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We present a novel framework for obtaining large hierarchies in axion decay constants as well as trans-
Planckian field excursions, with no need for tuning or a large number of fields. We consider a model with
two or more conformal field theories with a common cutoff, which are linked by a gauged diagonal
symmetry. This construction is dual to the geometry of a warped space with two or more throats glued at a
common brane. Besides allowing for calculability, the dual picture makes it possible to interpret the
hierarchy of decay constants entirely in terms of the geometry. Our setup can be applied to any framework
which requires large field excursions or multiple hierarchies of decay constants, such as natural inflation or
ultralight axions.
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I. INTRODUCTION

Axions are present in several well-motivated extensions of
the Standard Model. These include the QCD axion to solve
the strong CP-problem [1–3], axion inflation [4,5], the
relaxation mechanism to solve the hierarchy problem [6],
ultralight dark matter and dark energy [7–10], and models of
tachyonic particle production [11] (see also [12,13]).
Moreover, axionlike particles are abundant in string com-
pactifications [14–16]. Thismotivates searching for axions on
different fronts, including using a variety of techniques to
directly detect axions [17], as well as collider probes [18–22],
gravitational wave searches [23–26], and astrophysical
searches [27].
The axion has a sinusoidal potential generated by non-

perturbative gauge configurations, which are responsible for
the breaking of the continuous shift symmetry to a remnant
discrete one. The leading potential for an axion a0 respecting
the residual symmetry a0 → a0 þ 2πf0 can be written as

Vða0Þ ∼ Λ4

�
1 − cos

�
a0

f0

��
; ð1Þ

where f0 is the axion decay constant and Λ is the scale
associated with the nonperturbative physics. Since the shift
symmetry protects their potential against large corrections,
axionlike particles are especially suitable for constructions
requiring large field excursions.
Although several applications require large decay con-

stants, there are many obstacles in finding consistent UV
completions that generate f0 > MPl, where MPl is the
(reduced) Planck mass. In particular, it has proven difficult
to obtain axions with super-Planckian decay constants
directly from string theory [28–30]. Furthermore, the weak
gravity conjecture (WGC) [31] applied to 0-forms would
mean that higher-order corrections to the potential become
important for such axions.
One way to circumvent some of these issues are models

having two or more sub-Planckian axions at high energies
which combine at low energies in a way that furnishes a
super-Planckian axion. A well-known construction along
these lines is the Kim-Nilles-Peloso (KNP) potential [32]
(see also [33–35]), where this is achieved by a suitable
alignment of the axion potentials. Although this is an
attractive solution, it requires tuning of the anomaly
coefficients [34,36]. A generalization of this mechanism
is possible in a system with N axions [36–40]. However,
this in general requires a considerable number of fields in
order to achieve large field excursions. Another possibility
to obtain mild trans-Planckian field values has been pointed
out in [41,42], where two axions acting as Stückelberg
fields are mixed through a gauge field.
We point out that an exponential hierarchy of decay

constants can be naturally obtained if the axions arise as
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composite states from some (nearly) conformal sectors. Our
minimal model requires only two such sectors, charged
under a weakly gauged Abelian symmetry, which is broken
when they undergo confinement at low energies. Since the
decay constants of the resulting Stückelberg fields are set
by the respective confinement scales, in contrast to other
constructions, they can easily be separated by a large
hierarchy, with no tuning. This setup can be given a dual
description by using the AdS=CFT correspondence in
terms of slices of AdS5 space glued together at a common
brane [43] (see also [44–48]), making it calculable. Our
main result in the 5D dual description then acquires a
pleasing interpretation, where an exponential hierarchy of
scales can be obtained uniquely from geometry.
To our knowledge, the framework presented here is the

only continuum construction which allows for an expo-
nentially enhanced super-Planckian field excursion of the
zero mode axion, a feature which cannot be obtained from
the continuum limit of the discrete clockwork [49].

II. SUPER-PLANCKIAN DECAY CONSTANTS
FROM CFTS/THROATS

We consider two conformal sectors, each of them having
a global Uð1Þ and SUðNÞ symmetry. The diagonal sub-
groups of the Uð1Þ s and SUðNÞ s are gauged by two
vector fields Aμ and Gμ, respectively.1 The Lagrangian
reads2

L ¼
X2
i¼1

ðLCFT;i þ AμJ
μ
i þ Tr½GμJ

μ
i �Þ

−
1

4g2
FμνFμν −

1

2g02
Tr½GμνGμν�; ð2Þ

whereLCFT;i are the Lagrangians of the two conformal field
theories (CFTs) and Jμi and J μ

i are the Uð1Þ and SUðNÞ
currents, respectively. The traces are over the SUðNÞ color
indices. Next we assume that the CFTs have mixed Uð1Þ −
SUðNÞ2 anomalies and that they undergo confinement at
low energies. From anomalymatching (and since theSUðNÞ
symmetries are gauged), we know that the theory at energies
below the confinement scales must contain composite
scalars ai which encode these anomalies. Since also the
Uð1Þ symmetries are gauged, we have under a gauge
transformation

aiðxÞ → aiðxÞ þ ΛðxÞ;
AμðxÞ → AμðxÞ − ∂μΛðxÞ: ð3Þ

The ai have the right quantum numbers to act as
Stückelberg fields for Aμ and we expect the effective
Lagrangian below the confinement scales to be

Leff ¼
X2
i¼1

�
f2i
2
ðAμ þ ∂μaiÞ2 þ

ciai
8π2

Tr½GμνG̃
μν�

�

−
1

4g2
FμνFμν −

1

2g02
Tr½GμνGμν� þ…; ð4Þ

where fi are the decay constants of the ai which are of the
order of the respective confinement scales, the coefficients
ci encode the mixed Uð1Þ − SUðNÞ2 anomalies, and the
ellipsis stands for contributions from other composite states
which we will take into account later. One combination of
scalars, which we will call ã, is eaten, and the other
combination a0 will be identified as the physical axion.
These are given by

ã ¼ f21a1 þ f22a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p ; a0 ¼ f1f2ða1 − a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p ; ð5Þ

where the new basis is defined such that ã; a0 are canoni-
cally normalized. In terms of these fields, the Lagrangian
can be written as

Leff ¼
f21 þ f22

2

�
Aμ þ

∂μãffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p �
2

þ 1

2
ð∂μa0Þ2

þ 1

8π2

�
ã

f̃
þ a0

f0

�
Tr½GμνG̃

μν�

−
1

4g2
FμνFμν −

1

2g02
Tr½GμνGμν� þ… ð6Þ

The physical mass of the Uð1Þ gauge field is given by
MA ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p
. The effective decay constants of ã and

a0 are

f̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p
jc1 þ c2j

; f0 ¼ f1f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p
jc1f22 − c2f21j

: ð7Þ

Under gauge shifts we now have

ãðxÞ → ãðxÞ þ ΛðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

q
;

AμðxÞ → AμðxÞ − ∂μΛðxÞ; ð8Þ
while a0 is neutral. For c1 þ c2 ≠ 0, this gauge trans-
formation is anomalous due to the coupling to
Tr½GμνG̃

μν�. As in [41], we cancel this anomaly by adding
a multiplet of chiral fermions which are external to the CFT
and are charged under the gauge symmetries (see
Appendix A for more details). We may now safely integrate
out the massive gauge field Bμ ≡ Aμ þ ∂μã=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p
,

leaving only the physical axion a0 with decay constant f0.
Let us consider the case where only CFT1 has a Uð1Þ −

SUðNÞ2 anomaly, corresponding to c2 ¼ 0. Since the decay

1For a similar construction, in which the gauging of a
combination of Uð1Þ symmetries is used to protect the Peccei-
Quinn symmetry, see [50].

2We follow the usual conventions Tr½TaTb� ¼ δab=2 and
G̃μν ¼ ϵμναβGαβ=2.
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constants f1 and f2 are of the order of the confinement
scales of the CFTs, a wide range of hierarchies among them
is easily obtained. We in particular get:

f0 ≃

8<
:

f2
1

jc1jf2 ; f1 ≫ f2
f1
jc1j ; f1 ≪ f2:

ð9Þ

For example, if CFT1 confines already near the Planck scale,
f1 ∼MPl, we easily obtain a super-Planckian decay constant
for f2 ≪ MPl. The possibility to enhance the decay constant
to trans-Planckian values through a mixing induced by
gauge fields was already pointed out in Refs. [41,42].
However, only a modest enhancement Oð10MPlÞ was
considered there. In our construction, the decay constants
are generated through dimensional transmutation such that
an exponentially enhanced ratio f1=f2 can be generated
without tuning charges as in alignment models [32,34] or
using a large number of axion fields [36,37] such as in
clockwork models [38,39] or the N-relaxion [40]. This
exponential enhancement will be immediately obvious to
see in the dual picture presented below.
In order to confirm the above reasoning and to take into

account the composite states that we have neglected, we
next consider the dual perspective and assume that each
CFT can be described by a slice of AdS5 space [51,52],
which are glued together at a common UV brane [43,44]
(cf. Fig. 1). Each throat has proper length Li and, for
simplicity, the same curvature scale k. In conformal
coordinates the metric in each throat is

ds2 ¼ ðkziÞ−2ðημνdxμdxν − dz2i Þ: ð10Þ

The warp factor is given by ðkziÞ−1, with the UV brane at
zUV ¼ 1=k and the IR branes at zIRi

¼ ekLi=k. The stabili-
zation of the two throats can be ensured by the Goldberger-
Wise mechanism, analogously to the implementation in the
Randall-Sundrum scenario, see e.g., Ref. [53].

The gauged Uð1Þ and SUðNÞ symmetries of the CFTs
are dual to corresponding gauge fields which propagate in
the bulk of both throats. For later convenience, we consider
separate Uð1Þ gauge fields AM;i in the two throats and then
break the gauge symmetries to the diagonal subgroup on
the UV brane. The SUðNÞ gauge field GM, on the other
hand, is taken to propagate in both throats from the outset.
Furthermore, the Uð1Þ − SUðNÞ2 anomalies are encoded
by mixed Chern-Simons terms in the bulk. The Lagrangian
then reads

ffiffiffi
g

p
LB ¼

X2
i¼1

�
ci

16π2
ϵMNPQRAM;iTr½GNPGQR�

−
ðkziÞ−5
4g25;i

FMN;iFMN
i −

ðkziÞ−5
2g025

Tr½GMNGMN �
�
:

ð11Þ
For simplicity, we will take the gauge couplings g5;i to be
equal. The coefficients ci are the anomaly coefficients,
taken to be integers. At the UV brane, we consider

LUV ¼ v2

2
ð∂μπ1 − Aμ;1 þ Aμ;2Þ2; ð12Þ

where π1 is the Goldstone mode of a bifundamental scalar
and v is its vacuum expectation value. We introduce Rξ

gauge-fixing terms in the bulk and on the IR branes to
decouple the vector and scalar modes and take the limit
ξ → ∞ [45,54]. The boundary conditions at the IR branes
are then given by Aμ;ijIRi

¼ ∂ziðA5;i=ðkziÞÞjIRi
¼ 0 and

∂ziGμjIRi
¼ G5jIRi

¼ 0. Each Abelian sector furnishes a
scalar zero mode, a linear combination of which will be our
axion, and the non-Abelian sector has an unbroken gauge
symmetry which will be responsible for the axion potential.
Note that we do not introduce gauge-fixing terms for the
Abelian gauge bosons on the UV brane. Their vector and
scalar modes thus still mix on the UV brane and we are not
yet in unitary gauge.
Let us consider the holographic effective action at the

UV brane. This is obtained by integrating out the bulk
using profiles that satisfy the bulk equations of motion as
well as the IR boundary conditions [55]. We will work at
low energies, at lowest order in p2 (see Appendix B), or
equivalently, neglecting all but the lowest mode in the
Kaluza-Klein (KK) expansion. In addition, for the non-
Abelian gauge boson, only the zero-mode contributes to the
axion potential [56]. The p ¼ 0 profiles for the Abelian
gauge fields are given by

A5;i ¼ kziaiðxÞ; Aμ;i ¼
z2i − z2IRi

z2UV − z2IRi

Aμ;iðxÞ; ð13Þ

and simply G5ðx; ziÞ ¼ 0 and Gμðx; ziÞ ¼ GμðxÞ for the
non-Abelian gauge field. For future convenience, we have

FIG. 1. Schematic drawing of the two-throat construction. The
coordinates z1 and z2 grow from the UV brane to the IR1 and IR2

branes, respectively. The wave-functions of the fields A5;1 and
A5;2 are represented by dashed lines.
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normalized the vector wave functions to unity on the UV
brane. If there is no risk of confusion, the bulk fields and
their respective zi-independent zero modes are denoted by
the same symbol. Plugging in these profiles and integrating
over zi, we obtain the effective Lagrangian

Leff ¼
v2

2
ð∂μπ1 − Aμ;1 þ Aμ;2Þ2 −

1

2g02
Tr½GμνGμν�

þ
X2
i¼1

�
1

kg25Δz2i

�
Aμ;i þ

kΔz2i
2

∂μai

�
2

þ cikΔz2i
16π2

aiTr½GμνG̃
μν� − Bi

4g25
Fμν;iF

μν
i

�
; ð14Þ

where Δz2i ≡ z2IRi
− z2UV,

Bi ¼ Li

�
1 −

3

4kLi
þO

�
z2UV
z2IRi

��
; ð15Þ

and g0−2 ≡ g0−25 ðL1 þ L2Þ. Taking the limit v → ∞, we
integrate out the bifundamental scalar and set Aμ;1 ¼
Aμ;2 ≡ Aμ. We now read off the effective coupling constant
of Aμ to be g−2 ≡ g−25 ðB1 þ B2Þ. We then rescale ai →
2ai=ðkΔz2i Þ which upon defining f2i ≡ 2=ðkg25Δz2i Þ repro-
duces Eq. (4) as expected due to the AdS=CFT duality.
Replacing the values of the physical parameters, at lowest
order in kLi and z2UV=z

2
IRi

we get the decay constant

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kg−2

L1 þ L2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2kL1 þ e2kL2

p

jc1e2kL1 − c2e2kL2 j : ð16Þ

Taking the anomaly coefficient c2 ¼ 0, we obtain

f0 ≃

8>><
>>:

ffiffiffiffiffiffiffiffiffiffi
2kg−2

L1þL2

q
ekðL2−2L1Þ

jc1j ; L2 > L1ffiffiffiffiffiffiffiffiffiffi
2kg−2

L1þL2

q
e−kL1
jc1j ; L1 > L2:

ð17Þ

These results for the decay constant correspond to Eqs. (7)
and (9) in the dual description. They can also be straight-
forwardly derived using a KK expansion in the two-throat
system (see Appendix C for this derivation). The exponen-
tial enhancement forL2 > L1 may be intuitively understood
by noting that, for c2 ¼ 0, we have limited the anomalous
coupling to only throat1 while the axion a0 can propagate in
the full space. This mismatch leads to a difference in the
normalization between the axion kinetic term, which
contributes to the numerator of Eq. (16) and the anomalous
couplings, which contribute to the denominator, leading
directly to the factor exp½kðL2 − 2L1Þ� above (cf. also
Fig. 1). As an illustration of the enhancement, for k ¼
1018 GeV; c1 ∼ g ∼Oð1Þ; L2 ¼ 20k−1; L1 ¼ L2=4, we get
f0 ∼ 1022 GeV.

A common concern when faced with trans-Planckian
axions is the WGC. In particular, important constraints arise
from the coupling of the axion with gravitational instantons,
see e.g., [57–63]. The effective decay constant for this
coupling arises from an integral over both throats. Since
the graviton and the axion propagate in all throats, in contrast
to the case leading to Eq. (17) there is no mismatch between
the normalization of the axionkinetic term and its coupling to
gravity which could lead to a super-Planckian decay con-
stant. This implies that the axioncouples to gravitywith some
decay constant fg ≲MPl so that gravitational instantons
satisfying the action bound Sinst ≲MPl=fg will not lead to
large corrections to the axion potential [64].
In order to generate a potential as in Eq. (1), we assume

that the SUðNÞ gauge symmetry confines at a scale smaller
than f1;2. In Refs. [64,65] (also considered in [41,42]), it is
argued that a nonvanishing potential for the axion field can
be generated even though the fermions which cancel the
anomalies are massless in the UV. The resulting potential in
Refs. [64,65] relies on the combination of the ‘t Hooft
determinant term and four-fermion couplings which arise
from integrating out the gauge field. Although this par-
ticular construction seems to differ from the literature
[66–68],3 which agrees that the QCD θ parameter is
unphysical in the presence of massless quarks in the
SM, the authors remark that the crucial difference in their
mechanism is that there is only one generation of chiral
fermions [72].
Independently of their construction, it is conceivable that

a nonvanishing axion potential can be obtained if one
considers some additional model building which gives
masses to the fermions from an external source. For
example, one can promote the fermions on the UV brane
to bulk fermions and set the boundary conditions such that
each one has a zero-mode. The latter contribute to the
anomalies on the UV brane and allow for their cancellation.
The fermions are in particular charged under the Abelian
gauge symmetry, forbidding mass terms in the bulk and on
the UV brane. This symmetry is broken on the IR branes,
on the other hand, and we can thus add mass terms for the
fermions on these branes. If the zero-modes are localized
toward the UV brane, their resulting masses can be sup-
pressed compared to the IR scales, allowing for a control-
lable size of the axion potential.4

In addition to obtaining a single trans-Planckian decay
constant, using this framework one can construct models
that have multiple axion fields with hierarchically different
decay constants. For illustration, let us double the spectrum

3On the other hand, one may argue that the limitmu → 0 cannot
be unambiguously defined [69] (see, however, also [70,71]).

4The bulk fermions also contribute to the Chern-Simons terms,
see e.g., [73]. If their bulk masses are somewhat larger than the
AdS scale, as required for localized zero-modes, any perturbative
corrections to the axion potential are highly suppressed, see
e.g., [54,74].
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such that we have two Abelian fields AM;i and BM;i which
can propagate in both throats with i being the throat label.
We also add two non-Abelian gauge fields GA

M and GB
M

which have anomalous couplings to the AM;i and BM;i,
respectively. Let us limit the anomalous coupling to GA

M
only to throat i ¼ 1 and the one to GB

M only to throat i ¼ 2.
Assuming L2 > L1, we then have from Eq. (16) that the
decay constants are exponentially separated

f0A
f0B

≈ e2kðL2−L1Þ ≫ 1; ð18Þ

where, for simplicity, we have taken the anomaly coef-
ficients to be order one. The potential at low energies can
then be written as

V ¼ Λ4
A

�
1 − cos

�
a0

f0A

��
þ Λ4

B

�
1 − cos

�
b0

f0B

��
; ð19Þ

where a0 and b0 refer to the uneaten 4d scalar fields. This
setup can, for example, be applied to a two-component
axion model with an ultralight axion, which can constitute
most of the dark matter, and the QCD axion as the other
component [8]. Such models have clear phenomenological
consequences as one can explicitly compute all the cou-
plings of the axionlike fields to the Standard Model
particles. The details of this construction will be presented
in a future work.
Another possibility is to consider only the field AM;i

coupled to both GA;B
M , to generate a single field potential

with two cosines with hierarchically different decay con-
stants, as required in relaxion models [6]. Such a con-
struction was explored in [75].

III. SEVERAL CFTS/THROATS: A PLAYGROUND
FOR GENERATING HIERARCHIES

Let us generalize the setup of the previous section to
several CFTs with a common cutoff, which are then dual to
several throats with a common UV brane. Such a multi-
throat setup combined with kinetic mixing and alignment
allows us to construct scenarios with multiple hierarchical
decay constants. In particular, we can reproduce the
alignment mechanism with two cosines in the potential,
as in the original KNP model, and also obtain the alignment
with N axions, as in clockwork models. Moreover, the
multithroat construction, with warped (or also flat) geom-
etry, provides many possibilities for model building.
We add one Uð1Þ gauge field AM;i with gauge coupling

g5;i for each throat, where i ¼ 1;…; N and N is the number
of throats. In order to break the Uð1Þ gauge symmetries on
the IR branes, we then impose the boundary conditions
Aμ;ijIRi

¼ ∂ziðA5;i=ðkziÞÞjIRi
¼ 0.

As in Sec. II, the UV brane contains bifundamental
scalars πi linking Aμ;i and Aμ;iþ1. For simplicity, we will

work directly in the limit where vi → ∞, such that only the
diagonal gauge symmetry survives, which amounts to
identifying the vector fields at the UV brane, i.e.,
Aμ;ijUV ≡ Aμ. Furthermore, of the N scalars coming from
the scalar zero modes, one linear combination will be eaten
by the diagonal vector field, leaving only N − 1 propagat-
ing scalars in unitary gauge [43,44].
Next, we can add anomalous couplings such that each

AM;i couples with different non-Abelian gauge groups,
each one characterized by a capital letter superscript
I ¼ 1;…; nG. Using the axion profiles A5;i ¼ kziaiðxÞ,
we then get Leff ⊃

PnG
I¼1

kΔz2i
2

CIi, where

CIi ≡ cIi
8π2

aiTr½GI
μνG̃

I;μν�; ð20Þ

Δz2i is given in Eq. (15), and cIi are the anomaly coef-
ficients. These couplings generically lead to an anomaly of
the diagonal gauge symmetry at the UV brane, which may
be cancelled by adding suitable fermion multiplets [41] or
by imposing that the relation

P
i;I c

I
i ¼ 0 is fulfilled (for

details, see Appendix A).
Repeating the same steps as in Sec. II, the effective

Lagrangian becomes

Leff ¼
XN
i¼1

�
f2i
2
ðAμ þ ∂μaiÞ2 þ

XnG
I¼1

CIi

�

−
1

4g2
FμνFμν −

XnG
I¼1

1

2g02I
Tr½GI

μνGI;μν�; ð21Þ

where f2i ≡ 2=ðkg25Δz2i Þ as before. The coupling to Aμ

induces a mixing among the axion fields. At this point, one
should perform a SOðNÞ rotation to bring the fields from
the ai basis to a new basis where one linear combination
ã ∝

P
N
i¼1 f

2
i ai is eaten and N − 1 modes remain.

Using this setup for three throats, N ¼ 3, and a single
non-Abelian field, nG ¼ 1, we can obtain an enhanced
effective decay constant with a one-cosine potential by
imposing a discrete Z3 symmetry under exchange of the
throats. Moreover, for the case N ¼ 3 and nG ¼ 2, we
reproduce a KNP-like alignment. Another possibility is to
consider N throats with nG ¼ N which leads to an align-
ment system with N axions. We illustrate these examples in
Appendix D.

IV. CONCLUSIONS

In order to achieve super-Planckian and more generally
hierarchical decay constants for a system with multiple
axions, we have considered a 4d theory with multiple CFTs
with a common cutoff. The CFTs have global Uð1Þ
symmetries, whose diagonal subgroup is weakly gauged.
The symmetries are broken when the CFTs confine, leading
to corresponding Goldstone bosons which mix through
their coupling to the gauge boson. Each CFT has a distinct
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strong-coupling scale. An exponential hierarchy among the
decay constants is then achieved naturally through dimen-
sional transmutation.
The dual picture corresponds to a warped multithroat

geometry. An exponential enhancement of the decay
constants is given by the warped factor without requiring
a large number of axions or large charges. Specifically, the
enhancement is controlled by the difference of the throat
lengths and has a simple geometric interpretation as can be
seen in Fig. 1 and Eq. (17).
In analogy with the discrete clockwork axion [38,39]

whose 5D continuous versions can be obtained from a linear
dilaton metric [76,77] or by carefully choosing appropriate
bulk and boundary mass terms [78], a discrete version of our
extra-dimensional setup should also be realizable.
Another possible direction for future investigation is

whether a string embedding for our construction is attain-
able. In addition, the multithroat scenario is an interesting
playground for several applications. Using this setup, one
can naturally obtain models where the dark matter is
composed of multiple axions, constructions with interact-
ing dark matter and dark energy, and realizations that
require multiple hierarchies of decay constants, to mention
a few examples. We hope that this framework can provide
new model building avenues.
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APPENDIX A: GAUGE ANOMALY
CANCELLATION

Let us consider the action for N throats, with bulk
couplings in each throat of the form

LB ⊃
cIi

16π2
ϵMNPQRAM;iTr½GI

NPG
I
QR�; ðA1Þ

where the index i runs over the throats and the index I over
the different SUðNÞ groups. On the UV brane, we can also

add couplings of the bifundamental fields πi, which link
Aμ;i to Aμ;iþ1, to the non-Abelian groups:

LUV ⊃
cIπ;i
8π2

πiTr½GI
μνG̃

I;μν�: ðA2Þ

With such terms present, a gauge transformation AM;i →
AM;i − ∂MΛiðx; ziÞ generates brane-localized anomalies

δLbrane ¼
X
I

cIπ;i−1 − cIπ;i � cIi
8π2

ΛiðxÞTr½GI
μνG̃

I;μν�; ðA3Þ

where cIπ;0 ¼ cIπ;N ¼ 0, the cIπ;i are present only at the UV
brane, the plus (minus) sign is obtained at the UV (IRi)
brane and ΛiðxÞ equals Λiðx; ziÞ at the respective brane.
Admitting the boundary conditions Aμ;ijIRi

¼ 0, for all i,
the IR anomalies are global and hence harmless. The
anomalies at the UV brane, on the other hand, are canceled
if for each i and I the condition cIπ;i−1 − cIπ;i þ cIi ¼ 0 is
satisfied.
In addition, we can get contributions to cancel the

anomalies by adding suitable fermions on the UV brane.
For simplicity, let us focus on the case that the strong
groups SUðNÞI propagate in at most two throats. For each
strong group, we may add two pairs of chiral fermions, ψα

L
and ψα

R, where α ¼ 1, 2 is a flavor index, which are charged
under the Uð1Þi and which transform in the fundamentals
and antifundamentals of the SUðNÞI, respectively (see also
[41]). The fermionic Lagrangian on the UV brane is then

Lψ ¼
X
α

ψ̄α
Liσ

μDμψ
α
L þ ψ̄α

Riσ̄
μDμψ

α
R; ðA4Þ

where Dμ ¼ ∂μ þ i
P

i q
α;i
L;RAi;μ þ iGI

μ and qα;iL;R are the
Uð1Þi charges of the fermions. Under a Uð1Þi gauge
transformation

ψα
L;R → ψα

L;Re
iqα;iL;RΛi ; ðA5Þ

the fermionic terms transform as

δLψ ¼
X
i

Λi

�
∂μJ

μ
ψ ;i þ

Amix
i

8π2
Tr½GI

μνG̃
I;μν�

�
; ðA6Þ

where Amix
i ¼ 1

2

P
αðqα;iL − qα;iR Þ and J μ

ψ ;i is the Uð1Þi
current of the fermions.
Let us focus on N ¼ 2 throats. The mixed Uð1Þi −

SUðNÞ2 anomalies from the fermions in Eq. (A6) cancel
with those in Eq. (A3) and cubic Uð1Þ3i anomalies cancel
among the fermions by choosing charges which satisfy
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∓ cIπ;1 þAmix
i ¼ −cIi;X

α

½ðqα;iL Þ3 − ðqα;iR Þ3� ¼ 0; ðA7Þ

where the minus (plus) sign refers to i ¼ 1 (i ¼ 2). Adding
the equations for the i ¼ 1 and i ¼ 2 mixed anomalies, one
obtains the condition for the cancellation of the mixed
anomaly of the diagonal gauge symmetry. Together with
the corresponding condition for the cubic anomaly, these
are the remaining constraints in the v → ∞ limit,X
α

qαR − qαL ¼ cI1 þ cI2;
X
α

ðqαRÞ3 − ðqαLÞ3 ¼ 0; ðA8Þ

where qαL;R ≡P
i q

α;i
L;R. These equations have solutions

for integer charges when cI1 þ cI2 is divisible by six. One
possible choice, for the case cI1 þ cI2 ¼ 6, is given by
q1L ¼ 12; q2L ¼ 1; q1R ¼ 10; q2R ¼ 9. For other possibilities,
see [41]. In particular, the inclusion of bulk Chern-Simons
terms for the Abelian gauge fields can alleviate the
constraints on the charges and the cIi that are needed in
order to satisfy Eq. (A8), without modifying the axion
potential. This also allows to satisfy the anomaly cancella-
tion conditions with only one generation of fermions, ψL
and ψR (cf. the discussion about the axion potential
in Sec. II).

APPENDIX B: HOLOGRAPHIC ACTION AND
HIGHER-DIMENSIONAL OPERATORS

Here we give the details of the procedure to obtain the
effective Lagrangian in Eq. (14). Starting from the action in
Eq. (11), the equations of motion for Aμ;i and A5;i in Rξ

gauge read:5�
ημν

�
□ −

∂ziðkzi∂ziÞ
kzi

�
− ∂μ∂ν

�
1 −

1

ξi

��
Aν;i ¼ 0;�

□þ ξi∂ziððkziÞ−1∂ziÞ
�
A5;i

kzi
¼ 0: ðB1Þ

We look for solutions of these equations of motion
that satisfy the IR boundary conditions Aμ;ijIRi

¼
∂ziðkziA5;iÞjIRi

¼ 0. For simplicity, let us take the unitary
gauge ξi → ∞ in the bulk. This decouples all but the zero-
momentum mode of A5;i, such that the solution is
A5;i ¼ kziaiðxÞ, which is the same as in Eq. (13). It is
also convenient to separate the vector into transverse and
longitudinal polarizations Aμ;i ¼ AT

μ;i þ AL
μ;i, such that

∂μAT
μ;i ¼ 0. Going to momentum space, we make the

ansatz AT;L
μ;i ðp; zÞ ¼ fT;Lðp; zÞAT;L

μ;i ðpÞ. The holographic
profiles fT;Lðp; zÞ are given by [55]

fTðp; zÞ ¼ z
zUV

J1ðpzIRi
ÞY1ðpzÞ − J1ðpzÞY1ðpzIRi

Þ
J1ðpzIRi

ÞY1ðpzUVÞ − J1ðpzUVÞY1ðpzIRi
Þ ;

fLðp; zÞ ¼ fTð0; zÞ ¼ z2i − z2IRi

z2UV − z2IRi

; ðB2Þ

and are normalized to unity on the UV brane. We note that
at zero momentum, we recover the expression in Eq. (13).
Inserting these profiles in the bulk and integrating, only the
boundary terms at the UV brane survive, leading to the
effective Lagrangian:

Leff ⊃
X2
i¼1

�
1

kg25Δz2i

�
Aμ;i þ

kΔz2i
2

∂μai

�
2

−
Li

4g25

�
1 −

3

4kLi
þO

�
z2UV
z2IRi

��
Fμν;iF

μν
i

þ 7z2IRi

192kg25

�
1þO

�
z2UV
z2IRi

��
Fμν;i□Fμν

i þ � � �
�
: ðB3Þ

The coefficient of the kinetic term is identified as Bi in
Eq. (14). We have also written the leading dimension-six
correction. It is suppressed by z−2IRi

¼ k2 exp ð−2kLiÞ,
which is of the order of the KK mass scale squared, as
expected on general power counting grounds [79].
Similar considerations apply for the non-Abelian sector,

except for the different boundary conditions ∂ziGμ;ijIRi
¼

G5;ijIRi
¼ 0. For details about the higher-order interactions

correcting the topological term, we refer the reader to
Ref. [56].

APPENDIX C: ALTERNATIVE DERIVATION
OF THE EFFECTIVE DECAY CONSTANT

Here we present an alternative derivation of the decay
constant using a KK expansion in the two-throat system.
Wework in unitary gauge6 and in the limit v → ∞ such that
there is one Abelian vector field AM which propagates in all
throats. The Uð1Þ gauge symmetry is broken on the IR
branes by imposing the boundary conditions

Aμ;ijIRi
¼ 0; ∂zi

�
A5;i

kzi

�				
IRi

¼ 0: ðC1Þ

On the UV brane, the gauge fields need to satisfy
the following boundary conditions in the limit v → ∞
[43,44]:

5For holographic calculations, it is customary to work in the
A5 ¼ 0 gauge. We prefer the Rξ gauge to avoid subtleties in the
treatment of the topological terms.

6Before fixing the gauge, the action is explicitly gauge
invariant, as long as the anomaly cancellation conditions dis-
cussed above are satisfied.
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ðAμ;i − Aμ;iþ1ÞUV ¼ 0;
XN
i¼1

1

kzig25
∂ziAμ;i

				
UV

¼ 0;

XN
i¼1

1

kzig25
A5;i

				
UV

¼ 0; ∂zi

�
A5;i

kzi

�				
UV

¼ 0: ðC2Þ

This arises from requiring that, on the UV brane, the
boundary terms vanish and the functions A5;i=ðkziÞ and
∂ziðA5;i=ðkziÞÞ are continuous.
The boundary conditions allow for a massless mode for

each throat with wave function

A5;i ¼ N ikziaiðxÞ; ðC3Þ

where the normalization constant N i is obtained from
demanding that the kinetic term of ai is canonically
normalized. Then Eq. (C2) implies that

XN
i¼1

N iai ¼ 0: ðC4Þ

We may use this equation to rewrite, for instance, the field
aN in terms of the other N − 1 4d fields. This is an
important point in our construction as it leads to mixing
in the axion moduli space.
Let us focus on the case with N ¼ 2 throats. Integrating

the 5D action over zi, we get

S4D ⊃
Z

d4x

�
ð∂μaiÞ2 þ

ciai
8π2fi

Tr½GμνG̃
μν�

�
; ðC5Þ

for i ¼ 1, 2 and where [45,80]

f−1i ≡
Z

zIRi

zUV

dziN ikzi ¼ g5

ffiffiffiffiffiffiffiffiffiffi
kΔz2i
2

r
; ðC6Þ

with Δz2i ¼ z2IRi
− z2UV. Assuming kL ≫ 1, we then get

fi ∼ ke−kLi . Now a1 and a2 are related by Eq. (C4).
Therefore, we are left with just one degree of freedom
with action

S4D ⊃
Z

d4x

�
ð∂μa0Þ2 þ

a0

8π2feff
Tr½GμνG̃

μν�
�
; ðC7Þ

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þN 2

1=N
2
2

p
a1 and the effective decay con-

stant feff is given by Eq. (16), reproducing our main result.

APPENDIX D: EXAMPLES
WITH N > 2 THROATS

In this appendix, we discuss three examples for a system
with N > 2 throats. Let us first explore the choice N ¼ 3

and nG ¼ 2 (with the non-Abelian gauge fields GA;B
M )

which can be used to obtain a KNP-like alignment. This

leads to a system of two axions which will allow us to
obtain a potential that has an almost flat direction. In order
to read off the effective decay constant, we diagonalize the
axion system by performing an SOð3Þ rotation and then
canonically normalize the fields. In the new basis, we have

a01 ¼
f2ðf21a1 − ðf21 þ f23Þa2 þ f23a3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f21 þ f23
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f21 þ f22 þ f23
p ;

a02 ¼
f1f3ða1 − a3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f21 þ f23
p ; ã¼ f21a1 þ f22a2 þ f23a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f21 þ f22 þ f23
p : ðD1Þ

Then the Lagrangian in Eq. (21) becomes

L0
eff ¼

M2
A

2g2

�
Aμ þ g

∂μã

MA

�
2

þ
X2
i¼1

1

2
ð∂μa0iÞ2 þ Lkin

þ
X
I¼A;B

1

8π2

�
ã

f̃I
þ
X2
i¼1

a0i
f0I;i

�
Tr½GI

μνG̃
I;μν�; ðD2Þ

where Lkin are the gauge boson kinetic terms, MA ¼
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22 þ f23

p
is the gauge boson mass and f̃I; f0I;i are

the axion decay constants which depend on the coefficients
cIi and on the decay constants fi. We see that, in unitary
gauge, ã is eaten by Aμ and disappears from the spectrum,
while a01;2 are physical and uncharged under the diagonal
Uð1Þ. The potential is then simply

V ¼
X
I¼A;B

Λ4
I

�
1 − cos

�
a01
f0I;1

þ a02
f0I;2

��
: ðD3Þ

A super-Planckian decay constant can then be obtained by
appropriately choosing the anomaly coefficients, similarly
to the KNP alignment mechanism [32]. However, due to a
mixing in the axion moduli space, there is a continuous
parameter which can be used to alleviate the tuning on the
anomaly coefficients [41]. In this context, a trans-Planckian
decay constant is disfavored in the warped case, since the
tuning of the anomaly coefficients or mixing angle has to
compensate the exponential down-warping of the decay
constants. For a flat metric, the tuning is just linear and one
may still obtain a super-Planckian decay constant with
reasonable parameters. In another direction, we can
increase the number of throats and obtain the alignment
for a system with many axions as in Ref. [36]. This
corresponds to the case with N throats and nG ¼ N non-
Abelian gauge groups, which leads to N2 anomalous
couplings. The potential (before the SOðNÞ rotation) is then

V ¼
XN
I¼1

Λ4
I

�
1 − cos

�XN
i¼1

cIiai
fi

��
: ðD4Þ

In this case, it is possible to get a decay constant which is
enhanced by a factor that goes as ∼

ffiffiffiffiffiffi
N!

p
cN−1, where c
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denotes a typical value of the anomaly coefficients, similar
to the clockwork construction.
Another possibility is to consider N ¼ 3 throats and a

single non-Abelian gauge group, nG ¼ 1. In general, for a
potential with just one cosine and multiple axions, feff is
always sub-Planckian as 1=f2eff ≡

P
i 1=f

02
I;i. However, the

nontrivial mixing from Eq. (D1) can lead to an enhance-
ment as we show in the following. At low energies, this
example leads to just one of the terms of Eq. (D3). The
explicit form of f0A;i in this case is given by

f0A;1 ¼
f1f3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f23

p
jc3f21 − c1f23j

;

f0A;2 ¼
f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f23ðf21 þ f22 þ f23Þ

p
jc2ðf21 þ f23Þ − ðc1 þ c3Þf22j

: ðD5Þ

Compared to the convention in Eq. (20), we have
dropped the index A from the coefficients ci as here there
is only a single non-Abelian gauge field. We now impose a
discrete Z3 symmetry under exchange of the throats on the

Lagrangian, which implies ci ≡ c for all i, and we take c to
be Oð1Þ for simplicity. This exchange symmetry can be
broken to a Z2 by a slightly differing length of the third
throat (see e.g., [53]), such that we have L1;2 ≡ L whence
f1;2 ≡ f, while L3 ¼ Lþ ε with ε ≪ k−1. The parameter ε
quantifies the Z3 breaking. Under this assumption, we can
have both f0A;i with super-Planckian values. We then
compute the mass matrix and rotate to the mass basis
ða001; a002Þ, with a001 being the state associated with the zero
eigenvalue, which decouples. The potential for a002 is then
given by Eq. (1), with 1=f2eff ≡ 1=f02A;1 þ 1=f02A;2:

feff ≈
ff3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f6 − 3f4f23 þ f63

q
ðf2 − f23Þ2

: ðD6Þ

As expected from the combination of fA;1 and fA;2, this can
achieve trans-Planckian values as a small denominator is
obtained with f3 ∼ fð1 − kεÞ. The effective decay constant
is then feff ∼ f=ðkεÞ.
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