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Measuring QED cross sections via entanglement

Jonas B. Araujo®,"” B. Hiller®,>" 1. G. da Paz,** Manoel M. Ferreira, Jr.®,"
Marcos Sampai0,4’” and H. A. S. Costa®”

'Universidade Federal do Maranhdo, Centro de Ciéncias Exatas e Tecnologia,
65080-040, Sdo Luis, MA, Brazil
*CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
3Universidade Federal do Piaui, Departamento de Fisica, 64049-550, Teresina, PI, Brazil
*CCNH, Universidade Federal do ABC, 09210-580, Santo André - SP, Brazil

® (Received 23 July 2019; published 19 November 2019)

We considered a QED scattering (AB — AB), in which B is initially entangled with a third particle (C)
that does not participate directly in the scattering. The effect of the scattering over C’s final state was

evaluated and we noted coherence (off-diagonal) terms were created, which led to non-null values for (s,)
and (o) that are, in principle, measurable in a Stern-Gerlach apparatus. We chose a particular QED

scattering (e*e~ — pu*u~) and found that (o) and () are proportional to the total cross section (641) Of

the AB scattering, besides being maximal if BC’s initial state is taken as a Bell basis. Furthermore, we
calculated the initial and final mutual information /¢ and /g, and noticed an increase (decrease) in /¢
(Ipc), which indicates that, after AB interact, the total amount of correlations (quantum + classical) is

distributed among the 3 subsystems.
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I. INTRODUCTION

Arguably the most intriguing feature of quantum mechan-
ics, entanglement has been shown to be a fundamental
phenomenon in nature. About thirty years after the posing of
the Einstein-Podolsky-Rosen paradox [1], which rebuked
entanglement based on causality and locality arguments,
Bell provided a test [2], which was later implemented
experimentally by Aspect et al., using polarization-
entangled photons emitted by a calcium source [3]. Loop
holes in the experimental tests have been successively
removed; recently, violations on Bell’s inequality were
measured for spins separated by 1.3 km [4], and for light
from distant astronomic sources [5].

Regarding the technological applicability, entanglement
plays a central role in the long-sought quantum computers
[6], quantum metrology, quantum optics and optomechanical
systems [7,8]. In high energy physics, entanglement has
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recently received considerable attention, mainly concerning
the production of entropy in scattering processes—for a
description of entanglement generation in nonrelativistic
quantum mechanics, see Ref. [9]. In quantum field theory
(QFT), it has been studied, for example: the variation in
entanglement entropy in a relativistic scattering involving
scalar fields [10]—one-loop calculations were done in [11],
and the entropy generation of fermions systems in QED
processes [12,13], in which the authors studied the mutual
information between spin degrees of freedom and properties
of the entropy variation under Lorentz transformations. An
interesting application related to metabolic PET-imaging
(positron-emission-tomography) is found in Ref. [14], in
which a method to detect entanglement of photons from
positronium decays is proposed. In other recent works, it was
shown that entanglement can be used to magnify the photon-
photon scattering cross section [15] and to enhance possible
Lorentz symmetry violation effects in Yb" atoms [16,17].
These are applications of what is known as relativistic
quantum information.

In relativistic scenarios, such as QFT processes, it is
fundamental to define Lorentz-invariant entanglement mea-
sures. It has been shown that, for bipartite fermion systems,
the linear entropy of each particle, considering both its spin
and momentum, is Lorentz-invariant [12,18]. Entanglement
in the spin-spin partition, although its entropy is not Lorentz-
invariant, has been shown to violate the Clauser-Horne-
Shimony (CHSH) inequality in the relativistic regime [19].
As for the momentum-momentum partition, the dynamics of
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entanglement in lowest order QED has been studied, for
instance, in [20]. Another fundamental aspect is the con-
nection between maximal entanglement and gauge sym-
metries in QFT, studied for example in [21].

Entanglement also plays a role in inflationary models
described by QFT in curved spacetimes. It has been shown
that an expanding spacetime could create fermion pairs that
are entangled in opposite momentum modes [22]—the
effect of QED in this process has been recently assessed
in [23]. In the free case, it was possible to read from the
fermion’s von Neumann entropy the parameters of the
expansion of the universe. It is important to point out that
in these models there are fundamental differences between
the fermionic and bosonic cases [24,25]. More realistic
features, such as decoherence, have also been studied in
QFT in expanding spacetimes [26].

In this work, we study a QED scattering (AB — AB) in
which B is initially entangled with a witness particle (C).
The purpose is to extract information about the scattering by
observing particle C. The paper is organized as follows. In
Sec. II, definitions are made and the final reduced density
matrix of particle C is calculated; we find that coherence
terms are generated and evaluate their effect on particle C’s
spin measures in different directions. In Sec. III we analyze
the change in mutual information between particles A — C,
and B — C due to the scattering; the results are consistent
with a distribution of correlations (quantum + classical)
among the subsystems A, B and C. The conclusions and final
remarks are done in Sec. IV.

II. SCATTERING WITH A WITNESS PARTICLE

We consider a QED scattering involving 2 particles, A
and B, in which B is initially entangled in spin with C, i.e.,
the witness particle (see Fig. 1). The purpose is to evaluate
the effect of the scattering over particle C, which does not
take part directly in the scattering. We hope to extract
information about the scattering by performing measure-
ments on the subsystem C after the process occurred.

In order to perform the calculations, a few definitions
must be made. First, the internal product of fermion states is
defined as

A B C

FIG. 1. QED scattering with a witness particle. The particles B
and C are initially entangled in spin. After the scattering, the three
particles become entangled.

(k,a

p.b) = 2E,(21)*8®) (k = p)5,. . (1)
and, if a 2-fermion system is initially in state
|P1s @; o, b)), (2)

|initial) =

after it undergoes a scattering process, it becomes

|final) = Z /

P34

|3, 75 P4, S)

X (p3. 7 pa,5|S|p1. a; pa, b), (3)

where the integral [, denotes [ (d’p)/(2E,(2x)*). The S

matrix is written as S =7 + i7, and the operator i7 is
related to the Feynman amplitude as

(3. 73 pa S[iT |py. a; ps. b)

= i20)*6W(p1+ p2—p3 = pa) My (4)

We will consider an initial state as follows:
i) =|p1.a) ® (cosn|p2.13q.1) +ePsinn|ps.liq.1)). (5)

whose final state, according to Eqs. (3) and (4), is given by

|f>=|i>+i2/ 59 (py + pa— ps—p)
rs JP3Ps#EPI D2

x [cospM (a, 1;r,8)|p3, r) @ |psrs) @ )

+elsingM(a,|;r,s)|p3, 1) @ |pars) ®

). (6)

where M(a,1;r,s) in fact denotes M(py,a;p,, 1+
D3, 75 Ps, ), but as all Ms have the same dependence
on initial and final momenta, these will be omitted for
shortness, and we will leave only the spin dependence.

The final state of system ABC, but for a normalization
constant (N) yet to be calculated, is then

pr = 1) {1 (7)

As we are interested in C’s reduced density matrix, it is
necessary to trace subsystems A and B out. The partial trace
operation over a subsystem, say b, is illustrated below

Tryp] Z/ 2;;*215 ® (ko

where 1, denotes the identity operation in the remaining
subspaces. In performing partial traces, one finds Dirac
deltas as (27)8)(0) and (27)36)(0), which enforce
energy-momentum conservation. These have to be suitably
regulated as described in Refs. [27,28], using

pp(1,®k.0),). (8)
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T/2
2260 (E; - E;) = /_m expli(E; — Ef)t]dt
(27)260) (k - p) = Vér p, )

which imply (27)6)(0) =T and (27)%6®(0) = V.
Accordingly, the reduced density matrix of system C is

(pe)y = alTnlrs), (10

where the numerator is

Tra[Trgps]] = [(2E,, 2E, 2E,V? +2E,TV*A)
x (cosn| 1) (1| +sin®n| ) (L])
+2E,TV*Acosnsing

« (&P —ip 19) (4] 11
I ®5E T (D)

and the factor A (in fact #-dependent) reads

M= [

P1tP2—P4 1
+ sin®n| M (a, L3 7, 8)*) lpsp, +pr—ps (12)

where we kept a factor of 7T inside the integral, so as
to perform the volume integrals in momentum space
correctly. In the CM reference frame, one has fp T=
278(E; — E;) x (2E,)?dQ/((27)’2E,), where E, is the
energy of any incoming/emerging particle.

The normalization is given by

N = Try[Trg[Tre[(pasc) f]H
N = 2EI,12EI,22EqV3 + 2EqTV2A, (13)

(cos?y|M(a. 15 7.9)]?

so as to ensure Tr[(pc);] = 1. Note that we factored the
spin and momentum subspaces and wrote the momentum
part as a projection operator, ie., [|q)(q|/(2E,V)]* =
lg)(q|/(2E,V). Below we investigate if it is possible to
read information about the scattering by measuring C.

A. Inferring scattering data
from the witness particle

In order to extract information about the scattering from
particle C, we begin by writing (p¢), in matrix form

2 e P AT sinycosn
cos™n AT+2E,, 2E,,V
)= pore . (14)
e AT sinncosn sin2
AT+2E, 2E,,V n
from which we omitted the momentum subspace,

lg)(q|/(2E,V). If compared to its initial density matrix,
that is

(o) = (” L) (15)

0  sin?py

it is evident that coherence (off-diagonal) terms were
created in subsystem C, i.e., C became purer. In addition,
if one measures the initial and final expectation values of
0,, one obtains

(0,); s = cos’n — sin’n. (16)

Regarding the initial expectation values of either o, or
oy, these are zero. However, if one performs these measures
over the final state, one has

AT
= in (2 , 17
(o) = 005 sin () s (17)
which, to first order in A, is
AT
= in (21) ——, 18
(02) = cos psin (1) g (18)

in the reference frame of the center of mass (CM), for
which E, = E, = Ecy/2. From Eq. (18) we infer that
(o) is maximal if B and C are initially entangled as a Bell
basis (7 = z/4 and f = 0, ). In other words, the choice of
a Bell basis for B and C optimizes the effect of the AB
scattering over subsystem C.

Further, we could investigate the physical meaning of A.
This is done by choosing a particular QED scattering and
evaluating (12) at tree level. For this we consider the
process eTe™ — utu~ (see Fig. 2), in the CM reference
frame. The momenta for the electron, positron, muon, and
antimuon, are, respectively

P11 = (E, 0, O,P)’

p2 = (E,0.0,-p),

p3 = (E, Psin@cos ¢, Psin@sin ¢, P cos9),

ps = (E,—Psinfcos ¢, —Psinfsing, —Pcosd),  (19)

while the amplitude M for the process is

62

M=
(p1— p3)*

[a3)ro(#)][B2)ru(1)].  (20)

where the numbers 1-4 stand for the properties (spin and
momentum) of each particle.

We found that, taking an unpolarized A beam, which is
equivalent to averaging over the spin a, the integrand in
Eq. (12) is
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A B c
D
D

A B c

FIG.2. e"e™ — utu~ scattering with a witness particle C. The
quantity A is found to be proportional to cross section if the A
beam is unpolarized.

1
3 leostnlM(a 1, )P + sing M(a, 4 7, 5)P)
) do

o (21)

1
=72 Mlabirs)

a,b,r,s

This differential cross section is integrable, since is of the
form A + B cos? . Consequently, the quantity A is related
to the total cross section () of the process ete™ —
phum as

A— 4lpi|(Ecm)?

[p3| Ototal » (22)

due to the angular integral in Eq. (12). Accordingly, to first
order, we have

m2

—Zo-totalf(’/h /}) 5 (23)

E2

where, m (M) is the electron (muon) mass, E is the energy
of the incoming or emerging particles (E = Ecy/2),
and f(n, ) = cosBsin (2y)T/V, which is maximal for a
Bell basis.

Equation (23) implies that the spin of C in the x-direction
(or y-direction) is proportional to the total cross section of
the scattering involving A and B. Furthermore, Eq. (23) is
valid in any energy regime for the process ete™ — putu~.

B. Comment on other QED scatterings

We could investigate the case of A and B participating in
a Mgller scattering (e~ e~ — e~ e™), for instance. Using the
antisymmetrized amplitude

Mygiier = —(_72[5(3)7”M(1>][ﬁ(4)7yu(2)]
p1—p3)

62

o AP EG)a2)) (24

the a-spin-averaged integrand in Eq. (12) satisfies

1 .
5D _leosnlM(a. 17 )P + sin’n|M(a. L: 7. 5)Plugner

a,r,s

1 doyigiler
=1 D My, bi )P o N0 (25)

a,b,r,s

Because the differential cross section for the Mgller
scattering has a factor of 1/ sin* @, from Egs. (12) and (22),
it follows that (A, opger) = o0, after performing the
angular integral in Eq. (12). That said, the spin measure
of particle C would in this limit become

(6y); = cos fsin (2n), (26)

which does not depend on the cross section.

This conclusion also holds for the Bhabha scattering
(e"et — e7e™) or a process such as (e"u~ — e~ u7). In
short, the procedure outlined here cannot probe processes
with divergent total cross sections.

Next we investigate how the scattering modifies the
distribution of mutual information among systems A, B and
C. From now on, for simplicity, we will adopt the ultra-
relativistic limit in the CM reference frame, for which,

\/(1 _’g_j)/(l —f‘g—;) — 1 and A — ¢*/(3x), and an unpo-

larized A beam. In our analysis the subsystems are not
identical—entanglement quantifiers in systems of identical
particles have been studied for instance in [29-31].

III. REDISTRIBUTION OF
MUTUAL INFORMATION

The mutual information is a quantifier of the total
(quantum + classical) correlations between two systems.
Always non-negative, it is defined as

Ixy = Sx + Sy — Sxy» (27)

where Sy, Sy, Sxy stand for the von Neumann entropies of
systems X, Y, and XY, respectively. It can be read as the
amount of information that is contained in the system XY
that is not contained in the subsystems X and Y, when taken
separately; or what one can learn about X by measuring Y,
and vice versa. We choose to use this quantity for it is a
more meaningful quantity when studying systems with
(N > 2)-parts. Another reason for doing so, is that the
entropy of a fermion system, considering both spin and
momentum of each particle, is Lorentz-invariant [18]. We
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must point out that recently there have been advances in
defining entanglement in (N > 2)-partite systems [32-34],
and in continuous variable systems [35].

A. Subsystem AC

According to the definition of mutual information
above, it is clear that the initial mutual information between
A and C is zero—their subspaces are factored [see Eq. (5)].
Nevertheless, the final state entangles them via the initial
entanglement between B and C, implying that the mutual
information between A and C should increase after the
scattering. In order to verify this claim, it is necessary to
evaluate the reduced density matrices of A and AC, for we
already have C’s final state in Eq. (14), and use definition
(27) to calculate the final mutual information between A

where [ is

1
I'=2E, 2E,2E,V? {§Z|a><a|

: PPl o, 19)dl
® 2 2 ® ® ,
osaity i1+ sl L) | @ Gl M

(29)

in which the 4 x 4 matrix in square brackets has eigen-
values

_ 1101 : cos’n cos’n
and C, (IAC)f. In evaluating S,., it is necessary obtain g1 = > 92 = >
(pac) by tracing out the system B from the final state (7). . 5 . 5
, sin“y sin“y
After the partial trace over B, one has =" 9 =" (30)
1
=—(+1I), 28
(Pac)y N (I+10) (28) As for the term 71, it reads
|
m=2Eyver [ —L L > feos?nM(a. tsr )M (a. 17, 9)[r) (7] @ [1)(1]
! ps3 2EP +tP2—P3 2 Y o
1 : a,s,r,r’
+e P eosysingM(a, tir. )M (a. L7, s)|n) (| @ 1) (U]
+e¥ cospsingM(a, Lir, s) M (a. 117 s)[r) ('] @ [L)(1)
i (a. ) M (a0 @ (L) @ Bl @ 1 61)
|
In the ultrarelativistic limit [m, M — 0 and p, P — E in where
Eq. (19)], the eigenvalues of the 4 x 4 matrix in curly '
brackets of Eq. (31) are G, = %, (34)
I +vie
4 a0 and
My = 2e*cos“neos 5 )
- I\ Mg
| 0 e = (g7 ) 1 (35)
Mo = 2e*sin*pcos? <§) ) AC @ + A) 4(2x)?
O were calculated in the center of mass in the ultrarelativistic
Mycz = 2e*cos“nsin® | = |, . . 4 .
2 limit, for which A = ¢*/(37). We calculate next the final

M ca = 2€*sin?ysin®

NSRS

) (32)

Using the normalization (13) and the eigenvalues (30),
(32), one can calculate AC’s final entropy as

(SAC)f——i: {GilnGi—k / dQ(MACilnMACi)}, (33)

1

reduced density matrix of particle A, which is done by
tracing particle C out of (28), yielding

1
(Pa)y = (I +1V), (36)
where
111 = 2E, 2E, 2E, V> lZ|a><a| o 2P| (37)
P =T g 2 - 2Ep1V ’
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is already diagonal, and

T

IV = 2E,V*T /
p3 2EP1+P2—P3

x B Z (cos’nM(a, s r, s)M*(a, 157, s)|r)(F]

as,r.r’

+ sin’ngM*(a, 57, s)M(a, s, s)|r)(F])

2E,V

needs to be diagonalized. The eigenvalues of the matrix in
square brackets in Eq. (38) are

1
My, = Ze4(c0529+ 3 +4cos2ncosb),

1
My, = Ze“(cos 20 + 3 — 4 cos2ncosb). (39)

The final entropy of A is then

(Sa); = —2hInh - 22: / dQ(My;In My;),  (40)

in which
1 1
h=——-—+], 41
2<1+§ﬁ) (41)
and
- 1 My,
M i = ) d . 42
A (“ETV+A> 4(2r)? #2)

The final entropy of system C reads

(Se); = —Zci Inc;, (43)

in which ¢; correspond to the eigenvalues of the density
matrix (14). The final mutual information between A and C,
using Egs. (33), (40), and (43), is

(Iac)y = (Sa)p + (Sc)p = (Sac)s- (44)

0.010¢
0.008¢
0.006¢
0.004}
0.002f

0.0005 200 400 600 800 1000

FIG. 3. Plot of (I4¢), for the set of parameters (T, V, E,,
e = 1; A = ¢*/3x). The angle 5y was splitin n = 1000 parts from
0 to /2 in order to run the plot. The final mutual information is
maximal for 5 = z/4—compatible with a Bell basis for BC’s
initial state. Conversely, for n =0 or n = z/2, i.e., B and C
initially unentangled, there is no mutual information between A
and C.

A plot of (44) is shown in Fig. 3. Below we perform this
analysis over another partition of the system.

B. Subsystem BC

It would be interesting to evaluate how the mutual
information varies in other partitions of the system, such
as BC. Unlike partition AC, B and C are initially entangled,
so that their initial mutual information is not zero. Using
state (5), one obtains

(Igc); = (Sg); + (S¢);
= —2[cos?n1n (cos?n) + sin’yIn (sin’y)],  (45)

where we omitted (Sp¢); for it is null. By tracing A out
of the final state, we obtain BC’s reduced density matrix,
that is

(Pec); = 1N (I+1I), (46)
in which

1=2E, 2E, 2E,V> [cosznmxﬂ ® [1)(1

+%smzn@4ﬂ¢x¢\®|¢x¢w+aﬂ¢x¢|®|¢x¢w

« sin? P2)(pa| o l)Mal (47
s @ 11| @ 5l o UL (@)

and
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1T=2E,VT / 2ET {;Z ("Oszwa, Piros) M (@, 157 s')s) ('] @ 1) (]
%w tor )M (a L S)|s)s'| @ 1) (L]
iB o
%Mm bir )M (a, 157, ) s)(s'| ® [1) (1]
FsinM(a i M (o i) 5] @ 111 | @ DRl 1219 (48)
P4 q

The matrix in square brackets in Eq. (47) has eigenvalues
{0,0,0, 1}, while the one in curly brackets in Eq. (48) has
the eigenvalues already listed in (32). As for the final
reduced density matrix of B, we have

1

(ps)y =5 (TTT+TV), (49)

where
77 3
Il =2E, 2E, 2E,V

o)1)+l 1) @ 2L o)

and

— T
IV = 2E,V°T / ——
Pa 2EP|+P2—P4

X |:; Z (COSZ;/]M(G, 'T‘, r, S)M*(Cl, /]\, r, S/)|S> <S/|

a,r,s,s'

+ sin’pM*(a, |;r, s ) M(a, |;r,s)]s){(s'|)

o PPl (51)

2E,V

12
10!
0.8
0.6:
045
02-

09 200 400 600 800 1000

FIG. 4. Initial (dashed line) and final (thick line) mutual
information between B and C. There is a decrease, which is
largest for = /4, for part of the correlations are transferred to
the partition AC. The plot was made using the set of parameters
(T, V, E . e 1, A—> e4/37t). The angle » was split in n =
1000 parts from O to z/2 in order to run the plot.

We can now use the final density matrices of the
subsystem BC, in (14), (49), and (46) to calculate the
mutual information between B and C after the scattering. A
plot of the initial and final mutual information /. is shown
in Fig. 4.

IV. CONCLUSIONS AND FINAL REMARKS

We analyzed a QED scattering AB — AB, in which B
was initially entangled with a third particle C that did not
participate directly in process. After calculating the reduced
density matrix of particle C, we found that coherence
(off-diagonal) terms were created. Although these do
not change its spin expectation value in the z-direction,
in orthogonal directions we obtain, for instance,
(0x) p & G f (17, B), in which f(n,f) is maximal for BC
initially entangled as a Bell basis. We point out that the
factor A is n-independent only if we consider an initially
unpolarized A beam. That said, the result indicates that, at
least in principle, one could measure the total cross section
of scattering AB — AB letting particle C go through a
Stern-Gerlach apparatus. This method could be used to
measure cross sections when the products A and/or B are
cumbersome to detect. As remarked above, because this
method is not sensitive to nonintegrable differential cross
sections, which is the case of the Mgller or Bhabha
scatterings, we are restricted to processes with finite total
Cross sections.

Next we studied the effect of the scattering on the
amount of correlations between different partitions of
the system. Initially the system is entangled only in the
subspace spanned by BC; after the scattering, all three
subsystems are entangled. In order to describe the corre-
lation transfer, we chose to calculate the mutual informa-
tion between A and C, and between B and C. This quantity,
being written in terms of von Neumann entropies of the
subsystem formed by the particles’ momenta and spins,
taken together, is Lorentz-invariant.

We found that there is an increase (decrease) in the
mutual information between A and C (B and C) which is
largest for n = n/4—compatible with a Bell basis. The
largest decrease in the mutual information between B and C
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is of about 2% for the set of parameters chosen (T, V, E,, ,
e — 1; A — ¢*/3n). This decrease in Iz~ does not match,
however, the increase in /., for after the scattering there
will be mutual information between A and B. In addition,
unlike the expectation value (o), these quantities are
dependent only on the mixing angle y—they are not
sensitive to the phase /.
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