally fulfills the requirements
of unitarity and analyticity. Furthermore, our esti-
mate of the relation between the two weight param-
eters, β ≃ −0.75γ, gives a support for the assumption
made in Ref. [24] that the inelastic contributions to
the phases of vector and tensor form factors are of
similar size but potentially opposite in sign.

(3) Adopting the three-times-subtracted (for the vector
form factor) and the coupled-channel (for the scalar
form factor) dispersive representations, together with
our result of the tensor form factor, we have performed
a detailed analysis of the τ → KSπντ decayswithin the
two scenarios mentioned above. It is observed that the
CP anomaly can be accommodated in the model-
independent framework, even at the 1σ level, together
with the constraint from the branching ratio of τ− →
KSπ

−ντ decay. In the LQ scenario, however, this
anomaly can be marginally reconciled only at the

2σ level, due to the specific relation between the scalar
and tensor operators. Once the combined constraints
from thebranching ratio and thedecay spectrumof this
decay are taken into account, these two possibilities
are, however, both excluded, even without exploiting
further the stronger bounds from the (semi)leptonic
kaon decays [56] under the assumption of lepton-
flavor universality, as well as from the neutron EDM
and D-D̄ mixing under the assumption of SUð2Þ
invariance of the weak interactions [24]. It is therefore
difficult to explain such a CP anomaly within the
frameworks considered here.

As both the theoretical predictions and the experimental
measurements are still plagued by large uncertainties, more
refined studies, especially the information on the Kπ tensor
form factor in the inelastic region as well as the dedicated
measurements of τ → KSπντ decays from the Belle II
Collaboration [20], are expected.
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APPENDIX: INPUT PARAMETERS

In this Appendix, for convenience, we collect in Table I
all the input parameters used throughout this paper. For
further details, the readers are referred to the original
references.

TABLE I. Summary of the input parameters used throughout this paper.

QCD and electroweak parameters [16]

GF½10−5 GeV−2� αsðMZÞ mt½GeV� mb½GeV� Fπ½MeV� FK ½MeV�
1.1663787(6) 0.1181(11) 173.1 4.18 92.3(1) 1.198Fπ

Particle masses and τ lifetime [16]
mτ½MeV� MK0 ½MeV� Mπ− ½MeV� ττ½10−15 s�
1776.86 497.61 139.57 290.3

Parameters in the Kπ vector form factor with scut ¼ 4 GeV2 [37]
mK� ½MeV� γK� ½MeV� mK�0 ½MeV� γK�0 ½MeV� γ
943.41� 0.59 66.72� 0.87 1374� 45 240� 131 −0.039� 0.020
MK� ½MeV� λ0þ λ00þ
892.01� 0.92 ð24.66� 0.77Þ × 10−3 ð11.99� 0.20Þ × 10−4

CP-violating parameters as well as the measured decay-rate asymmetry
jηþ−j × 103 [16] ϕþ− [16] ℜeðϵÞ × 103 [16] ASM

CP [13] A [13]
2.232� 0.011 ð43.51� 0.05Þ° 1.66� 0.02 ð0.36� 0.01Þ% ð−0.27� 0.18� 0.08Þ%
Other input parameters
MV0 ½MeV� [39] Λ2½MeV� [88] SEW [75] jVusFþð0Þj [74] Bðτ− → KSπ

−ντÞ [108]
1440 11.1(4) 1.0201(3) 0.21654(41) ð0.416� 0.001� 0.008Þ%
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