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Using the data sample of 711 fb−1 of ϒð4SÞ on-resonance data taken by the Belle detector at the KEKB
asymmetric-energy electron-positron collider, we present the first measurements of branching fractions of
the decays B− → Λ̄−

cΞ00
c , B− → Λ̄−

cΞcð2645Þ0, and B− → Λ̄−
cΞcð2790Þ0. The signal yields for these decays

are extracted from the recoil mass spectrum of the system recoiling against Λ̄−
c baryons in selected B−

candidates. The branching fraction of B− → Λ̄−
cΞcð2790Þ0 is measured to be ð1.1� 0.4� 0.2Þ × 10−3,

where the first uncertainty is statistical and the second is systematic. The 90% credibility level upper limits
on BðB− → Λ̄−

cΞ00
c Þ and BðB− → Λ̄−

cΞcð2645Þ0Þ are determined to be 6.5 × 10−4 and 7.9 × 10−4,
respectively.

DOI: 10.1103/PhysRevD.100.112010

I. INTRODUCTION

Charm physics is of high interest mainly due to the fact
that the charm system provides a unique laboratory to study
the subtle interplay of strong and weak interactions.
Baryons with one charm quark and two light quarks are
called charmed baryons. In the heavy quark symmetry
(HQS) approach [1], the two light quarks are regarded as a
light diquark. As chiral symmetry and HQS can provide
some qualitative insights into their dynamics, the study of
charmed baryons plays an important role in improving our
understanding of the quark confinement mechanism. The
Ξc charmed baryon states contain one charm quark, one
strange quark, and one up or down quark. The ground state
Ξ0
c and Ξþ

c baryons, which have spin-parity quantum
numbers JP ¼ 1

2
þ and no internal orbital angular momen-

tum, are the only members of the group that decay weakly.
A growing number of excited Ξc states have been observed
in different experiments [2]. However, much is still
unknown about them. Many theoretical approaches have
been used to study the excitation spectrum of Ξc baryons
and their decays. These models include quark models,
heavy quark 1=mQ and 1=Nc expansions, the coupled
channel model, and QCD sum rules [3–7]. Through these
QCD-inspired relativistic theories, the mass spectrum of
excited Ξc can be predicted. Recently, the masses and
intrinsic widths of isodoublets of the excited Ξc states Ξ0

c,
Ξcð2645Þ, Ξcð2790Þ, Ξcð2815Þ, and Ξcð2980Þ were mea-
sured more precisely by Belle by analyzing their exclusive
decays [8].

The decay B− → Λ̄−
cΞ0

c proceeds via b → cc̄s transition
and has a relatively large branching fraction of the order of
10−3 [2,9]. Therefore, a B-meson factory provides an
experimental research platform to investigate the Ξ0

c exci-
tation spectrum exclusively through B− → Λ̄−

c þ anything
decays. This makes it possible to search for missing excited
Ξ0
c states. In addition, the measurement of their production

rates is a good test for the theoretical calculation of b →
cc̄s transition processes.
In this paper, we measure the branching fractions of

B− → Λ̄−
cΞ�0

c decays based on data collected by the Belle
detector at the KEKB asymmetric-energy electron-positron
collider. Here and throughout this paper, Ξ�0

c represents Ξ00
c ,

Ξcð2645Þ0, and Ξcð2790Þ0 unless otherwise stated. We use
a full hadron-reconstruction algorithm [10] to tag a Bþ

signal, denoted Bþ
tag, and then reconstruct a Λ̄−

c using its
p̄Kþπ− and p̄K0

SðK0
S → πþπ−Þ decay modes [11] from the

remaining tracks. We search for peaks in the invariant mass
spectrum of the system recoiling against the Λ̄−

c baryons in
the selected B− → Λ̄−

cΞ�0
c candidates, to extract Ξ�0

c signal
yields, from which we calculate the branching fractions
of B− → Λ̄−

cΞ�0
c .

II. DATA SAMPLE AND THE BELLE DETECTOR

This analysis utilizes a data sample of 711 fb−1 collected
at the ϒð4SÞ on-resonance corresponding to ð772� 11Þ ×
106BB̄ pairs. All the data were collected with the Belle
detector [12] operating at the KEKB asymmetric-energy
eþe− collider [13]. The Belle detector is described in detail
in Ref. [12]. It is a large solid-angle magnetic spectrometer
consisting of a silicon vertex detector, a 50-layer central
drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter comprised of CsI(TI) crystals located
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inside a superconducting solenoid coil that provides a 1.5T
magnetic field. An iron flux return placed outside the coil is
instrumented to detect K0

L mesons and to identify muons.
To optimize the signal selection criteria and to determine

the signal reconstruction efficiency, Monte Carlo (MC)
signal events are generated using EvtGen [14], while Ξ�0

c
inclusive decays are simulated using PYTHIA [15]. These
events are processed by a detector simulation based on
GEANT3 [16]. Inclusive MC samples of ϒð4SÞ → BB̄
(B ¼ Bþ or B0) and eþe− → qq̄ (q ¼ u, d, s, c) events
at

ffiffiffi
s

p ¼ 10.58 GeV corresponding to more than three
times the integrated luminosity of the data are used to
check the backgrounds.

III. COMMON EVENT SELECTION CRITERIA

To select the signal candidates, the following event
selection criteria are applied. For well-reconstructed
charged tracks, except those from K0

S → πþπ− decays,
the impact parameters perpendicular to and along the beam
direction with respect to the nominal interaction point (IP)
are required to be less than 1 and 4 cm, respectively, and the
transverse momentum in the laboratory frame is required to
be larger than 0.1 GeV=c. For the particle identification of
a well-reconstructed charged track, information from differ-
ent detector subsystems, including specific ionization in the
CDC, time measurement in the TOF, and the response of
the ACC, is combined to form a likelihood Li [17] for
particle species i, where i ¼ π, K, or p. Tracks with RK ¼
LK=ðLK þ LπÞ < 0.4 are identified as pions with an
efficiency of 97%, while 5% of kaons are misidentified
as pions; tracks with RK > 0.6 are identified as kaons with
an efficiency of 95%, while 4% of pions are misidentified
as kaons. A track with Rπ

p ¼ Lp=ðLp þ LπÞ > 0.6 and
RK

p ¼ Lp=ðLp þ LKÞ > 0.6 is identified as an (anti)proton
with an efficiency of about 97%; fewer than 1% of the pions
and kaons are misidentified as (anti)protons. With the
exception of those from K0

S decays, all charged tracks
are required to be positively identified by the above
procedure.
The K0

S candidates are first reconstructed from pairs of
oppositely charged tracks, which are treated as pions, with
a production vertex significantly separated from the aver-
age IP, then selected using a multivariate analysis using an
artificial neural network [18] based on two sets of input
variables [19].
Applying a full reconstruction algorithm of hadronic B-

meson decays [10] which uses a multivariate analysis based
on the NeuroBayes package, we reconstruct Bþ

tag candidates.
Each Bþ

tag candidate has an output value ONN from the
multivariate analysis ranging from 0 to 1. A candidate with
larger ONN is more likely to be a true B meson. If multiple
Bþ
tag candidates are found in an event, only the candidate

with largest ONN is selected. To improve the purity of the
tagged side, we take ONN > 0.001, Mtag

bc > 5.27 GeV=c2,

and jΔEtagj < 0.04 GeV as the signal region. Here,Mtag
bc ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
beam − ðPi p⃗

tag
i Þ2

q
and ΔEtag ≡P

i E
tag
i − Ebeam, where

Ebeam ≡ ffiffiffi
s

p
=2 is the beam energy and ðEtag

i ; p⃗tag
i Þ is the 4-

momentum of the Bþ
tag daughter i in the eþe− center-of-

mass system. After reconstructing the Bþ
tag candidate, the

Λ̄−
c → p̄Kþπ− and Λ̄−

c → p̄K0
S decays are reconstructed

from the remaining tracks. We perform a fit for the Λ̄−
c

decay vertex and require that χ2vertex=n:d:f: < 15, where
n:d:f: is the number of degrees of freedom. The multi-
combination rate of Λ̄−

c candidates is 21%. If there is more
than one Λ̄−

c candidate in an event, the candidate with the
smallest χ2vertex=n:d:f: is selected. The Λ̄−

c signal region is
defined to be jMΛ̄−

c
−mΛ̄−

c
j < 10 MeV=c2 corresponding to

about 3σ, where σ denotes the standard deviation. Here,
MΛ̄−

c
is the reconstructed and mΛ̄−

c
is the nominal mass of

the Λ̄−
c [2].

IV. Ξ00
c , Ξcð2645Þ0, AND Ξcð2790Þ0 SIGNAL

EXTRACTION

We extract the number of Ξ00
c , Ξcð2645Þ0, and Ξcð2790Þ0

baryons in decays of the type B− → Λ̄−
cΞ00

c , B− →
Λ̄−
cΞcð2645Þ0, and B− → Λ̄−

cΞcð2790Þ0 by fitting the recoi-
ling mass spectrum (Mrec

Bþ
tagΛ̄−

c
). We choose 2.5GeV=c2<

Mrec
Bþ
tagΛ̄

−
c
<2.86GeV=c2 as the fit region. To improve the

recoil mass resolution, we use Mrec
Bþ
tagΛ̄−

c
≡Mmiss

Bþ
tagΛ̄−

c
þMBþ

tag
−

mB þMΛ̄−
c
−mΛ̄−

c
, whereMBþ

tag
is the reconstructed andmB

is the nominal mass [2] of the Bþ meson andMmiss
Bþ
tagΛ̄−

c
is the

invariant mass recoiling against the Λ̄−
c on the signal side,

which is calculated using
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPc:m:s − PBþ

tag
− PΛ̄−

c
Þ2

q
with

Pc:m:s, PBþ
tag
, and PΛ̄−

c
being 4-momenta of the initial eþe−

system, the reconstructed Bþ
tag meson, and the reconstructed

Λ̄−
c baryon, respectively.
Figure 1 shows the ΔEtag distribution in the Ξ�0

c signal
region, i.e., 2.5 GeV=c2 < Mrec

Bþ
tagΛ̄−

c
< 2.86 GeV=c2, after

applying all of the above requirements. A double-Gaussian
function is used as the signal shape, and the background
shape is described by a first-order polynomial. Because of
the small sample size, the parameters of the double-
Gaussian function are fixed to the values obtained by
fitting the signal MC distribution. The fit results are shown
as curves in Fig. 1. We take jΔEtagj < 0.04 GeV as the
signal region.
Figure 2 shows the scatter plot of MΛ̄−

c
of the signal side

in the Ξ�0
c signal region vs Mtag

bc of the Bþ
tag. To check for

possible peaking backgrounds, the Mtag
bc and MΛ̄−

c
sideband

regions are selected as shown in Fig. 2. The normalized
contribution from the Mtag

bc andMΛ̄−
c
sidebands is estimated

using 50% of the number of events in the blue dashed boxes
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minus 25% of the number of events in the red
dashed boxes. Figure 3 shows the Mrec

Bþ
tagΛ̄−

c
distribution

in the signal box (points with error bars) and in the
sideband boxes (shaded histogram). No peaking back-
ground is found in the Mtag

bc and MΛ̄−
c
sideband events or

in the inclusive MC samples of ϒð4SÞ → BB̄ and
eþe− → qq̄ events.
To extract the Ξ�0

c signal yields, an unbinned maxi-
mum-likelihood fit to the Mrec

Bþ
tagΛ̄−

c
distribution is per-

formed. In this fit, the Ξ00
c signal shape is described by a

double-Gaussian function, while the Ξcð2645Þ0 and
Ξcð2790Þ0 signal shapes are Breit-Wigner (BW) functions
convolved with double-Gaussian functions. The back-
ground is parametrized by a second-order polynomial
function. Due to the limited sample size, the values of the

parameters in double-Gaussian functions are fixed to
those obtained from the fit to the corresponding signal
MC distribution. For Ξcð2645Þ0 and Ξcð2790Þ0 signal
shapes, the masses and widths of BW functions are fixed
to world average values [2]. The fit result is shown in
Fig. 3. The difference between the fitted background
level and the normalized Mtag

bc and MΛ̄−
c
sidebands is due

to the contribution from other multibody B− decay modes
with a Λ̄−

c , for example, B− → K−Λþ
c Λ̄−

c .
The numbers of fitted Ξ00

c , Ξcð2645Þ0, and Ξcð2790Þ0
signal events areNΞ00

c
¼17.9�10.4,NΞcð2645Þ0¼24.1�13.0,

and NΞcð2790Þ0 ¼ 59.9� 22.5 with statistical significan-
ces of 1.7σ, 1.9σ, and 3.1σ, respectively. Here, the
statistical significances are defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2lnðL0=LmaxÞ

p
,

where L0 and Lmax are the maximized likelihoods
without and with a signal component, respectively
[20,21]. The Ξcð2790Þ0 signal significance becomes
3.0σ when systematic uncertainties are included
(see below).
Then, the branching fractions are

BΛ̄−
c Ξ00

c
¼ NΞ00

c

2NB−ðεΞ00
c

p̄Kþπ−B1 þ εΞ
00
c

p̄K0
s
B2Þ

¼ ð3.4� 2.0Þ × 10−4;

BΛ̄−
c Ξcð2645Þ0 ¼

NΞcð2645Þ0

2NB−ðεΞcð2645Þ0
p̄Kþπ− B1 þ εΞcð2645Þ0

p̄K0
s

B2Þ
¼ ð4.4� 2.4Þ × 10−4;

and

)2 (GeV/cbc
tag

M

5.24 5.26 5.28

)2
 (

G
eV

/c
 _ c

Λ 
M

2.25

2.3

FIG. 2. Scatter plot of MΛ̄−
c
of signal side vs Mtag

bc of Bþ
tag in the

Ξ�0
c signal region, i.e., 2.5 GeV=c2 < Mrec

Bþ
tagΛ̄−

c
< 2.86 GeV=c2.

The solid box shows the selected signal region, and the blue and
red dashed boxes define theMtag

bc andMΛ̄−
c
sidebands described in

the text.
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FIG. 1. ΔEtag distribution summed over the two reconstructed
Λ̄−
c decay modes. The points with error bars represent the data,

the solid curve is the best-fit result, and the blue dashed curve is
the fitted background. The red dashed lines show the defined
ΔEtag signal region.
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FIG. 3. Mrec
Bþ
tagΛ̄

−
c
distribution of selected candidate events. The

points with error bars represent the data, the solid blue curve is
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and MΛ̄−

c
sideband events (see Fig. 2).
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BΛ̄−
c Ξcð2790Þ0 ¼

NΞcð2790Þ0

2NB−ðεΞcð2790Þ0
p̄Kþπ− B1 þ εΞcð2790Þ0

p̄K0
s

B2Þ
¼ ð1.1� 0.4Þ × 10−3;

where BΛ̄−
c Ξ00

c
¼ BðB− → Λ̄−

cΞ00
c Þ, BΛ̄−

c Ξcð2645Þ0 ¼ BðB− →
Λ̄−
cΞcð2645Þ0Þ, BΛ̄−

c Ξcð2790Þ0 ¼ BðB− → Λ̄−
cΞcð2790Þ0Þ,

NB− ¼ Nϒð4SÞBðϒð4SÞ → BþB−Þ with Nϒð4SÞ being the
number of accumulated ϒð4SÞ events. We use a value of
0.514 for Bðϒð4SÞ → BþB−Þ [2]; B1 ¼ BðΛ̄−

c → p̄Kþπ−Þ,
B2 ¼ BðΛ̄−

c → p̄K0
SÞBðK0

S → πþπ−Þ, BðΛ̄−
c → p̄Kþπ−Þ,

BðΛ̄−
c → p̄K0

SÞ, and BðK0
S → πþπ−Þ are the branching

fractions of Λ̄−
c → p̄Kþπ−, Λ̄−

c → p̄K0
S, and K0

S → πþπ−

[2], respectively. εΞ
�0
c

p̄Kþπ− and εΞ
�0
c

p̄K0
s
are the detection effi-

ciencies of different Λ̄−
c decay modes which are obtained

from fits to the signal MC samples and are listed in Table I.
Since the statistical significances of Ξ00

c and Ξcð2645Þ0
are less than 3σ, Bayesian upper limits at 90% credibility
level (C.L.) [22] assuming a uniform prior probability for
BðB− → Λ̄−

cΞ00
c Þ and BðB−→ Λ̄−

cΞcð2645Þ0Þ (denoted Bup)
are determined by solving the equation

Z
Bup

0

LðBÞdB
.Z

1

0

LðBÞdB ¼ 0.9;

where

B ¼ NΞ�0
c
=2NB−ðεΞ�0

c
p̄Kþπ−B1 þ εΞ

�0
c

p̄K0
s
B2Þ

is the assumed branching fraction for B− → Λ̄−
cΞ00

c or B− →
Λ̄−
cΞcð2645Þ0 and LðBÞ is the corresponding likelihood of

the data. NΞ�0
c
is the fitted signal yield of Ξ00

c or Ξcð2645Þ0.
Taking into account the systematic uncertainty discussed
below, the likelihoods are convolved with a Gaussian
function of which the width equals the corresponding total
systematic uncertainty. The 90% C.L. upper limits with
systematic uncertainties included on BðB− → Λ̄−

cΞ00
c Þ and

BðB− → Λ̄−
cΞcð2645Þ0Þ are determined to be 6.5 × 10−4

and 7.9 × 10−4, respectively.
Table II summarizes the fitted results, branching frac-

tions, and statistical significances for B− → Λ̄−
cΞ00

c , B− →
Λ̄−
cΞcð2645Þ0, and B− → Λ̄−

cΞcð2790Þ0. The uncertainties
shown are statistical only.

V. SYSTEMATIC UNCERTAINTIES

There are several sources of systematic uncertainties for
the branching-fraction measurements as listed in Table III,
including the reconstruction efficiency–related sources, the
fit uncertainty, the Λc decay branching fractions, the B-
meson tag efficiency, and the total number of BB̄ events.
The reconstruction efficiency–related uncertainties

include those for tracking efficiency (0.35% per track),
particle identification efficiency (1.44%per kaon, 0.86%per
pion, and range from 2.13% to 3.13% per proton), as well as
momentum-weighted K0

S selection efficiency (1.1%) [23].
Here, the systematic uncertainty due to the K0

S selection
depends on the K0

S momentum and was determined
using a control sample of D�þ → D0ðK0

Sπ
0Þπþ. For the

three branching-fraction measurements, the individual
reconstruction efficiency–related uncertainties from two

TABLE I. The detection efficiencies εΞ
�0
c

p̄Kþπ− and εΞ
�0
c

p̄K0
s
including

the Bþ
tag meson for the studied Λ̄−

c decay modes as obtained from
MC simulated B− → Λ̄−

cΞ�0
c processes. All the uncertainties here

are statistical only.

Ξ�0
c type Ξ00

c Ξcð2645Þ0 Ξcð2790Þ0

εΞ
�0
c

p̄Kþπ− (%) 0.09� 0.003 0.09� 0.003 0.09� 0.003

εΞ
�0
c

p̄K0
s
(%) 0.13� 0.003 0.14� 0.004 0.15� 0.004

TABLE III. Summary of the relative systematic uncertainties on the branching-fraction measurements (%) for B− → Λ̄−
cΞ00

c ,
B− → Λ̄−

cΞcð2645Þ0, and B− → Λ̄−
cΞcð2790Þ0.

Observable Efficiency Fit Λ̄−
c decays Btag NB� Total Measured value

BðB− → Λ̄−
cΞ00

c Þ 3.1 10.0 5.5 4.2 1.8 12.6 ð3.4� 2.0� 0.4Þ × 10−4

BðB− → Λ̄−
cΞcð2645Þ0Þ 3.3 8.1 5.5 4.2 1.8 11.3 ð4.4� 2.4� 0.5Þ × 10−4

BðB− → Λ̄−
cΞcð2790Þ0Þ 3.5 11.0 5.5 4.2 1.8 13.6 ð1.1� 0.4� 0.2Þ × 10−3

TABLE II. Summary of the fitted signal yields (Nsig), branching fractions (90% C.L. upper limits), and statistical signal significances
(σ) for B− → Λ̄−

cΞ00
c , B− → Λ̄−

cΞcð2645Þ0, and B− → Λ̄−
cΞcð2790Þ0. All the uncertainties here are statistical only.

Nsig BðB− → Λ̄−
cΞ�0

c Þ [Upper limit] Significance (σ)

Ξ00
c 17.9� 10.4 ð3.4� 2.0Þ × 10−4 [6.5 × 10−4] 1.7

Ξcð2645Þ0 24.1� 13.0 ð4.4� 2.4Þ × 10−4 [7.9 × 10−4] 1.9
Ξcð2790Þ0 59.9� 22.5 ð1.1� 0.4Þ × 10−3 3.1
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different Λ̄−
c decay channels are added, linearly weighted by

the product of the detection efficiency and Λ̄−
c partial decay

width. Then, those uncertainties are summed in quadrature
to be the final uncertainties related to the efficiency of the
reconstruction, yielding 3.1% to 3.5%, depending on the
specific decay mode.
We estimate the systematic uncertainties associated with

the fit by changing the order of the background polynomial,
by changing the range of the fit, and by enlarging the mass
resolution by 10%. The observed deviations are taken as
systematic uncertainties. The masses of Ξcð2790Þ0 and
Ξcð2815Þ0 are rather close, and no Ξcð2815Þ0 signal peak
can be seen. The Ξcð2815Þ0 signal significance is only
0.4σ if it is added in the fit. So, we take the difference
of the number of Ξcð2790Þ0 signal events as the systematic
uncertainty due to the possible contribution of Ξcð2815Þ0
from B− → Λ̄−

cΞcð2815Þ0. Finally, all the above uncertain-
ties are summed in quadrature, and the sums are taken as
the systematic uncertainties associated with the fit.
Uncertainties for the Λ̄−

c decay branching fractions
are due to BðΛ̄−

c → fiÞ ¼ Γi × BðΛ̄−
c → p̄Kþπ−Þ; here,

Γi ¼ BðΛ̄−
c → fiÞ=BðΛ̄−

c → p̄Kþπ−Þ, and fi denotes the
different Λ̄−

c decay modes. Uncertainties on BðΛ̄−
c →

p̄Kþπ−Þ and ΓðΛ̄−
c → p̄K0

sÞ=ΓðΛ̄−
c → p̄Kþπ−Þ are taken

from Ref. [2]. The final uncertainties on the two Λ̄−
c partial

decay widths are summed in quadrature with the detection
efficiency as a weighting factor. The uncertainty due to the
B-meson tagging efficiency is 4.2% [24]. The uncertainty
on Bðϒð4SÞ → BþB−Þ is 1.2% [2]. The systematic uncer-
tainty on Nϒð4SÞ is 1.37%. The sources of uncertainty
summarized in Table III are assumed to be independent and
thus are added in quadrature to obtain the total systematic
uncertainty.

VI. CONCLUSION

Using the 711 fb−1 data sample taken at the ϒð4SÞ
resonance that corresponds to ð772� 11Þ × 106BB̄ pairs
accumulated with the Belle detector at the KEKB asym-
metric-energy eþe− collider, we present the first measure-
ments of the branching fractions of the decaysB− → Λ̄−

cΞ00
c ,

B− → Λ̄−
cΞcð2645Þ0, and B− → Λ̄−

cΞcð2790Þ0 with Ξ�0
c →

anything and the Λ̄−
c candidates reconstructed via their

p̄Kþπ− and p̄K0
S decay modes. The branching fractions

are measured to be

BðB− → Λ̄−
cΞ00

c Þ ¼ ð3.4� 2.0� 0.4Þ × 10−4;

BðB− → Λ̄−
cΞcð2645Þ0Þ ¼ ð4.4� 2.4� 0.5Þ × 10−4;

and

BðB− → Λ̄−
cΞcð2790Þ0Þ ¼ ð1.1� 0.4� 0.2Þ × 10−3;

with statistical significances of 1.7σ, 1.9σ, and 3.1σ,
respectively. Since the statistical significances are less than

3σ for B− → Λ̄−
cΞ00

c and B− → Λ̄−
cΞcð2645Þ0, the 90% C.L.

upper limits onBðB−→Λ̄−
cΞ00

c Þ andBðB− → Λ̄−
cΞcð2645Þ0Þ

are determined to be 6.5 × 10−4 and 7.9 × 10−4, respec-
tively, with systematic uncertainties included.
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