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We reexamine a set of existing procedures aimed at recovering the effective description of the dynamics
of loop quantum gravity in the context of cosmological solutions. In particular, the studies of those
methods, to which the choice of cuboidal graphs and graph-preserving Hamiltonian is central, result in the
formulation of a set of no-go statements, severely limiting the possibility of recovering a physically
consistent effective dynamics this way.

DOI: 10.1103/PhysRevD.100.106016

I. INTRODUCTION

Past work in the area of loop quantum cosmology (LQC)
[1–3] allowed one to probe the dynamics of homogeneous
cosmological systems on the genuine quantum level.
A major result of these studies was the finding that the
big bang singularity is replaced by a bounce [4]. A further
remarkable outcome was that the quantum trajectories are
reproduced by a simple phenomenological model con-
structed by replacing the fundamental LQC operators with
their expectation values (implicitly evaluated on certain
semiclassical states). This framework is known in the
literature as the effective dynamics [5].
Since LQC is an independent theory never derived from

loop quantum gravity (LQG) [6,7], the question whether
the full theory would lead to similar dynamical predictions
is highly nontrivial. The direct computation of the genuine
quantum dynamics in LQG is outside of technical
reach (except in some unphysical toy examples [8,9]).
Observation of the success of effective dynamics in LQC
led to the expectation that a similar property would hold also
in the full theory. Consequently, instead of the quantum
Hamiltonian, a classical one (given by the expectation value
of the quantum Hamiltonian operator on a family of semi-
classical states) was used [10,11].
Preliminary results in this approach indicated that, when

semiclassical states peaked on cosmological data are used,
LQG reproduces on the qualitative level the effective
dynamics of LQC within the so-called μo scheme [12,13].
Unfortunately, in LQC, this scheme has proved to be
physically inconsistent [14], consequently being replaced

by the so-called μ̄ scheme [15]. It is an open questionwhether
LQG effective dynamics can lead to a physically consistent
effective model (e.g., by qualitatively reproducing LQC
within the μ̄ scheme or one of its possible extensions [16]).
For technical reasons, the studies in this direction

have so far been limited to so-called graph-preserving
Hamiltonians.1 In the current paper, we investigate whether
the commonly known techniques, when applied to these
Hamiltonians, can lead to a physically consistent effective
model.
The structure of the paper is as follows. In Sec. II we

recall the original conjecture of effective dynamics in
the μo scheme and its relation to LQC. In Sec. III we
investigate whether a similar conjecture for the μ̄ scheme
can be formulated in the full theory following a proposal
from [18] and find the answer in the negative. In Sec. IV
we put the problems of finding the μ̄ scheme in the full
theory on a broader ground by presenting explicit no-go
statements. Finally, we conclude with possible alternatives
in Sec. V.
Throughout the paper, we work in natural units

(ℏ ¼ G ¼ 1).

II. EFFECTIVE DYNAMICS

Let us start by briefly reviewing the content of effective
dynamics in LQC. Classically, in isotropic models the
geometry data are contained in a pair of canonical varia-
bles: these can be either the triad and connection compo-
nents [13], p and c, or the scaled, oriented volume v ∝ p3=2
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1In LQG, the space of states consists of cylindrical functions
supported on graphs. A graph-preserving operator is an operator
which preserves the subspace of cylindrical functions supported
on each given graph [17].
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and dimensionless b proportional to the Hubble rate.2

Application of the canonical formalism leads to a con-
strained system: in order to introduce a meaningful notion
of dynamics, one couples the geometry to a convenient set
of matter fields (so-called “internal clocks”) and solves the
scalar constraint by group averaging [19]. This procedure
leads to “deparametrization on the quantum level” where
the dynamics of the system is generated by a true
Hamiltonian, with one clock field playing the role of time.
At the deparametrized level, states at a fixed value of the
clock become physical states, and we denote their space by
HLQC. All relevant geometric operators on HLQC can be
written in terms of two fundamental operators. The choice
of these operators is a consequence of the particular
regularization scheme: in the μo scheme they are p̂ and

N̂ 1 ≔ deicμo (μo being a positive constant); in the μ̄ scheme

they are v̂ and N̂ 2 ≔ ceib.
A substantial set of cosmological models has been

already analyzed within the LQC framework. This
includes, in particular (but is not restricted to), the models
of isotropic universe [the so-called Friedman-Lemaitre-
Robertson Walker (FLRW) model] of various topologies
of constant time slices [15,20–24], with various matter
content [25–27] and possibly admitting nonvanishing
cosmological constant [28,29], as well as homogeneous
anisotropic models (including the so-called Bianchi I, II,
and IX) [30–35]. For the models listed above there exists a
set of states fψc;p ∈ HLQCgðc;pÞ∈R2 (e.g., coherent states
peaked about p ¼ p and c ¼ c) such that, for any observ-
able O polynomial in the fundamental operators, it is
(I ∈ f1; 2g)

hψc;p; OðN̂ I; v̂Þψc;piLQC
¼ OðeiμIðpÞc; p3=2Þjðc;pÞ¼ðc;pÞ þOðϵ⃗IÞ; ð1Þ

where μ1ðpÞ ¼ μo constant and μ2ðpÞ ¼
ffiffiffiffiffiffiffiffiffi
Δ=p

p
.

Note that ϵ⃗I is a vector of the second-order corrections,
i.e., relative dispersions and covariances of fundamental
operators forming the polymer analogue of the Heisenberg
algebra [36,37]: p̂ or v̂ (for I ¼ 1 and I ¼ 2, respectively),
ðN̂ I þ N̂ †

I Þ=2 and ðN̂ I − N̂ †
I Þ=2i. In the following we

consider the states (called “semiclassical”) for which the
remainder Oðϵ⃗IÞ is small3; for simplicity, in the following
we drop the symbol Oðϵ⃗IÞ and use ≈ instead of ¼ when an
identity holds to zeroth order in ϵ⃗I .
For certainmodels admittingmassless scalar field (includ-

ing the flat FLRW universe with non-negative cosmological
constant or negative curvature), the semiclassicality property

defined above may not be preserved by the dynamics (see
e.g., [38,39], also the discussion in [29,40]). In these cases
the Dirac observables corresponding to pðtÞ may be ill
defined on the physical Hilbert space; thus alternative
observables encoding the same information need to be
used [29,40]. Other choices of matter fields for an internal
clock (like dust [26] or radiation [27]) are free from this
deficiency.
Despite the above problem, probing the quantum dynam-

ics in LQC shows that for many of the models listed above

hψc;p; eitHðN̂ I ;v̂ÞOðN̂ I; v̂Þe−itHðN̂ I ;v̂Þψc;piLQC
≈Oðαth½eiμIðpÞc�; αth½p3=2�Þjðc;pÞ¼ðc;pÞ; ð2Þ

where αth½f� ≔ expðtfh; :gÞðfÞ is the Hamiltonian flow

generated by the effective Hamiltonian hðc; p; μIÞ ≔
hψc;p; HðN̂ I; v̂Þψc;piLQC on the phase space coordinatized
by (c; p) [41]. Correctness of (2) was tested in several
models, including the models of isotropic universe of
various topologies (K ¼ 0;�1) [15,21,42,43], various val-
ues of cosmological constant [28,29] and several forms of
matter content: dust [26], radiation [27] and massless scalar
field (see e.g., [44]). It was also tested in some homogeneous
nonisotropicmodels—Bianchi I universe [45–48]. For other
models, like the one describing the flat Bianchi I universe
with massless scalar field (including the isotropic sector) the
result (2) can be obtained with a minor modification to the
present mathematical procedure of building a physical
Hilbert space. For other cases (universe of negative curva-
ture or positive cosmological constant) an analogous result
holds once the observable v̂ is replaced with its “compacti-
fied” analog (see [29,40]). These results have given rise to
the effective dynamics conjecture, namely, that an analogous
property also holds for other reduced models (of which
dynamics was not tested on the genuine quantum level).
Let us now turn towards the full theory. In LQG, given a

fixed graph, the fundamental operators are holonomies ĥðeÞ
ofAshtekar connection along edges e of the graph and fluxes
ÊðeÞ of the densitized triads across surfaces dual to each link
[6,7]. Given that LQC inherits its structures from LQG, the
existing attempts of realizing effective dynamics in LQG
rely on a similar framework as the one presented above. So
far, all approaches in the literature select for that purpose
compact (implicitly embedded in a 3-torus) cuboidal lattices
withN vertices. On the Hilbert spaceHN of one such graph,
one considers a family fΨN

ξ;η ∈ HNgðξ;ηÞ∈su3N
2
×su3N

2
of states

that satisfy a semiclassicality property analogous to (1),
namely,

hΨN
ξ;η; Oðĥ; ÊÞΨN

ξ;ηi ≈Oðeξ; ηÞ ð3Þ

for any polynomial O in holonomies ĥ and fluxes Ê.
Note that in this equation (and in all that follow) the

2The most popular convention is v ¼ 2πGℏγ
ffiffiffiffi
Δ

p
p3=2 and

b ¼ c
ffiffiffiffiffiffiffiffiffi
Δ=p

p
, where Δ is the so-called “area gap” [15].

3By the remainderOðϵ⃗IÞ we mean any functions depending on
the generalized Hamburger moments, such that it vanishes if the
moments are put to 0. See the Appendix for details.
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symbol ≈ means that the relation holds up to a remainder
depending on relative dispersions and covariances of the
fundamental operators. Also, abusing the notation, we use
h≡ fhðeÞge, ξ≡ fξðeÞge and similar for E, η instead of
explicitly referring to each edge e.
Since we are focusing on the isotropic cosmology sector

of LQG effective dynamics, we now restrict our attention to
subfamilies of such states which are peaked about isotropic
cosmological geometries. This means that the peak hol-
onomy and flux labels (ξ; η) can be expressed in terms of
the coordinates on the phase space of isotropic cosmology:
ξðeÞ ¼ μocτ and ηðeÞ ¼ μ2opτ, where τðe ¼ ekÞ ¼ −iσk=2
is a generator of su2 (which in general depends on the
direction k of ek) and μo ¼ N−1=3 is the coordinate length
of edge e with respect to a certain fiducial metric.4

Upon these choices, preliminary studies performed for
example on the states in [49] indicate that

(i) for two polynomials O1 and O2 in the fundamental
variables

hΨN
ξ;η;i½O1ðĥ;ÊÞ;O2ðĥ;ÊÞ�ΨN

ξ;ηi
≈fO1ðeμocτ;μ2opτÞ;O2ðeμocτ;μ2opτÞgjðc;pÞ¼ðc;pÞ; ð4Þ

(ii) a certain form of effective dynamics (i.e., analogue
to (2)) might hold. (See e.g., [50,51].)

The latter can be captured in the following:
Conjecture 1: Consider a semiclassical stateΨN

ξ;η peaked
about isotropic geometry data (c;p) and Hamiltonian oper-
ator Ĥ ¼ Hðĥ; ÊÞ. For any polynomialO in the fundamental
variables, the following holds:

hΨN
ξ;η; e

itĤOðĥ; ÊÞe−itĤΨN
ξ;ηi

≈OðαtHμo
½eμocτ�; αtHμo

½μ2opτ�Þjðc;pÞ¼ðc;pÞ; ð5Þ

where αtHμo
½f� ≔ expðtfHμo ; :gÞðfÞ is the Hamiltonian flow

generated by the effective HamiltonianHμo ≔Hðeμocτ;μ2opτÞ
on the phase space coordinatized by (c; p).
Several studies appeared in LQG which make (some-

times implicit) use of this conjecture [10,11], concluding
that the LQG quantum dynamics of semiclassical states
(supported on a single lattice) resembles the μo scheme of
LQC. This scheme, however, was shown to lead to
physically inconsistent results within LQC (for example,
it does not admit a proper infrared regulator removal limit
[14]). It would therefore be desirable to reproduce in LQG
the μ̄ scheme. In other words, we would like to find a set of
semiclassical states in the full theory such that (we omit the
explicit symbol for such state)

heitĤOðĥ; ÊÞe−itĤi
≈OðαtHμ̄

½eμ̄cτ�; αtHμ̄
½μ̄2p�τÞjðc;pÞ¼ðc;pÞ; ð6Þ

where Hμ̄ ≔ Hðeμ̄cτ; μ̄2pτÞ and μ̄ ≔ μ̄ðpÞ ¼ ffiffiffiffiffiffiffiffiffi
Δ=p

p
. In

other words, the quantum dynamics of this semiclassical
state would be described by the μ̄-scheme effective
Hamiltonian Hμ̄. Such a feature, however, has an unfortu-
nate consequence: from (6), by setting t ¼ 0 andOðĥ; ÊÞ ¼
ĥðeÞ, it follows that

hĥðeÞi ≈ eμ̄ðpÞcτðeÞ; ð7Þ
which means that labels c and p do not have the meaning of
connection and triad coefficients as provided in [13].
Alternatively, if we want to retain the meaning of c and

p, Eq. (7) suggests reinterpreting the multiplication oper-
ator ĥ in terms of a new classical object, which we might
call a “weighted holonomy.”5 This is an important depar-
ture from standard LQG that cannot be dismissed easily.
For example, one must make sure that Hðh; EÞ remains a
regularization of the general relativity (GR) Hamiltonian if
hðeÞ is the weighted holonomy (especially considering the
fact that Thiemann identities only work with regular
holonomies [52]). Nevertheless, let us assume that this
issue can be overcome: the system will still be quantized in
the usual way, i.e., in terms of SU(2) multiplication
operators and right-invariant vector fields. Hence, on the
quantum level the commutator structure has no knowledge
of its former classical origin. This approach is further
discussed in the conclusion.
At the moment we focus on recovering property (6)

itself. Thus, we now look for possible techniques consid-
ered viable to achieve this goal.

III. A MULTISECTOR STRATEGY

One of the most promising procedures is to consider
states with support on a collection of graphs instead of a
single one [18]. Since the graph-preserving Hamiltonians
(and the standard set of observables) by definition leave the
subspaces of states supported on each graph invariant under
their action (making each subspace a superselection sector),
we can for simplicity call such approach a “multisector
strategy,” in opposition to a single-sector one, where just
one superselection sector is considered.
For the class of graph topologies considered in this paper

(compact cuboid lattices enumerated by a number of
vertices N), such states are of the form

ρ̂ ¼
X∞
N¼1

cNðwÞjΨN
ξ;ηihΨN

ξ;ηj; ð8Þ

4In the treatment presented in the literature, a specific
embedding is chosen, such that the lattice is regular.

5In the context of the full theory, the expression of this
weighted holonomy is not specified: we only know that it should
reduce to eμ̄ðpÞcτðeÞ in the cosmological sector.
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where we adopted a density matrix notation. Here, w
denotes an abstract label which may, in principle, be a
function of the phase variables c, p and of the coherent state
labels c, p. The hope behind this generalization was based
upon the expectation that, given a well-behaved function
Fðc; p; μoðNÞÞ with μoðNÞ ¼ N−1=3, it would be possible
to find a family cNðwÞ such thatX∞

N¼1

cNðwÞFðc;p; μoðNÞÞ ≈ Fðc;p; μðwÞÞ; ð9Þ

where μðwÞ [being determined by the choice of cNðwÞ]
would take a desired form consistent with the μ̄ scheme of
LQC. Indeed, for an observable Ô being an operator
polynomial in ĥ; Ê one has

hOðĥ; ÊÞi ≔ Tr½ρ̂Oðĥ; ÊÞ�

¼
X∞
N¼1

cNðwÞhΨN
ξ;η; Oðĥ; ÊÞΨN

ξ;ηi

≈
X∞
N¼1

cNðwÞOðeμoðNÞcτ; μ2oðNÞpτÞ

≈OðeμðwÞcτ; μ2ðwÞpτÞ; ð10Þ
where in the third line we used (3) and in the fourth we
used (9). This shows that one has a significant freedom of
affecting the expectation value of Ô by selecting the
distribution cNðwÞ (e.g., requiring it to be peaked about
an appropriate function of p).
The first example of applying this strategy discussed in

the literature was presented in [18] and relied on a specific
postulated choice of cNðwÞ,

cNðwÞ ¼
1

2ðαwÞ2=3

� ðαwÞ3=2
N

�
ð11Þ

(with α > 0). This choice led to the desired result μðwÞ ¼ffiffiffiffiffiffiffiffiffiffi
Δ=w

p
≕ μ̄ðwÞ for time-zero expectation values, since then

hOðĥ; ÊÞi ≈Oðeμ̄ðwÞcτ; μ̄2ðwÞpτÞ: ð12Þ
Upon identifying w ¼ p and applying this equation to the
Hamiltonian operator Ô ¼ Ĥ, this expectation value is
found to coincide (up to subleading corrections) with the
LQC effective Hamiltonian in the μ̄ scheme.
This is an encouraging result; however what we really

need to show is (6) whose right-hand side, in particular,
implies a nontrivial dependence pðtÞ ≔ αtHμ̄

½p�jðc;pÞ¼ðc;pÞ.
6

Therefore, in order for proposals such as (11) to yield the μ̄
scheme at arbitrary times, one needs to identify w ¼ pðtÞ.
This in turn implies that the coefficients cNðwÞ must have
nontrivial time dependence when the evolution is consid-
ered. We are now going to show that the quantum evolution
described by the left-hand side of (6) cannot allow for such
time dependence.
Recall that ρ̂t ≔ e−itĤρeitĤ and introduce projectors

P̂N ¼ P
i jeN;iiheN;ij onto each graph, so that

I ¼
X
N

P̂N: ð13Þ

The unitarity of quantum time evolution requires that, for
the coefficients cNðtÞ ≔ cNðwðtÞÞ, it holds

cNðtÞ ¼ Tr½ρ̂tP̂N �
¼

X
M;i

cMð0ÞhΨM
ξ;ηjeitĤjeN;iiheN;ije−itĤjΨM

ξ;ηi

¼ cNð0Þke−itĤΨN
ξ;ηk2 ¼ cNð0ÞkΨN

ξ;ηk2
¼ cNð0Þ: ð14Þ

This shows that cN cannot depend on time and hence (6)
cannot be satisfied by such states ρ̂.
The explicit computation of the expectation value of Ô

on ρ̂t gives

OðtÞ ≔ Tr½ρ̂tOðĥ; ÊÞ� ¼ Tr½ρ̂eitĤOðĥ; ÊÞe−itĤ�

¼
X∞
N¼1

cNðwÞhΨN
ξ;η; e

itĤOðĥ; ÊÞe−itĤΨN
ξ;ηi

≈
X∞
N¼1

cNðwÞOðαtHμoðNÞ ½eμoðNÞcτ�;

αtHμoðNÞ ½μ2oðNÞpτ�Þjðc;pÞ¼ðc;pÞ

¼ OðαtHμðwÞ ½eμðwÞcτ�; αtHμðwÞ ½μðwÞ2ðNÞpτ�Þjðc;pÞ¼ðc;pÞ;

ð15Þ

where in the third line we used (5) and in the last line we
used Eq. (9). It could be argued that the choice w ¼ p
would lead to the correct result. However, the state ρ̂t (and
therefore cN as well) depends only on p, c and t. The phase
space functions c, p are merely intermediate, auxiliary
objects (meaningful only inside each term of the sum in the
third line), consequently w cannot be a function on the
phase space coordinatized by (c; p): the only option is
therefore μðpÞ, for which (15) gives

heitĤOðĥ; ÊÞe−itĤi
¼ Tr½ρ̂tOðĥ; ÊÞ�
≈OðαtHμðpÞ ½eμðpÞcτ�;αtHμðpÞ ½μðpÞ2pτ�Þjðc;pÞ¼ðc;pÞ: ð16Þ

6In order to be able to provide a viable description of the
observed reality, the model needs to give dynamical predictions
which in the low energy limit are converging to those of
(the cosmological sector of) classical general relativity. The latter
in turn predicts a highly nontrivial time dependence of the values
of c and p.
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It is now clear that μðpÞ Poisson commutes with the
functions on which αt acts, and hence does not contribute
to the effective dynamics.
Observation 1: If the quantum dynamics on a single

sector (graph) reproduces the μo scheme (conjecture 1),
then the quantum dynamics on the multisector also repro-
duces the μo scheme [with a different constant μ0o ≔ μðpÞ].

IV. NO-GO STATEMENTS

The approach discussed so far does not reproduce the μ̄
scheme; that is, the expectation values of observables Ô on
quantum-evolved states are not consistent with (6), but
rather reproduce the effective dynamics of the μo scheme.
However, to arrive to this conclusion, the use of conjecture
1 was central. While this conjecture is supported by
numerical evidence in the context of symmetry-reduced
models, and promising work on providing a proof to it is
ongoing [50,51], one still cannot exclude the possibility
that for certain classes of (sharply peaked) states the
dynamics may follow different trajectories. However, we
show that, under some weaker assumptions, certain no-go
statements concerning the recovery of the μ̄ scheme from
the full theory can be made.
For simplicity, in the following we focus on the single-

sector pure states. The extension to mixed states can be
performed by a procedure similar to that presented in the
previous section and, as it was shown there, would not lead
to a qualitative change of predictions.
The first no-go statement considers an alternative to the

original conjecture 1, in which the semiclassical states
peakedness is defined with respect to different phase space
coordinates.
Observation 2: Let ΨN

ξ;η be a semiclassical state with
ξ ¼ μ̄ðpÞcτ≕ bðc;pÞ and η ¼ μ̄ðpÞ2pτ≕ η̃ðpÞτ, satisfying
property (3). Then, equation

hΨN
ξ;η;i½O1ðĥ;ÊÞ;O2ðĥ;ÊÞ�ΨN

ξ;ηi
≈fO1ðebðc;pÞ;η̃ðpÞτÞ;O2ðebðc;pÞ;η̃ðpÞτÞgjðc;pÞ¼ðc;pÞ ð17Þ

cannot be satisfied, which means that the space of labels
ðb; η̃Þ cannot serve as the coordinates of the effective phase
space of cosmology.
The reason why this statement holds is relatively

straightforward: recalling that μ̄ðpÞ ¼ ffiffiffiffiffiffiffiffiffi
Δ=p

p
, we have

η̃ðpÞ ¼ μ̄ðpÞ2p ¼ Δ; this, however, means that η̃ðpÞ ¼
η̃ð0Þ is independent of p, which makes η̃ unsuitable as a
coordinate on the phase space (thus making the coordinate
system degenerate). In particular, any Poisson bracket in
(17) is necessarily 0 [and similarly the Hamiltonian flow
would preserve η̃: αtHμ̄

ðη̃Þ ¼ η̃].
Noting that on a single sector the expectation value of the

volume of the spatial manifold is hV̂½σ�i∝eN, one may try to
implement a multisector strategy (such as the one discussed
before), constructing a family of states peaked about

coordinates ðb;NoÞ. Conceivably, a canonical Poisson
structure can be defined on this space, therefore avoiding
the problems of observation 2. However, due to the graph-
preserving nature of the Hamiltonian, the expectation value
of the number operator

P
N NP̂N is a constant of motion,

and hence p ¼ N2=3
o would have trivial dynamics, in

contradiction with the low energy GR limit.
To summarize, considering states semiclassical in

variables bðc; pÞ and ηðpÞ more suitable from the physical
point of view will not lead to any replacement of con-
jecture 1 [Eq. (5)] consistent with the μ̄ scheme.
At first glance it appears to be possible nonetheless to

achieve the μ̄ scheme by dropping (17), i.e., by no longer
relating η̃ðpÞ on the right-hand sidewith the η on whichΨ is
peaked.However, we demonstrate that this cannot be correct
in general, using as an example a certain regularization of the
Hamiltonian in LQG and the volume operator.7

Observation 3: Consider a state obeying (3) with
ξ ¼ μ̄ðpÞcτ and η ¼ μ̄2ðpÞpτ ¼ η̃ðpÞτ and N ¼ μ̄ðpÞ−3=2,
such that

hV̂½σ�i ≈ Nη̃
3
2 ¼ p

3
2: ð18Þ

Then, for a Hamiltonian Ĥ ¼ Hðĥ; ÊÞ it is

heitĤV̂½σ�e−itĤi ≉ αtHμ̄
ðp3

2Þjðc;pÞ¼ðc;pÞ; ð19Þ

where Hμ̄ ¼ Hðe
ffiffiffiffiffiffiffi
Δ=p

p
cτ;ΔτÞ.8

In other words, given an isotropic state initially peaked in
volume at p3=2 and assuming its peak follows some
effective trajectory under quantum dynamics for some
Hamiltonian [which is a function of SUð2Þ multiplication
operators and right-invariant vector fields], such trajectory
will not be the one which is generated by replacing the
operators with the respective classical expressions of
isotropic holonomies and fluxes in the μ̄ scheme.
If both sides of (19) were equal for all t, then the

expansion in t of (19) must coincide order by order,

h½Ĥ; V̂½σ��ðnÞi ≈ fHμ̄; p
3
2gðnÞjðc;pÞ¼ðc;pÞ; ð20Þ

where fA;BgðnÞ is defined inductively by fA; Bgðnþ1Þ ¼
fA; fA;BgðnÞg and fA; Bgð1Þ ¼ fA; Bg, and ½Â; B̂�ðnÞ is
defined analogously. In particular, we must have

7Work in cosmology is mostly concerned with the volume;
however for physical predictions any working conjecture should, in
principle, be extended to the Ricci scalar and energy density.

8We refer to the same function H on the classical phase space,
which was used to define the quantum dynamics. Of course, this
does not exclude the possibility that (19) with an ≈ is satisfied for

some different effective Hamiltonian Hμ̄ ≔ H0ðe
ffiffiffiffiffiffiffi
Δ=p

p
cτ;ΔτÞ on

the right-hand side.
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h½Ĥ; ½Ĥ; V̂½σ���i ≈ fHμ̄fHμ̄; p
3
2ggjðc;pÞ¼ðc;pÞ: ð21Þ

To understand better the consequences of this equation,
we consider a particular (nonphysical) example: the
Euclidean Hamiltonian operator Ĥ acting on a cubic lattice
as proposed by Giesel and Thiemann [17]. This operator
has the property that

Hðe
ffiffiffiffiffiffiffi
Δ=p

p
cτ;ΔτÞ ¼ sin2ð

ffiffiffiffiffiffiffiffiffi
Δ=p

p
cÞp3=2=Δ; ð22Þ

so that Hμ̄ is indeed the μ̄-scheme effective Hamiltonian of
LQC. It is then easy to check that the right-hand side of
(21) is

�
sin2

� ffiffiffiffi
Δ
p

s
c

�
p

3
2

Δ
;

�
sin2

� ffiffiffiffi
Δ
p

s
c

�
p

3
2

Δ
; p

3
2

������
ðc;pÞ¼ðc;pÞ

¼ κ2β2

8

p
3
2

Δ
sin2

� ffiffiffiffi
Δ
p

s
c

�
: ð23Þ

On the other hand, the left-hand side—that is, the double
commutator between operators in the full theory—can be
computed explicitly (see [53] for details). The evaluation
gives

h½Ĥ; ½Ĥ; V̂½σ���i

≈
κ2β2

8

p
1
2

μ2
sin2ðμcÞ 2þ cosð2μcÞ

3

����
ðc;p;μÞ¼ðc;p;

ffiffi
Δ
p

p
Þ
: ð24Þ

The mismatch between the two sides of the equation shows
that (21) cannot hold.
To analyze the problem in full generality, it is convenient

to introduce two maps from operators to phase space
functions,

ω∶ Oðĥ; ÊÞ ↦ Oðeμcτ; μ2pτÞ; ð25Þ

where μ is considered as a parameter unrelated to phase
space coordinates, and

ω̃∶ Oðĥ; ÊÞ ↦ ωðOðĥ; ÊÞÞj
μ¼

ffiffiffiffiffiffiffi
Δ=p

p : ð26Þ

Up to second-order corrections, these maps associate to a
given operator Ô the expectation value of Ô on semi-
classical states defined in conjecture 1 and observation 3,
respectively. Notice that the only difference between the
two maps is the identification of μ with the phase space
function

ffiffiffiffiffiffiffiffiffi
Δ=p

p
in ω̃ (after evaluating ω).

In terms of these maps, Eq. (20) takes the following
form:

ω̃ð½Ĥ; V̂�ðnÞÞ ≈ fω̃ðĤÞ; ω̃ðV̂ÞgðnÞ: ð27Þ

To verify whether this can be satisfied, we first observe that,
due to Eq. (4), the following equality holds:

ωð½Ĥ; V̂�ðnÞÞ ≈ fωðĤÞ;ωðV̂ÞgðnÞ: ð28Þ

Writing ω̃ in terms of ω and making use of (28), the left-
hand side and right-hand side of Eq. (27) read respectively

ω̃ð½Ĥ; V̂�ðnÞÞ ¼ ωð½Ĥ; V̂�ðnÞÞjμ¼ ffiffiffiffiffiffiffi
Δ=p

p

≈ fωðĤÞ;ωðV̂ÞgðnÞjμ¼ ffiffiffiffiffiffiffi
Δ=p

p ð29Þ

and

fω̃ðĤÞ; ω̃ðV̂ÞgðnÞ ¼ fωðĤÞj
μ¼

ffiffiffiffiffiffiffi
Δ=p

p ;ωðV̂Þj
μ¼

ffiffiffiffiffiffiffi
Δ=p

p gðnÞ:
ð30Þ

These two quantities cannot be equal for all n as long as
ω̃ðĤÞ is a nontrivial analytical function of c due to the fact
that, with μ ¼ ffiffiffiffiffiffiffiffiffi

Δ=p
p

being a nontrivial phase space
function, for generic A and B we have

∃n∈N∶ fA;BgðnÞjμ¼ ffiffi
Δ
p

p ≠ fAj
μ¼

ffiffi
Δ
p

p ;Bj
μ¼

ffiffi
Δ
p

p gðnÞ: ð31Þ

We therefore conclude that (27) does not hold, which
explains the disagreement between (23) and (24) in the
example, and proves observation 3.

V. CONCLUSION

In this paper, we investigated whether a physically
consistent effective dynamics of cosmological semiclass-
ical states (such has the μ̄-effective dynamics in LQC) can
be obtained from quantum dynamics in full LQG using
currently available tools. In particular, we focused on
graph-preserving Hamiltonians. Independent studies [51]
indicate that, for such Hamiltonians, the dynamics on a
single superselection sector (i.e., for states supported on a
single graph) reproduces the μo-effective dynamics up to
second-order corrections. This observation was captured in
conjecture 1.
Since this outcome is not physically favored, a proposal

has appeared [18] to circumvent this problem by consid-
ering mixed states defined on ensembles of superselection
sectors (i.e., graphs). For such a method, we have shown
that the requirement of unitarity of quantum evolution
forces the dynamics of the mixed state to have the same
qualitative features of the single-sector one. In other words,
starting from single-sector components obeying conjec-
ture 1, one finds that the mixed state also follows μo-
effective dynamics (possibly with a different constant μ0o).
This result is summarized in observation 1.
Following the no-go result of observation 1, a different

route was considered. We studied a different family of
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semiclassical states, whose peakedness is defined with
respect to a different set of phase space coordinates,
resembling those of improved dynamics in LQC [4,15]
(while keeping the Poisson algebra and the regularization
of the Hamiltonian unchanged). We were able to show that
the attempt to identify expectation values of commutators
of quantum observables with Poisson brackets of the
classical counterparts of these observables expressed as
functions of the new coordinates led to trivial evolution of
flux-dependent observables (such as the volume), which is
also physically inconsistent. This fact is expressed in
observation 2. In observation 3, it is moreover found that
the commutator algebra of the fundamental operators is not
consistent with the reduced Poisson structure stemming
from the weighted holonomies of the μ̄ scheme. Thus, in
general the evolution for the volume differs in both
descriptions. However, we emphasize that although the
procedure from observation 3 does not reproduce the μ̄
scheme, this does not invalidate the possibility that the full
theory produces some other effective model which is
physically consistent and reproduces GR at low energies.
The methods discussed above cover all the approaches in

the literature to graph-preserving Hamiltonians. Since we
have shown that none of them leads to consistent physical
dynamics, a qualitatively new approach is required. The
possibilities include the following:

(i) Defining a meaningful “continuum limit” μ → 0.
Such an approach is expected to lead to classical
dynamics in the leading order, while quantum effects
would sit in the higher order corrections.

(ii) Considering a graph-changing Hamiltonian. There
are several such proposals in the literature, but they
all rely on the existence of some “nonchanging
core” to which certain degenerate [52] or ultralocal
[54] structures are added. Therefore, these graph-
changing Hamiltonians have a problem common
with the graph-preserving approach9: it is not clear
whether these solutions are viable from the point of
view of describing an expanding universe, since the
structure associated with a single node generating
nontrivial volume would have to describe a large
region of the Universe. Therefore, if this route is to
be followed, one might need a new proposal for a
graph-changing Hamiltonian.

(iii) Starting with a new symplectic structure at the
classical level, thus applying the quantization pro-
cedure to a new algebra of variables. For example,
one could replace the holonomy-flux algebra with
the algebra of “weighted holonomies” and their
canonical conjugated momenta, generalizing to
the full theory what was done in LQC improved
dynamics (see e.g., [57,58] for first steps in this

direction for reduced models). This, in particular,
requires a new regularization of the classical Ham-
iltonian, in a context where Thiemann identities
might not be valid.

(iv) Using renormalization techniques to find a cylindri-
cal consistent choice of graph-preserving Hamilto-
nians. Those could be used to construct a continuum
quantum field theory via inductive limit methods
(see e.g., [59], or in the context of spin-foam
formulation to LQG [60,61]). In this sense, the
fixed graphs correspond only to observing the full
theory with some coarseness scale μ, while its
dynamics is to be computed in the continuum.

These approaches are currently being investigated by
several groups. Furthermore, the list above is not exhaus-
tive and there may well exist other approaches circum-
venting the no-go statements (observations) made in this
article. Thus, although we have shown a certain popular set
of approaches to not have a chance to work, there are still
other prospects of constructing a framework which will
recover a physically consistent scheme for LQG effective
dynamics.
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APPENDIX: EFFECTIVE DESCRIPTION
OF SEMICLASSICAL STATES

Consider a simple quantummechanical system for which
a pair of observables x̂; p̂ forms a Heisenberg algebra

½x̂; p̂� ¼ iℏI: ðA1Þ

For a sufficiently rich class of states (which we define more
precisely later) their physical properties can be encoded in
the set of classical quantities known as generalized
Hamburger moments,

Gmn≔“h∶ðx̂−hx̂iIÞmðp̂−hp̂iIÞn∶i”

¼
Xm;n

k;l¼0

ð−1ÞðmþnÞ−ðkþlÞ
�
m

k

��
n

l

�
h∶x̂kp̂l∶ihx̂im−khp̂in−l;

ðA2Þ

where ∶·∶ is a symmetric (usually Weyl) ordering. This
decomposition has been known in quantum optics for more
than half a century and was reintroduced in context of
quantum cosmology in [62]. Remarkably, the countable set
of Gmn forms a Poisson algebra of complicated but known
structure. All the observables, which can be written as
functions of fundamental operators x̂; p̂, can be expressed
by Gmn via an analog of Taylor expansion

9This problem has been already noticed in the literature and, in
particular, has been motivation for “lattice refinement” [55,56].
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hOðx̂; p̂Þi ¼ “hOðhx̂iI þ ðx̂ − hx̂iIÞ; hp̂iI þ ðp̂ − hp̂iIÞÞi”

¼
X∞
k;l¼0

1

k!l!
∂kþlO
∂kx∂lp

����
x¼hx̂i;p¼hp̂i

Gkl: ðA3Þ

Applying this decomposition to the Hamiltonian allows one
to write it as a series in ðx ¼ hx̂i; p ¼ hp̂i; GmnÞ. Known
Poisson structure of the central moments algebra permits
one then to find the full (countable) set of equations of
motion for ðx; p;GmnÞ, effectively determining the quan-
tum evolution. In particular, the equations of motion for
(x; p) get contributions in the form of functions of ðGmnÞ.
These terms are the quantum corrections (of the order
mþ n) to the classical trajectories.
This (countable) set can now be truncated at a finite order

mþ n. Provided that the higher order terms in the
Hamiltonian as well as the set of moments Gmn represent-
ing the state decay sufficiently fast with the order mþ n,
the resulting truncated system provides a good approxi-
mation of the actual quantum evolution, of which accuracy
can be controlled by a truncation order. For that purpose,
one usually restricts the studies to the set of states satisfying
the inequalities ∀j; k ∈ ZþjGmþj;nþkj ≪ ℏjþkjGm;nj pro-
viding a stronger notion of semiclassicality. For many

systems the set of such states is sufficiently large to allow
for extracting meaningful physical information.
Such description can be generalized in two ways. First,

for the systems featuring classical phase space of higher
dimension it generalizes in a straightforward way: the
moments G simply become multi-index objects Gk1;…;kN ,
where N is the classical phase space dimension. Second,
the formalism can be generalized to quantum representa-
tions in which the algebra of fundamental operators has
different structure than the Heisenberg one. In particular, in
the case of the polymer quantization (see e.g., [63,64]) of
the system we have a pair of operators: momentum p̂ and a

boost bUλ ≔ dexpðiλxÞ with commutator ½p̂; Ûλ� ¼ −λℏÛλ.
One can then introduce a triple of (classical effective)
variables as expectation values p≔hp̂i;c≔hðÛλþÛ−1

λ Þ=2i;
s≔hðÛλ−Û−1

λ Þ=ð2iÞ and subsequently define the central
moments Gijk analogously to (A2). Subsequently, the
observables and the Hamiltonian can be expressed as series
in the variables ðp; c; s; GijkÞ via expansions analogous to
(A3) and the resulting system of equations of motion can
again be truncated. The Poisson algebra structure of Gijk is
more complicated, but can be algorithmized and the set of
equations of motion truncated at the arbitrary order can be
found [65].
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