PHYSICAL REVIEW D 100, 106011 (2019)

Finite N corrections to white hot string bits
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String bit systems exhibit a Hagedorn transition in the N — oo limit. However, there is no
phase transition when N is finite (but still large). We calculate two-loop, finite N corrections to the
partition function in the low-temperature regime. The Haar measure in the singlet-restricted partition
function contributes pieces to loop corrections that diverge as O(N) when summed over the mode numbers.
We study how these divergent pieces cancel each other out when combined. The properly normalized two-

loop corrections vanish as O(

N1 for all temperatures below the Hagedorn temperature. The coefficient of

this 1/N dependence decreases with temperature and diverges at the Hagedorn pole.

DOI: 10.1103/PhysRevD.100.106011

I. INTRODUCTION

One can study a light-cone-quantized string as the
continuum limit of a polymer of point masses called string
bits [1,2]. These bits move in transverse space, enjoy
nearest-neighbor interactions and transform adjointly under
a global U(N) symmetry. It is possible to incorporate target
space supersymmetry [3] into this picture. The longitudinal
coordinate is recovered in the large N [4] limit and the
continuum limit of such a polymer. In fact, as an extreme
form of holography, one may recover all the coordinates
(instead of simply the longitudinal one) by postulating extra
internal degrees of freedom (d.o.f.) [5]. It is instructive to
study the behavior of such a system at finite temperature
[6-8]. Such systems exhibit a Hagedorn transition from a
low-temperature phase that consists of closed chains to a
high-temperature phase consisting of liberated bits. This
bears similarities to Hagedorn transitions studied in various
other models: Hermitian matrix model [9], unitary matrix
model [10] and A/ = 4 supersymmetric Yang-Mills (SYM)
theory on S [11,12]. For an improved calculation of
Hagedorn temperature in N' =4 SYM theory at finite
’t Hooft’s coupling see [13,14].

In a recent paper [8] we have computed the low-
temperature partition function of the simplest stable string
|
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bit system, up to leading order in N. In that simplified
model, interactions between the string bits were switched
off and instead, a singlet restriction was imposed on them.
In the appropriate limits, this rudimentary system corre-
sponds to the T, — 0 limit of a subcritical string in 1 4 1
dimensions that has only one Grassmann world sheet field.
We observed that the singlet restriction can be studied as
1/N perturbations in an effective scalar field theory. The
Hagedorn temperature of the system could then be under-
stood as the location of the pole of the “bare propagator” in
this effective field theory. At large but finite N the system is
not supposed to have a Hagedorn transition (there are only
a finite number of d.o.f. at finite N). This motivated us to do
a partial resummation of the bare propagator with quartic
corrections to shift the Hagedorn pole off the real temper-
ature axis. Only at infinite temperature did we manage to
compute finite N corrections to the partition function and
discovered its link to an enumeration problem of Eulerian
digraphs with N nodes. As a follow-up to our paper,
Beccaria used the technique developed in [12] to calculate
the density of eigenvalues in the high-temperature phase up
to leading order in N [15].

In this paper we shall present finite N corrections to the
following partition function in the low-temperature regime:
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where x = e™#®, 0, represents the kth angle in the U(N)
color space Vk e {I,N}, b is the number of distinct
bosonic species and f is the number of distinct fermionic
species in the system.  denotes ;- and @ denotes the mass

of a string bit. Our results will hold for 0 < x < 5= + 7 The

connected vacuum diagrams are then represented by

log(2) = tog [ Hdekexp x:{0})]
~og [* Hdekexp 40D, @)

where

L (0D = (V- Dtog (15 + 225@9 —0) ()

o [ ) = ta-egonoa ] ) omelow {5 () 5 () ool

with

L(x;0) =log(1 — €) + flog(1 + xe'?)

—blog(1 —xe?) +c.c. (4)

containing pieces from the group measure, fermionic
bits and bosonic bits, respectively. In the low-temperature
phase, L is maximized by a uniform distribution, 6,
of {6}. One can take a nondecreasing function of the
indices,

k
60k:2ﬂﬁ, kE{l,,N}, (5)

and expand this effective Lagrangian about this uniform
distribution. Then using perturbation theory for scalar field

1 2z 1 Vv 1% 1 1%
~ L + IOg <det[ :| ) _ m,n,—m—n"Y —m,—n,m+n + - m,—m,n,—n + . (6)
0 _LZ 12 mZJ, Vm.—m Vn,—n V—m—n,ern 8 ; Vm,—m Vn.—n

L
whereL =L, k, = 5(5 [gé’)]

p0s1t10n space” and

are the coupling constants

N
1 :
— 2zi(niky+-+nyk,) /N
Vitreoan, = 372 > Ly, @kt k)N (7)
k..., kp:l

are the coupling constants in “Fourier space.” L,[0] turns
out to be a circulant matrix in the “position indices,” i.e.,
L,, .100] = F(|m — n|), and hence can be naturally diagon-
alized via the Fourier transform [8].

II. CALCULATION OF VERTICES FOR FINITE N
In [8], the pth Fourier vertex is given by
 ONjnytoin, A~ dP L7 E)
n QNP2 dor

a=1
x (e2riam/N _ 1)... (e2mian,/N _ 1) (8)

B{nyt) = (et 1)

a

. p .
(emp'ga _ 1) (d%) IOg(l _ eH—zHa)

[
where n, € ZV 1€ {1, p} represents the Fourier mode
numbers, and the delta symbol is 1 whenever N is a factor
of ny+---+mn, and 0 otherwise. £ is a function of
differences in 0’s, hence its derivative with respect to a
single @ yields differences in Kronecker deltas:

d@k_z lk_

i#]

1)L (0r). ©)

Upon a Fourier transform these differences in
Kronecker deltas yield products of differences between
powers of roots of unity: (eXem/N — g2mibm/Ny. ..
(e2miany /N — g27ifn,/N') Following this, in [8] we approxi-
mated the sum over a by an integral. In this paper, we shall
perform the exact summation.

But first, let us try to evaluate the following expression,

Op=2mk

d\ P . ; 1
_ (id,> Z(eZmnla/N — 1) (eXme/N — 1) 1og(1 — e"2ma/N), (10)
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where {n}={n;,....n,} and in the first line we are
evaluating the entire summand at uniform distribution,
6y. The derivative with respect to 8, can be replaced by i%.
This enables one to pull the derivative operator outside the
sum. This leaves the sum to be independent of the order, p,
of the vertex. One can generate any vertex by repeatedly
applying i% on this universal sum. Expanding the loga-
rithm on the rhs we get

B({n};t) = —< ) Wigiezmma/w

1
X (eZerla/N 1) (eZer,,a/N _ 1)

AR
= —P <E) Z emt

m=1
» Z Z Cy, o2 m+yN))a/N, (11)
a=1 se{n}
where
(lezinla/N _ 1) . (ezm'n,,a/N Z C 2my s)a/N

se{n}
(12)
with y(s) denoting the sum total of the elements in a subset

s of {n}. For example, y( ) could represent (n; + ns),
(ny 4 n3 +n,_y), etc. Cy,) € {~1 +1} is the coefficient

corresponding to a pamcular s and y( ) = y(s) mod N. The
sum over s represents a sum over all possible ways of
obtaining subsets from {n}. Finally, we have

. d p—l Net(N_Y(S)) et
Bk =-(5)" X Gl 1
(13

113 ~99)

The presence of the mod function (represented by
tells one that B({n};?) is periodic in each value of n. Now
one can express V’s in a very compact form in terms of
these B’s:

14 = m{limlg({n}' 1) + imB({-n}; 1)*
i U " 2N1_17/2 t—0~ ’ t—0~ ’
+ [B({n}; —po + ix)
+ fB({-n}; —pw + ix)*
—bB({n}; —pw) = bB({-n}; —fw)"},  (14)
where {-n} = {-n;,...,—n,} and “*” denotes complex
conjugation.

This is the formula with which we may compute any
diagram at finite V. In a parallel to Eq. (4), one can verify

that the first two terms account for the contribution from the
group measure, the next two terms account for the adjoint
fermions and the last two terms for the adjoint bosons. The
(bare) inverse propagator then is' given by

ViN-n
TR
_Nn(bxl _);N _f( xl) _—(:;3/ + 1) +n2},

where N > n > 0. With some inspection one can confirm
that the rhs of this equation is symmetric under the
interchange of n <+ N — n. With finite n, as N — oo,

Vn.N—n ~ —N}'l{l —bx" +f(_x)n} = _anm (16)

which reproduces the (leading order in N) result obtained
in [8], with I, denoting the temperature dependent factor.

At x = 0 (zero temperature), Eq. (15) gives V, y_, =
n(n — N). Physically, this signifies the (bare) inverse
propagator when the integrand in

/_ H do, ] [4sin? < > (17)

T k= i<j

is expanded about the 6, (the uniform distribution, also the
global maximum). 7 is the same as the normalization on the
rhs of Eq. (1). Using the method of steepest descent, one
may calculate this integral to be

-1
Z =N! exp{Nlog(N) + log(27) + log(2x)

—log((N=1)!) + A}, (18)

where the prefactor is due to the permutation symmetry of
the integrand under the exchange of i, j indices. The first
term in the parentheses indicates the value of the integrand
at uniform distribution while the next three terms come
from Gaussian fluctuations about the uniform distribution.
However, 7 can be computed exactly and is known to be
equal to N!(2z)N. We can use the known answer to
estimate the asymptotics of the higher order (i.e., beyond
Gaussian) corrections,

'From here onward, we shall express everything in terms of
x = e instead of f.
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FIG. 1. Contribution of loop diagrams to the log of the integral

of the Haar measure, shown as a function of N. Two-loop
corrections seem to account for the linear divergence of beyond-
Gaussian contributions. The slope of the linear fit to the two-loop
contribution is —0.08297 £ 0.00003.

A = —=Nlog(N) + N- 110g(27t) +log((N = 1)!)
:—<1—%>N—%log(N)+~u (19)

This shows that Gaussian fluctuations are not enough to
approximate Z as N — oo. We can numerically show that
one needs to take into account at least the two-loop
corrections in order to obtain the correct (large N) limit.
Figure 1 tells us that the two-loop diagrams contribute
up to O(N) to the integral in Eq. (17). The higher-loop
diagrams seem to contribute only up to subleading
O(log(N)) corrections. However, the numerical error
in estimating the slope is too small. That is, even though
the diagram may suggest otherwise, higher-loop diagrams
do have a minuscule contribution to the linear divergence.
Coming back to Eq. (1), one cannot rule out a similar thing
from happening to log(Z) either. This integral, too, may
|

N=(m) _ xN=m)

(Z)aN =) — N

end up with beyond-Gaussian corrections that consist of
pieces that diverge for large N. This would, in turn,
challenge our assumption [7,8] that stopping at Gaussian
fluctuations is enough to accurately compute large N
behavior of log(Z). At this point one may think of
normalization in the definition of Eq. (1) and expect it
to remove these potential divergences at loop order.
However, one cannot be sure of such a cancellation a priori.
One can analyze, e.g., the double-cubic term on the rhs of
Eq. (6) to see why. If each vertex had a divergent
component of a certain order, a rational function of these
vertices (which is what a Feynman diagram is) would give
rise to new divergences. One can expect normalization to
remove the leading divergence in such a function. But
divergences of next-to-leading order, arising from the
“cross terms” in the Feynman diagram, could still be left
unaltered.” To the best of our knowledge, one cannot
guarantee the cancellation of these subleading divergences
in an arbitrary Lagrangian. The fate of these divergences
has to be found out by explicitly computing the two-loop
corrections. Thus we are motivated to calculate corrections
to log(Z) up to two-loop order in the following section.

III. TWO-LOOP CORRECTIONS

Like the (bare) inverse propagator in the previous
section, one can compute any (bare) vertex for finite values
of N. For two-loop corrections one needs expressions for
the cubic and the quartic vertices only. There is no
contribution of the two-loop “dumbbell” diagram, as we
see in [8] that V, _, o vanishes for our system. The only
contributions are from the “theta” (double-cubic) and the
“infinity” (quartic) diagrams Fig. 2.

A. Cubic contribution
The cubic vertex, using Eq. (14), is represented by

(S ) 2N =) —

. (x
an,nz,—n]—nz = |:b\/ﬁl <N2(1 + xN) (1 _ XN)3

N

()2 >

(1—xN)? 1—x

b —fox = =} = (NA((F) = i) = BN((0)? = () + 2((570)° = ()

6VN

+{n1 = ma} +{n; > —ny —ny}|.

Here the first curly braces indicates that the fermionic
contribution is obtained by making the corresponding
substitutions in all the terms preceding it. Similarly, one
obtains two more copies by making substitutions as
indicated in the last two curly braces. Similarly, the fifth

*This will become clearer in the upcoming section where the
vertices are explicitly mentioned.

(20)

|

line indicates that one obtains two more copies by
making the suggested substitutions in all the lines
preceding it. Besides the explicit symmetry under the
permutations of the indices, one can see that the rhs is an
odd function of the indices. In other words,

1% = _an,nz,—n]—nz = V:;l,nz,—nl—ng‘ (21)

—ny,—ny,n;+n,
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FIG. 2. The possible two-loop corrections to the Gaussian

result. In the system under consideration, the dumbbell diagram
does not contribute.

The contribution of the theta diagram is given by

A== >

ny,nr=1

N
1 ( V”l-"z,—nl—"z V—nly—nz,nﬁr"z

~(r-0}).

(22)

Vn] ,—ny Vnz,—nz V—n]—n2,11]+n2

where the subtracted part ensures proper, order-by-order
normalization of the diagram. An order-by-order nor-
malization implies that one is expanding the denominator
on the rhs of Eq. (1) about the uniform distribution as
well. This ensures the correct normalization of Z, i.e., at
x =0, Z will equal 1 up to any order in perturbation. An
expansion of the summand of Aj is neither compact nor
illuminating. It is far more useful to see it graphically.

Figure 3 indicates that the double summation over loop
momenta yields an extra factor of N. One can deduce this
from the presence of ridge lines along ny, n, ~® £1. The
ridges have constant (nonzero) height and width, which
leads to an extra factor of N upon summation. While it
would be desirable to obtain a closed-form expression for
A3, one can nonetheless employ numerics to study its
behavior. Figure 4 is what one gets as one proceeds to
actually plot the contribution of this diagram (after summing
over all the modes). This plot suggests that the summand of
Az is O(N~2). That way, A5 can vanish as -, despite an extra
factor of N produced after the sum over modes.

B. Quartic contribution

Similarly, using Eq. (14) for the quartic vertex one
obtains

an.nz,—nl,—nz = [Zb <_N3 (1 + 4xN + XZN)

N—(=ny) o yN-n
: AN+ aY)

0.00003 ¢~
0.00002}
0.00001 “i,;_
0.00000 |
-50

—_gp
50

FIG. 3. Dependence on loop momenta n; and n, of the
summand of the cubic two-loop diagram for N = 100,
x=0.125, b= f =1. The discontinuities represent regions
where the propagators vanish, i.e., the zero modes.
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0.05

0 20 40 60 80 100 N
FIG. 4. Dependence on N of the two-loop double-cubic
corrections to the log of the partition function at x = 0.125 for
b = f = 1. The inset displays the log-log scaled version of the
main plot and has a slope of —1.057 &£ 0.005. This indicates that
A3 ~ O(N_l)

(SN =) g

(=) " =
o I P | CRPRE RPETY
(1—xN)? 1—xN ’
(=m)* + (m)? ~ (=m)* + (n1)* 1
-N 5 +(=m)* + (n )3—T+{nl—>n2}—5{nl—>n1+n2}
1 baN (1 +4xN +x2N)  f(=x)V (1 = 4(=x)N + x2V)
_E{nl - ny—m}+ 4N3< (1 —xN)4 - (1+ (—x)N)4 )} (23)
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Just like the cubic vertex, one obtains different con-
tributions by making substitutions (indicated inside curly
brackets) in all the lines preceding the said substitution.
Here, because of the symmetry under the permutations of
the indices, one can see that the rhs is an even function in
the indices. The contribution from quartic correction to
log(Z) is given by a double sum over n; and n,. It is
given by

A 1% Vi =mom=n, {x>0}] (24
‘T8 v, .V

ny,ny=1 ny,=ny " ny,=ny

again, the expression being appropriately normalized.
In a parallel to the previous subsection, one may
examine Fig. 5 and see a factor of N in it. Again, the
primary contribution to the sum comes from regions that
have small mode number, i.e., |n;| = |n,| ~ 1. And just

0.00000 {

—0.00002&
-0.00004 | ~ |
- -
-o.oooosL< 50
-50 \\
\6\ 0 n;
-
M e
50~
FIG. 5. Dependence on loop momenta n; and n, of the

summand of the quartic two-loop diagram for N = 100,
x =0.125, b= f =1. The discontinuities represent regions
where the propagators vanish.

Ay
20 40 60 80 TR
-0.05 | s
010 v
-015 . 0.10 ]
0.05 .""--..,
-0.20 | \
. 0.01 N
5 10 50 100

-0.25"

FIG. 6. Dependence on N of the two-loop quartic corrections to
the log of the partition function at x = 0.125 for b = f = 1. The
inset displays a log-log scaled version of the main plot and has a
slope of —1.071 & 0.006. This indicates that Ay, ~ O(N7!).

like the cubic case, Fig. 6 reveals that the summand in A,
too goes as O(N72).

In the next section, we shall discuss the reasons for this
large N dependence. We shall identify pieces in the
summand of each diagram that diverge on their own.
And we shall try to see which pieces cancel each other
out when combined.

IV. DISCUSSIONS

In Fig. 7 we have plotted full two-loop corrections for
different values of x (but each below xy). In the low-
temperature phase, one-loop corrections are already
included in the infinite N result, and the two-loop
corrections are the leading finite N corrections. One
can immediately notice that the latter are negative for
large enough N. In [7] we have presented exact log(Z)
as analytic functions of temperature, for a few small
values of N. At least for those cases, log(Z) seems to
increase with N. Since log(Z) is not known as an
analytic function of N it is not obvious whether this
trend continues for higher values of N. The negative
sign of the (leading) finite N corrections is, however,
consistent with such a trend. There is obviously no
phase transition in a system with finite d.o.f. One can
see this in [7] where exact partition functions for small
N have no divergence except at infinite temperature.
Because of the negative sign, the two-loop corrections
assist in pushing the Hagedorn pole to a higher temper-
ature. Including finite N corrections to all loop orders
would eventually push the corresponding Hagedorn
temperature to infinity.

The trend of negative values of corrections breaks
down at the Hagedorn temperature. There the correction
is positive and seems to be independent of N. Above the
Hagedorn point the uniform distribution is no longer
the maximizing distribution. This abrupt change indicates
the onset of the high-temperature regime, where one has

I\3 +:/\4 .
LI — x=0.50
0.5} x=0.12
e s ) x=0.37
K ;6==' x=0.45
050 x=0.47
x=0.48
-1.0¢ . x=0.49
-15}1
-2.0°t

FIG. 7. Full two-loop corrections to the log of the partition
function at different values of x for b = f = 1 as functions of N.
Forx < bl—f, the two-loop contribution is negative and vanishes as
O(N~") for large N.
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=14

FIG. 8. The coefficient of % in the two-loop corrections as a

function of temperature (x = e_*'fTUT), for the case b=f = 1.
There is a divergence at the Hagedorn temperature.

to obtain a new formula for the vertex V, ., . In

yeens p.
the low-temperature regime the finite N corrections
vanish as N%x). One may extract c¢(x) by computing

limy_N(A3 +A4). In Fig. 8 we have shown the
|

temperature dependence of this coefficient. c¢(x)
decreases with temperature and seems to diverge at the
Hagedorn temperature. A crude curve-fitting exercise
indicates that for smaller temperatures

1

. ~0. 25
1= 2x * (25)

c(x)=1

However, an analysis of a log-log plot near the Hagedorn
point shows that the dependence of c¢(x) on x is not a
simple power law.

In the previous section, we deduced from Figs. 3—6 that
the summands of Az and A4 each were O(N~2). Analyzing
the cubic and quartic vertices we can see why this is so. For
simpler analysis, we shall keep n; and n, finite and make N
large. When N is large,

s, s >0,
§=s mod N = N0, (26)
N + s,

Using these simplifications, the cubic vertex becomes

Vn],nz,—n]—nz ~ _i\/ﬁ{n%sgn(nl)(l - bx|n1| +f(__x)|”1|) + n%sgn(nz)(l - bx|n2‘ +f(_x)|n2‘)
~ (my+ mPsan(ny + ng)(1 = byl f(og)nn)
- —i\/ﬁ{n%sgn(nl)l‘nl‘ + nysgn(ny)1 |, — (ny + ny)?sgn(ny + na)1j, oy b (27)

while the quartic vertex looks like

Vi senymy & 2] P(1 = bl f(=x)m1) 4 2[ny P (1 = balrel + f(=x)ll)
Iy = (1 = b (o)) =+ (1= b ()
= 2|n1|31|nl| + 2|n2|31\n2\ - |n1 - n2|31\nl—n2| - |n1 + n2|31\n1+n2\- (28)

From Eqgs. (16), (27) and (28) it becomes clear that the
summands on the rhs’s of Egs. (22) and (24) go a 3 ~%.
This confirms our guess regarding the asymptotic N
dependence of each summand.

However, this also creates a new complication. Such a
dependence on n should lead to an O(N) divergence®
for each of A3 and A, after the double sum over mode
numbers is performed. This is clearly against the
numerical evidence that we have at hand. From

Egs. (22) and (24) we expect each summand to go as

The n in the numerator simply indicates the superficial power
of mode number in the summand. It could, e.g., represent a factor
like L.

“This apparent O(N) divergence is not unique to the two-loop
case that is being considered here. A simple power counting
indicates that it is present at higher-loop orders, too.

~5 instead of the ~7 that we see here. While
normalization can be expected to remove the leading

divergent pieces (the ones that go as ~ ), it is not at all
clear how the subleading pieces that go as ~# get
canceled. For that one has to take a closer look at all
the pieces in Az and A4. The key lies in the I,’s. They
come with a 1 and exponential convergent factors:
xl"l = e=Pelnl All pieces whose numerators go as
~xImlInl are absolutely convergent upon the double
sum over n; and ny. Only the 1 in the /), could lead to
divergences. For example, pieces that have this exponential
convergence in only one of the modes, i.e., pieces that go
as ~xIml or ~xI™l, may be divergent (or convergent
depending upon the power of the other mode). The worst
fate is for the pieces whose numerators have no conver-
gence factor in either n; or n,. However, one must keep in
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TABLE I. The pieces that carry a superficial divergence in the
summand of the quartic infinity diagram. Each individual term
shows a divergence even after proper normalization. The com-
bined expression, however, vanishes at large N.

3 (2sgn(ny)—sgn(n—ny)—sgn(n;+n,))
8NZ [y [Ty Ly

3”%”2(%“("1 —ny)=sgn(n;+n,))
8N (a1 1y

3nyn3(—sgn(n;—ny)—sgn(n; +n,))
8N2\nl H”ZU\"H[\W\

n%(ngn(n2)+sgn(n] —ny)—sgn(n;+n,y))
SN2y [T, Ly

TABLE II. The pieces that carry a superficial divergence in the
summand of the double-cubic theta diagram. Each individual
term shows a divergence even after proper normalization. The
combined expression, however, is vanishing for large N.
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mind that such pieces may ultimately get their divergences
removed by proper normalization.

All the divergent pieces in the quartic diagram are listed
in Table I. Each of the three pieces in the first line contains
an O(N) divergence on its own.” However, when all the
terms on the first line are taken together the superficial
divergence is removed. A similar cancellation is exhibited
by the terms on the fourth line as well. The first terms on
lines three and four combine to produce a vanishing
contribution. The second terms on those lines also behave
in a similar way.

In Table II all the divergent pieces of the double-cubic
diagram have been listed. However, unlike the quartic
case, there are many more pieces. One can check that
each of the five expressions gives rise to a O(N)
divergence, even after proper normalization. It is only
when all five are combined that these divergences finally
get removed.

V. CONCLUSION

In this paper we discussed an algorithm for calculat-
ing vV, n, for finite N. This algorithm is pivoted on
the fact that Yy L™ = i 43", ¢ This enables one
to first sum over different values of € and then take
derivatives with respect to a different variable. In [8],

>This is even after normalizing each piece properly.

one did not need to do this as the sum was approxi-
mated by an integral, which was subsequently solved
using integration by parts. The main limitation of our
algorithm is that it is valid only when the uniform
distribution is the global maxima of L. Above the
Hagedorn temperature the maximizing distribution starts
depending on the temperature. It would be an interesting
exercise to derive a compact expression for V.

Nyyenes n,

1
for x > BT

An analysis of the steepest descent method demon-
strates that the integral of the Haar measure for SU(N)
is not approximated well by the Gaussian fluctuations
about its maxima. There are nonvanishing corrections
due to two-loop diagrams. We obtained numerical
evidence for a small O(N) contribution from even the
higher-loop corrections. This means that any calculation
of log(Z) may also have O(N) remnants if one stops
at the Gaussian fluctuations. The (bare) 3-vertex and the
4-vertex can potentially contribute to O(N) terms.
Obtaining a closed-form expression for the large N
dependence for the two-loop corrections to the Haar
measure will be an interesting endeavor for the future.

In order to do a detailed study, we obtained general
expressions for the bare cubic and quartic vertices for
finite N. We then computed corrections to the log of the
partition function due to two-loop diagrams. From the
expressions of the summands of the two-loop diagrams it
is not at all obvious whether the mode sums would
vanish as N becomes large. We proceeded to check this
numerically and found that the contribution from the
double-cubic and quartic terms are O(N~') and hence
indeed vanish as N — co. A study of each diagram
showed that every superficially divergent piece in those
diagrams is canceled by another superficially divergent
piece. This made each of A; and A4 negligible compared
to the Gaussian approximation. The diverging pieces in
A, that cancel each other were identified in this paper. It
would be instructive to inspect and repeat that analysis
for similar pieces in A;. The total two-loop correction is
negative below the Hagedorn point, which is consistent
with the expectation for finite N partition functions. The
coefficient of the Ai, corrections shows a monotonic
decrease with temperature, with an indication of a
divergence at the Hagedorn point. The analytic depend-
ence of this coefficient was not obtained in this paper. It
will be an interesting exercise to obtain this dependence
from analytic, closed-form expressions for the two-loop,
finite N corrections.
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