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We construct the first analytical rotating string solution in six-dimensional Einstein-Gauss-Bonnet
supergravity, carrying both electric and magnetic charges. By embedding the known rotating string solution
of the two-derivative theory into six-dimensional off-shell supergravity, the Killing spinors associated with
the underlying supersymmetry can be made off-shell and are universal to all off-shell supergravity models
based on the same field content. The near-horizon geometry is S3 fibered over the extremal Bañados-
Teitelboim-Zanelli black hole, locally isomorphic to AdS3 × S3. We compute the higher-derivative
corrections to the Brown-Henneaux central charges in a particular Rþ R2 model resulting from K3
compactification of type IIA string theory.
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I. INTRODUCTION

Although Einstein’s theory of general relativity (GR) is
well established, it is unlikely to be completed at ultraviolet
energy scales on its own. This is because, in a similar
manner to Fermi’s effective theory for weak interactions,
Newton’s constant characterizing the strength of the
gravitational coupling carries units of length squared.
The formation of black holes at Planck scale energy density
and the concurrence of spacetime singularities further
obscure the nature of gravity at short distances, where
quantum effects become important.
To unify gravity and quantum mechanics, string theory

predicts that GR should be augmented with new degrees
of freedom in such a way that supersymmetry is respected
at sufficiently high energy scales. In perturbative string
theory, quantum corrections to GR can in principle be
calculated at each string loop order, in which taking the low
energy limit yields an infinite series expanded in powers of
the string length squared l2

s , with supersymmetry preserved
order by order in l2

s . Four-dimensional supergravity models
preserving eight supercharges arise as low energy limits of
string theory compactified on Calabi-Yau threefolds. The
leading higher-derivative corrections to the Einstein-Hilbert
action contain terms quadratic in the curvature tensor
coupled to scalar fields.
The recent observations of gravitational waves (GW)

from binary black holes [1] and neutron stars [2] mergers

have extended the success of GR from the low-velocity,
weak gravitational field regime to a highly dynamical
regime governed by strong gravity. Interestingly, effects
from string-inspired Einstein-dilaton-Gauss-Bonnet and
dynamical Chern-Simons gravity on gravitational wave
emission have been seriously considered in exploring
modifications to GR, as they result in the emission of
scalar dipole (at 1PN) and quadrupole (at 2PN) radiation
during the inspiral [3]. This could potentially revive interest
in higher-derivative extended gravity models with a string
theory origin with the advantage that, given a compacti-
fication scheme, the lower dimension couplings are fixed,
thus increasing verifiability of the model.
This paper is devoted to understanding exact solutions in

higher-derivative extended supergravity models, which are
notoriously hard. Supersymmetric higher-derivative terms
can be most conveniently organized using the off-shell
formulation of supersymmetry, which is possible up to six
dimensions (D ¼ 6), in which we set up the calculation. By
consistent dimensional reduction, six-dimensional solu-
tions give rise to solutions in lower-dimensional models.
This leaves out a separate case inD ¼ 5 (and, of course, its
reduction to lower dimensions) due to the possibility of
introducing two inequivalent off-shell formulations [4],
which we leave for a future study. The main advantage of
working in D ¼ 6 is that there are fewer fields, and so
correspondingly the supersymmetry transformation rules
are reasonably simple. For on-shell two-derivative super-
gravities in D ¼ 6, there are classifications of supersym-
metric solutions in [5–8]. In this paper the approach
uses the crucial fact that the off-shell supersymmetry
transformation rules are theory independent. Therefore,
solutions to off-shell Killing spinor equations are universal
to all theories invariant under the same supersymmetry
transformations. One can thus use the known explicit
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supersymmetric solutions of the simplest two-derivative
theory as a guide to deduce the structure of the off-shell
Killing spinor applicable to other solutions with the same
isometries. Substituting the ansatz for bosonic fields based
on symmetry considerations and the universal form of
the off-shell Killing spinor into the off-shell Killing
spinor equations results in theory-independent algebraic
relations among the undetermined functions. Therefore,
without using equations of motion, we have partially solved
the system for all supergravity models. Of course, fully
determining the solutions requires dynamical input from
a specific theory. For simplicity, we choose the p-form
field equations as the dynamical input, which usually admit
a first integral implied by the gauge symmetry. We
elaborate this idea by constructing the supersymmetric,
rotating, dyonic string solution in D ¼ 6 ungauged min-
imal supergravity coupled to a tensor multiplet with higher-
derivative extensions. The static and rotating dyonic strings
solutions in D ¼ 6 two-derivative supergravity were pre-
sented in [9–12].
The near-horizon limit of the dyonic string solution

leads to the conformally flat AdS3 × S3 vacuum preserving
eight chiral supercharges. The central charges present in
the asymptotic symmetry algebra of AdS3 receive higher-
derivative corrections. When the supergravity model

arises from string theory, the AdS3 vacuum admits a dual
two-dimensional (2D) conformal field theory (CFT)
description. Comparing the higher-derivative corrected
gravitational central charges to the CFT central charges
then provides a precision test of the AdS3=CFT2 corre-
spondence beyond the large central charge limit. Using our
solution, we compute the higher derivative corrections to
the Brown-Henneaux central charges in a particular model
resulting from compactifying type IIA string theory on a
K3 manifold.

II. ROTATING DYONIC STRING SOLUTIONS

A. Supergravity

We begin by introducing theD ¼ 6 off-shell formulation
of supergravity. The minimal supergravity multiplet
combines with a self-dual tensor multiplet to form the
off-shell irreducible dilaton-Weyl multiplet consisting
of bosonic fields fgμν; Bμν; L; Vμ; V

ij
μ ; Eμg and fermionic

fields fψ i
μ;φig, with i ¼ 1, 2 and μ labeling the six-

dimensional (6D) coordinate index. fVμ; V
ij
μ ; Eμg are the

auxiliary fields required by the off-shell closure of the
supersymmetry algebra. The Einstein-Hilbert Lagrangian
invariant under the 6D off-shell supersymmetry is given by

LEH ¼ ffiffiffiffiffiffi
−g

p �
LRþ L−1∇μL∇μL −

1

12
LHμνρHμνρ þ � � �

�
; Hμνρ ¼ 3∂ ½μBνρ�; ð2:1Þ

where here and below the omitted terms are quadratic in auxiliary fields. This Lagrangian is written in string frame, which
simplifies the supersymmetrization of higher-derivative terms. In addition to (2.1), we add the recently constructed off-shell
supersymmetric Gauss-Bonnet term [13]1

LGB ¼ ffiffiffiffiffiffi
−g

p �
RμνρσRμνρσ − 4RμνRμν þ R2 þ 1

6
RH2 − RμνH2

μν þ
1

2
RμνρσHμνλHρσ

λ

þ 5

24
H4 þ 1

144
ðH2Þ2 − 1

8
ðH2

μνÞ2 −
1

4
ϵμνρσλτBμνRρσ

α
βðωþÞRλτ

β
αðωþÞ þ � � �

�
; ð2:2Þ

where Rμνρσ is the standard Riemann tensor of gμν, while Rμν
α
βðωþÞ is the curvature associated with the torsionful spin

connection ωαþμ β,

Rμν
α
βðωþÞ ¼ ∂μω

αþν β þ ωαþμ γω
γ
þν β − ðμ ↔ νÞ; ωαþμ β ¼ ωα

μ β þ
1

2
Hμ

α
β: ð2:3Þ

The shorthand notations for various contractions of Hμνρ are

H2 ≔ HμνρHμνρ; H2
μν ¼ HμρσHν

ρσ; H4 ≔ HμνσHρλ
σHμρδHνλ

δ: ð2:4Þ

1Here we use the convention ϵ012345 ¼ 1, so the B ∧ R ∧ R term has a minus sign, whereas [13] has a plus sign. This sign difference
results from a different convention for the chirality of fermions.
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Other 6D off-shell supersymmetric higher-derivative ac-
tions can be found in [14–19]. We prefer the Gauss-Bonnet
combination to other higher-derivative invariants because it
gives rise to relatively simple equations of motion while
entailing enough complexity to display the efficiency of our
method, especially when applied to nonstatic solutions.
Furthermore, going to the Einstein frame, the model
becomes the supersymmetric version of the Einstein-
dilaton-Gauss-Bonnet gravity of broader interest. To sum-
marize, in this section, we use the total action

SEGB ¼ 1

16πG6

Z
d6x

�
LEH þ 1

16
λGBLGB

�
; ð2:5Þ

where G6 is the D ¼ 6 Newton constant. The action enjoys
the scaling symmetry

ðgμν; Bμν; L; λGBÞ → ðtgμν; tBμν; t−2L; t−1λGBÞ ð2:6Þ
needed in later discussions.

B. Killing spinor equation

The supersymmetric rotating string solutions can be
derived from the 3-charge black string solution [12]
by taking the limit in which the mass saturates the
Bogomolny-Prasad-Sommerfield (BPS) bound set by the
sum of all charges. Also, the two angular momenta are
equal and the solution possesses an enhanced U(2) isom-
etry [20]. The explicit form of the solution is given by

ds26 ¼
r2

ðr2 þQÞ
�
−
�
dtþ J

2r2
σ3

�
2

þ
�
dxþ J

2r2
σ3

�
2
�

þ ðr2 þ PÞ dr
2

r2
þ 1

4
ðr2 þ PÞðσ23 þ dθ2 þ sin2θdϕ2Þ;

Bð2Þ ¼ 2Pω2 þ
r2

r2 þQ
dt ∧ dxþ J

2ðr2 þQÞ dt ∧ σ3

þ J
2ðr2 þQÞ σ3 ∧ dx;

L ¼ r2 þQ
r2 þ P

; ð2:7Þ

where σ3 ¼ dχ − cos θdϕ, dω2 ¼ VolðS3Þ, and the electro-
magnetic charges Q and P are positive. All auxiliary fields
vanish for this solution. It is evident that the solution above
is cohomogeneity-1 and admits a Uð2Þ ×R2 isometry. The
infinite string lies along the x direction. When r → ∞, the
solution approaches Minkowski spacetime with energy and
angular-momentum density along the string

M ¼ ðQþ PÞπ
4G6

; J ¼ −
Jπ
4G6

; ð2:8Þ

where the angular momentum is associated with the Euler
angle χ. In the asymptotically flat case, the symmetry is

given by the Poincaré superalgebra not involving the
generators associated compact isometry of the solution.
Therefore, the angular momentum does not enter the BPS
bound. The supersymmetry of the solution (2.7) can be
seen by explicitly solving the Killing spinor equations,
which are given by the vanishing supersymmetry variations
of the fermionic fields fψ i

μ;φig:�
∂μþ

1

4
ωμαβγ

αβ

�
ϵi−

1

2
Vμδ

ijϵjþVμ
i
jϵ

jþ1

8
Hμνργ

νρϵi ¼ 0;

×
1

2
ffiffiffi
2

p γμδij∂μLϵj−
1

4
γμEμϵ

iþ 1ffiffiffi
2

p γμVði
μ kδ

jÞkLϵj

−
1

12
ffiffiffi
2

p LδijγμνρHμνρϵj¼ 0; ð2:9Þ

where ϵi is a symplectic Majorana-Weyl spinor with the
chirality γ012345ϵ

i ¼ ϵi. Indices i; j;… are raised and
lowered by εij and εij. For convenience, we introduce
the complex Weyl spinor

ϵ ¼ ϵ1 þ iϵ2: ð2:10Þ

Substituting (2.7) into (2.9), we find the solution for ϵ given
by

ϵ ¼ r1=2

ðr2 þQÞ1=4 ϵ0; ð2:11Þ

where ϵ0 is the Killing spinor on a two-sphere embedded in
the D ¼ 6 spinor so that it satisfies the projection con-
ditions

γ012345ϵ0 ¼ −ϵ0; γ01ϵ0 ¼ −ϵ0: ð2:12Þ

We nowmake an ansatz for supersymmetric rotating strings
in generic supergravity models based on the same set of
fields. The metric gμν, two-form potential Bμν, and the
scalar L takes the form fixed by the Uð2Þ ×R2 isometry

ds26 ¼ a2ðrÞ½−ðdtþϖσ3Þ2 þ ðdxþϖσ3Þ2�

þ b2ðrÞdr2 þ 1

4
c2ðrÞðσ23 þ dθ2 þ sin2θdϕ2Þ;

Bð2Þ ¼ 2Pω2 þ dðrÞdt ∧ dxþ fðrÞðdt − dxÞ ∧ σ3;

L ¼ LðrÞ; ð2:13Þ

with vanishing auxiliary fields. The corresponding Killing
spinor is assumed to be

ϵ ¼ ΠðrÞϵ0; ð2:14Þ

where ϵ0 is the same as in (2.11). Substituting (2.13) and
(2.14) into the Killing spinor equations (2.9) then yields the
consistency relations
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_d − 2a _a ¼ 0;
_d

a2b
þ

_L
Lb

−
2P
c3

¼ 0;

ϖ _d − _f þ a2 _ϖ þ 2fb
c

−
2a2bϖ

c
¼ 0;

Pb
c

− bcþ c_c ¼ 0; Π ¼ ffiffiffi
a

p
; ð2:15Þ

where dots denote derivatives with respect to r. The
conditions in (2.15) are necessary and sufficient conditions
for the existence of Killing spinors corresponding to the
rotating strings. The gauge symmetries in the system are
related to the choice of coordinate r and the Abelian one-
form symmetry of Bð2Þ. We can fix the reparametrization of
r by demanding

c ¼ rb; ð2:16Þ

using which (2.15) can be readily integrated yielding

d ¼ a2 þ κ1; c2 ¼ r2 þ P;

ϖd ¼ f þ κ2r2; Ljdj ¼ κ3r2

r2 þ P
: ð2:17Þ

We then set κ1 ¼ 0 using the Abelian one-form symmetry
and κ3 ¼ 1 using the scaling (2.6). We consider the case in
which the higher-derivative correction is small and the
general solution obeys the same boundary condition as
indicated by solution (2.7). Explicitly,

a ¼ Oð1Þ; b ¼ Oð1Þ; c ¼ OðrÞ;
ϖ ¼ Oðr−2Þ; d ¼ Oð1Þ; f ¼ Oðr−2Þ; ð2:18Þ

which implies that κ2 ¼ 0. In summary, we have

a2 ¼ d; b2 ¼ 1þ P
r2
; c2 ¼ r2 þ P;

f ¼ dϖ; L ¼ r2

dðr2 þ PÞ ; ð2:19Þ

so we have reduced the system to solving for two functions,
dðrÞ and ϖðrÞ. We emphasize that these relations are
independent of the details of the Lagrangian, depending
only on the set of fields in the model and the Uð2Þ ×R2

symmetry of the solution.
The dynamical equations determining dðrÞ and ϖðrÞ,

and therefore the whole system, come from the components
of the Bð2Þ field equation. The dilaton equation is auto-
matically satisfied for the off-shell relations (2.19). There
are two independent equations from the Bð2Þ field equation.
In terms of new variables

ρ ¼ r2; ϖ̃ ¼ r2ϖ; ð2:20Þ

one of them can be written as�ðϖ̃ − λGBϖ̃d0Þ0
ρþ P

�0
¼ 0; ð2:21Þ

where primes denote derivatives with respect to ρ. The
boundary condition of (2.18) leads to

ϖ̃ ¼ J
2ð1 − λGBd0Þ

: ð2:22Þ

We have chosen the integration constant to agree with (2.7)
in the λGB → 0 limit. Using conservation of electric charge,
the equation for d can also be easily derived. We find it can
be integrated once more and leads to

ðQþ ρÞd − ρþ λGB
2

�
2Pρd0

Pþ ρ
−

P2d
ðPþ ρÞ2

�
¼ 0: ð2:23Þ

We see that the system has been reduced to a single
ordinary differential equation for dðρÞ. Note that, up to a
trivial overall factor, there is a scaling symmetry under

ðλGB; Q; P; ρ; dÞ → ðtλGB; tQ; tP; tρ; dÞ; ð2:24Þ

for constant t. In the purely electric case P ¼ 0 the
contribution from the Gauss-Bonnet invariant vanishes.
However, in this case the solution is singular at ρ ¼ 0, so
we assume that P > 0 in the discussion below. To explicitly
solve (2.23), we can rewrite it as

λGBPðρQ=λGB−1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ P

p
eðρþQþPÞ2=2PλGBdðρÞÞ0

¼ ρQ=λGB−1=2ðρþ PÞ3=2eðρþQþPÞ2=2PλGB ; ð2:25Þ
and so the general solution for dðρÞ can be expressed as an
integral. If there is a horizon at ρ ¼ ρ0 > 0, then dðρ0Þ ¼ 0
and the solution exhibits a curvature singularity at ρ ¼ ρ0.
At the same location, the dilaton field L also diverges.
Therefore, for regular solutions, the lower end of ρ can
always reach 0. We will not consider negative ρ for the
positivity of the dilaton field (string coupling constant). As
(2.23) is a linear ordinary differential equation with a
source, its solution can be expressed as a linear combina-
tion of the solution to the homogeneous equation and the
special solution dictated by the source. Near ρ ¼ 0, the
solution is approximated by

dðρÞ ∼ ρ
1
2
− Q
λGB

�
cþ 2ρ

1
2
þ Q

λGB

2Qþ λGB

�
; ð2:26Þ

from which we can see whenQ=λGB > −1=2, the first term
in (2.26) dominates and signals a curvature singularity at
ρ ¼ 0, unless we set the integration constant c to 0. On the
other hand, when Q=λGB < −1=2, the second term in
(2.26) dominates and the solution approaches an AdS3
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throat. In summary, imposing regularity of the solution, we
have

dðρÞ ∼ ρ

Qþ λGB=2
: ð2:27Þ

This leads to the horizon value of the dilaton field given by

LjH ¼ Qþ λGB=2
P

; ð2:28Þ

whose positivity constrains

Qþ λGB=2 > 0: ð2:29Þ

The overlap between (2.29) and Q=λGB > −1=2 implies
λGB ≥ 0. In this case, the exact solution can be expressed as

dðρÞ ¼ ρ1=2−Q=λGBe−ðρþQþPÞ2=2λGBP

λGBP
ffiffiffiffiffiffiffiffiffiffiffiffi
Pþ ρ

p

×
Z

ρ

0

dy yQ=λGB−1=2ðyþ PÞ3=2eðyþQþPÞ2=2λGBP:

ð2:30Þ

In the other case, Eq. (2.29) and Q=λGB < −1=2 can
simultaneously be satisfied for negative λGB whose mag-
nitude is bounded above by 2Q. In this case, the exact
solution can be expressed as

dðρÞ ¼ −
ρ1=2−Q=λGBe−ðρþQþPÞ2=2λGBP

λGBP
ffiffiffiffiffiffiffiffiffiffiffiffi
Pþ ρ

p

×
Z

∞

ρ
dy yQ=λGB−1=2ðyþ PÞ3=2eðyþQþPÞ2=2λGBP:

ð2:31Þ

In both cases, dðρÞ → 1 as ρ → ∞, and in particular

dðρÞ ¼ 1 −
Q
ρ
þQ2

ρ2
þ � � � ; ð2:32Þ

which implies that the conserved charges measured at
infinity are not modified by the inclusion of the Gauss-
Bonnet combination.

III. AdS3=CFT2

Upon taking the r → 0 near-horizon limit, the rotating
dyonic string solution becomes a locally AdS3 × S3 back-
ground supported by an anti-self-dual three-form flux and
a constant dilaton [12]. Local coordinate transformation
brings the AdS3 to the standard Bañados-Teitelboim-
Zanelli (BTZ) black hole metric. We thus have BTZ ×
S3 as an exact solution to the D ¼ 6 supergravity extended
by the Gauss-Bonnet combination,

ds26 ¼ −
ðr2 − r2þÞðr2 − r2−Þ

l2r2
dτ2 þ r2

�
dy −

r−rþ
lr2

dτ

�
2

þ l2r2

ðr2 − r2þÞðr2 − r2−Þ
dr2 þ l2ds2S3 ;

Hð3Þ ¼ 2l2ðΩAdS3 þ ΩS3Þ; L ¼ L0; l2 ¼ P; ð3:1Þ

where the constant L0 is the horizon value of the dilaton
field determined from the full asymptotically flat string
solution. r� are the outer and inner horizon radii, andΩAdS3
and ΩS3 are the volume forms of the unit-radius AdS3 and
S3, respectively. It has been checked [19] that this form of
the horizon geometry (3.1) is preserved under the inclusion
of any curvature-squared superinvariant. The off-shell
relation (2.19) also guarantees that the size of the anti–
de Sitter (AdS) radius is set by the magnetic charge P.
Thus, for the near-horizon geometry (3.1), only L0 is
model dependent. Below, we shall compute the BTZ
black hole entropy encoding the central charges of the
asymptotic Virasoro symmetry algebra, assuming the
Brown-Henneaux boundary condition, via

SBTZ ¼ π2l
3

ðcLTL þ cRTRÞ; TL ¼ rþ − r−
2πl2

;

TR ¼ rþ þ r−
2πl2

: ð3:2Þ

On the other hand, if the model enjoys a string theory
origin, the central charges can also be computed micro-
scopically using the D ¼ 2 CFT description of string
theory in AdS3. Comparison of the macroscopic and
microscopic results then furnishes a precision test of the
AdS3=CFT2 correspondence.
We begin with the most general Rþ R2 action preserv-

ing N ¼ ð1; 0Þ supersymmetry in D ¼ 6 [19]

SRþR2 ¼ 1

16πG6

Z
d6x

�
LEH þ 1

16
λGBLGB

þ 1

16
λRiem2LRiem2 þ λR2LR2

�
; ð3:3Þ

where the supersymmetric Riemann-squared action LRiem2

takes the form [14,15]

LRiem2 ¼ ffiffiffiffiffiffi
−g

p �
Rμναβðω−ÞRμναβðω−Þ

−
1

4
ϵμνρσλτBμνRρσ

α
βðω−ÞRλτ

β
αðω−Þ þ � � �

�
; ð3:4Þ

in which Rμν
α
βðω−Þ is the curvature associated with the

torsionful spin connection

ωα
−μ β ≔ ωα

μ β −
1

2
Hμ

α
β: ð3:5Þ
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The last term in (3.3) denotes the supersymmetric Ricci
scalar squared action whose explicit form can be found in
[19,21]. When auxiliary fields are switched off, which is
the case considered here, LR2 becomes the square of the
dilaton field equation and thus does not contribute to on-
shell quantities. We notice that the dilaton field only
appears in LEH, dropping out completely from the curva-
ture-squared actions. This structure resembles the string
theory low energy effective action with one-loop correc-
tions. Indeed, if choosing

λGB ¼ g2sl2
s ; λRiem2 ¼ g2sl2

s ; ð3:6Þ

the action (3.3) matches with the low energy effective
action of type IIA string theory compactified on a K3
manifold (3.3) up to Ricci scalar squared terms that can-
not be fixed by using string scattering amplitudes. K3
compactification of the type IIA string preserves 16 super-
charges, meaning that the particular combination with
(3.6) enhances the supersymmetry from N ¼ ð1; 0Þ to
N ¼ ð1; 1Þ. In our parametrization, the coefficients in
front of the one-loop terms contain the string coupling
gs because there is also a factor of g2s hidden in the
definition of G6. The D ¼ 6 string coupling is determined
by the asymptotic value of the dilaton field L.
BTZ black hole entropy in higher-derivative extended

gravity models has been widely studied using the Iyer-
Ward [22] formula and its generalizations concerning
Chern-Simons type terms without manifest gauge invari-
ance [23,24]. In contrast to the nonsupersymmetric models,
supersymmetric completion of the Riemann tensor-squared
necessary requires a B ∧ R� ∧ R� term, which can also be
recast as H ∧ CSðω�Þ. The former is manifestly invariant
under coordinate transformations and local frame rotation,
but transforms nontrivially under the one-form gauge sym-
metry of Bð2Þ. The latter is exactly the opposite. These two
different choices differing in a nongauge invariant total
derivative term yields different contributions to the black
hole entropy. A naïve application of the Iyer-Ward [22]
formula to the B ∧ R� ∧ R� term produces a vanishing
result as the resulting entropy formula is proportional to
Rμν

α
βðω�Þ vanishing on the solution (3.1). However, using

the Tachikawa formula [23], we do get a contribution pro-
portional to r−. The apparent ambiguity can be avoided
by using an approach based on dimensional reduction.
As the geometry is a product space of AdS3 and S3, it is
more natural to use the three-dimensional effective action
describing the dynamics in the noncompact AdS direc-
tion. Such an action should come from reducing the six-
dimensional action on S3. The validity of applying this
approach is supported by computing the on-shell action of
the AdS3 × S3 solution. One obtains the correct leading
contributing from the D ¼ 3 Einstein-Hilbert action
reduced from D ¼ 6, in contrast to the vanishing result
obtained from the D ¼ 6 action. As for the contributions to

black hole entropy from the parity-even part of the action
(3.3), the computation can still be done in D ¼ 6 or D ¼ 3
using the Iyer-Wald formula. The results are identical as the
near-horizon geometry (3.1) solves the field equations
derived from only the parity-even part of the action (3.3)
and conserved charges are preserved by consistent dimen-
sional reduction. Analogous to [25], in the reduction we
retain the metric components in the three noncompact
directions, the dilaton and the scalar field parametrizing the
fluctuation of Hð3Þ in the noncompact directions, which are
sufficient to capture the BTZ × S3 solution (3.1). The
reduction of B ∧ R ∧ R terms in (3.3) then gives rise to
the Lorentz Chern-Simons action. Explicitly,

−
g2sl2

s

16πG6

Z
d6x

ffiffiffiffiffiffi
−g

p 1

64
ðϵμνρσλτBμνRρσ

α
βðω−ÞRλτ

β
αðω−Þ

þ ϵμνρσλτBμνRρσ
α
βðωþÞRλτ

β
αðωþÞÞ ð3:7Þ

reduces to

g2sl2
s

16πG3l
ICS;

ICS ¼
1

2

Z
d3x

ffiffiffiffiffiffi
−g

p
ϵλμνΓρ

λσ

�
∂μΓσ

ρν þ
2

3
Γσ
μτΓτ

νρ

�
;

1

G3

¼ 2π2l3

G6

; ð3:8Þ

to which the formula in [23] can be applied
straightforwardly.
To complete the stringy corrections to the BTZ black

hole entropy, we also need the horizon value of the dilaton
field in the dyonic string solution corrected by both the
Gauss-Bonnet and the Riemann tensor squared term. The
calculation resembles the one carried out in the previous
section. We thus omit the details, but simply give the result

Ljr¼0 ¼
Q
P
þ λGB þ λRiem2

2P
¼ Q

P
þ g2sl2

s

P
: ð3:9Þ

Summarizing contributions from various terms in the Rþ
R2 action (3.3), we obtain the entropy of BTZ black boles
embedded in the K3 compactification of the type IIA string,

SBTZ ¼ π3l3

G6

��
Q
P
þ 2

g2sl2
s

l2

�
rþ þ g2sl2

s

l2
r−

�
: ð3:10Þ

The Iyer-Wald formula derived from the 6D pure gravita-
tional Gauss-Bonnet term vanishes when evaluated on the
BTZ × S3 solution (3.1). The additional contribution pro-
portional to rþ comes from theRH2 terms that appear in the
supersymmetric completion of the Gauss-Bonnet term.
Comparing (3.10) to (3.2), we read off the two central
charges
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cL ¼ 3π2l4

G6

�
Q
P
þ g2sl2

s

l2

�
; cR ¼ 3π2l4

G6

�
Q
P
þ 3

g2sl2
s

l2

�
:

ð3:11Þ

Upon lifting to type IIA string theory, the rotating string
solution is composed of a bound state of N1 fundamental
strings and N5 NS5-branes wrapped on K3. Therefore, the
electric and magnetic energies carried by the asymptoti-
cally flat rotating string solution (2.13) should match with
those of fundamental strings and NS5-branes. Using the
fact that a NS5-brane wrapped on K3 becomes a solitonic
string in D ¼ 6 with effective tension

TNS5VolðK3Þ; TNS5 ¼
1

ð2πÞ5g2sl6
s
; VolðK3Þ ¼ ð2πlsÞ4;

ð3:12Þ

we obtain

Q ¼ 2N1G6

π2l2
s

; P ¼ 2N5G6

π2g2sl2
s
: ð3:13Þ

On the other hand, the D ¼ 6 Newton’s constant is related
to the D ¼ 10 Newton constant G10 via

G6VolðK3Þ ¼ G10; 16πG10 ¼ ð2πÞ7g2sl8
s : ð3:14Þ

Substituting (3.13), (3.14), and l2 ¼ P into (3.11), we can
express the central charges in terms of the quantized
parameters

cL ¼ 6N5ðN1 þ 1Þ; cR ¼ 6N5ðN1 þ 3Þ: ð3:15Þ

The geometric background is valid when the string is
weakly coupled and the AdS radius is much larger than
the string length, in other words, gs ≪ 1 and N5 ≫ 1,
under which the AdS radius is also much larger than the
Planck length. The AdS3 × S3 × K3 vacuum in type IIA
preserves eight chiral supercharges, which amounts into
(4,0) supersymmetry in D ¼ 2. This means that the CFT2

dual should be a (4,0) SCFT with left and right dSLð2Þ ×dSUð2Þ affine symmetry. The central charges of the dual
CFT ought to match with those in the gravity side (3.15),
but we omit here an independent calculation of the
central charges on the CFT side. Using the duality between
the type IIA string on K3 and the heterotic string on T4,
we can map the solution obtained here to a solution in
heterotic string theory with leading order stringy correc-
tions. Denoting the fields in the heterotic string by
fg̃μν; B̃μν; L̃g, the D ¼ 6 type IIA/heterotic string duality
at Oðl2

sÞ is given by [25,26]

H̃ð3Þ ¼ L �Hð3Þ; g̃μν ¼ Lgμν; L̃ ¼ L−1; ð3:16Þ

under which the low energy effective action of the type IIA
string with leading one-loop corrections (3.3) is mapped to
the effective action of the heterotic string with leading tree-
level stringy corrections

S̃¼ 1

16πG6

Z
d6x

ffiffiffiffiffiffi
−g̃

p
L̃

�
R̃þ L̃−1∇μL̃∇μL̃−

1

12
H̃μνρH̃μνρ

þ 1

8
l2
sR̃μναβðωþÞR̃μναβðωþÞþ � � �

�
ð3:17Þ

in which H̃ð3Þ obeys the nontrivial Bianchi identity

dH̃ ¼ 1

4
l2
s trðR̃þ ∧ R̃þÞ þ � � � : ð3:18Þ

In the formulas above, we have omitted the spin-1 gauge
fields, which are not relevant here. Holographic central
charges for the dualized AdS3 × S3 solution can be readily
computed by noticing a few shortcuts. First, the contribu-
tion from the Einstein-Hilbert action is unchanged because
the Einstein-frame metric remains the same under the
duality transformation. Second, the parity-odd contribution
is opposite to that of (3.3), since the on-shell relation L̃ �
H̃ ¼ H means that there is effectively anH ∧ CSðωþÞ term
with coefficient − 1

4
l2
s . Finally, the parity-even R̃2þ term

does not contribute, since R̃þ vanishes for the solution. We
thus obtain the entropy of BTZ black boles embedded in the
T4 compactification of the heterotic string

S̃BTZ ¼ π3l3

G6

��
Q
P
þ g2sl2

s

l2

�
rþ −

g2sl2
s

l2
r−

�
: ð3:19Þ

It is evident that the duality transformation interchanges
the role of the fundamental and solitonic strings. Thus in
the dualized solution, Q is related to Ñ5, the number of
heterotic NS5-branes, while P is related to Ñ1, the number
of heterotic fundamental strings. In terms of the quantized
parameters, the central charges for the AdS3 × S3 × T4

solution in the heterotic string are expressed as

c̃L ¼ 6Ñ1ðÑ5 þ 2Þ; c̃R ¼ 6Ñ1Ñ5: ð3:20Þ
The CFT dual to the heterotic string in the AdS3 × S3 × T4

background was studied in [27]. It is a (4,0) SCFTwith left

and right dSLð2Þ × dSUð2Þ × dUð1Þ4 affine symmetry. The
central charges in the left and right movers are

cL ¼ 6pðkþ 2Þ; cR ¼ 6pk; ð3:21Þ
where p is the number of fundamental strings and k is the

level of the dSLð2Þ algebra in the supersymmetric right
mover. The matching between (3.20) and (3.21) leads to the
identification

k ¼ Ñ5: ð3:22Þ
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IV. CONCLUSION AND DISCUSSION

In this paper, we proposed a method for constructing
BPS solutions in higher-derivative extended supergravity
models from known solutions in two-derivative theories.
Application of our method requires an off-shell formulation
underlying the supergravity theory. For simplicity, we
focused on 6D ungauged supergravity models involving
only the dilaton-Weyl multiplet. Adding off-shell vector
multiplets to the model is straightforward. A concrete
example was given by obtaining the first rotating dyonic
string solution in 6D Einstein-Gauss-Bonnet supergravity,
exhibiting the advantage of our method when applied to
nonstatic solutions. An obvious generalization of our
solution is to turn on monopole charge M on S3. In this
case, the solution respects the same Uð2Þ ×R2 symmetry
and remains cohomogeneity-1. The entropy of the BTZ
black hole arising from the near-horizon limit of the dyonic
string in the monopole background will be labeled by three
integers [27]. Upon dualizing the solution from type IIA
string theory to the heterotic string, we will be able to
compare the gravity and dual CFT results [27]. We would
also like to apply our construction to the more intricate
cohomogeneity-2 case, in particular to the smooth hori-
zonless microstate geometries [28,29] that have the same
asymptotic structure at infinity as a given supersym-
metric black hole of the same mass, charges, and angular

momenta. The microstate geometries also admit an
AdS3 × S3 throat. It would be interesting to investigate
if the throat region of the microstate geometry receives
the same stringy corrections as the near-horizon limit of
the dyonic strings. Finally, the off-shell supersymmetric
curvature-squared terms are also known in D ¼ 4 and
D ¼ 5. Their component forms are explicitly given in
[30–40]. Some of them do not come from dimensional
reduction of the 6D theories and require separate con-
sideration. Although many stationary BPS solutions
have already been discovered in the corresponding two-
derivative theories, the known supersymmetric black
holes in D ¼ 4 and D ¼ 5 higher-derivative extended
supergravities are restricted to the static case (see, e.g.,
[41,42]), so there remains much to be done.
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