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We considered a QED scattering (AB → AB), in which B is initially entangled with a third particle (C)
that does not participate directly in the scattering. The effect of the scattering over C’s final state was
evaluated and we noted coherence (off-diagonal) terms were created, which led to non-null values for hσxi
and hσyi that are, in principle, measurable in a Stern-Gerlach apparatus. We chose a particular QED
scattering (eþe− → μþμ−) and found that hσxi and hσyi are proportional to the total cross section (σtotal) of
the AB scattering, besides being maximal if BC’s initial state is taken as a Bell basis. Furthermore, we
calculated the initial and final mutual information IAC and IBC, and noticed an increase (decrease) in IAC
(IBC), which indicates that, after AB interact, the total amount of correlations (quantumþ classical) is
distributed among the 3 subsystems.
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I. INTRODUCTION

Arguably themost intriguing feature of quantummechan-
ics, entanglement has been shown to be a fundamental
phenomenon in nature. About thirty years after the posing of
the Einstein-Podolsky-Rosen paradox [1], which rebuked
entanglement based on causality and locality arguments,
Bell provided a test [2], which was later implemented
experimentally by Aspect et al., using polarization-
entangled photons emitted by a calcium source [3]. Loop
holes in the experimental tests have been successively
removed; recently, violations on Bell’s inequality were
measured for spins separated by 1.3 km [4], and for light
from distant astronomic sources [5].
Regarding the technological applicability, entanglement

plays a central role in the long-sought quantum computers
[6], quantummetrology, quantumoptics andoptomechanical
systems [7,8]. In high energy physics, entanglement has

recently received considerable attention, mainly concerning
the production of entropy in scattering processes—for a
description of entanglement generation in nonrelativistic
quantum mechanics, see Ref. [9]. In quantum field theory
(QFT), it has been studied, for example: the variation in
entanglement entropy in a relativistic scattering involving
scalar fields [10]—one-loop calculations were done in [11],
and the entropy generation of fermions systems in QED
processes [12,13], in which the authors studied the mutual
information between spin degrees of freedom and properties
of the entropy variation under Lorentz transformations. An
interesting application related to metabolic PET-imaging
(positron-emission-tomography) is found in Ref. [14], in
which a method to detect entanglement of photons from
positroniumdecays is proposed. In other recent works, it was
shown that entanglement can be used tomagnify the photon-
photon scattering cross section [15] and to enhance possible
Lorentz symmetry violation effects in Ybþ atoms [16,17].
These are applications of what is known as relativistic
quantum information.
In relativistic scenarios, such as QFT processes, it is

fundamental to define Lorentz-invariant entanglement mea-
sures. It has been shown that, for bipartite fermion systems,
the linear entropy of each particle, considering both its spin
and momentum, is Lorentz-invariant [12,18]. Entanglement
in the spin-spin partition, although its entropy is not Lorentz-
invariant, has been shown to violate the Clauser-Horne-
Shimony (CHSH) inequality in the relativistic regime [19].
As for themomentum-momentumpartition, the dynamics of
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entanglement in lowest order QED has been studied, for
instance, in [20]. Another fundamental aspect is the con-
nection between maximal entanglement and gauge sym-
metries in QFT, studied for example in [21].
Entanglement also plays a role in inflationary models

described by QFT in curved spacetimes. It has been shown
that an expanding spacetime could create fermion pairs that
are entangled in opposite momentum modes [22]—the
effect of QED in this process has been recently assessed
in [23]. In the free case, it was possible to read from the
fermion’s von Neumann entropy the parameters of the
expansion of the universe. It is important to point out that
in these models there are fundamental differences between
the fermionic and bosonic cases [24,25]. More realistic
features, such as decoherence, have also been studied in
QFT in expanding spacetimes [26].
In this work, we study a QED scattering (AB → AB) in

which B is initially entangled with a witness particle (C).
The purpose is to extract information about the scattering by
observing particle C. The paper is organized as follows. In
Sec. II, definitions are made and the final reduced density
matrix of particle C is calculated; we find that coherence
terms are generated and evaluate their effect on particle C’s
spin measures in different directions. In Sec. III we analyze
the change in mutual information between particles A − C,
and B − C due to the scattering; the results are consistent
with a distribution of correlations (quantumþ classical)
among the subsystemsA,B andC. The conclusions and final
remarks are done in Sec. IV.

II. SCATTERING WITH A WITNESS PARTICLE

We consider a QED scattering involving 2 particles, A
and B, in which B is initially entangled in spin with C, i.e.,
the witness particle (see Fig. 1). The purpose is to evaluate
the effect of the scattering over particle C, which does not
take part directly in the scattering. We hope to extract
information about the scattering by performing measure-
ments on the subsystem C after the process occurred.
In order to perform the calculations, a few definitions

must be made. First, the internal product of fermion states is
defined as

hk; ajp; bi ¼ 2Ekð2πÞ3δð3Þðk − pÞδa;b; ð1Þ

and, if a 2-fermion system is initially in state

jinitiali ¼ jp1; a;p2; bi; ð2Þ

after it undergoes a scattering process, it becomes

jfinali ¼
X
r;s

Z
p3;p4

jp3; r;p4; si

× hp3; r;p4; sjSjp1; a;p2; bi; ð3Þ

where the integral
R
p denotes

R ðd3pÞ=ð2Epð2πÞ3Þ. The S
matrix is written as S ¼ I þ iT , and the operator iT is
related to the Feynman amplitude as

hp3; r;p4; sjiT jp1; a;p2; bi
¼ ið2πÞ4δð4Þðp1 þ p2 − p3 − p4ÞMi→f: ð4Þ

We will consider an initial state as follows:

jii¼jp1;ai⊗ðcosηjp2;↑;q;↑iþeiβ sinηjp2;↓;q;↓iÞ; ð5Þ

whose final state, according to Eqs. (3) and (4), is given by

jfi¼ jiiþ i
X
r;s

Z
p3;p4≠p1;p2

δð4Þðp1þp2−p3−p4Þ

× ½cosηMða;↑;r;sÞjp3;ri⊗ jp4;si⊗ jq;↑i
þ eiβ sinηMða;↓;r;sÞjp3;ri⊗ jp4;si⊗ jq;↓i�; ð6Þ

where Mða;↑; r; sÞ in fact denotes Mðp1; a;p2;↑ ↦
p3; r;p4; sÞ, but as all Ms have the same dependence
on initial and final momenta, these will be omitted for
shortness, and we will leave only the spin dependence.
The final state of system ABC, but for a normalization

constant (N ) yet to be calculated, is then

ρf ¼ jfihfj: ð7Þ

As we are interested in C’s reduced density matrix, it is
necessary to trace subsystems A and B out. The partial trace
operation over a subsystem, say b, is illustrated below

Trb½ρ�¼
X
σ

Z
d3k
ð2πÞ3

1

2Ek
ð1r⊗ hk;σjbÞρð1r⊗ jk;σibÞ; ð8Þ

where 1r denotes the identity operation in the remaining
subspaces. In performing partial traces, one finds Dirac
deltas as ð2πÞδðTÞð0Þ and ð2πÞ3δð3Þð0Þ, which enforce
energy-momentum conservation. These have to be suitably
regulated as described in Refs. [27,28], using

QED
scattering

FIG. 1. QED scattering with a witness particle. The particles B
and C are initially entangled in spin. After the scattering, the three
particles become entangled.
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2πδðTÞðEi − EfÞ ¼
Z

T=2

−T=2
exp½iðEi − EfÞt�dt

ð2πÞ3δð3Þðk − pÞ ¼ Vδk;p; ð9Þ

which imply ð2πÞδðTÞð0Þ ¼ T and ð2πÞ3δð3Þð0Þ ¼ V.
Accordingly, the reduced density matrix of system C is

ðρCÞf ¼
TrA½TrB½ρf��

N
; ð10Þ

where the numerator is

TrA½TrB½ρf�� ¼ ½ð2Ep12Ep22EqV3þ2EqTV2ΛÞ
× ðcos2ηj↑ih↑jþ sin2ηj↓ih↓jÞ
þ2EqTV2Λcosηsinη

× ðeiβj↓ih↑jþ e−iβj↑ih↓jÞ�⊗ jqihqj
2EqV

; ð11Þ

and the factor Λ (in fact η-dependent) reads

ΛðηÞ ¼
Z
p4

T
2Ep1þp2−p4

X
r;s

ðcos2ηjMða;↑; r; sÞj2

þ sin2ηjMða;↓; r; sÞj2Þjp3¼p1þp2−p4 ; ð12Þ
where we kept a factor of T inside the integral, so as
to perform the volume integrals in momentum space
correctly. In the CM reference frame, one has

R
p T≡

2πδðEi − EfÞ × ð2EpÞ2dΩ=ðð2πÞ32EpÞ, where Ep is the
energy of any incoming/emerging particle.
The normalization is given by

N ¼ TrA½TrB½TrC½ðρABCÞf���
N ¼ 2Ep12Ep22EqV3 þ 2EqTV2Λ; ð13Þ

so as to ensure Tr½ðρCÞf� ¼ 1. Note that we factored the
spin and momentum subspaces and wrote the momentum
part as a projection operator, i.e., ½jqihqj=ð2EqVÞ�2 ¼
jqihqj=ð2EqVÞ. Below we investigate if it is possible to
read information about the scattering by measuring C.

A. Inferring scattering data
from the witness particle

In order to extract information about the scattering from
particle C, we begin by writing ðρCÞf in matrix form

ðρCÞf ¼

0
B@ cos2η e−iβΛT sin η cos η

ΛTþ2Ep1
2Ep2

V

eiβΛT sin η cos η
ΛTþ2Ep1

2Ep2
V sin2η

1
CA; ð14Þ

from which we omitted the momentum subspace,
jqihqj=ð2EqVÞ. If compared to its initial density matrix,
that is

ðρCÞi ¼
�
cos2η 0

0 sin2η

�
; ð15Þ

it is evident that coherence (off-diagonal) terms were
created in subsystem C, i.e., C became purer. In addition,
if one measures the initial and final expectation values of
σz, one obtains

hσzii;f ¼ cos2η − sin2η: ð16Þ

Regarding the initial expectation values of either σx or
σy, these are zero. However, if one performs these measures
over the final state, one has

hσxif ¼ cos β sin ð2ηÞ ΛT
ΛT þ 2Ep12Ep2V

; ð17Þ

which, to first order in Λ, is

hσxif ¼ cos β sin ð2ηÞ ΛT
E2
CMV

; ð18Þ

in the reference frame of the center of mass (CM), for
which Ep1 ¼ Ep2 ¼ ECM=2. From Eq. (18) we infer that
hσxif is maximal if B and C are initially entangled as a Bell
basis (η ¼ π=4 and β ¼ 0; π). In other words, the choice of
a Bell basis for B and C optimizes the effect of the AB
scattering over subsystem C.
Further, we could investigate the physical meaning of Λ.

This is done by choosing a particular QED scattering and
evaluating (12) at tree level. For this we consider the
process eþe− → μþμ− (see Fig. 2), in the CM reference
frame. The momenta for the electron, positron, muon, and
antimuon, are, respectively

p1 ¼ ðE; 0; 0; pÞ;
p2 ¼ ðE; 0; 0;−pÞ;
p3 ¼ ðE; P sin θ cosϕ; P sin θ sinϕ; P cos θÞ;
p4 ¼ ðE;−P sin θ cosϕ;−P sin θ sinϕ;−P cos θÞ; ð19Þ

while the amplitude M for the process is

M ¼ −
e2

ðp1 − p3Þ2
½ūð3Þγμvð4Þ�½v̄ð2Þγμuð1Þ�; ð20Þ

where the numbers 1–4 stand for the properties (spin and
momentum) of each particle.
We found that, taking an unpolarized A beam, which is

equivalent to averaging over the spin a, the integrand in
Eq. (12) is
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1

2

X
a;r;s

½cos2ηjMða;↑; r; sÞj2 þ sin2ηjMða;↓; r; sÞj2�

¼ 1

4

X
a;b;r;s

jMða; b; r; sÞj2 ∝ dσ
dΩ

: ð21Þ

This differential cross section is integrable, since is of the
form Aþ B cos2 θ. Consequently, the quantity Λ is related
to the total cross section (σtotal) of the process eþe− →
μþμ− as

Λ ¼ 4jp1jðECMÞ2
jp3j

σtotal; ð22Þ

due to the angular integral in Eq. (12). Accordingly, to first
order, we have

hσxif ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

E2

1 − M2

E2

vuut σtotalfðη; βÞ; ð23Þ

where, m (M) is the electron (muon) mass, E is the energy
of the incoming or emerging particles (E ¼ ECM=2),
and fðη; βÞ ¼ cos β sin ð2ηÞT=V, which is maximal for a
Bell basis.
Equation (23) implies that the spin of C in the x-direction

(or y-direction) is proportional to the total cross section of
the scattering involving A and B. Furthermore, Eq. (23) is
valid in any energy regime for the process eþe− → μþμ−.

B. Comment on other QED scatterings

We could investigate the case of A and B participating in
a Møller scattering (e−e− → e−e−), for instance. Using the
antisymmetrized amplitude

MMøller ¼ −
e2

ðp1 − p3Þ2
½ūð3Þγμuð1Þ�½ūð4Þγμuð2Þ�

þ e2

ðp1 − p4Þ2
½ūð4Þγμuð1Þ�½ūð3Þγμuð2Þ�; ð24Þ

the a-spin-averaged integrand in Eq. (12) satisfies

1

2

X
a;r;s

½cos2ηjMða;↑; r; sÞj2 þ sin2ηjMða;↓; r; sÞj2�Møller

¼ 1

4

X
a;b;r;s

jMMøllerða; b; r; sÞj2 ∝
dσMøller

dΩ
: ð25Þ

Because the differential cross section for the Møller
scattering has a factor of 1= sin4 θ, from Eqs. (12) and (22),
it follows that ðΛ; σMøllerÞ → ∞, after performing the
angular integral in Eq. (12). That said, the spin measure
of particle C would in this limit become

hσxif ¼ cos β sin ð2ηÞ; ð26Þ

which does not depend on the cross section.
This conclusion also holds for the Bhabha scattering

(e−eþ → e−eþ) or a process such as (e−μ− → e−μ−). In
short, the procedure outlined here cannot probe processes
with divergent total cross sections.
Next we investigate how the scattering modifies the

distribution of mutual information among systems A, B and
C. From now on, for simplicity, we will adopt the ultra-
relativistic limit in the CM reference frame, for which,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − m2

E2Þ=ð1 − M2

E2 Þ
q

→ 1 and Λ → e4=ð3πÞ, and an unpo-

larized A beam. In our analysis the subsystems are not
identical—entanglement quantifiers in systems of identical
particles have been studied for instance in [29–31].

III. REDISTRIBUTION OF
MUTUAL INFORMATION

The mutual information is a quantifier of the total
(quantumþ classical) correlations between two systems.
Always non-negative, it is defined as

IXY ¼ SX þ SY − SXY; ð27Þ

where SX, SY , SXY stand for the von Neumann entropies of
systems X, Y, and XY, respectively. It can be read as the
amount of information that is contained in the system XY
that is not contained in the subsystems X and Y, when taken
separately; or what one can learn about X by measuring Y,
and vice versa. We choose to use this quantity for it is a
more meaningful quantity when studying systems with
(N > 2)-parts. Another reason for doing so, is that the
entropy of a fermion system, considering both spin and
momentum of each particle, is Lorentz-invariant [18]. We

FIG. 2. eþe− → μþμ− scattering with a witness particle C. The
quantity Λ is found to be proportional to cross section if the A
beam is unpolarized.
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must point out that recently there have been advances in
defining entanglement in (N > 2)-partite systems [32–34],
and in continuous variable systems [35].

A. Subsystem AC

According to the definition of mutual information
above, it is clear that the initial mutual information between
A and C is zero—their subspaces are factored [see Eq. (5)].
Nevertheless, the final state entangles them via the initial
entanglement between B and C, implying that the mutual
information between A and C should increase after the
scattering. In order to verify this claim, it is necessary to
evaluate the reduced density matrices of A and AC, for we
already have C’s final state in Eq. (14), and use definition
(27) to calculate the final mutual information between A
and C, ðIACÞf. In evaluating SAC, it is necessary obtain
ðρACÞf by tracing out the system B from the final state (7).
After the partial trace over B, one has

ðρACÞf ¼ 1

N
ðI þ IIÞ; ð28Þ

where I is

I ¼ 2Ep12Ep22EqV3

�
1

2

X
a

jaihaj

⊗ ðcos2ηj↑ih↑j þ sin2ηj↓ih↓jÞ
�
⊗

jp1ihp1j
2Ep1V

⊗
jqihqj
2EqV

;

ð29Þ

in which the 4 × 4 matrix in square brackets has eigen-
values

g1 ¼
cos2η
2

; g2 ¼
cos2η
2

;

g3 ¼
sin2η
2

; g3 ¼
sin2η
2

: ð30Þ

As for the term II, it reads

II ¼ 2EqV2T
Z
p3

T
2Ep1þp2−p3

�
1

2

X
a;s;r;r0

½cos2ηMða;↑; r; sÞM�ða;↑; r0; sÞjrihr0j ⊗ j↑ih↑j

þ e−iβ cos η sin ηMða;↑; r; sÞM�ða;↓; r0; sÞjrihr0j ⊗ j↑ih↓j
þ eiβ cos η sin ηMða;↓; r; sÞM�ða;↑; r0; sÞjrihr0j ⊗ j↓ih↑j

þ sin2ηMða;↓; r; sÞM�ða;↓; r0; sÞjrihr0j ⊗ j↓ih↓j�
�

⊗
jp3ihp3j
2Ep3V

⊗
jqihqj
2Eq

: ð31Þ

In the ultrarelativistic limit [m;M → 0 and p; P → E in
Eq. (19)], the eigenvalues of the 4 × 4 matrix in curly
brackets of Eq. (31) are

MAC1 ¼ 2e4cos2ηcos4
�
θ

2

�
;

MAC2 ¼ 2e4sin2ηcos4
�
θ

2

�
;

MAC3 ¼ 2e4cos2ηsin4
�
θ

2

�
;

MAC4 ¼ 2e4sin2ηsin4
�
θ

2

�
: ð32Þ

Using the normalization (13) and the eigenvalues (30),
(32), one can calculate AC’s final entropy as

ðSACÞf ¼−
X4
i

�
Gi lnGiþ

Z
dΩðM̃ACi lnM̃ACiÞ

�
; ð33Þ

where

Gi ¼
gi

1þ T
V

Λ
4E2

; ð34Þ

and

M̃ACi ¼
�

1
4E2V
T þ Λ

�
MACi

4ð2πÞ2 ; ð35Þ

were calculated in the center of mass in the ultrarelativistic
limit, for which Λ ¼ e4=ð3πÞ. We calculate next the final
reduced density matrix of particle A, which is done by
tracing particle C out of (28), yielding

ðρAÞf ¼
1

N
ðIII þ IVÞ; ð36Þ

where

III ¼ 2Ep12Ep22EqV3

�
1

2

X
a

jaihaj
�
⊗

jp1ihp1j
2Ep1V

; ð37Þ
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is already diagonal, and

IV ¼ 2EqV2T
Z
p3

T
2Ep1þp2−p3

×

�
1

2

X
a;s;r;r0

ðcos2ηMða;↑; r; sÞM�ða;↑; r0; sÞjrihr0j

þ sin2ηM�ða;↓; r0; sÞMða;↓; r; sÞjrihr0jÞ
�

⊗
jp3ihp3j
2Ep3V

; ð38Þ

needs to be diagonalized. The eigenvalues of the matrix in
square brackets in Eq. (38) are

MA1 ¼
1

4
e4ðcos 2θ þ 3þ 4 cos 2η cos θÞ;

MA2 ¼
1

4
e4ðcos 2θ þ 3 − 4 cos 2η cos θÞ: ð39Þ

The final entropy of A is then

ðSAÞf ¼ −2h ln h −
X2
i

Z
dΩðM̃Ai lnM̃AiÞ; ð40Þ

in which

h ¼ 1

2

�
1

1þ T
V

Λ
4E2

�
; ð41Þ

and

M̃Ai ¼
�

1
4E2V
T þ Λ

�
MAi

4ð2πÞ2 : ð42Þ

The final entropy of system C reads

ðSCÞf ¼ −
X2
i

ci ln ci; ð43Þ

in which ci correspond to the eigenvalues of the density
matrix (14). The final mutual information between A andC,
using Eqs. (33), (40), and (43), is

ðIACÞf ¼ ðSAÞf þ ðSCÞf − ðSACÞf: ð44Þ

A plot of (44) is shown in Fig. 3. Below we perform this
analysis over another partition of the system.

B. Subsystem BC

It would be interesting to evaluate how the mutual
information varies in other partitions of the system, such
as BC. Unlike partition AC, B and C are initially entangled,
so that their initial mutual information is not zero. Using
state (5), one obtains

ðIBCÞi ¼ ðSBÞi þ ðSCÞi
¼ −2½cos2η ln ðcos2ηÞ þ sin2η ln ðsin2ηÞ�; ð45Þ

where we omitted ðSBCÞi for it is null. By tracing A out
of the final state, we obtain BC’s reduced density matrix,
that is

ðρBCÞf ¼ 1

N
ðĪ þ IIÞ; ð46Þ

in which

Ī ¼ 2Ep12Ep22EqV3

�
cos2ηj↑ih↑j ⊗ j↑ih↑j

þ 1

2
sin 2ηðe−iβj↑ih↓j ⊗ j↑ih↓j þ eiβj↓ih↑j ⊗ j↓ih↑jÞ

× sin2ηj↓ih↓j ⊗ j↓ih↓j
�
⊗

jp2ihp2j
2Ep2V

⊗
jqihqj
2EqV

; ð47Þ

and

FIG. 3. Plot of ðIACÞf for the set of parameters (T, V, Epi ,
e → 1;Λ → e4=3π). The angle ηwas split in n ¼ 1000 parts from
0 to π=2 in order to run the plot. The final mutual information is
maximal for η ¼ π=4—compatible with a Bell basis for BC’s
initial state. Conversely, for η ¼ 0 or η ¼ π=2, i.e., B and C
initially unentangled, there is no mutual information between A
and C.
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II ¼ 2EqV2T
Z
p4

T
2Ep1þp2−p4

�
1

2

X
a;r;s;s0

�
cos2ηMða;↑; r; sÞM�ða;↑; r; s0Þjsihs0j ⊗ j↑ih↑j

þ e−iβ sin 2η
2

Mða;↑; r; sÞM�ða;↓; r; s0Þjsihs0j ⊗ j↑ih↓j

þ eiβ sin 2η
2

Mða;↓; r; sÞM�ða;↑; r; s0Þjsihs0j ⊗ j↓ih↑j

þ sin2ηMða;↓; r; sÞM�ða;↓; r; s0Þjsihs0j ⊗ j↓ih↓j
��

⊗
jp4ihp4j
2Ep4V

⊗
jqihqj
2EqV

: ð48Þ

The matrix in square brackets in Eq. (47) has eigenvalues
f0; 0; 0; 1g, while the one in curly brackets in Eq. (48) has
the eigenvalues already listed in (32). As for the final
reduced density matrix of B, we have

ðρBÞf ¼ 1

N
ðIII þ IVÞ; ð49Þ

where

III ¼ 2Ep12Ep22EqV3

× ðcos2ηj↑ih↑j þ sin2ηj↓ih↓jÞ ⊗ jp2ihp2j
2Ep2V

; ð50Þ

and

IV ¼ 2EqV2T
Z
p4

T
2Ep1þp2−p4

×

�
1

2

X
a;r;s;s0

ðcos2ηMða;↑; r; sÞM�ða;↑; r; s0Þjsihs0j

þ sin2ηM�ða;↓; r; s0ÞMða;↓; r; sÞjsihs0jÞ
�

⊗
jp4ihp4j
2Ep4V

: ð51Þ

We can now use the final density matrices of the
subsystem BC, in (14), (49), and (46) to calculate the
mutual information between B and C after the scattering. A
plot of the initial and final mutual information IBC is shown
in Fig. 4.

IV. CONCLUSIONS AND FINAL REMARKS

We analyzed a QED scattering AB → AB, in which B
was initially entangled with a third particle C that did not
participate directly in process. After calculating the reduced
density matrix of particle C, we found that coherence
(off-diagonal) terms were created. Although these do
not change its spin expectation value in the z-direction,
in orthogonal directions we obtain, for instance,
hσxif ∝ σtotalfðη; βÞ, in which fðη; βÞ is maximal for BC
initially entangled as a Bell basis. We point out that the
factor Λ is η-independent only if we consider an initially
unpolarized A beam. That said, the result indicates that, at
least in principle, one could measure the total cross section
of scattering AB → AB letting particle C go through a
Stern-Gerlach apparatus. This method could be used to
measure cross sections when the products A and/or B are
cumbersome to detect. As remarked above, because this
method is not sensitive to nonintegrable differential cross
sections, which is the case of the Møller or Bhabha
scatterings, we are restricted to processes with finite total
cross sections.
Next we studied the effect of the scattering on the

amount of correlations between different partitions of
the system. Initially the system is entangled only in the
subspace spanned by BC; after the scattering, all three
subsystems are entangled. In order to describe the corre-
lation transfer, we chose to calculate the mutual informa-
tion between A and C, and between B and C. This quantity,
being written in terms of von Neumann entropies of the
subsystem formed by the particles’ momenta and spins,
taken together, is Lorentz-invariant.
We found that there is an increase (decrease) in the

mutual information between A and C (B and C) which is
largest for η ¼ π=4—compatible with a Bell basis. The
largest decrease in the mutual information between B andC

FIG. 4. Initial (dashed line) and final (thick line) mutual
information between B and C. There is a decrease, which is
largest for η ¼ π=4, for part of the correlations are transferred to
the partition AC. The plot was made using the set of parameters
(T, V, Epi , e → 1; Λ → e4=3π). The angle η was split in n ¼
1000 parts from 0 to π=2 in order to run the plot.

MEASURING QED CROSS SECTIONS VIA ENTANGLEMENT PHYS. REV. D 100, 105018 (2019)

105018-7



is of about 2% for the set of parameters chosen (T, V, Epi ,
e → 1; Λ → e4=3π). This decrease in IBC does not match,
however, the increase in IAC, for after the scattering there
will be mutual information between A and B. In addition,
unlike the expectation value hσxif, these quantities are
dependent only on the mixing angle η—they are not
sensitive to the phase β.
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