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According to flat/Bondi-Metzner-Sachs invariant field theories (BMSFT) correspondence, asymptoti-
cally flat spacetimes in (dþ 1) dimensions are dual to d-dimensional BMSFTs. In this duality, similar
to the Ryu-Takayanagi proposal in the AdS=CFT correspondence, the entanglement entropy of subsystems
in the field theory side is given by the area of some particular surfaces in the gravity side. In this paper we
find the holographic counterpart of the first law of entanglement entropy (FLEE) in a two-dimensional
BMSFT. We show that FLEE for the BMSFT perturbed states, which are descried by three-dimensional
flat-space cosmology, corresponds to the integral of a particular one-form on a closed curve. This curve
consists of a BMSFT interval and also null and spacelike geodesics in the bulk gravitational theory. The
exterior derivative of this form is 0 when it is calculated for the flat-space cosmology. However, for a
generic perturbation of three-dimensional global Minkowski spacetime, the exterior derivative of the one-
form yields the Einstein equation. This is the first step for constructing bulk geometry by using FLEE in the
flat/BMSFT correspondence.

DOI: 10.1103/PhysRevD.100.106006

I. INTRODUCTION

Flat/Bondi-Metzner-Sachs invariant field theories
(BMSFT) is an extension of AdS=CFT correspondence
to non-anti–de Sitter (AdS) geometries. According to this
duality quantum gravity in the asymptotically flat space-
times in (dþ 1) dimensions can be described by a
d-dimensional field theory that is Bondi-Metzner-Sachs
(BMS) invariant [1,2]. In the gravity side, BMS symmetry
is the asymptotic symmetry of asymptotically flat space-
times at null infinity [3,4]. In the field theory side, the
global part of BMS algebra is given by ultrarelativistic
contraction of conformal algebra. Thus one can interpret
the flat-space limit (zero cosmological constant limit) in the
gravity side as the ultrarelativistic limit of CFT in the
boundary theory [2]. In this view, one can study flat/
BMSFT by starting from AdS=CFT and taking a limit, the
flat-space limit in the bulk and the ultrarelativistic limit in
the boundary.
BMS symmetry as the asymptotic symmetry is infinite

dimensional in three and four dimensions [5–7]. Hence one
may expect to find some universal aspects for two- and
three-dimensional BMSFTs. This situation is very similar

to the two-dimensional conformal field theories (CFTs);
their infinite-dimensional symmetry is used to predict the
structure of correlation functions as well as entanglement
entropy of subsystems. Similarly, the entanglement entropy
formula for some particular intervals in BMSFT2 has been
introduced in [8] by just using the infinite symmetry of
two-dimensional BMSFTs and then studied more carefully
in [9–15].
In the context of AdS=CFT correspondence, the entan-

glement entropy of CFT subsystems has a holographic
description. According to the Ryu-Takayanagi proposal,
this entropy is proportional to the area of a bulk surface
that has the minimum area among the surfaces connected to
the boundary subsystem [16,17]. A similar proposal for the
BMSFT entanglement entropy has been introduced in [12].
Accordingly, the BMSFT entanglement entropy can be
given by the area of particular surfaces. These surfaces are
not connected directly to the boundary of the subsystem but
there are null rays that connect them to null infinity where
the subsystem is supposed to live. The corresponding
surface and null rays, and the subsystem together, construct
a closed surface.
Another interesting problem that was studied in the

context of AdS=CFT is the holographic description of the
first law of the entanglement entropy (FLEE). It was shown
in [18,19] that writing both sides of the FLEE in terms of
corresponding bulk parameters finally yields linearized
Einstein equations. In other words, the FLEE as a constraint
in the boundary theory reduces to a constraint on the bulk
geometry that is exactly the Einstein equation. If this
connection is an intrinsic property of gauge/gravity
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dualities, one can use entanglement entropy and its first law
in an arbitrary field theory to find a dual gravitational
geometry.
In this paper we study the proposal of [18,19] in the

context of flat3=BMSFT2 correspondence. We start from
FLEE and use flat/BMSFT correspondence to write it in
terms of components of the asymptotically flat bulk metric.
We focus on the BMSFT states; their gravitational dual is
flat-space cosmology (FSC) [20–23]. It is shown that both
sides of the FLEE formula can be written in terms of the
integral of a one-form over curves consisting of BMSFT
interval and the null and the spacelike geodesics introduced
in [12]. These curves construct a closed curve; thus one
can use Stokes’s theorem to write integrals as the integral of
the external derivative of the one-form over the surface
bounded by the curves. For the metric of the flat-space
cosmology, the exterior derivative of this form is 0. For a
generic metric that satisfies the BMS boundary condition
(see, e.g., [24]), the exterior derivative of the one-form
results in the Einstein equation. Our work is not only the
first-step generalization of the proposal of [18,19] for the
flat-space holography but also shows that the flat/BMSFT
correspondence studied in several previous works (see
references in [25]) is a worthwhile duality.
In Sec. II we review the proposal of [19] in the context

of AdS=CFT. In Sec. III after briefly reviewing the flat/
BMSFT correspondence and holographic description of
BMSFT entanglement entropy, we write the FLEE in terms
of the bulk metric and deduce the Einstein equation.

II. LINEAR BULK EQUATION FROM THE FLEE
IN ADS/CFT

A. Entanglement entropy and its first law

For a quantum field theory state jψi, the density matrix is

ρ ¼ jψihψ j: ð2:1Þ

If we decompose a spatial (time constant) slice Σ to two
subsystems B and B̄ (Σ ¼ B ∪ B̄), then the density matrix
associated to B can be obtained from ρ by tracing out the
degrees of freedom of the complement subsystem B̄ as

ρB ¼ trB̄ρ: ð2:2Þ

The entanglement entropy of subsystems B is the von
Neumann entropy associated to the density matrix ρB,

SB ¼ −trðρB ln ρBÞ: ð2:3Þ
For a small perturbation jψðεÞi to the initial state jψð0Þi

of the whole system, the FLEE is

δSB ¼ d
dε

SB ¼ d
dε

hHBi ¼
d
dε

trðHBρBÞ≡ δEB; ð2:4Þ
where HB is the modular Hamiltonian that is independent
of perturbation and defined through

HB ¼ − ln ρBðϵ ¼ 0Þ: ð2:5Þ

Formula (2.4) is a quantum generalization of the first law of
thermodynamics. This formula holds for any arbitrary small
perturbation of quantum state and for any subsystem B.
Mostly, it is difficult to compute the modular

Hamiltonian HB and its associated density matrix ρB.
However, for the cases that HB is a local operator, one
may find a unitary transformation (and hence reversible,
which acts also on the coordinates) that maps ρB to a
thermal density matrix. Hence the resultant entropy is a
thermal one (see [26]). If we denote the unitary trans-
formation by U and the final thermal density matrix by ρH,
then

ρB ¼ UρHU−1: ð2:6Þ

It is not difficult to check that the thermal entropy given by

STH ¼ −trðρH ln ρHÞ ð2:7Þ

is the same as the entanglement entropy (2.3). Since ρH is
thermal, it can be written as1

ρH ¼ e−HH

trðe−HHÞ ; ð2:8Þ

whereHH is the associated charge of the symmetry generator
ξ. ξ is called modular flow and generates translation along
the thermal circle of the transformed coordinates. Thus, first
one can apply this unitary transformation and calculate the
thermal entropy with the help of HH and then through the
inverse unitary transformation (2.6) calculate the density
matrix ρB (or equivalently modular Hamiltonian HB).
Moreover, it is clear that HB is the conserved charge of ξ
up to an additive constant. This constant can be ignoredwhen
the variation of the modular Hamiltonian in the FLEE is
considered. In the rest of this paper we mostly use modular
flow instead of modular Hamiltonian.

B. Holographic FLEE in AdS=CFT

Formula (2.4) holds for small perturbations in any
quantum field theory. One may ask about the holographic
counterpart of this formula for the field theories that have
holographic duals. The first step is applying the FLEE for
the CFTs and wondering about the holographic formula in
the dual AdS geometry in the context of AdS=CFT. It was
shown in [18,19] that the FLEE for a CFT yields the
linearized equations of motion in the AdS gravity side. In
this subsection we review the derivation.
Take a d-dimensional CFT on Minkowski spacetime

R1;d−1. The dual (dþ 1)-dimensional holographic dual
consists of the asymptotically AdS spacetimes. For the

1We have absorbed a factor of 2π into the definition of HH.
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vacuum state the dual spacetime is pure AdS whose metric
g0ab in the Feffermann-Graham coordinates reads

ds2 ¼ l2

z2
ðημνdxμdxν þ dz2Þ: ð2:9Þ

We consider a spacial time slice Σ of d-dimensional
Minkowski space and divide it into two regions B and B̄
(Σ ¼ B ∪ B̄). Let B be a (d − 1)-dimensional ball with
radius R.
In order to find δEB in (2.4), we need to calculate the

vacuum expectation value of the modular Hamiltonian. The
modular Hamiltonian for this ball-shaped region is calcu-
lated in [26] as follows,

HB ¼ 2π

Z
B
dd−1x

R2 − δijðxi − xi0Þðxj − xj0Þ
2R

TttðxÞ;

ð2:10Þ

where xi0 are the coordinates of the center of the ball B and
Tμν is the stress tensor of CFT. We use the convention
xμ ¼ ðt; xiÞ. Hence the FLEE (2.4) can be written as

δSB ¼ 2π

Z
B
dd−1x

R2 − δijðxi − xi0Þðxj − xj0Þ
2R

δhTttðxÞi:

ð2:11Þ

Now we use holography to calculate δSB. When the CFT
vacuum state jΨð0Þi is perturbed to the state jΨðεÞi, in the
dual gravitational theory, the metric of the dual AdS
spacetime is perturbed as

ds2 ¼ l2

z2
ððημν þ hμνÞdxμdxν þ dz2Þ; ð2:12Þ

where hμν are infinitesimal. By means of the Ryu-
Takayanagi formula [16,17] we can write

SB ¼ SHEE ¼ AB̃

4G
; ð2:13Þ

where AB̃ is the minimal area of the codimension two
surface B̃ in the bulk AdS space, which is homologous to B
and given by

AB̃ ¼
Z
B̃
dd−1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγABÞ

p
: ð2:14Þ

Here γAB is the induced metric on B̃.
Let us illustrate the holographic counterpart of δSB

and δEB, respectively, as δS
grav
B and δEgrav

B . It was shown
in [18,19] that they are given as follows in terms of bulk
perturbed metric hij,

δSgravB ¼ ld−3

8GR

Z
B̃
dd−1xðR2δij − ðxixjÞÞhijðx; zÞ; ð2:15Þ

δEgrav
B ¼ ld−3d

16GR

Z
B
dd−1xðR2 − ðx⃗ − x⃗0Þ2Þδijhijðx; z ¼ 0Þ:

ð2:16Þ

Thus the FLEE formula (2.4) is written as

Z
B̃
dd−1xðR2δij − ðxixjÞÞhij

¼ d
2

Z
B
dd−1xðR2 − ðx⃗ − x⃗0Þ2Þδijhij: ð2:17Þ

This is a nonlocal equation that is correct for any ball-
shaped region with arbitrary radius R and center coordinate
fxi0g. Thus one may think about a local equation that is
equivalent to (2.17). In order to find this local constraint,
we look for a form χ such that

Z
B
χ ¼ δEgrav

B ;
Z
B̃
χ ¼ δSgravB : ð2:18Þ

If such a form χ exists, using (2.4) we can write

δSgravB − δEgrav
B ¼ 0 ¼

Z
B̃
χ −

Z
B
χ ¼

Z
B∪B̃

χ ¼
Z
Π
dχ;

ð2:19Þ

where Π is the hypersurface bounded by B and B̃
(B ∪ B̃ ¼ ∂Π) and located at t ¼ t0. For the asymptotically
AdS spacetimes, χ is given by [19]

χ¼−
1

16πG
½δð∇aξbϵabÞþξbϵabð∇chac−∇ahccÞ�; ð2:20Þ

where ξa is the bulk modular flow

ξ ¼ −
2π

R
ðt − t0Þ½z∂z þ ðxi − xi0Þ∂i�

þ π

R
½R2 − z2 − ðxi − xi0Þ2 − ðt − t0Þ2�∂t: ð2:21Þ

For this form, the exterior derivative is given by

dχ ¼ −
1

8πG
ξaδGabϵ

b; ð2:22Þ

where δGab are linearized Einstein equations around AdS
spacetimes,
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δGab ¼ −
1

2
∇b∇ahcc þ

1

2
∇c∇ahbc þ

1

2
∇c∇bhac

−
1

2
∇c∇chab −

1

2
gab∇d∇chcd þ

1

2
gab∇d∇dhcc

−
2Λ
d − 1

�
hab −

1

2
gabhcc

�
; ð2:23Þ

and ϵb is related to volume form as follows:

ϵa ¼ gab
1

d!
ϵ̄bi2…idþ1

ffiffiffiffiffiffi
−g

p
dxi2 ∧ … ∧ dxidþ1 : ð2:24Þ

Moreover, the exterior derivative is 0 on the boundary.
From (2.19) and (2.22) it is obvious that the holographic

interpretation of the first law of entanglement entropy
leads to

Z
Π
ξaδGabϵ

b ¼ 0: ð2:25Þ

Using the fact that only the t component of ξa is non-
vanishing on Π and also FLEE is valid for all of the ball-
shaped regions with arbitrary R, from (2.25) one can
deduce that [27]

δGtt ¼ 0: ð2:26Þ

In the above derivation, B was a constant time slice in the
boundary. Thus for a constant time slice or rest frame of
references, we can deduce the tt component of the
linearized Einstein equation. Repeating the same argument
for the ball-shaped regions in the arbitrary frame of
references we can find δGμν ¼ 0, where μ and ν are
directions of the field theory. Moreover, from the fact that
the exterior derivative of χ is 0 on the boundary we can
deduce that δGzμ ¼ 0 and δGzz ¼ 0 on the boundary or
z ¼ 0. Thus all components of the linearized Einstein
equation are 0 at z ¼ 0. One can use this result as the
initial condition and using the Bianchi identity prove that
δGzμ and δGzz are 0 everywhere [28].
We see that the gravitational interpretation of the FLEE

in CFTs leads to the linearized equations of motion of the
dual AdS gravity. In the next section we apply the above
procedure for asymptotically flat spacetimes in the context
of flat/BMSFT correspondence.

III. HOLOGRAPHIC FLEE IN FLAT/BMSFT
CORRESPONDENCE

A. Flat/BMSFT correspondence

Asymptotic symmetries of the asymptotically AdS
spacetimes in (dþ 1) dimensions are the same as local
symmetries of the d-dimensional CFTs. One may expect
such an equivalence between the gravity solutions and
their dual field theory for the non-AdS spacetimes.

Asymptotically AdS spacetimes are solutions of Einstein
gravity with negative cosmological constant. Taking the flat
space limit that is equivalent to the zero cosmological
constant limit results in asymptotically flat spacetimes.
Although this limit is not well defined for the asymptoti-
cally AdS spacetimes written in the Fefferman-Graham
coordinate, it is possible to find appropriate coordinates
with a well-defined flat-space limit [29,30]. A relevant
question is finding a counterpart for the flat-space limit of
the gravity theory in the field theory side. To answer this
question one needs to study the asymptotic symmetry of the
asymptotically flat spacetimes. This study has been done in
[3] for the four-dimensional spacetimes and in [4] for the
three-dimensional spacetimes. More recent studies show
that for the four-dimensional cases the asymptotic sym-
metry algebra at null infinity is the semidirect sum of
infinite-dimensional local conformal symmetry algebra on
a two-sphere and the Abelian ideal algebra of super-
translations [6]. This algebra is known as bms4. Such an
infinite-dimensional locally well-defined symmetry algebra
also exists at null infinity of three-dimensional asymptoti-
cally flat spacetimes [5]. This algebra is called bms3.
The observation of [2] is that the bms3 is isomorphic to

an infinite-dimensional algebra in two dimensions, which is
given by ultrarelativistic contraction of conformal algebra.
Thus it was proposed in [2] that the holographic dual of
asymptotically flat spacetimes in (dþ 1) dimensions is
field theories in d dimensions that have BMS symmetry.
We call these BMS invariant field theories BMSFT and
the correspondence between them and asymptotically flat
spacetimes flat/BMSFT.
To be more precise, let us consider Einstein-Hilbert action

with negative cosmological constant in three dimensions,

S ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
Rþ 4

l2

�
: ð3:1Þ

An appropriate coordinate with well-defined flat space limit
is BMS gauge [29]

ds2 ¼
�
−
r2

l2
þM

�
du2 − 2dudrþ 2N dudϕþ r2dϕ2;

ð3:2Þ
whereM andN are functions ofu andϕ and are constrained
by using the equations of motion as

∂uM ¼ 2

l2
∂ϕN ; 2∂uN ¼ ∂ϕM: ð3:3Þ

The asymptotic symmetry algebra is exactly the conformal
algebra in two dimensions,

½Lm;Ln� ¼ ðm − nÞLmþn;

½L̄m; L̄n� ¼ ðm − nÞL̄mþn;

½Lm; L̄n� ¼ 0; m; n ∈ Z: ð3:4Þ
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The algebra of conserved charges is centrally extended with
central charges c ¼ c̄ ¼ 3l=2G.
Taking the flat-space limit from metric (3.2) yields

asymptotically flat spacetimes with metric

ds2 ¼ Mdu2 − 2dudrþ 2Ndudϕþ r2dϕ2; ð3:5Þ

where M and N are functions of u and ϕ and they satisfy

∂uM ¼ 0; 2∂uN ¼ ∂ϕM: ð3:6Þ

The asymptotic symmetry algebra at null infinity is infinite-
dimensional bms3 algebra [5],

½Lm; Ln� ¼ ðm − nÞLmþn;

½Lm;Mn� ¼ ðm − nÞMmþn;

½Mm;Mn� ¼ 0; m; n ∈ Z: ð3:7Þ

The algebra of conserved charges is also centrally
extended.
The generators of bms3 can be obtained by taking the flat-

space limit from the generators of conformal algebra [29],

Lm ¼ lim
G
l→0

ðLm − L̄−mÞ; Mm ¼ G
l
lim
G
l→0

ðLm þ L̄−mÞ:

ð3:8Þ

It was argued in [2] that the limit (3.8) that is taken in the
gravity side corresponds to the ultrarelativistic limit in the
field theory side. In the rest of this paper by BMSFT2 we
mean a field theory that has the symmetry algebra (3.7).
From BMSFT3 we mean a field theory with the follow-

ing symmetry algebra

½Lm; Ln� ¼ ðm − nÞLmþn;

½L̄m; L̄n� ¼ ðm − nÞL̄mþn;

½Lm; L̄n� ¼ 0;

½Ll;Mm;n� ¼
�
lþ 1

2
−m

�
Mmþl;n;

½L̄l;Mm;n� ¼
�
lþ 1

2
− n

�
Mm;nþl; m; n; l ∈ Z: ð3:9Þ

This algebra is called bms4 and is the asymptotic symmetry
of the four-dimensional asymptotically flat spacetimes at
null infinity [6]. Lm and L̄m are generators of super-
rotations and Mm;n are generators of supertranslations.
The Poincare subalgebra is generated by

fL−1; L0; Lþ1; L̄−1; L̄0; L̄þ1;M0;0;M0;þ1;Mþ1;0;Mþ1;þ1g:
ð3:10Þ

B. Holographic entanglement entropy in flat/BMSFT

Similar to other field theories, it is possible to define
entanglement entropy for the subsystems of BMSFT.
The infinite-dimensional symmetry of BMSFTs admits
to finding universal formulas for the entanglement entropy
of subregions [8]. Moreover, using the flat/BMSFT corre-
spondence one can find a holographic description for the
BMSFT entanglement entropy. Recently, a prescription
(similar to the Ryu-Takayanagi’s proposal for the CFT
entanglement entropy [16,17]) was proposed for the
BMSFT entanglememnt entropy [12] that relates it to the
area of some particular curves into the bulk flat spacetimes.
According to [12], the entanglement entropy of subregion
B of BMSFT2 is given by

SHEE ¼ LengthðγÞ
4G

¼ Lengthðγ ∪ γþ ∪ γ−Þ
4G

; ð3:11Þ

where γ is a spacelike geodesic and γþ and γ− are null rays
from ∂γ to ∂B.
The most generic solution of Einstein gravity with zero

cosmological constant in three dimensions is given by
(3.5). In the rest of this paper we consider an interval B in
the BMSFT that is determined by − lu

2
< u < lu

2
and

− lϕ
2
< ϕ < lϕ

2
, where lu and lϕ are constants. Among the

various values of functionsM and N in (3.5), the following
three metrics are of more interest:
(1) Null-orbifold or Poincaré patch with metric

(M ¼ N ¼ 0 in (3.5)

ds2 ¼ −2dudrþ r2dϕ2: ð3:12Þ
In this case the bulk modular flow is

ξbulk ¼ −
π

2lϕ

��
l2ϕ − 4ϕ2 þ 8ðulϕ − luϕÞ

rlϕ

�
∂ϕ

þ
�
lulϕ þ

4lu
lϕ

ϕ2 − 8uϕ

�
∂u

þ
�
8lu
lϕ

þ 8rϕ

�
∂r

�
: ð3:13Þ

Here γ is given by

r ¼ −
lu
lϕϕ

; u ¼ lulϕ
8ϕ

þ luϕ
2lϕ

: ð3:14Þ

By using the coordinate transformations

t ¼ lϕ
4
rþ 2

lϕ
uþ 1

lϕ
rϕ2;

x ¼ lu
lϕ

þ rϕ;

y ¼ lϕ
4
r −

2

lϕ
u −

1

lϕ
rϕ2; ð3:15Þ
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we can change the metric of the null orbifold to the
Cartesian coordinate

ds2 ¼ −dt2 þ dx2 þ dy2: ð3:16Þ
In these coordinates the bulkmodular flow is given by

ξbulk ¼ −2πðx∂t þ t∂xÞ; ð3:17Þ

and geodesics are

γ∶ x ¼ t ¼ 0; −
lu
lϕ

≤ y ≤ þ lu
lϕ
; ð3:18Þ

γþ∶ x ¼ t; y ¼ −
lu
lϕ
; ð3:19Þ

γ−∶ x ¼ −t; y ¼ þ lu
lϕ
: ð3:20Þ

(2) Global Minkowski with metric [M ¼ −1 and N ¼ 0
in (3.5)]

ds2 ¼ −du2 − 2dudrþ r2dϕ2: ð3:21Þ

The bulk modular flow is

ξbulk ¼ π csc
lϕ
2

�
2

�
cos

lϕ
2
− cosϕ

�

þ 1

r

�
lu sinϕcot

lϕ
2
− 2ucosϕ

��
∂ϕ;

þ π csc
lϕ
2

�
−lu csc

lϕ
2
þ lu cosϕcot

lϕ
2

þ 2u sinϕ

�
∂u;

− π csc
lϕ
2

�
lu cosϕcot

lϕ
2
þ 2ðrþuÞ sinϕ

�
∂r;

ð3:22Þ

where γ is given by2

r ¼ −
lu csc

lϕ
2

2 sinϕ
; u ¼ −

lu
2
cot

lϕ
2
cotϕ − r:

ð3:23Þ

Using coordinate transformation [31]

t ¼ ðrþ uÞ csc lϕ
2
− r cosϕ cot

lϕ
2
;

x ¼ r sinϕþ lu
2
csc

lϕ
2
;

y ¼ r cosϕ csc
lϕ
2
− ðrþ uÞ cot lϕ

2
; ð3:24Þ

we have

ds2 ¼ −dt2 þ dx2 þ dy2: ð3:25Þ
In these Cartesian coordinates the bulk modular flow
is the same as (3.17) and geodesics are

γ∶ x ¼ 0 ¼ t; −
lu
2
cot

lϕ
2
≤ y ≤ þ lu

2
cot

lϕ
2
;

ð3:26Þ

γþ∶ x ¼ t; y ¼ −
lu
2
cot

lϕ
2
; ð3:27Þ

γ−∶ x ¼ −t; y ¼ þ lu
2
cot

lϕ
2
: ð3:28Þ

(3) FSC with metric (M ¼ m and N ¼ j)

ds2 ¼ mdu2 − 2dudrþ 2jdudϕþ r2dϕ2; ð3:29Þ
where m and j are constants. It has a cosmological
horizon at radius rc ¼ jffiffiffi

m
p . FSC is a shift-boost

orbifold of Minkowski spacetime [21] and can be
brought into the Cartesian coordinate locally by
using the following transformation:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðt2 − x2Þ þ r2c

q
;

ϕ ¼ −
1ffiffiffiffi
m

p log
ffiffiffiffi
m

p ðt − xÞ
rþ rc

;

u ¼ 1

m
ðr − ffiffiffiffi

m
p

y −
ffiffiffiffi
m

p
rcϕÞ: ð3:30Þ

Both the null-orbifold and global Minkowski correspond
to the BMSFT states that are nonthermal but for the null
orbifold, BMSFT is on a plane and for the global
Minkowski the corresponding BMSFT is on the cylinder.
FSC (3.29) corresponds to the BMSFT thermal states. The
holographic entanglement entropy of interval B is given by

S ¼ 1

2G

�
π

βϕ

�
lu þ

βu
βϕ

lϕ

�
coth

�
πlϕ

βϕ

�
−
βu
βϕ

�
; ð3:31Þ

where

βϕ ¼ 2πffiffiffiffi
m

p ;
βu
βϕ

¼ j
m
: ð3:32Þ

2We assume that lϕ < π.
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C. Holographic FLEE

In this section we consider the BMSFT dual to the global
Minkowski. The starting point is FLEE formula (2.4),
which is written in the field theory side. We want to use
Flat3=BMSFT2 to write both sides of this formula in the
gravity side. BMSFT lives on a cylinder with coordinates
ðu;ϕÞ and interval B is given by − lu

2
< u − u0 <

lu
2
and

− lϕ
2
< ϕ − ϕ0 <

lϕ
2
, where lu, lϕ, u0, and ϕ0 are constants.

Let us start from the right-hand side of (2.4). In order to
calculate the expectation value of the modular Hamiltonian,
we use the fact that up to an additive constant, the modular
Hamiltonian HB is the same as the conserved charge of
the modular flow ξ. If we show the stress tensor of BMSFT
by Tab, the corresponding charge of ξ can be calculated on a
spacelike surface Σ with metric σab as [32]

Qξ ¼
Z
Σ
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðσabÞ

p
naξbTa

b; ð3:33Þ

where σ is the coordinate on the surface Σ and na is the unit
timelike vector normal to Σ. The most challenging problem
in the flat-space holography is the definition of Σ. In the
AdS=CFT correspondence, Σ is a spacelike surface on the
conformal boundary of the asymptotically AdS spacetimes.
However, such a definition for conformal infinity of
asymptotically flat spacetimes is not appropriate in the
flat-space holography. In the previous works [30,33–38], in
the flat-space holography, Σ has been defined by using the
corresponding surface of asymptotically AdS spacetimes;
their flat-space limit yields the asymptotically flat metric.
To be precise, let us consider the AdS3 metric written in the
BMS coordinate,

ds2 ¼ −
�
1þ r2

l2

�
du2 − 2dudϕþ r2dϕ2; ð3:34Þ

where l is the radius of AdS space. At fixed but large r we
can write

ds2B ¼ r2

l2
ð−du2 þ l2dϕ2Þ þOðr0Þ: ð3:35Þ

Thus we can write the metric of the conformal boundary as

ds2CB ¼ −du2 þ l2dϕ2: ð3:36Þ

In the AdS=CFT correspondence, the metric of Σ in (3.33)
is given by using (3.36). The new point in all of the papers
[30] and [33–38] is that (3.36) is also appropriate for
writing the metric of Σ in the l → ∞ limit. The proposal of
[30] for the definition of Σ is that we use a metric similar to
(3.36) but replace l with three-dimensional Newton con-
stant G. In this paper we employ this definition of Σ. Since
we want to study the FLEE in a BMSFT that is the
holographic dual of the global Minkowski, the metric of

bulk spacetime is given by (3.21), which is the l → ∞ limit
of (3.34). Thus we choose Σ as a spacelike subspace of a
space that is determined by metric

ds2CB ¼ −du2 þ G2dϕ2: ð3:37Þ

It proves convenient to first make a coordinate trans-
formation as

w ¼ u − u0 −
lu
2

sinðϕ − ϕ0Þ
sin lϕ

2

: ð3:38Þ

In this coordinate, the interval is defined as−lϕ
2
<ϕ−ϕ0<

lϕ
2
.

Moreover, by taking the r → ∞ limit from (3.22), we
can find the BMSFT modular flow on the internal
(w ¼ 0) as

ξw ¼ 0; ξϕ ¼ 2π

sin lϕ
2

�
cos

lϕ
2
− cosðϕ − ϕ0Þ

�
: ð3:39Þ

If we determine Σ as w ¼ 0;− lϕ
2
< ϕ − ϕ0 <

lϕ
2
then using

(3.37) and (3.39) we find

δEB ¼ δhHBi

¼ 2πG

sin lϕ
2

Z
ϕ0þ

lϕ
2

ϕ0−
lϕ
2

dϕ

�
cos

lϕ
2
− cosðϕ − ϕ0Þ

�
δhTw

ϕi:

ð3:40Þ

Hence we can write the right-hand side of (2.4) in terms of
the BMSFT stress tensor by using flat-space holography.
In order to calculate the left-hand side of (2.4) holo-

graphically, we perturb the metric of global coordinate
(3.21) as

ds2 ¼ ð−1þ huuÞdu2 − 2dudrþ 2huϕdudϕþ r2dϕ2:

ð3:41Þ

We consider the case in which huu and huϕ are constants.
With this choice (3.41) is similar to flat-space cosmology
(3.29). For writing (3.41) we do not use equations of
motion. The fixed components of the metric have been
determined by using boundary conditions that are neces-
sary to have BMS symmetry at null infinity (see, e.g.,
[24]). In other words, the fact that the dual theory is
BMSFT imposes (3.41) for the form of the metric. This is
similar to choosing the Fefferman-Graham coordinate
in the context of AdS=CFT correspondence. Line
element (3.41) is not the generic one that fulfils the
BMS boundary conditions. In order to simplify equations
we have fixed some components. However, our argument
in the rest of the paper can be generalized to more
generic cases.
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Since huu and huϕ are infinitesimal constants, we can use
(3.31) to calculate δS. We find

δS ¼ 1

4G

�
2

�
−1þ lϕ

2
cot

lϕ
2

�
huϕ

þ lu
2

�
cot

lϕ
2
−

lϕ

2sin2 lϕ
2

�
huu

�
: ð3:42Þ

Using (3.40) and (3.42), we can write the FLEE as

Z
ϕ0þ

lϕ
2

ϕ0−
lϕ
2

dϕ

�
cos

lϕ
2
− cosðϕ − ϕ0Þ

�
δhTw

ϕi

¼ sin lϕ
2

8πG2

�
2

�
−1þ lϕ

2
cot

lϕ
2

�
huϕ

þ lu
2

�
cot

lϕ
2
−

lϕ

2sin2 lϕ
2

�
huu

�
: ð3:43Þ

This formula is valid for all intervals determined by lϕ, lu,
and ðu0;ϕ0Þ. For a very small interval that is given by
lϕ → 0, lu → 0, but lulϕ ¼ fixed, the expectation value of the

stress tensor can be considered as a function of the center of
the interval. Since the center of the interval is an arbitrary
point, using (3.43) we find

δhTw
ϕi ¼

1

8πG2

�
huϕ þ

lu
2

cosϕ

sin lϕ
2

huu

�
: ð3:44Þ

Putting (3.44) into (3.40), we find δEB as

δEB ¼ 1

4G sin lϕ
2

Z
ϕ0þ

lϕ
2

ϕ0−
lϕ
2

dϕ

�
cos

lϕ
2
− cosðϕ − ϕ0Þ

�

×

�
huϕ þ

lu
2

cosϕ

sin lϕ
2

huu

�
: ð3:45Þ

The interesting point is that both of δSB and δEB given
by (3.42) and (3.45) are written as the integral of a specific
one-form χ. Precisely, we can write3

δE ¼
Z
B
χ; δS ¼

Z
γ−∪γ∪γþ

χ; ð3:46Þ

where

χ ¼ 1

16πG
ϵμνα

�
ξν∇μh − ξν∇σhμσ þ ξσ∇νhμσ

þ 1

2
h∇νξμ þ 1

2
hνσð∇μξσ −∇σξ

μÞ
�
dxα: ð3:47Þ

ξ is the bulk modular flow (3.22), h ¼ hνμ, and ϵμνα is the

completely antisymmetric tensor with component ϵ012 ¼ffiffiffiffiffiffiffijg0j
p

where g0 is the determinant of global Minkowski
(3.21). Thus the FLEE formula (2.4) for BMSFT can be
written as Z

B
χ −

Z
γ−∪γ∪γþ

χ ¼ 0: ð3:48Þ

Curves B and γ− ∪ γ ∪ γþ construct a closed path. Hence,
we can write (3.48) as Z

Π
dχ ¼ 0; ð3:49Þ

where dχ is the exterior derivative of χ and Π is any surface
bounded by B ∪ γ− ∪ γ ∪ γþ. Since Π is any bounded
surface, from (3.49) one may expect that

dχ ¼ 0: ð3:50Þ
It is not difficult to check that (3.50) is satisfied for the
perturbed metric given by (3.41). In fact, the metric (3.41)
with constant huu and huϕ is a solution of the Einstein
equation.
Let us consider a case in which huu and huϕ are arbitrary

functions of u and ϕ. Now we have

dχ ¼ 1

16Gr2
ðdχrudr ∧ duþ dχuϕdu ∧ dϕÞ; ð3:51Þ

where

dχru ¼ ð∂ϕhuu − 2∂uhuϕÞ

×

�
lu cot

lϕ
2
cos θ − lu csc

lϕ
2
þ 2u sin θ

�
; ð3:52Þ

and

dχuϕ¼ r

�
ð∂ϕhuu−2∂uhuϕÞ

�
−cot

lϕ
2

�
2rþ lucsc

lϕ
2
sinθ

�

þ2cosθcsc
lϕ
2
ðrþuÞ

��
þrcsc

lϕ
2
∂ϕð∂ϕhuu−2∂uhuϕÞ

�
lucot

lϕ
2
cosθ− lucsc

lϕ
2
þ2usinθ

�

þr2csc
lϕ
2
∂uhuu

�
lu cot

lϕ
2
cosθ− lu csc

lϕ
2
þ2usinθ

�
:

ð3:53Þ

Thus using (3.50), (3.52) and (3.53) we find that

3In the global Minkowski coordinate, γþ consists of two null
curves connected at r ¼ 0 [12]. Since χ is singular at r ¼ 0, we
use contour r ¼ ϵ in the calculation of

R
γþ
χ and after integration

take ϵ → 0.
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∂ϕhuu ¼ 2∂uhuϕ; ∂uhuu ¼ 0: ð3:54Þ

These are the relations that one can conclude from the
Einstein equation for the metric (3.41).

IV. SUMMARY AND CONCLUSION

In this paper we studied another aspect of flat/BMSFT
that was previously introduced in the context of AdS=CFT.
We wrote the FLEE of BMSFT2 in terms of three-
dimensional asymptotically flat metrics. The steps are ana-
logue to those that are used in the context of AdS=CFT
correspondence. We rewrite both sides of the FLEE (2.4) by
using corresponding bulk parameters. δSB in (2.4) is the
variation of entanglement entropywith respect to the state by
which the system is described.Using the proposal of [12] one
can write this variation as the variation of length of some
spatial curves in the bulk geometry. δEB in the right-hand side
of the FLEE (2.4) is variation of the expectation value of
the modular Hamiltonian. For calculating this quantity, we
used the fact that the modular Hamiltonian is the conserved
charge of modular flow up to an additive constant that can be
ignored in the variation. BMSFT conserved charges are given
by using the stress tensor. Using the flat/BMSFT dictionary
we relate the calculation of the conserved charges to a bulk
calculation similar to the Brown-York proposal [32]. The key
point in this calculation is the definition of the spatial surface
over which the integration is performed. In the AdS=CFT
correspondence this surface is given by using the conformal
boundary of asymptotically AdS spacetimes. In this case we

donot use the standard definitionof conformal boundary.Our
proposal is that this surface for the flat spacetimes is the same
as that for the asymptotically AdS casewhose flat-space limit
yields the asymptotically flat spacetimes [30]. This proposal
works again in this problem similar to all previousworks [33–
38]; however, a thorough investigation is necessary,whichwe
hope to do in our future studies.
In this paper we assumed that the perturbed state in the

field theory side corresponds to a metric similar to the flat-
space cosmology [20–23] in the bulk theory. Hence, the
gravitational counterpart of the FLEE was the exterior
derivative of a one-form that is 0 for the flat-space
cosmology. The exterior derivative of this form for a
generic metric that satisfies the BMS boundary condition
results in Einstein equations for undermined components of
the metric. This is a good hint that the holographic FLEE is
the Einstein equation in the flat/BMSFT correspondence.

ACKNOWLEDGMENTS

The authors thank Seyed Morteza Hosseini and Pedram
Karimi for useful comments and discussions. R. F. is
grateful for the hospitality of CERN theory department
where some part of the current paper was done. This work
is supported by Iran National Science Foundation (INSF),
Grant No. 97017212.

Note added.—Recently, Ref. [39] was posted whose results
overlap with ours.

[1] A. Bagchi, Correspondence between Asymptotically Flat
Spacetimes and Nonrelativistic Conformal Field Theories,
Phys. Rev. Lett. 105, 171601 (2010);

[2] A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards
flatspace holography from nonrelativistic symmetries,
J. High Energy Phys. 10 (2012) 092.

[3] H. Bondi, M. G. van der Burg, and A.W. Metzner,
Gravitational waves in general relativity. 7. Waves from
axisymmetric isolated systems, Proc. R. Soc. A 269,
21 (1962); R. K. Sachs, Gravitational waves in general
relativity. 8. Waves in asymptotically flat space-times,
Proc. R. Soc. A 270, 103 (1962); Asymptotic symmetries
in gravitational theory, Phys. Rev. 128, 2851 (1962).

[4] A. Ashtekar, J. Bicak, and B. G. Schmidt, Asymptotic
structure of symmetry reduced general relativity, Phys.
Rev. D 55, 669 (1997).

[5] G. Barnich and G. Compere, Classical central extension
for asymptotic symmetries at null infinity in three
spacetime dimensions, Classical Quantum Gravity 24,
F15 (2007).

[6] G. Barnich and C. Troessaert, Symmetries of Asymptoti-
cally Flat 4 Dimensional Spacetimes at Null Infinity
Revisited, Phys. Rev. Lett. 105, 111103 (2010).

[7] G. Barnich and C. Troessaert, Aspects of the BMS/CFT
correspondence, J. High Energy Phys. 05 (2010) 062.

[8] A. Bagchi, R. Basu, D. Grumiller, and M. Riegler,
Entanglement Entropy in Galilean Conformal Field
Theories and Flat Holography, Phys. Rev. Lett. 114,
111602 (2015).

[9] S. M. Hosseini and Á. Véliz-Osorio, Gravitational anoma-
lies, entanglement entropy, and flat-space holography, Phys.
Rev. D 93, 046005 (2016).

[10] S. M. Hosseini and Á. Véliz-Osorio, Entanglement and
mutual information in two-dimensional nonrelativistic field
theories, Phys. Rev. D 93, 026010 (2016).

[11] R. Basu and M. Riegler, Wilson lines and holographic
entanglement entropy in Galilean conformal field theories,
Phys. Rev. D 93, 045003 (2016).

[12] H. Jiang, W. Song, and Q. Wen, Entanglement entropy in
flat holography, J. High Energy Phys. 07 (2017) 142.

FIRST LAW OF ENTANGLEMENT ENTROPY IN FLAT-SPACE … PHYS. REV. D 100, 106006 (2019)

106006-9

https://doi.org/10.1103/PhysRevLett.105.171601
https://doi.org/10.1007/JHEP10(2012)092
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1103/PhysRevD.55.669
https://doi.org/10.1103/PhysRevD.55.669
https://doi.org/10.1088/0264-9381/24/5/F01
https://doi.org/10.1088/0264-9381/24/5/F01
https://doi.org/10.1103/PhysRevLett.105.111103
https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1103/PhysRevLett.114.111602
https://doi.org/10.1103/PhysRevLett.114.111602
https://doi.org/10.1103/PhysRevD.93.046005
https://doi.org/10.1103/PhysRevD.93.046005
https://doi.org/10.1103/PhysRevD.93.026010
https://doi.org/10.1103/PhysRevD.93.045003
https://doi.org/10.1007/JHEP07(2017)142


[13] R. Fareghbal and P. Karimi, Logarithmic correction to
BMSFT entanglement entropy, Eur. Phys. J. C 78, 267
(2018).

[14] E. Hijano and C. Rabideau, Holographic entanglement and
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