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We assess the role of a resonant spectrum in the anti–de Sitter (AdS) instability, and quantify the extent
to which breaking the resonant spectrum of AdS can restore stability. Specifically, we study noncollapsing
“multioscillator” solutions in AdS under various boundary conditions that allow for both resonant and
nonresonant spectra. We find noncollapsing two mode, equal amplitude solutions in the nonresonant Robin
case, and that these solutions vanish in the fully resonant Dirichlet case. This is consistent with nonresonant
stability, and with the idea that stable solutions in the Dirichlet case are all single-mode dominated.
Surprisingly, when the boundary condition is Neumann, we find noncollapsing solutions arbitrarily close to
AdS that are not single-mode dominated, despite the spectrum being fully resonant.
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I. INTRODUCTION

Because of the presence of a reflecting boundary, global
anti–deSitter space (AdS) may allow dynamical black hole
formation starting from arbitrarily small excitations, which
would imply that AdS is nonlinearly unstable, a possibility
which was tentatively suggested in [1,2]. (See also [3] for
early work on the issue of the AdS instability.) The first
evidence of this instability was presented in [4] where
the numerical evolution of a massless scalar field in
AdS, initially in a Gaussian configuration, eventually
forms an event horizon even for very small amplitudes.
The existence of arbitrarily small data that inevitably form
black holes was proven rigorously for the spherically
symmetric pressureless Einstein-massless Vlasov system
in [5,6].
However, it was realised that there are configurations

that do not form black holes [7–14]. The set of such
noncollapsing initial data is called the islands of stability.
This naturally leads to the open question: what distin-
guishes collapsing data from noncollapsing data? Through
the AdS=CFT correspondence [15–17], the answer to this
question has important implications for the process of
thermalization and equilibration in the dual field theory.

Some guidance can be provided by perturbation theory.
The linear spectrum of perturbations of AdS consists of
normal modes with evenly spaced frequencies. When
expanding a generic configuration to higher orders in
perturbation theory, resonant self-interactions from this
spectrum causes secular terms to appear that predict the
breakdown of perturbation theory. Moreover, the timescale
for perturbative breakdown matches the timescale for
horizon formation. However, for the special cases of
single-mode data (and only these cases), these secular
terms can be removed by shifts in the frequency, and
perturbation theory can continue to arbitrarily high orders.
The emergent picture, as supported by an accumulation of
analytical and numerical studies [4,7–10,14,18–43], is that
islands of stability consist of initial data that is single-mode
dominated, and data that is strongly multimode inevitably
lead to horizon formation.
By providing a means for perturbation theory to break

down, the resonant spectrum plays an important role in the
instability of AdS. Indeed, the analytical studies suggest
that a resonant spectrum is a necessary condition for an
AdS instability [7,37]. See also [26,44–48] for related
numerical studies. Therefore, it is natural to expect that in
cases where the spectrum is nonresonant, the islands of
stability can contain strongly multimode data.
Dynamical evolution in AdS requires a choice of

boundary conditions at the asymptotic boundary, and
whether or not the spectrum is resonant depends on this
choice. Indeed, the resonant criterion requires a special
choice of boundary conditions, which implies that the
AdS instability requires a delicate fine-tuning of boundary
conditions.
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In this work, we investigate the effect of a resonant
spectrum on the space of noncollapsing solutions. We
consider a massive complex scalar field ψ in four dimen-
sions, minimally coupled to gravity. We choose a mass in
AdS length units of m2 ¼ −2 (we here and henceforth set
the AdS length lAdS ¼ 1). This mass lies between the
Breitenlohner-Freedman bound m2

BF ¼ −9=4 and the uni-
tary bound m2� ¼ −5=4. For this mass, Robin boundary
conditions for the scalar field give normalizable modes, and
correspond to a double-trace deformation of the boundary
CFT [49]. In general, the Robin boundary condition breaks
the resonant spectrum of AdS, and is only asymptotically
resonant. However, the Robin condition can be made
arbitrarily close to the Dirichlet or Neumann cases for
which the spectrum is fully resonant.
With these boundary conditions, we will construct

“multioscillators” [43,50], which are quasiperiodic solu-
tions in time, and hence do not collapse on any timescale
[51]. For simplicity, we will be chiefly concerned with two-
mode, equal-amplitude data in spherical symmetry. In
the massless, Dirichlet case (which has a resonant spec-
trum), two-mode initial data is well studied, and accumu-
lated evidence suggests that such data always leads
to collapse, and thus lies outside the islands of stability
[7–14,19,42,43,53–56].
Since multioscillators are quasiperiodic in time, they

do not form black holes, and hence lie within the islands
of stability. In [43], these types of solutions were used
in the massless Dirichlet case to map out portions of the
island of stability. Indeed, no equal-mode multioscillators
were found, consistent with studies on two-mode ini-
tial data.
When the spectrum is nonresonant, as it is for Robin

boundary conditions, analytic linear results suggest that any
initial data sufficiently close to AdS should be stable. One
would therefore expect multioscillators to exist that are
multimode dominated. This is indeed what we find in this
paper. We also find that the space of these solutions appears
to vanish as the boundary condition approaches the
resonant Dirichlet case, in agreement with a nonlinear
instability for two-mode initial data in this case. The range
of existence of multioscillator solutions also allows us to
quantify the extent to which breaking a resonant spectrum
can restore the stability of AdS.
Our results in the Neumann case, however, were

unexpected. Though the spectrum is fully resonant, we
nevertheless find noncollapsing strongly multimode initial
data that are arbitrarily close to AdS. We find that
these initial data admit a regular spectral decomposition.
However, we establish that these solutions are not
well-approximated by two-mode perturbation theory, and
confirm their apparent stability with a time evolution. This
provides a counterexample to the general picture that
islands of stability for resonant systems are single-mode
dominated.

II. SETUP

The ansatz for our metric and scalar field is given by

ds2 ¼ 1

cos2x

�
−fδ2dt2 þ dx2

f
þ sin2xdΩ2

�
; ð1aÞ

ψ ¼ cos xϕ; ð1bÞ

where we take f, δ, ϕ to be functions of t and x, with ϕ
complex. At the origin x ¼ 0, we require all fields to be
regular. At x ¼ π=2 we require the metric to asymptote to
AdS, and choose the gauge where

δ

�
t;
π

2

�
¼ 1; f

�
t;
π

2

�
¼ 1: ð2Þ

As we have mentioned in the Introduction, we have to set
the mass of the scalar field to be m2 ¼ −2. With this mass,
the scalar field has the boundary behavior

ϕðt; xÞjx→π
2
¼ ϕ1ðtÞ þ ϕ2ðtÞ

�
x −

π

2

�
þO

�
x −

π

2

�
2

: ð3Þ

Wewill consider for the scalar field, boundary conditions of
the form

sin

�
π

2
κ

�
ϕ1ðtÞ − cos

�
π

2
κ

�
ϕ2ðtÞ ¼ 0; ð4Þ

with 0 ≤ κ ≤ 1.
The equations of motion in our setup consist of

two spatial equations for f and δ, as well as a complex
Klein-Gordon equation for ϕ. There is additionally the
Hamiltonian constraint equation (a temporal equation for f)
which we do not solve directly, but use as a numerical
consistency check.
When performing numerics, we will use the real func-

tions fi, i ∈ f1; 2; 3; 4g defined by

δ ¼ 1 − cos2xf1;

f ¼ 1þ sin2xcos2xðcos xf2 þ f23 þ f24Þ;
ϕ ¼ eiω1tðf3 þ if4Þ; ð5Þ

where ω1 is a parameter that will be explained later.
In these variables, the Hamiltonian constraint equation

implies that the following energy quantity is conserved in
time:

E¼ f2

�
t;
π

2

�
þ tan

�
π

2
κ

��
f3

�
t;
π

2

�
2

þf4

�
t;
π

2

�
2
�
: ð6Þ
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III. PERTURBATIVE ANALYSIS

The Klein-Gordon equation in an AdS background is a
Sturm-Liouville problem with operator L:

∂t;tϕþ Lϕ ¼ 0; L ¼ −
1

tan2x
∂xðtan2x∂xÞ: ð7Þ

This operator defines an inner product:

ðf; gÞ ≔
Z π

2

0

f g tan2xdx: ð8Þ

The Klein-Gordon equation admits the following regular
solutions:

ênðt; xÞ ¼ Cneiω̂nt
sincðω̂nxÞ
sincðxÞ ; ð9Þ

where the constants Cn are chosen so that ðên; êmÞ ¼ δn;m.
Here, sincðxÞ ¼ sinðxÞ=x with sincð0Þ ¼ 1. The boundary
conditions (4) quantize the frequencies of the scalar field
(9). These frequencies ω̂n are given by the solutions to the
equation:

sin

�
π

2
κ

�
sin

�
π

2
ω̂n

�
−ω̂ncos

�
π

2
κ

�
cos

�
π

2
ω̂n

�
¼0: ð10Þ

Only two values of κ lead to frequencies that are evenly
spaced. A Dirichlet boundary condition corresponds to
κ ¼ 1 with frequencies ω̂n ¼ 2n, and a Neumann boundary
condition corresponding to κ ¼ 0 with frequencies
ω̂n ¼ 2nþ 1. These evenly spaced modes create a fully
resonant spectrum that will cause secular terms to appear at
higher orders in perturbation theory. In particular, when the
spectrum of frequencies is such that there exist quadruples
of frequencies fj1; j2; j3; j4g obeying

ω̂j2 � ω̂j3 � ω̂j4 � ω̂j1 ¼ 0; ð11Þ

for some choice of signs, then secular terms appear at
higher order in a perturbative analysis [28,34]. These
secular terms cannot be removed by shifts in the frequen-
cies, and are absent only when starting with a single mode
at the lowest order in perturbation theory. These secular
terms therefore lead to a breakdown of perturbation theory
for multimode data.
These frequencies are continuously connected by vary-

ing κ. However, note we only take positive definite
frequencies, so ω̂0 does not exist for the Dirichlet boundary
condition, but does exist for the Neumann condition. By
continuity, this frequency ω̂0 appears when κ ≤ 2

π tan
−1ð2πÞ.

As we wish to continuously vary parameters between
Neumann and Dirichlet conditiions, we will not consider
solutions connected to the frequency ω̂0.

From the resonance condition (11), we take the combi-
nation of the four lowest frequencies (without ω̂0)

Δω̂J ≡ ω̂2 þ ω̂3 − ω̂4 − ω̂1; ð12Þ

which we will later use as a measure of closeness to a
resonant spectrum.

IV. DOUBLE OSCILLATORS

We now study the space of noncollapsing solutions by
constructing double-oscillators, which are quasiperiodic
solutions that oscillate on two frequencies [43,50]. One of
the frequencies is given by the parameter ω1 as we have
defined in the ansatz (5). The other frequency is obtained
by demanding that the functions be periodic in time with
period ω2. For convenience, we focus on the subset of
solutions that admit the Fourier expansion

fiðt; xÞ ¼
X
k

fðkÞi ðxÞ cosðkω2tÞ i ∈ f1; 2; 3g;

f4ðt; xÞ ¼
X
k

fðkÞ4 ðxÞ sinðkω2tÞ ð13Þ

for Fourier coefficients fðkÞi .
Because of the quasiperiodicity, double-oscillators do

not collapse to form black holes, and hence lie within the
islands of stability. In fact, double-oscillators can be
extended to form the more general multioscillator family
by including more frequencies in their quasiperiodicity.
The multioscillator family therefore has an infinite number
of parameters, and their existence can be used to assess the
size of the islands of stability.
The equations of motion are then solved as a boundary

value problem with periodic boundary conditions in time.
Numerically, we use a Newton-Raphson method with the
perturbative solution as an initial estimate. We utilize
pseudospectral discretization with a half-Fourier grid in
the time direction and Legendre-Gauss-Lobatto nodes for
the spatial direction.
The solutions can be parametrized by κ and the frequen-

cies ω1 and ω2. For our purposes, it is more convenient to
use the projection onto the normal mode functions (9)
under the inner product (8). We consider solutions which
satisfy

ðfð0Þ3 ; ên1Þ ¼ ðfð1Þ4 ; ên2Þ ¼ ε; ð14Þ

In the linearized equations, the choice (14) will yield two-
mode-equal-amplitude solutions. We will consider the case
where n1 ¼ 1 and n2 ¼ 2 and parametrize our solutions by
ε and κ. Numerically, the integrals involved in the projec-
tions (14) are performed by Gaussian quadrature.
Our first double-oscillator solutions were found for

intermediate values of κ with small values of ε [and
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consequently also small energy E as defined in (6)]. The
existence of these solutions for intermediate values of κ
with arbitrarily small energy is consistent with the expect-
ation of stability for these boundary conditions.
As ε is increased, E also increases until we eventually

cease to find solutions. The point at which solutions cannot
be found appears to be robust to changes in grid size and
parametrization, and can be located using a bisection
search.
In Fig. 1 we display the maximum value of E for which

we have obtained double-oscillator solutions as a function
of the parameter κ. Observe that this curve approaches zero
near the Dirichlet case (κ ¼ 1). This is in agreement with
the expectation that two-mode-equal-amplitude data will
eventually form black holes in the Dirichlet case, which
implies that double-oscillators cannot exist.
However, this curve does not vanish on the Neumann

case κ ¼ 0, and instead plateaus to a constant value. Even
though the Neumann case has a resonant spectrum that
predicts that perturbation theory breaks down for multi-
mode data, the islands of stability still contain strongly
multimode data.
These results point at the existence of islands of stability

for Neumann boundary conditions that do not have a
counterpart in the Dirichlet case. In the Dirichlet case
for a massless scalar, the emerging picture has been that
islands of stability are single-mode dominated. In fact, in
[43] the authors charted islands of stability by constructing
double-oscillators that branch from boson stars, and found
that all such solutions remained single-mode dominated. In
the present Neumann case, however, the double-oscillators
are multimode dominated.
Let us now attempt to reconcile the existence of strongly

multimode oscillators with the breakdown of perturbation
theory due to resonant secular terms. Specifically, we will
verify that double oscillators for near-Neumann boundary
conditions are not described by small deformations of
linearized solutions with two-mode data. The validity of
linear perturbation theory for strictly two-mode data
requires that for small energies, the double oscillators
should approach the solution ϕ¼εðên1þ ên2Þ. In particular

ðϕ; ên3Þ=ðϕ; ên1Þ must vanish at small ε for any third mode
n3. In Fig. 2 we display the maximum amplitude for which

ðfð3Þ3 ; ên3Þ=ðfð1Þ3 ; ên1Þ < 0.1 in our double oscillator solu-
tions. Notice that this curve vanishes near the Neumann
boundary condition. Here, we have chosen n3 ¼ 3, but the
curve looks qualitatively similar for other n3. In other
words, the higher modes remain large relative to the lower
modes in the Neumann case, even for small energies.
We can compare this behavior to

ffiffiffiffiffiffiffiffiffi
Δω̂J

p
, defined in (12),

which can be used a measure of how close we are to a
resonant spectrum. Perturbation theory shows that the
frequency corrections appear at order ε2. Hence it is natural
to use the square root when comparing frequencies with
amplitudes. We display this quantity as a function of κ in
Fig. 3. We can see that both 2 and Fig. 3 are qualitatively
similar.
We therefore see that at small energies, the Neumann

double-oscillators do not approach two-mode data since a
third mode n3 remains large. We now study the falloff in
amplitude of these higher modes as a function of the
energy. In order to obtain the spectrum we considered the
time slice t ¼ 0 and projected onto the normal modes:

FIG. 1. Maximum value of the energy for which we have
encountered multioscillators as a function of κ.

FIG. 3. Value of
ffiffiffiffiffiffiffiffiffi
Δω̂J

p
as a function of κ. κ ¼ 0 is the

Neumann boundary condition on the scalar field and κ ¼ 1 a
Dirichlet boundary condition. In both these cases, Δω̂J ¼ 0 and
the spectrum is fully resonant.

FIG. 2. As a function of κ, the maximum value of the energy for
which we have encountered multioscillators where the ratio of the
amplitudes of the projections to ê1 and ê3 remains smaller
than 10%.
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an ≡ ðf3ðt ¼ 0; xÞ; ênÞ ð15Þ

In Fig. 4 we show the particular spectrum janj of double-
oscillators with Neumann boundary conditions and
ε ¼ 0.001. We see that the first two amplitudes of janj
are equal, as expected by our equal-mode boundary
conditions. For higher modes, there is an exponential
fall-off, as is typical for smooth solutions. However, for
very high mode numbers (higher than is shown), there is
eventually a power-law tail due to the fact that the normal
mode basis functions are even about the AdS boundary,
while the fully nonlinear solutions are not; they merely
satisfy a Neumann condition, and are still smooth solutions.
The smoothness of double-oscillators can be seen in a
Fourier-Legendre basis, where the spectrum has exponen-
tial falloffs and no power-law tail.
We are interested in the initial exponential falloff of janj,

and not the later power-law tail. In Fig. 5, we show the
exponential decay of normal mode amplitudes as a function

of ε for Neumann boundary conditions (blue) and a κ ¼
0.15 Robin boundary condition (black). In the Robin case,
the modes decay more rapidly as we approach the pertur-
bative limit ε → 0. This is the expected result since in the
perturbative limit we find two modes with amplitude ε
while other modes are highly suppressed. We encounter the
same qualitative behavior for other values of κ different
from 0. In the Neumann case, however, notice that the
decay rate approaches a constant value as ε → 0. This
indicates that this limit does not resemble two-mode data
but rather multimode data.
Therefore, to access the Neumann double-oscillator

solution perturbatively, one would need to seed the per-
turbation expansion with an infinite number of modes. It is
conceivable that in such a situation, the secular terms can
become suppressed. We note that as ε → 0, the power-law
tail gets pushed to higher and higher modes, suggesting that
the perturbative solution may be an even function about the
AdS boundary.
In Fig. 6, we show the difference between the frequen-

cies of double-oscillators and their perturbative values,
Δωi ¼ ωi − ω̂i for i ¼ 1, 2, as a function of ε. From these
plots, we see that frequencies approach the perturbative
frequencies for small ε. Notice that our definition of ε plays
an important role in the identification of the frequencies,
thus other double-oscillators may exist with different
frequencies for large ε. In particular, in our numerical
procedure we could have fixed the values of the frequencies
and allow the amplitude ε to change.

FIG. 5. Decay rate of mode amplitudes as a function of ε. The
decay rate is obtained by projecting double-oscillators onto the
normal modes, followed by a fit using linear regression. In black
we show double-oscillators correspond to Robin boundary
conditions with κ ¼ 0.15 whereas in blue we show the Neumann
case.

FIG. 4. Mode amplitudes janj of double oscillators for
Neumann boundary conditions (κ ¼ 0) and ε ¼ 0.001. The
amplitude is obtained by projecting the time slice t ¼ 0 onto the
normal modes.

FIG. 6. Frequencies of the double oscillators in the Neumann
case as a function of the amplitude ε. Δωi ¼ ωi − ω̂i for i ¼ 1, 2.
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V. NUMERICAL EVOLUTION

Though multioscillator solutions never collapse to form
black holes, they can be unstable. Indeed, solutions such as
boson stars [9,42,57,58] and oscillatons [8,59] form a
subset of the multioscillator family and are known to be
unstable to black hole formation for sufficiently large
energies. In a sense, these unstable solutions would con-
stitute regions of the islands of stability that are locally
measure zero.
We therefore assess the stability of double-oscillators in

the Neumann case through a numerical time evolution. As
initial data, we provide the double-oscillator solutions at
time t ¼ 0 and let them evolve. We performed the study for
different values of ε. In the following we consider the study
with ε ¼ 0.06 which corresponds to energy E ¼ 0.24.
In the AdS instability, gravitational collapse typically

occurs on a timescale of order t ∼ ε−2 [4], which happens to
be the fastest timescale allowed by the breakdown of
perturbation theory. We let our code evolve until time
t ¼ ε−3 ≈ 4630. As in the boundary value problem, we
controlled our numerics through energy conservation and
the constraint equation. Both the constraint equation and
energy conservation were verified to order 10−10.
The multioscillator solutions oscillate in two frequen-

cies. Thus the gauge invariant quantity ϕϕ� should be
periodic as the product cancels one of the frequencies. We
thus plot the quantity ϕϕ� at the boundary as a function of
time in Fig. 7. The panel above corresponds early-time

evolution, whereas the panel below shows late time.
Clearly, the solutions are noncollapsing and also remain
periodic throughout the time of simulation. This provides
evidence that these double-oscillators in the Neumann case
are nonlinearly stable.

VI. DISCUSSION

To summarize, we have studied the existence of
two-mode-equal-amplitude double-oscillator solutions in
asymptotically AdS spacetimes with Robin boundary
conditions that generically break the resonant spectrum.
These boundary conditions enables us to move away from
the resonant case of Dirichlet boundary conditions (κ ¼ 1)
up to Neumann boundary conditions (κ ¼ 0) which is also
resonant.
The existence of these double-oscillators when the

spectrum is nonresonant shows that islands of stability
in these cases can contain strongly multimode data. This
result is consistent with the idea that AdS is stable when the
spectrum is nonresonant. The fact that double-oscillators
vanish as one approaches the Dirichlet case is consistent
with the idea that two-mode data form black holes.
But surprisingly, we have found stable (until at least

t ∼ 1=ϵ2), strongly multimode data in the Neumann case,
even though the linear spectrum is resonant. While a fully
resonant spectrum might be necessary for a nonlinear
instability, it is not sufficient. To our knowledge, this is
the first example in AdS of a noncollapsing strongly
multimode data in a resonant system.
We have performed analytical perturbative studies,

similar to [4], in order to study and compare the differences
between Dirichlet and Neumann boundary conditions. In
general, the secular terms at Oðϵ3Þ coming from two-mode
data at OðϵÞ can actually be removed by turning on a third
mode atOðϵÞ. However, the introduction of this third mode
causes other secular terms to appear. Those can again be
removed by including more modes at OðϵÞ, but always at
the cost of other secular terms appearing.
We have considered two, three and four mode initial data

with the amplitude of the two lowest modes fixed to be the
same, and tuning the additional modes to cancel secular
terms that have already appeared. In the Neumann case, we
find that the additional secular terms that appear have
smaller and smaller amplitude as more modes are added at
OðϵÞ. This seems to hint that the secular terms may become
more and more negligible as more modes are added at
OðϵÞ, perhaps vanishing in some limit. This is to be
contrasted to the Dirichlet case, where these extra secular
terms appear with similar amplitude.
Rather than continuing in this manner in perturbation

theory, the two-time-formalism [10,28,31,34,53–56] pro-
vides an alternative description at Oðϵ3Þ that does not have
resonances, and might be able to shed light on the origin of
these solutions. This investigation lies beyond the scope of
the present study and we leave it for future work.

FIG. 7. ϕϕ� at the boundary x ¼ π=2 as a function of time for
initial data consisting of a multioscillator with two main ampli-
tudes ε ¼ 0.06. Top: evolution at early times. Bottom: evolution
at late time.
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In this paper, we have shown results for the modes ê1
and ê2 in (9). We have also performed all the studies for ê0
and ê1 for values of κ where ê0 exists. Our results are
qualitatively similar.
We have also repeated the study in this paper in the

flat-space case of a Dirichlet box [44]. There we have
considered a massive scalar field where the mass breaks the
resonant spectrum, and therefore plays the role of the
parameter κ. In that case, the spectrum is resonant only
when the scalar is massless, and nonresonant otherwise.
The behavior for small mass is qualitatively similar to what
was found in AdS for κ ≈ 1. For the flat-space Dirichlet
box, we were unable to find behavior similar to that of a
scalar field in AdS with Neumann boundary conditions.
The existence of stable strongly multimode data with

Neumann boundary conditions leaves open the question of
horizon formation for some other set of arbitrarily small
energy data. Initial data that is two-mode dominated (with

all the higher modes greatly suppressed) lies far away from
the double-oscillators we found, and might still be non-
linearly unstable to forming black holes. It would be
interesting to explore this family of two-mode initial data,
investigate its propensity to black hole formation, and
understand its relationship to the double-oscillators we
have constructed.

ACKNOWLEDGMENTS

We thank Oscar Dias, Gary Horowitz, Andrzej
Rostworowski, Jorge Santos, and David Turton for helpful
comments. R. M. acknowledges support from STFC Ernest
Rutherford Grant No. ST/M004147/1 and University of
Southampton Global Partnerships Award 2018-19. B.W. is
supported by NSERC. R. M. would like to thank the
University of British Columbia for hospitality during the
completion of this work.

[1] M. Dafermos and G. Holzegel, in Seminar at DAMTP,
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
(2006).

[2] M. Dafermos, in Proceedings of the Newton Institute
(University of Cambridge, Cambridge, England, 2006).

[3] M. T. Anderson, Classical Quantum Gravity 23, 6935
(2006).

[4] P. Bizon and A. Rostworowski, Phys. Rev. Lett. 107,
031102 (2011).

[5] G. Moschidis, arXiv:1704.08685.
[6] G. Moschidis, arXiv:1704.08681.
[7] O. J. C. Dias, G. T. Horowitz, D. Marolf, and J. E. Santos,

Classical Quantum Gravity 29, 235019 (2012).
[8] M. Maliborski and A. Rostworowski, Phys. Rev. Lett. 111,

051102 (2013).
[9] A. Buchel, S. L. Liebling, and L. Lehner, Phys. Rev. D 87,

123006 (2013).
[10] V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner, and

S. L. Liebling, Phys. Rev. Lett. 113, 071601 (2014).
[11] P. Bizoń and A. Rostworowski, Phys. Rev. Lett. 115,

049101 (2015).
[12] V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner, and

S. L. Liebling, Phys. Rev. Lett. 115, 049102 (2015).
[13] F. Dimitrakopoulos and I.-S. Yang, Phys. Rev. D 92, 083013

(2015).
[14] S. R. Green, A. Maillard, L. Lehner, and S. L. Liebling,

Phys. Rev. D 92, 084001 (2015).
[15] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv.

Theor. Math. Phys. 2, 231 (1998).
[16] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.

Lett. B 428, 105 (1998).
[17] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[18] O. J. C. Dias, G. T. Horowitz, and J. E. Santos, Classical

Quantum Gravity 29, 194002 (2012).

[19] A. Buchel, L. Lehner, and S. L. Liebling, Phys. Rev. D 86,
123011 (2012).

[20] P. Bizoń and J. Jałmużna, Phys. Rev. Lett. 111, 041102
(2013).

[21] R. Baier, S. A. Stricker, and O. Taanila, Classical Quantum
Gravity 31, 025007 (2014).

[22] J. Jałmużna, Acta Phys. Pol. B 44, 2603 (2013).
[23] P. Basu, D. Das, S. R. Das, and T. Nishioka, J. High Energy

Phys. 03 (2013) 146.
[24] H. Friedrich, Classical Quantum Gravity 31, 105001

(2014).
[25] P. Bizoń and A. Rostworowski, Acta Phys. Pol. B 48, 1375

(2017).
[26] M. Maliborski and A. Rostworowski, Phys. Rev. D 89,

124006 (2014).
[27] E. da Silva, E. Lopez, J. Mas, and A. Serantes, J. High

Energy Phys. 04 (2015) 038.
[28] B. Craps, O. Evnin, and J. Vanhoof, J. High Energy Phys. 10

(2014) 048.
[29] F. V. Dimitrakopoulos, B. Freivogel, M. Lippert, and I.-S.

Yang, J. High Energy Phys. 08 (2015) 077.
[30] G. T. Horowitz and J. E. Santos, Surveys Diff. Geom. 20,

321 (2015).
[31] P. Bizoń, M. Maliborski, and A. Rostworowski, Phys. Rev.

Lett. 115, 081103 (2015).
[32] P. Basu, C. Krishnan, and P. N. Bala Subramanian, Phys.

Lett. B 746, 261 (2015).
[33] N. Deppe and A. R. Frey, J. High Energy Phys. 12 (2015)

004.
[34] O. Evnin and R. Nivesvivat, J. High Energy Phys. 01 (2016)

151.
[35] B. Craps, O. Evnin, and J. Vanhoof, J. High Energy Phys. 10

(2015) 079.
[36] O. Evnin and C. Krishnan, Phys. Rev. D 91, 126010 (2015).

NEW ISLANDS OF STABILITY WITH DOUBLE- … PHYS. REV. D 100, 106017 (2019)

106017-7

https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://doi.org/10.1088/0264-9381/23/23/021
https://doi.org/10.1088/0264-9381/23/23/021
https://doi.org/10.1103/PhysRevLett.107.031102
https://doi.org/10.1103/PhysRevLett.107.031102
https://arXiv.org/abs/1704.08685
https://arXiv.org/abs/1704.08681
https://doi.org/10.1088/0264-9381/29/23/235019
https://doi.org/10.1103/PhysRevLett.111.051102
https://doi.org/10.1103/PhysRevLett.111.051102
https://doi.org/10.1103/PhysRevD.87.123006
https://doi.org/10.1103/PhysRevD.87.123006
https://doi.org/10.1103/PhysRevLett.113.071601
https://doi.org/10.1103/PhysRevLett.115.049101
https://doi.org/10.1103/PhysRevLett.115.049101
https://doi.org/10.1103/PhysRevLett.115.049102
https://doi.org/10.1103/PhysRevD.92.083013
https://doi.org/10.1103/PhysRevD.92.083013
https://doi.org/10.1103/PhysRevD.92.084001
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1088/0264-9381/29/19/194002
https://doi.org/10.1088/0264-9381/29/19/194002
https://doi.org/10.1103/PhysRevD.86.123011
https://doi.org/10.1103/PhysRevD.86.123011
https://doi.org/10.1103/PhysRevLett.111.041102
https://doi.org/10.1103/PhysRevLett.111.041102
https://doi.org/10.1088/0264-9381/31/2/025007
https://doi.org/10.1088/0264-9381/31/2/025007
https://doi.org/10.5506/APhysPolB.44.2603
https://doi.org/10.1007/JHEP03(2013)146
https://doi.org/10.1007/JHEP03(2013)146
https://doi.org/10.1088/0264-9381/31/10/105001
https://doi.org/10.1088/0264-9381/31/10/105001
https://doi.org/10.5506/APhysPolB.48.1375
https://doi.org/10.5506/APhysPolB.48.1375
https://doi.org/10.1103/PhysRevD.89.124006
https://doi.org/10.1103/PhysRevD.89.124006
https://doi.org/10.1007/JHEP04(2015)038
https://doi.org/10.1007/JHEP04(2015)038
https://doi.org/10.1007/JHEP10(2014)048
https://doi.org/10.1007/JHEP10(2014)048
https://doi.org/10.1007/JHEP08(2015)077
https://doi.org/10.4310/SDG.2015.v20.n1.a13
https://doi.org/10.4310/SDG.2015.v20.n1.a13
https://doi.org/10.1103/PhysRevLett.115.081103
https://doi.org/10.1103/PhysRevLett.115.081103
https://doi.org/10.1016/j.physletb.2015.05.009
https://doi.org/10.1016/j.physletb.2015.05.009
https://doi.org/10.1007/JHEP12(2015)004
https://doi.org/10.1007/JHEP12(2015)004
https://doi.org/10.1007/JHEP01(2016)151
https://doi.org/10.1007/JHEP01(2016)151
https://doi.org/10.1007/JHEP10(2015)079
https://doi.org/10.1007/JHEP10(2015)079
https://doi.org/10.1103/PhysRevD.91.126010


[37] D. S. Menon and V. Suneeta, Phys. Rev. D 93, 024044
(2016).

[38] B. Freivogel and I.-S. Yang, Phys. Rev. D 93, 103007
(2016).

[39] O. Dias and J. E. Santos, Classical Quantum Gravity 33,
23LT01 (2016).

[40] G. Martinon, G. Fodor, P. Grandclément, and P. Forgàcs,
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