
 

Conformal symmetry breaking in holographic QCD

Luis A. H. Mamani*

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC,
Avenida dos Estados 5001, 09210-580 Santo André, SP, Brazil
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In this paper, we investigate a simple holographic model which describes the conformal symmetry
breaking at zero temperature. The model is implemented in the context of effective holographic models for
QCD described by the Einstein-dilaton equations. The realization of spontaneous conformal symmetry
breaking shows a massless state in the spectrum. The existence of this state is confirmed when we compute
the two-point correlation function of the scalar operator in the dual field theory, where it has a pole. On the
other hand, when there is an explicit conformal symmetry breaking the massless state becomes massive,
which in the dual gravitational theory is related to a deformation of the anti–de Sitter (AdS) background by
a massive scalar (dilaton) field. Moreover, we show the mass dependence on the conformal dimension of
the lightest state.
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I. INTRODUCTION

The study of conformal symmetry (CS) and its breaking
is a wide subject investigated in several areas of physics. Its
interest goes from: cosmology [1], condensed matter and
critical phenomena [2], and particle physics [3,4], for
example. Most systems at the critical point, for example,
where second order phase transition occurs, have con-
formal symmetry, and the properties obtained are universal,
this means that the results are valid for any system at the
critical point. As an example consider water at the critical
point, where the properties of the system may be charac-
terized by a set of critical exponents, which are obtained
through experimental methods. On the other hand, consider
the Ising ferromagnet model in three-dimensions, at the
critical point this model has the same set of critical
exponents of water. This is a remarkable result since we
are considering two different systems. One of the aims of
modern physics is to understand the nature behind the
universality obtained in such systems. Moreover, from the
phenomenological point of view, it is also interesting to
investigate what happens out of the critical points, which is
equivalent to CS breaking. This work aims to investigate
the consequences of the CS breaking on the spectrum and
correlation functions. From the field theory point of view,
there are a few ways how the conformal symmetry breaking

may be realized. First, the symmetry may be spontaneously
breaking, as a consequence, at least, one massless state
emerges in the spectrum, a Nambu-Goldstone boson [5].
Another way to realize the spontaneous symmetry breaking
is through the computation of the two-point correlation
function, which has a pole at q2 ¼ 0, where q represents the
momentum. Second, through explicit symmetry breaking,
in this case, the Nambu-Goldstone boson becomes massive.
On the other hand, the anti–de Sitter/conformal field

theory (AdS=CFT) correspondence [6] (also known as
gauge/gravity duality) is a theoretical framework where
we may investigate, for example, CS breaking. The gauge/
gravity duality is used to investigate some aspects that we are
not able to implement using usual methods in quantum field
theory, for example, in the strong coupling regime. So far, it
has been used to investigate a wide range of problems in
physics, problems like thermal properties of strongly coupled
systems and melting of particles [7–11], to find transport
coefficients in relativistic conformal and nonconformal
plasmas [12–17], condensed matter physics [18–20], entan-
glement entropy (see the review [21]) and lately to investigate
the interior of compact objects in astrophysics [22,23]. In this
paper, we are going to use the duality to investigate the
conformal symmetry breaking mapping the underlying
quantum field theory into a classical gravitational theory,
which should be asymptotically AdS to use the holographic
dictionary [24,25].We expect the results shed some new light
on understanding the CS breaking in holographic models for
QCD describing color confinement in the infrared (IR)
region. In the context of holography, the CS breaking was
previously investigated in Refs. [26,27], where there are two
fixed points, one in the UV and another in the IR, while in
Refs. [28,29] the backreaction on the geometry was
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neglected, for supersymmetric theories where CS may be
breaking see for instanceRef. [30]. Thus, the approachweare
going to follow below is the phenomenological bottom-up at
zero temperature, and the results we obtain must be valid for
these kind of models, where the CFT is deformed by a
relevant operator in the dual field theory. Hence, a massive
dilaton fieldwill induce amassive scalar state in the dual field
theory. On the other hand, it is worth mentioning that in the
top-down models at finite temperature coming from super-
string theory truncation proposed by Gubser et al. [31,32],
conformal symmetry is preserved, and the presence of a
massive dilaton does not necessarily imply explicit con-
formal symmetry breaking in the dual field theory. This
is true even though when charge is added in the five-
dimensional effective action, i.e., the black hole solution
of Einstein-Maxwell-Dilaton action, see also Refs. [33–35]
where the authors investigated properties of the dual field
theory at the critical point.
The article is organized as follows. In Sec. II we present

the holographic model, where the five-dimensional action
describes the coupling of the metric and dilaton field at zero
temperature. We also explain our approach, which inter-
polates the dilaton field. Moreover, the background equa-
tions are solved numerically. In Sec. III we calculate the
spectrum of the scalar and tensor sectors, we observe for
the first time the emergence of the massless mode in the
scalar sector. We also determine an analytic approximation
for the mass of the lightest state as a function of the
conformal dimension. At the end of this section we
compute the spectrum of the tensor sector. Section IV
contains some solutions of the gravitational background for
the massless dilaton. Implications on the dual field theory
are also discussed. Section V is devoted to show the
perturbations equations on the background fields using
another approach, which introduces the domain wall
coordinate and the superpotential formalism. We imple-
ment the analysis in both sectors of the perturbations
considered in previous sections. At the end, we write the
perturbation equations as second-order differential equa-
tions. These equations are solved using two methods, one
perturbative solution and another analytic solution, which
is obtained in the asymptotic region. Using a matching
procedure we find a relation between the coefficients of the
UV and IR solutions. In Sec. VI we expand the on-shell
action up to second order in the perturbations to obtain
the two-point correlation functions, where, as expected,
there is a massless pole in the scalar sector. We conclude in
Sec. VII. Finally, complementary material are left in
Appendices A and B.

II. HOLOGRAPHIC MODEL

The holographic model we are going to work with is
described by the gravitational action defined in the Einstein
frame

SE ¼−M3
pN2

c

Z
dx5

ffiffiffiffiffiffi
−g

p �
R−

4

3
∂mΦ∂mΦþVðΦÞ

�
; ð1Þ

where R is the Ricci scalar, Φ the dilaton field, and VðΦÞ
the dilaton potential. The equations of motion obtained
from this action are given by

Rmn −
4

3
ð∂mΦÞð∂nΦÞ þ 1

3
gmnVðΦÞ ¼ 0;

1ffiffiffiffiffiffi−gp ∂mð
ffiffiffiffiffiffi
−g

p
gmn∂nΦÞ þ 3

8
∂ΦVðΦÞ ¼ 0: ð2Þ

On the other hand, in holographic QCD at zero temper-
ature we use an ansatz for the metric, which is given by

ds2 ¼ e2AðzÞðdz2 þ ημνdxμdxνÞ; ð3Þ

where AðzÞ is the warp factor. The form of the metric
guarantees Poincaré invariance in the transverse direction
to the holographic coordinate z. Introducing a new function
defined by ζðzÞ≡ e−AðzÞ, the Einstein and Klein-Gordon
equations take the simple form [36]

ζ00 −
4

9
Φ02ζ ¼ 0; ð4Þ

12ζ02 − 3ζζ00 ¼ V; ð5Þ

where 0 stands for d=dz. We propose to fix the profile of the
dilaton field, so that by solving Eq. (4) we know the warp
factor, in turn, solving (5) we know the potential.
The profile of the dilaton field has the following

asymptotic expansions in the UV (z → 0) and IR (z → ∞)

ΦðzÞ ¼ ϕ0zϵ þGz4−ϵ; z → 0;

ΦðzÞ ¼ Czα; z → ∞: ð6Þ

In principle, ϕ0; G, and C are constants. However, we point
out that the dilaton field is dual to a scalar operator O with
dimension 4 − ϵ, while the metric is dual to the energy-
momentum tensor Tμν of the dual field theory. Thus,
through the holographic dictionary the constants ϕ0; G,
and C have physical interpretation. For example, ϕ0 is the
source, G is related to the vacuum expectation value (VEV)
and C a parameter associated with the color confinement
scale. Additionally, ϵ ¼ Δ− is related to the mass of the
dilaton field through the relation M2

Φl
2 ¼ ϵðϵ − 4Þ [24],

where l represents the AdS radius and MΦ the mass of the
dilaton. The profile of the dilaton close to the boundary (6)
guarantees the correct asymptotic behavior, in agreement
with what is expected from the scalar operatorO coupled to
the source (for a discussion see for instance [37], see also
[36]). On the other hand, in the deep IR region, the profile
of the dilaton field guarantees confinement, because it
satisfies the general criteria investigated in Ref. [38], where
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the authors showed that linear behavior is guaranteed for
α ¼ 2. Our pivotal aim is to investigate the conformal
symmetry breaking, then, we do investigate two interesting
cases: α ¼ 1 and α ¼ 2. The motivation for studying α ¼ 1
is because the dilaton arising in string theory has linear
behavior, which has been investigated in Refs. [39,40].
There is a wide range of possibilities of interpolating

between the UV and IR asymptotic behaviors (6). We
choose the simplest function

ΦðzÞ ¼ ϕ0zϵ þ
Gz4−ϵ

1þ ðG=CÞz4−ϵ−α : ð7Þ

A. The gravitational background

Once the dilaton field is given by (7), the warp factor and
dilaton potential are obtained by solving numerically
Eqs. (4) and (5), respectively. The solutions determine
completely the gravitational background. In the forth-
coming analysis, we work with small values of ϵ, i.e.,
ϵ ≪ 1. To simplify the numerical analysis, we do introduce
a dimensionless coordinate u ¼ Λz, hence, the parameters
of the model: G, C, and ϕ0 are normalized by the new
parameter Λ. In Fig. 1 we plot the dilaton (left panel) and
warp factor (right panel). We do not use the dilaton
potential, at least in the first part of the work.

III. SPECTRUM

The spectrum in the dual field theory is obtained from the
perturbations on the metric and dilaton field around their
background values, i.e., gmn → gmnðzÞ þ hmnðz; xμÞ and
Φ → ΦðzÞ þ χðz; xμÞ. Three sectors are emerging in the
perturbation equations. However, we focus on the scalar
and tensor sectors because the scalar sector is associated
with dual spin-zero states, while the tensor sector with
spin 2 states. Moreover, in holographic QCD, the scalar
sector is related to scalar glueballs due to the connection
between O and TrF2 (the trace of the Yang-Mills gauge
field), for discussion see Refs. [36,38]. For details on the

derivation of the perturbation equations and writing them
in terms of gauge-invariant variables, see for instance
Refs. [36,41]. Finally, the corresponding perturbation
equations in terms of gauge-invariant variables may be
written as Schrödinger-like equations

−ψ 00
s;tðzÞ þ Vs;tðzÞψ s;tðzÞ ¼ m2

s;tψ s;tðsÞ; ð8Þ

where ψ sðzÞ and ψ tðzÞ represent the wave functions of the
scalar and tensor sectors, respectively. The potential of the
scalar sector is given by VsðzÞ ¼ ðB0

sðzÞÞ2 þ B00
s ðzÞ, where

2BsðzÞ ¼ 3AðzÞ þ 2 ln jXðzÞj and XðzÞ ¼ Φ0ðzÞ=ð3A0ðzÞÞ,
a plot of this potential is displayed in left panel of Fig. 2. On
the other hand, the potential of the tensor sector is given by
VtðzÞ ¼ ðB0

tðzÞÞ2 þ B00
t ðzÞ, where 2BtðzÞ ¼ 3AðzÞ, a plot of

the tensor potential is displayed in right panel of Fig. 2.

A. Numerical solution–scalar sector

Here we obtain numerical solutions of the eigenvalue
problem represented by the Schrödinger-like Eq. (8). We
solve the problem using a shooting method, the “initial
conditions” are the asymptotic solutions close to the
boundary ψ s ∼ a0z−ϵþ5=2 þ a1zϵ−3=2, setting a1 ¼ 0 we
choose the normalized solution. The results are displayed
in Fig. 3. In this figure, we observe the emergence of a
massless state in the limit ϵ → 0. On the other hand, in such
a limit, the operator O with dimension 4 − ϵ, becomes
marginal. This result is interesting, because the massless
state may be interpreted as a Nambu-Goldstone boson,
consequently, a signal of spontaneous conformal symmetry
breaking.
From the numerical results we realized that m2

s=Λ2 ∼ ϵγ

for ϵ ≪ 1 (γ a real number), for a fixed value of the
parameter ϕ0=Λϵ ¼ 1. Another possibility is to fix ϕ0=Λϵ

using the ratio of the first glueballs states (obtained on the
Lattice [42]), m0þþ ¼ 1475ð30Þð65Þ MeV and m0þþ� ¼
2755ð70Þð120Þ MeV. Then, Λ may be fixed by comparing
the first numerical result with the corresponding first
glueball state as was done in Ref. [36]. By doing so, the
parameters are: ϕ0=Λϵ ¼ 113.3 and Λ ¼ 420.5 MeV.
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FIG. 1. Left: Plotting the profile of the dilaton field. Right: Numerical results of the warp factor. Both figures were obtained by setting:
ϵ ¼ 0.01, ϕ0=Λϵ ¼ 1 and l ¼ 1.
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However, the focus here is not to find out the spectrum and
compare it with the corresponding results available in the
literature, but the investigation of CS breaking, for that
reason the value of these parameters is in general different.

1. Analytic approximation

In a general case, the potential of the Schrödinger-like
equation may be expanded close to its minimum located at
z ¼ z� as

VsðzÞ ¼ Vsðz�Þ þ V 0
sðz�Þðz − z�Þ þ

V 00
sðz�Þ
2

ðz − z�Þ2 þ � � �
ð9Þ

As z� is the coordinate where the potential reaches its
minimum, thus, V 0

sðz�Þ should vanish at this point.
Moreover, V 00

s ðz�Þ > 0 (see Fig. 2), whereas Vsðz�Þ may

be positive, negative or zero. Thus, the Schrödinger-like
equation becomes [neglecting terms larger thanOððz−z�Þ2Þ]

−ψ 00
s ðzÞ þ

V 00
s ðz�Þ
2

ðz − z�Þ2ψ sðzÞ ¼ ðm2
s − Vsðz�ÞÞψ sðzÞ:

ð10Þ

Defining a new variable by ξ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
s ðz�Þ=24

p
, where

r ¼ z − z�, the last equation takes the form

−ψ 00
s ðξÞ þ ξ2ψ sðξÞ ¼ λψ sðξÞ; ð11Þ

where λ ¼ ðm2
s − Vsðz�ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=V 00

s ðz�Þ
p

. The normalizable
asymptotic solution of Eq. (11) is ψ s ∼ e−ξ

2=2, then, intro-
ducing a new regular function gðξÞ defined by gðξÞ ¼
ψ sðξÞeξ2=2, the new differential equation reads as

g00ðξÞ − 2ξg0ðξÞ þ ðλ − 1ÞgðξÞ ¼ 0: ð12Þ

The general solution of this equation may be written as

gðξÞ ¼ C1Hλ−1
2
ðξÞ þ C21F1

�
1 − λ

4
;
1

2
; ξ2

�
ð13Þ

where: Hλ−1
2
ðξÞ is the Hermite polynomial and 1F1ða; b; ξ2Þ

theKummer confluent hypergeometric function.On the other
hand, the regularity condition ofψðξÞ fix the constantC2 ¼ 0
and ðλ − 1Þ=2 ¼ n, where n ¼ 0; 1; 2 � � �. Then, the expres-
sion for the mass is given by

m2
s ¼Vsðz�Þþð1þ2nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
s ðz�Þ
2

r
; ðn¼ 0;1;…Þ ð14Þ

wherewehave reestablished the original coordinate.Wepoint
out that the potential has an implicit dependence on the
conformal dimension, moreover, z� is also a function of
the conformal dimension and may be determined from the
conditionV 0ðz�Þ ¼ 0. It isworthmentioning that Eq. (14) is a
general result andmaybeusedwhen an analytic expressionof
the potential is known. For example, applying (14) for the
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FIG. 2. The figure shows the potential of the Schrödinger-like equations for the linear dilaton α ¼ 1 and quadratic dilaton (α ¼ 2).
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FIG. 3. Figure shows the mass spectrum obtained by solving
the Schrödinger-like equation using a shooting method. We
observe that the massless state becomes lightless as the parameter
ϵ increases.
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holographic model describing scalar glueballs [43] we obtain
the expression m2

s ¼ 4þ ffiffiffiffiffi
15

p þ 4n, which is a good
approximation of the exact solution m2

s ¼ 8þ 4n. Another
example is given by the spectrum of the scalar mesons [44],
m2

s ¼ 4þ ffiffiffi
3

p þ 4n, which is a good approximation of the
exact solution m2

s ¼ 6þ 4n.
However, in our case the potential is obtained numeri-

cally, hence, Eq. (14) may be used to obtain an approxi-
mation for the mass as a function of the conformal
dimension, ϵ. In the following analysis we set ϕ0=Λϵ ¼
1 and α ¼ 2, so that we obtain Vsðz�Þ for ϵ ∈ ½0; 0.3�, at the
end we replace in Eq. (14), then, we fit the result to get an
analytic approximation for m2

sðϵÞ, which takes the form

m2
s ¼ 5ϵ4=5; 0 ≤ ϵ ≤ 0.3; ð15Þ

An overlap of the numerical and analytic result, Eq. (15), is
shown in Fig. 4, where the dashed line shows the analytic
solution, while the continuous line shows the numerical
solution. We observe a good agreement in the region of
interest.

B. Numerical solution–tensor sector

Analogously to the scalar sector, we may obtain
numerical solutions of the eigenvalue problem represented
by the Schrödinger-like Eq. (8). We solve the problem
using a shooting method, where the “initial conditions”
are the asymptotic solutions close to the boundary
ψ t ∼ b0z5=2 þ b1z−3=2. For normalizable solutions we set
b1 ¼ 0. The results are displayed in Fig. 5. In this figure,
we observe the dependence of the mass on the conformal
dimension, in the limit of ϵ → 0 we do not observe any

massless mode in this sector for both, linear and quadratic
dilaton.

IV. CONFORMAL SYMMETRY BREAKING

The picture of the five-dimensional action (1) in the dual
field theory was previously investigated in Refs. [39,40]
(see also [36]). In the extreme UV, which is equivalent to be
at the boundary in the bulk theory, the field theory has
conformal symmetry when the dimension of the operatorO
isΔþ ¼ 4 (marginal operator). However, introducing a new
dimension of the operator, say Δþ ¼ 4 − ϵ, the conformal
symmetry is deformed. Thus, the Lagrangian of the
resulting deformed field theory may be written as

L ¼ LCFT þ ϕ0O; ð16Þ

where ϕ0 is the source of the relevant operator. On the
other hand, the dimension of the relevant operator
Δþ ¼ 4 − ϵ, is translated in the dual gravity theory into
the mass for the dilaton through the holographic dictionary
by ΔþðΔþ − 4Þ ¼ M2

Φl
2. Thus, a relevant scalar operator

in the field theory is dual to a massive dilaton field in the
dual gravity theory, and a marginal operator is dual to a
massless dilaton.
Let us consider a massless dilaton in the bulk. This

means that the dilaton potential does not have a quadratic
term in its asymptotic expansion close to the boundary. We
can show this statement by setting Δþ ¼ 4 (or ϵ ¼ 0),
hence, the asymptotic form of the dilaton field (6) takes the
form

ΦðzÞ ¼ ϕ0 þGz4: ð17Þ

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

FIG. 4. Figure showing the behavior of the mass as a function
of the conformal dimension for ϕ0=Λϵ ¼ 1.
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FIG. 5. The figure shows the mass spectrum obtained by
solving the Schrödinger-like equation using a shooting method.
We do not observe any massless state in this sector.
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Plugging this expression in (4) we get an analytic solution,
which is given by

ζðzÞ ¼ z1=2

l

�
3

G

�
1=8

Γ
�
9

8

�
I1
8

�
2

3
Gz4

�
; ð18Þ

where I1=8ðxÞ is the modified Bessel function of the first
kind. The corresponding expression for the dilaton poten-
tial is given by

VðzÞ ¼ 4

3l2

�
9

�
0F1

�
;
1

8
;
G2z8

9

��
2

− 16G2z8
�

0F1

�
;
9

8
;
G2z8

9

��
2
�
; ð19Þ

where 0F1ð; a; xÞ is the confluent hypergeometric function.
Expanding Eq. (19) close to the boundary we get

VðΦÞ ¼ 12

l2
þ 512

81l2
ðΦ − ϕ0Þ4 þ � � � ; ð20Þ

where we have used Eq. (6). As expected, there is no
quadratic term on this expansion, which means a massless
dilaton field. Besides, we point out that in this case, i.e.,
ϵ → 0, a massless state arises in the spectrum (see Fig. 3).
Consequently, we might interpret this situation as repre-
senting some kind of spontaneous symmetry breaking (see
for instance [45]). However, for concluding so, we need to
show that the VEV of the scalar operator is nonzero, i.e.,
hOi ≠ 0. It is worth mentioning that the massless state
arising by considering a dilaton like in Eq. (17) was
reported in Ref. [37].
On the other hand, when ϵ ≠ 0 the asymptotic form of

the dilaton remains as in (6). It is not possible to obtain an
analytic solution for ζðzÞ, thus, the asymptotic expansion of
the dilaton potential is

VðΦÞ ¼ 12

l2
−
4

3
M2

ΦΦ2 þ � � � ; ð21Þ

where we have considered the leading term of the dilaton
field Φ ∼ ϕ0zϵ and the relation ϵðϵ − 4Þ ¼ M2

Φl
2. This

situation represents a massive state in the spectrum (see
Fig. 3). We might interpret as an explicit conformal
symmetry breaking because the warp factor in no longer
AdS but deformed AdS.
From the field theory point of view, Goldstone’s theorem

[5] states that massless bosons arise when a global
symmetry is broken. The extension of this theorem in
holography was previously investigated in Refs. [26–29],
where the dual conformal field theory has two fixed points,
one in the UV and the other in the IR, thus, there is an
RG-flow from one fixed point to the other. In the context of
top-down holographic QCD, see for instance Ref. [46].

From the field theory perspective, consider a theory with
nonvanishing VEV, i.e., hOi ≠ 0, this means that the
symmetries of the Lagrangian are not the symmetries of
the VEV. Then, consider that the trace of the energy-
momentum tensor is zero, i.e., Tμ

μ ¼ 0, which means the
theory has conformal symmetry. Therefore, a massless
particle arises in the spectrum because the symmetry was
spontaneously broken. As we will see below, the holo-
graphic model we are working with shares these features.
In the family of effective models for holographic QCD, it

is possible to compute the VEV of the scalar operator O
with dimension 4 − ϵ. Similarly, the vacuum energy is
obtained from the regularized on-shell action. The general
renormalized action is given by

Sren ¼ SE þ SGH þ SCT; ð22Þ

where SE is given by (1), SGH is the Gibbons-Hawking
surface term and SCT the counterterms action, which cancel
out the divergences. The Gibbons-Hawking surface term is
defined by

SGH ¼ M3
pN2

c

Z
∂M

d4x
ffiffiffiffiffiffi
−g

p
2K; ð23Þ

where g ¼ detfgμνg the determinant of the induced
metric (we are considering the induced metric with gμν,
with μ ¼ 0;…; 3). and K the extrinsic curvature (see
Appendix A for details). The renormalized one-point
function may be obtained from the on-shell action. For
our convenience, the authors of Ref. [36] obtained the one-
point correlation functions using a minimal subtraction
scheme, thus, the VEV of the scalar operator reads as

hOiren ¼ 16

15
M3

pN2
cð4 − ϵÞG: ð24Þ

While the vacuum energy is given by

hT00iren ¼ −
4

15
M3

pN2
cϵð4 − ϵÞϕ0G: ð25Þ

Both results may be combined to show the trace anomaly
of CFTs

hTμ
μiren ¼ −ϵϕ0hOiren: ð26Þ

Now, let us take the limit of ϵ → 0. The energy-momentum
tensor becomes traceless, as can be seen from Eq. (26), this
means that the CS was restored. However, the VEV remains
finite. In conclusion, there is a mechanism of spontaneously
conformal symmetry breaking. Consequently, a massless
state must emerge in the spectrum, as happens, see Fig. 3.
On the other hand, when ϵ ≠ 0, the trace anomaly (25)

holds. This means an explicit conformal symmetry break-
ing. As a consequence, the massless state becomes massive.
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V. LINEAR PERTURBATIONS

A. Scalar perturbations

In this section, we show that there is a massless pole in
the two-point correlation function related to the scalar
operator hOOi. We implement an analysis following
Refs. [26,27]. First, we introduce the domain wall coor-
dinate defined as dr ¼ eAdz. Using the domain wall
coordinate the background metric (3) takes the new form

ds2 ¼ dr2 þ gμνdxμdxν: ð27Þ

In the sequence, we introduce the superpotential formalism
which will be useful at the time we write the perturbation
equations. We may rewrite the second-order differential
equation Eq. (4) as two first-order differential equations:

∂rΦ ¼ ∂W; ∂rA ¼ −
4

9
W;

thus, the potential (5) becomes

V ¼ 64

27
W2 −

4

3
ð∂WÞ2; ð28Þ

where ∂ represents the derivative with respect to the
background scalar field ∂=∂Φ. Let us consider the pertur-
bations on the background metric and scalar field in the
form

gμν ¼ gμνðrÞ þ δgμν; Φ ¼ Φ0ðrÞ þ δΦ; ð29Þ

where gμν ¼ e2AðrÞημν, δgμν ¼ e2AðrÞhμνðr; xμÞ and δΦ ¼
φðr; xμÞ. The strategy is the following, we write the
equations of motion in terms of the extrinsic curvature
and inducedmetric defined in Eq. (A1), see Eqs. (A2)–(A5).
Then, we decompose the metric perturbations using the
projectors defined in Eq. (A16). Finally, the corresponding
perturbations equations are projected to get (A18), (A19),
and (A24), details of this analysis arewritten inAppendixA.
In the forthcoming analysis, we consider just the scalar
perturbations, i.e., the scalar piece of the metric and scalar
field. By eliminating the scalar functionH from Eqs. (A22)
and (A23)wemaywrite the perturbation of the scalar field as
a third-order differential equation

∂3φþ P∂2φþQ∂φþ Rφ ¼ 0; ð30Þ

where the coefficients are given by:

P ¼ −
8

3

W
∂W þ 2

∂2W
∂W ;

Q ¼ −
8

3
− q2

e−2A

∂W2
þ 128

81

W2

∂W2
þ 8

9

W∂2W
∂W2

−
∂2W2

∂W2
;

R ¼ q2
e−2A∂2W
∂W3

−
128

81

W2∂2W
∂W3

þ 8

3

∂2W
∂W þ ∂2W3

∂W3

− 2
∂2W∂3W
∂W2

−
8

9

W∂2W2

∂W3
þ 8

3

W∂3W
∂W2

−
∂4W
∂W : ð31Þ

Using the so-called gaugemode (seeRef. [26] for details)we
may rewrite Eq. (30) in the form (this alsomay be interpreted
as a factorizationof the third-order differential equation [47])

ð∂2 þ a1∂ þ a0Þ
�
∂ −

∂2W
∂W

�
φ ¼ 0; ð32Þ

where the coefficients are given by:

a1¼−
8

3

W
∂Wþ3

∂2W
∂W ;

a0¼−
8

3
−q2

e−2A

∂W2
þ128

81

W2

∂W2
−
16

9

W∂2W
∂W2

þ2
∂3W
∂W : ð33Þ

Introducing the following transformation

�
∂ −

∂2W
∂W

�
φ ¼ W

ð∂WÞ2 e
−4AS; ð34Þ

the third-order differential Eq. (32) reduces to a second-
order one

∂2S þ ∂B∂S − q2
e−2A

ð∂WÞ2 S ¼ 0; ð35Þ

where B is giving by

B ¼ 2 lnW − ln ∂W þ 8

9

W
∂W : ð36Þ

We point out that the warp factor in terms of the super-
potential is given by A ¼ −4W=ð9∂WÞ. To compute the
correlation functions associated with the scalar perturba-
tions we need to know solutions of differential Eq. (35) at
least in the asymptotic regions, i.e., UV and IR. We may
solve Eq. (35) by knowing the asymptotic form of the
superpotential in the IR region, for example. However, it is
possible to solve this equation also perturbatively consid-
ering q2 as a small parameter, which is true for the lightest
state. In the forthcoming analysis, we solve this equation
using two techniques. First, we solve the equation using q2

as a perturbative parameter. Second, we solve the same
equation in the IR and UV, in the end, we match the
corresponding solutions in the asymptotic regions.
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The perturbative solution may be written as

S ¼
X
n¼0

q2nSn: q2 < 1 ð37Þ

Up to second order in the perturbative parameter the
solution of Eq. (35) is given by

S¼c2

�
1þq2

Z
e−BðΦ3Þ

Z
e−2AðΦ2ÞþBðΦ2Þ

ð∂WðΦ2ÞÞ2
dΦ2dΦ3þOðq4Þ

�

þc1

�Z
e−BðΦ1ÞdΦ1þq2

Z
e−BðΦ3Þ

Z
e−2AðΦ2ÞþBðΦ2Þ

ð∂WðΦ2ÞÞ2

×
Z

e−BðΦ1ÞdΦ1dΦ2dΦ3þOðq4Þ
�
: ð38Þ

In principle, the result (38) is valid in the whole region
of interest, i.e., from the UV to the IR, it represents the
wave function of the lightest state. Therefore, by knowing
the superpotential it is possible to evaluate these integrals,
fortunately for us, we do know the IR asymptotic form of
it [38]

W ¼ W∞Φ
α−1
2α e2Φ=3; ð39Þ

where W∞ is a constant. The expressions for B and warp
factor are then given by

B ¼ 2Φ −
3ðα − 1Þ

4α

1

Φ
−
α − 1

2α
lnΦþ ln

3W2
∞

2
;

A ¼ α − 1

2α
lnΦ −

2

3
Φ: ð40Þ

In the following we consider the case for α ¼ 2 only and
leave the results for α ¼ 1 in Appendix B. Thus, the
perturbative solution reads as

S ¼ c2ð1þOðq2ÞÞ− c1e−2ΦΦ1=4

3W2
∞

ð1þOðq2ÞÞ; α¼ 2

ð41Þ

where Oðq2Þ are subleading corrections.
On the other hand, let us focus on the asymptotic form of

the differential Eq. (35) in the IR region where it becomes

∂2S þ
�
2 −

α − 1

2α

1

Φ

�
∂S þ 36q̃2Φ2−2ðα−1Þ

α

ð3ðα−1Þα þ 4ΦÞ2
S ¼ 0; ð42Þ

where q̃ ¼ q=W∞. Fortunately, their solutions may be
written in terms of known functions:

S ¼ e−2ΦΦ5=4

�
c3U

�
1 −

9q̃2

8
;
9

4
; 2Φ

�
þ c4L

5=4
9q̃2

8
−1
ð2ΦÞ

�
;

α ¼ 2 ð43Þ

where Uða; b; xÞ and La
nðxÞ are the confluent hypergeo-

metric and generalized Laguerre functions, respectively.
To avoid logarithms in the last solution we fix the

constant c3 ¼ 0 and set c4 ¼ c0. The leading terms of the
series expansion of Eq. (43) are

S ¼ 9

16
q̃2c0

�
Γð5

4
Þ

21=4
− e−2ΦΦ1=4

�
: α ¼ 2 ð44Þ

By matching (41) with (44) we conclude that

c2 ¼
9

16
q̃2c0

Γð5
4
Þ

21=4
; c1 ¼

27

16
W2

∞q̃2c0; ð45Þ

consequently their ratio does not depend on q2

c2
c1

¼ Γð5
4
Þ

3W2
∞
: ð46Þ

Now, let us turn our attention to the UV. The asymptotic
form of the superpotential close to the boundary may be
written as [26,36]

W ¼ 9

4l
þ Δþ

2l
Φ2: ð47Þ

In the forthcoming analysis, we set Δþ ¼ 4, which is the
limit of spontaneous conformal symmetry breaking. The
expression (47) may be obtained solving Eq. (28) for
the massless dilaton, i.e., the potential just with cosmo-
logical constant,

W ¼ 9

4l
cosh

4

3
Φ: ð48Þ

Hence, expanding the last result up to second order in Φ
we recover Eq. (47). Knowing the superpotential we may
find the function B and evaluate the integrals in Eq. (38).
Therefore, including the gauge mode, φg ¼ Cg∂W, the
perturbation function φ takes the form

φ ¼ φb þ φNΦ0 þ CNΦ
3=2
0 ; ð49Þ

where

φN ¼ 2Cg;

φb ¼ c2 −
217=4

34
Γð3=4Þc1;

CN ¼ 128

243
c1; ð50Þ

Analogously, the asymptotic solutions for the metric
components h and hT are determined from Eqs. (A22)
and (A18), respectively
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hT ¼ hTb −
8

3
φbΦ0 −

4

3
φNΦ2

0 −
16

15
CNΦ

5=2
0 ;

h ¼ hb −
16

9
φNΦ2

0 −
8

5
CNΦ

5=2
0 : ð51Þ

Replacing these results in Eq. (A11) we get a relation
between φN and CN given by

φN ¼ 36

q2
CN: ð52Þ

On the other hand, using the last equation in (50) we rewrite
(52) as

φN ¼ 1

q2
512

27
c1: ð53Þ

Finally, combining Eqs. (46), (50), and (53) we get the
following relation

φN ¼ F sðqÞφb; ð54Þ

where

F sðqÞ ¼
512

ð32Γð5=4ÞW2
∞

− 217=4Γð3=4Þ
3

Þ
1

q2
: ð55Þ

Additionally, we write hT and hL ¼ h − hT using (51) in
the form

hT ¼ hTb þ hTNΦ0 þ � � � ;
hL ¼ hLb þ hLNΦ0 þ � � � ; ð56Þ

where we have defined

hTN ¼ F TðqÞφb;

hLN ¼ FLðqÞφb ð57Þ

with F TðqÞ ¼ −8=3 and FLðqÞ ¼ 8=3.
From the above results, it is possible to say that the two-

point correlation function associated with the scalar oper-
ator O has a massless pole. Using an argument similar to
the one used investigating quasinormal modes, see
Ref. [48]. The statement said that the two-point correlation
function is proportional to the ratio of the coefficients A
and B when the perturbation function, here represented by
Z, may we written as

ZðrÞ ¼ AðqÞφ1ðrÞ þ BðqÞφ2ðrÞ; ð58Þ

where the coefficients may depend on the momentum and
φ1ðφ2Þ is the nonnormalizable(normalizable) solution close
to the boundary. Hence, the two-point correlation function
is given by

hOOi ∝ BðqÞ
AðqÞ : ð59Þ

Using the same argument in our case, from Eq. (49),
A ¼ φb and B ¼ φN . Then, replacing (46) we get

φN

φb
¼ 1536

33

W2
∞
Γð5

4
Þ − 217=4Γð3

4
Þ
1

q2
: ð60Þ

Therefore,

hOOi ∝ 1

q2
: ð61Þ

This proofs the existence of the massless pole as com-
mented previously. An analogous discussion is also pre-
sented in Ref. [27]. However, to show the consistency of
our results we are going to write the on-shell action and find
the two-point correlation function through the functional
derivative.

B. Tensor perturbations

In this section, we investigate the transverse and traceless
sector (or spin 2 for short). It is not difficult to show that this
sector decouples from the other sectors and its equation of
motion may be written as (see Appendix A for details)

∂2hTTμν þ ∂BTT∂hTTμν −
q2e−2A

ð∂WÞ2 h
TT
μν ¼ 0; ð62Þ

where BTT ¼ log ∂W þ 4A, which is given by (we focus on
the case α ¼ 2)

BTT ¼ log

�
2W∞

3

�
þ 5

4
logΦ − 2Φþ 3

8Φ
ð63Þ

Similarly to what we have done above, the perturbative
solution of Eq. (62) is given by

hTTμν ¼ hbTTμν þ hNTT
μν

Z
e−B

TTðΦ1ÞdΦ1 þOðq2Þ; ð64Þ

where hbTTμν is the non-normalizable solution and hNTT
μν the

normalizable one. Plugging (63) into (64) and performing
the integral we obtain

hTTμν ¼ hbTTμν þ 3hNTT
μν

4W∞
e2ΦΦ−5=4 þOðq2Þ: ð65Þ

On the other hand, the differential equation (62) in the IR
reduces to

∂2hTTμν þ
�
−2þ 5

4Φ

�
∂hTTμν þ 9q̃2

4Φ
hTTμν ¼ 0; ð66Þ
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where we have used the superpotential (39) and
q̃ ¼ q=W∞. The solution of this differential equation is
given by

hTTμν ¼ C1μνU

�
−
9q̃2

8
;
5

4
; 2Φ

�
þ C2μνL

1=4
9q̃2=8

ð2ΦÞ; ð67Þ

where Uða; b; xÞ and La
nðxÞ are the confluent hypergeo-

metric and generalized Laguerre functions, respectively. In
order to get an expression to compare with the perturbative
solution (65), we expand (67) and set −C1μν¼C0μν¼C2μν,
getting

hTTμν ¼ 9C0μνðγE þ iπÞq2
8W2

∞
−
9C0μνΓð5=4Þq2

29=4W2
∞

e2ΦΦ−5=4 þ � � �

ð68Þ

where γE is the Euler’s constant. Therefore, after matching
with (65) a relation between the non-normalizable and
normalizable coefficients is determined

hNTT
μν ¼ −

23=4W∞Γð5=4Þ
3ðγE þ iπÞ hbTTμν : ð69Þ

Analogously to what we have done in the scalar case, we
may obtain the two-point correlation function associated
with the energy-momentum tensor, which is proportional to

hTTi ∝ hNTT

hbTT
¼ 23=4W∞Γð5=4Þ

3ðγE þ iπÞ : ð70Þ

Therefore, the last result shows no dependence on the
momentum and no massless pole. This result is in agree-
ment with the spectrum displayed in Fig. 5.
On the other hand, the perturbative solution close to the

boundary is also determined from the integral in (64) and
using the superpotential (47)

hTTμν ¼ hbTTμν þ hNTT
μν

Φ0

4

�
1þ 4Φ2

0

27

�
; ð71Þ

plugging (69) in the last equation we get

hTTμν ¼ hbTTμν ð1þ F TTðqÞΦ0 þ � � �Þ; ð72Þ

where

F TTðqÞ ¼ −
W∞Γð5=4Þ

3 × 25=4ðγE þ iπÞ : ð73Þ

VI. TWO-POINT FUNCTIONS

To find the correlations functions we need to expand the
on-shell action up to second order in the perturbations.

To get finite expression we need to add counterterms to
cancel out the divergences arising in the UV. Thus, the
counterterms action in (22) may be written as

SCT ¼ 8

3
M3

pN2
c

Z
d4x

ffiffiffiffiffiffi
−g

p
W̃ðΦÞ; ð74Þ

where W̃ is a function that has the same asymptotic
expansion of the superpotential close to the boundary,
however, their coefficients are in general different. Hence,
close to the boundary, it has the asymptotic expansion

W̃ ¼ 9

4
þ ð4 − ΔþÞΦ2: ð75Þ

To expand the on-shell action up to second order in the
perturbations we follow the analysis implemented in
Refs. [26,47,49,50], and write the action as

S½gμν þ δgμν;Φ0 þ δΦ�

¼ S½gμν;Φ0� þ δS

�
gμν þ

1

2
δgμν;Φ0 þ

1

2
δΦ; δgμν; δΦ

�
;

ð76Þ

where δS is given by

δS½gμν;Φ0; δgμν; δΦ�

¼ −M3
pN2

c

Z
d4x

ffiffiffiffiffiffi
−g

p ��
Kμν − Kgμν −

4

3
W̃gμν

�
δgμν

þ 8

3
ð∂rΦ0 − ∂W̃ÞδΦ

�
: ð77Þ

It is worth mentioning that in the analysis we are perform-
ing, there is an implicit limitΦ0 → 0 on the on-shell action.
Setting Δþ ¼ 4 we simplify the last result, while the
superpotential (75) reduces to a constant.
Therefore, the on-shell action up to second order in the

fluctuations reads as

S ¼ −M3
pN2

c

Z
d4x

ffiffiffiffiffiffi
−g

p �
4

3
∂rφφ −

4

3
∂2W̃φ2

−
2

3
∂W̃φhμμ þ 1

4
hμν∂rhμν −

1

4
hμμ∂rhνν

�
: ð78Þ

Now we rewrite the last result in terms of the superpotential

S ¼ −M3
pN2

c

Z
d4xe4A∂W

�
4

3
∂φφ −

4

3

∂2W̃
∂W φ2

−
2

3

∂W̃
∂W φhμμ þ 1

4
hμν∂hμν − 1

4
hμμ∂hνν

�
: ð79Þ

Hence, the finite piece of the on-shell action becomes
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S ¼ −M3
pN2

c

Z
d4x

�
16

3
φNφb þ hNμνhbμν − hN

μ
μhbνν

�
:

ð80Þ

Using the decomposition (A15) and projectors (A16) it
takes the form

S¼ −M3
pN2

c

Z
d4q
ð2πÞ2

�
hbμν

Πμν;αβFT T ðqÞ
ðq2Þ2 hbαβ

þ 16

3
φbF sðqÞφb þφb

�
Pμν
T F TðqÞ
3q2

þPμν
L FLðqÞ
q2

�
hbμν

�
;

ð81Þ

where we have used (54), (57), and (72). The two-point
functions are determined through functional derivative of
this result, thus, for the scalar operator we get

hOOi ¼ δ2S
δφbδφb

∝ M3
pN2

cF sðqÞ ¼ KM3
pN2

c
1

q2
; ð82Þ

where the constant is given byK¼−8192ð33Γð5=4Þ=W2
∞−

217=4Γð3=4ÞÞ−1. This result shows us a pole at q2 ¼ 0, thus,
confirms the result obtained in (61) and the existence of a
massless pole in the spectrum, see Fig. 3.
On the other hand, the two-point function for the energy-

momentum tensor is given by

hTμνTαβi ¼ δ2S
δhbμνδhbαβ

∝ M3
pN2

c
Πμν;αβ

ðq2Þ2 F
TTðqÞ; ð83Þ

as F TTðqÞ is, in fact, a constant [see result (73)], there is no
pole on the two-point function of this sector, which is in
agreement with the spectrum of the spin 2 sector, see Fig. 5.
Finally, we obtain the mixed two-point function

hTμνOi ∝ M3
pN2

c

�
Pμν
T

3q2
F TðqÞ þ Pμν

L

q2
FLðqÞ

�
; ð84Þ

as the functions F TðqÞ and FLðqÞ are constants, the two-
point function has a pole at q2 ¼ 0, this pole is expected
because we are mixing the spin-zero and two correlation
functions [27].

VII. CONCLUSION AND FINAL REMARKS

In this work we investigated the conformal symmetry
breaking using a simple bottom-up holographic model. We
propose to consider the dilaton field as an input to solve the
differential equation describing the background. The dila-
ton field in the UV guarantees the correct coupling between
the dilaton and the corresponding dual operator in the dual
field theory O. On the other hand, in the IR region, the
dilaton guarantees color confinement. To recover the Regge
behavior, i.e., m2 ∝ n, the dilaton must be quadratic.

Moreover, considering the linear dilaton, the Regge behav-
ior is not guaranteed and the spectrum becomes a con-
tinuum. Solving the perturbation equations we found the
spectrum of the scalar and tensor sectors as a function of the
conformal dimension ϵ (cf. Figs. 3 and 5). We observed that
in the limit of vanishing conformal dimension a massless
mode arises in the scalar sector. This state may be
interpreted as a Nambu-Goldstone boson arising due to
the spontaneous conformal symmetry breaking. We con-
firm that this massless mode is, in fact, a Nambu-Goldsonte
boson because the VEVof the corresponding operator is not
zero in this limit, i.e., hOi ≠ 0, while the trace of the
energy-momentum tensor vanishes hTμ

μi ¼ 0. We also
showed that the massless mode becomes the lightest state
when explicit conformal symmetry breaking happens.
Additionally, we found an analytic expression for the mass
of the lightest state as a function of the conformal
dimension,m2

s ∼ ϵ4=5. Finally, we point out that the relation
between the mass of the dilaton field leading to explicit
breaking of conformal symmetry, and consequently a
massive scalar state in the dual field theory, is true in
bottom-up holographic models at zero temperature where
the CFT is deformed by a relevant operator, and confine-
ment is guaranteed in the IR region. However, this con-
clusion is not true when a black hole is embedded in the
bulk gravity or even though when charge is included in the
five-dimensional action, which is equivalent to add chemi-
cal potential in the dual field theory.
As a complementary analysis, in the second part of this

work, we compute the two-point correlation functions of
the dual operators associated with the scalar and tensor
perturbations in the bulk gravity. To do so, we expanded the
on-shell action up to second order in the perturbations.
Finally, to get the desired functions we derive with respect
to the source. For the scalar operator, we observed that the
two-point function has a pole at q2 ¼ 0, which represents
the massless mode emerging in the spectrum. On the other
hand, the two-point function of the tensor sector does not
have any pole, which is in agreement with the spectrum.
Additionally, we have found the mixed two-point function
hTμνOi, which has a pole at q2 ¼ 0, confirming the
existence of a massless state in the limit of ϵ → 0.
Future perspectives may investigate the RG flow of the
scalar operator at zero and finite temperature, also the
relation between the mass of the dilaton field and conformal
symmetry breaking.
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APPENDIX A: PERTURBATION EQUATIONS

In this appendix, we write the equations obtained after
perturbing the background metric and scalar field. We write
the equations in terms of the extrinsic curvature and
induced metric, both are represented with Kμν and gμν,
respectively, while Greek letters characterize the indices. In
terms of the domain wall coordinates the extrinsic curvature
is given by

Kμν ¼ −Γr
μν ¼

1

2
∂rgμν;

Kμ
ν ¼ Γμ

rν; K ¼ gμνKμν: ðA1Þ
In terms of the extrinsic curvature the components of the
background equations (2) may be written as:

−∂rK − Kα
βK

β
α ¼ 4

3
ð∂rΦÞ2 − 1

3
V; ðA2Þ

−∂μK þ∇αKα
μ ¼

4

3
ð∂rΦÞ∂μΦ; ðA3Þ

Rμν − ∂rKμν þ 2Kα
μKα

ν − KKμν

¼ 4

3
ð∂μΦÞð∂νΦÞ − 1

3
gμνV þ 4

3
ð∂μΦÞð∂νΦÞ; ðA4Þ

∂2
rΦþ K∂rΦþ ∂μðgμν∂νΦÞ þ Γα

μαðgμν∂νΦÞ

þ 3

8
∂V ¼ 0; ðA5Þ

where ∇α and Rμν are the covariant derivative and Riemann
tensor depending on the inducedmetric gμν.We point out that
the background equations written in terms of the extrinsic
curvature may be useful when studying renormalization
group flow equations (see for instance Refs. [49–53]). For
the forthcoming analysis, it will be useful to eliminate terms
containing ∂rK and Rμν from the equations above, thus, the
background equations become

Kμ
νKν

μ − K2 þ 4

3
ð∂rΦÞ2 ¼ 4

3
ð∂μΦÞð∂μΦÞ − V − R; ðA6Þ

−∂μK þ∇αKα
μ ¼

4

3
ð∂rΦÞ∂μΦ; ðA7Þ

−∂rK
μ
ν − KKμ

ν ¼ 4

3
ð∂μΦÞð∂νΦÞ − 1

3
δμνV − Rμ

ν ; ðA8Þ

∂2
rΦþ K∂rΦþ ∂μðgμν∂νΦÞ þ Γα

μαðgμν∂νΦÞ þ 3

8
∂V ¼ 0:

ðA9Þ

Now introducing the perturbations on the background
metric and scalar field defined in (29). Under this defi-
nition, the Ricci tensor and its scalar to linear-order in the
perturbations take the form

Rð1Þ
μν ¼ 1

2
ð∂μ∂αhαν þ ∂ν∂αhαμ − ∂ν∂μh −□hμνÞ;

Rð1Þ ¼ e−2Að∂μ∂νhμνÞ; ðA10Þ

where □ ¼ ∂μ∂μ. Plugging these results in (A6)–(A9) and
applying the Fourier’s transform we get the following
equations:

3∂rA∂rhþ 8

3
∂rΦ0∂rφþ ∂Vφ − e−2AhT ¼ 0; ðA11Þ

qμ∂rh − qα∂rhαμ −
8

3
qμ∂rΦ0φ ¼ 0; ðA12Þ

∂2
rh

μ
ν þ 4∂rA∂rh

μ
ν þ

�
∂rA∂rhþ 2

3
∂Vφ

�
δμν

− e−2Aððqμηαβ − qαημβÞqνhαβ þ Pαμ
T hανÞ ¼ 0; ðA13Þ

∂2
rΦþ 4∂rA∂rφþ 1

2
∂rΦ∂rh − q2e−2Aφþ 3

8
∂2Vφ ¼ 0:

ðA14Þ

The next stage is to project some of the last equations along
the momentum and transverse to it (see Refs. [26,47]). For
doing that we decompose the metric perturbations in the
form

hμν ¼ hTTμν þ hTLμν þ hTμν þ hLμν: ðA15Þ
The projectors are defined by

Pμν
T ¼ q2ημν − qμqν;

Pμν
L ¼ qμqν;

Πμν;αβ ¼ Pμα
T Pνβ

T −
1

3
Pμν
T Pαβ

T ; ðA16Þ

where Pμν
L projects along qμ, Pμν

T projects in the transverse
direction and Πμν;αβ projects on the transverse-traceless
sector, the components of (A15) are given by

hTTμν ¼ 1

ðq2Þ2 Π
αβ
μνhαβ;

hTLμν ¼ 1

ðq2Þ2 ½PT
α
μPL

β
ν þ PT

β
νPL

α
μ�hαβ;

hTμν ¼
1

3ðq2Þ2 PTμνPT
αβhαβ;

hLμν ¼
1

ðq2Þ2 PL
α
μPL

β
νhαβ: ðA17Þ
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Additional properties of the projectors are hL¼PL
αβhαβ=q2,

hT ¼ PT
αβhαβ=q2, hL þ hT ¼ h, and PL

μν=q2 þ
PT

μν=q2 ¼ ημν.
Let us split the problem. First, we apply the projector Pμν

L
on (A12) to get

∂rhT þ 8

3
∂rΦφ ¼ 0: ðA18Þ

Second, we apply the projectors PL
ν
μ and PT

ν
μ on (A13), we

get the following equations

∂2
rhL þ 4∂rA∂rhL þ ∂rA∂rhþ 2

3
∂Vφ − q2e−2AhT ¼ 0;

∂2
rhT þ 4∂rA∂rhT þ 3∂rA∂rhþ 2∂Vφ − q2e−2AhT ¼ 0:

ðA19Þ

Combining both equations, then using (A11) to replace hT ,
at the end we get a second-order differential equation for h

∂2
rhþ 2∂rA∂rhþ 2

3
∂Vφ −

16

3
∂rΦ0∂rφ ¼ 0; ðA20Þ

which may be written as

e−2A∂rðe2A∂rhÞ þ
2

3
∂Vφ −

16

3
∂rΦ0∂rφ ¼ 0: ðA21Þ

Defining the new function H ¼ e2A∂rh, the last equation
becomes a first-order differential equation for H.
Additionally, we do introduce this new function in the
Klein-Gordon equation (A14), the resulting equations are

e−2A∂rH þ 2

3
∂Vφ −

16

3
∂rΦ∂rφ ¼ 0; ðA22Þ

∂2
rΦþ 4∂rA∂rφþ 1

2
∂rΦe−2AH − q2e−2Aφþ 3

8
∂2Vφ ¼ 0:

ðA23Þ

We may eliminate the dependence on H using both
equations, the final result is a third-order differential
equation (30).
On the other hand, to complement the analysis we write

the equation of the transverse and traceless sector, which is
obtained by applying the projector Παβ;ν

μ on (A13), hence,
we get

∂2
rhTTμν þ 4∂rA∂rhTTμν − q2e−2AhTTμν ¼ 0: ðA24Þ

This equation is used in Sec. V B to find the two-point
function of the energy-momentum tensor.

APPENDIX B: SCALAR PERTURBATIONS–
LINEAR DILATON

In this appendix, we write the results obtained for the
linear dilaton in the IR. Thus, performing some integrals in
(38) the perturbative solution for α ¼ 1 is given by

S¼c2

�
1þ9q̃2

8
ΦþOðq̃4Þ

�
−
c1e−2Φ

3W2
∞

�
1−

9q̃2

8
ΦþOðq̃4Þ

�
:

ðB1Þ

On the other hand, we get an analytic solution of
Eq. (42), which is given by

S ¼ c3eð−2−
ffiffiffiffiffiffiffiffiffiffi
4þ9q̃2

p ÞΦ2 þ c4eð−2þ
ffiffiffiffiffiffiffiffiffiffi
4þ9q̃2

p ÞΦ2 : ðB2Þ

Expanding the last result up to second order in q̃2

S¼c4

�
1þ9q̃2

8
ΦþOðq̃4Þ

�
þc3e−2Φ

�
1−

9q̃2

8
ΦþOðq̃4Þ

�
:

ðB3Þ

Matching (B1) with (B3) we get

c2
c1

¼ −
c4

3c3W2
∞
: ðB4Þ

On the other hand, the solution close to the boundary is the
same as in (49). Hence, combining Eqs. (B4), (50), and (53)
we get the following relation

φN ¼ F sðqÞφb; ðB5Þ

where

F sðqÞ ¼ −
512	

32c4
c3W2

∞
− 217=4Γð3=4Þ

3


 1

q2
: ðB6Þ

Using the same idea as we have done for the quadratic
dilaton, the solution close to the boundary may be written
as in (58), from this expression we read the coefficients.
Thus, the two-point function for the linear dilaton is
given by

hOOi ∝ φN

φb
∝

1

q2
: ðB7Þ

Therefore, we have shown that the correlation function has
a pole at q2 ¼ 0, which corresponds to the massless state
displayed in Fig. 3.
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