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We investigate the edge effects on the finite temperature fermionic condensate (FC) for a massive
fermionic field in a (2 + 1)-dimensional conical spacetime with a magnetic flux located at the cone apex.
The field obeys the bag boundary condition on a circle concentric with the apex. The analysis is presented
for both the fields realizing two irreducible representations of the Clifford algebra and for the general case
of the chemical potential. In both the regions outside and inside the circular boundary, the FC is
decomposed into the boundary-free and boundary-induced contributions. They are even functions under
the simultaneous change of the signs for the magnetic flux and the chemical potential. The dependence of
the FC on the magnetic flux becomes weaker with decreasing planar angle deficit. For points near the
boundary, the effects of finite temperature, of planar angle deficit, and of magnetic flux are weak. For a
fixed distance from the boundary and at high temperatures the FC is dominated by the Minkowskian part.
The FC in parity and time-reversal symmetric (2 + 1)-dimensional fermionic models is discussed and

applications are given to graphitic cones.
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I. INTRODUCTION

The investigation of field theoretical models in spatial
dimensions D other than 3 is motivated by several reasons.
Many high-energy theories unifying physical interactions
are formulated in higher-dimensional spaces, D > 3, with
compactified extra dimensions. Examples of these kinds of
models include Kaluza-Klein theories, supergravity, and
various types of string/M theories. In recent years the
models with D < 3 has attracted a great deal of attention.
Because of lower dimension they are easier to handle and
are treated as simplified models in particle physics. The
models in dimensions D < 3 appear as high temperature
limits of D = 3 field theories and also as effective theories
describing the long-wavelength dynamics of excitations in
condensed matter systems [1-4]. The examples for these
kinds of systems include graphene made structures (such as

“saharian @ysu.am
‘emello@fisica.ufpb.br
'Lastghik. saharyan @gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2019/100(10)/105014(21)

105014-1

a graphene sheet, carbon nanotubes, nanoloops, and nano-
ribbons), topological insulators, Weyl semimetals, and
high-temperature superconductors. In the continuous limit,
the long-wavelength properties of these systems are well
described by the Dirac equation for fermionic fields living
in (2 4 1)-dimensional spacetime with the Fermi velocity
instead of the velocity of light [5-7]. This offers the
remarkable possibility to probe field theoretical effects in
condensed matter systems. Interesting features in (2 4 1)-
dimensional models include fractionalization of quantum
numbers, the possibility of the excitations with fractional
statistics, flavor symmetry breaking, and parity violation. In
the corresponding gauge theories, the presence of topo-
logically nontrivial gauge invariant terms in the action
provides an interesting possibility to give masses for gauge
bosons [8,9]. The infrared cutoff induced by the topological
mass term provides a way to solve the infrared problem
without changing the ultraviolet behavior.

In the present paper we investigate the combined effects
of nontrivial topology, induced by a conical defect, and of a
circular boundary on the finite temperature fermionic
condensate (FC) for a massive fermionic field in (2 + 1)-
dimensional spacetime. In order to have an exactly solvable
problem in the region inside the boundary, a simplified
model for the defect will be used with a pointlike core. The
FC is among the most important local characteristics of a
given state for a fermionic field. It carries also important

Published by the American Physical Society


https://orcid.org/0000-0002-6115-5052
https://orcid.org/0000-0002-1580-4103
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.105014&domain=pdf&date_stamp=2019-11-18
https://doi.org/10.1103/PhysRevD.100.105014
https://doi.org/10.1103/PhysRevD.100.105014
https://doi.org/10.1103/PhysRevD.100.105014
https://doi.org/10.1103/PhysRevD.100.105014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SAHARIAN, BEZERRA DE MELLO, and SAHARYAN

PHYS. REV. D 100, 105014 (2019)

information about the global properties of the background
spacetime. The FC plays a central role in the models of
dynamical breaking of chiral symmetry (for chiral sym-
metry breaking in models with nontrivial topology and in
curved specitimes see [10]). The vacuum FC, the vacuum
expectation values of the charge and current densities, and
of the energy-momentum tensor for a fermionic field in the
geometry under consideration have been investigated in
[11-13]. The finite temperature effects for the FC and for
the charge and current densities in a boundary-free (2 + 1)-
dimensional conical space were discussed in [14] (for the
corresponding effects in (3 4 1)-dimensional spacetime
with a cosmic string see [15]).

The (3 + 1)-dimensional analog of the setup we are
going to consider here is the geometry of an infinite
straight cosmic string with coaxial cylindrical boundary.
The combined effects of the topology and boundary
on the properties of the quantum vacuum in that geometry
have been considered for electromagnetic [16—18], scalar
[18,19], and fermionic [20] fields. The Casimir forces
for massless scalar fields with Dirichlet and Neumann
boundary conditions in the geometry of a conical
piston are investigated in [21]. The scalar and electromag-
netic Casimir densities in the presence of boundaries
perpendicular to the string axis are discussed in [22—
26]. Another type of boundary condition on quantum fields
arises for a cosmic string compactified along its axis. The
influence of the compactification on the properties of the
quantum vacuum were investigated in [27].

The organization of the paper is as follows. In the next
section we describe the bulk and boundary geometries and
the field and present complete sets of fermionic modes
outside and inside a circular boundary. By using those
modes, in Sec. 111, the FC in the exterior region is evaluated.
It is presented in the form where the boundary-free and
boundary-induced contributions are explicitly separated.
The properties of the latter are investigated in various
asymptotic regions of the parameters. A similar investigation
for the interior region is presented in Sec. [V. We also discuss
the FC for the second type of boundary condition differing
from the previous one by the sign of the term with the normal
to the boundary. The parity and time-reversal invariant
fermionic models in (2 + 1) dimensions can be constructed
by combining two spinor fields realizing two inequivalent
representations of the Clifford algebra. The FC in this
class of models and corresponding applications to graphitic
cones are discussed in Sec. V. The main results of the paper
are summarized in Sec. VL. In the Appendix A we describe
the evaluation of the FC for a field with zero chemical
potential and show that, although the evaluation procedure is
different, the final result can be obtained from the corre-
sponding expression for the nonzero chemical potential
taking the zero chemical potential limit. In Appendix B
we consider the zero temperature limit and show that
both the representations for the FC give the same result.

II. PROBLEM SETUP AND THE FERMIONIC
MODES

In this section we describe the bulk and boundary
geometries for the problem under consideration and present
A complete set of fermionic modes outside and inside a
circular boundary. The metric tensor for the background
geometry is given by the (2 4 1)-dimensional line element

ds* = g, dx*dx’ = di* —dr* — r*d¢?, (2.1)
with the spatial coordinates defined in the ranges » > 0 and
0 < ¢ £ ¢y. For ¢py = 27 this corresponds to the standard
(2 + 1)-dimensional Minkwoski spacetime. In the case
¢o < 2z one has a planar angle deficit 27 — ¢, and the
spatial geometry presents a cone with the apex at r = 0. In
what follows, in addition to ¢, we will also use the
parameter g = 27 /¢, assuming that g > 1. We will con-
sider the case of a two-component spinor field w(x)
realizing the irreducible representation of the Clifford
algebra. Also we assume the presence of an external
electromagnetic field with the vector potential A,. The
field operator obeys the Dirac equation

(ir*D,—sm)y(x)=0, D,=0,+T,+ieA,, (2.2)
where I, is the spin connection and e the charge of the field
quanta. Here, s =41 and s = —1 correspond to two
inequivalent irreducible representations of the Clifford
algebra in (2+ 1) dimensions (see the discussion in
Sec. V below). With these representations, the mass term
violates the parity and time-reversal invariances [8]. In the
coordinates corresponding to (2.1), the gamma matrices can
be taken in the representation

1o P00 e
0_ - 23
’ (0 —1>’ ’ r’”((—l)l‘le"qq’ 0 ) 2

with [ =1, 2.

We consider the vector potential of the form A, =
(0,0,A), where A, = A represents the angular component
in the coordinates system defined by (z,r,¢). For the
physical component of the vector potential one has
A, = —A/r. This corresponds to an infinitely thin magnetic
flux ® = —¢pA located at r = 0. As it will be seen below,
in the expressions for the FC the parameter A enters in the
form of the combination

a=eA/q=—e®/(2n). (2.4)

We decompose it as
|a0| < 1/2’ (25)

a = ay + ny,
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with n, being an integer. As we will see the FC depends
only on the fractional part ag only.

Now we assume the presence of the circular boundary at
r = a on which the field obeys the MIT bag boundary
condition

(1+in,")y(x) =0, r=a, (2.6)

with n,, being the inward pointing unit vector normal to the
boundary. One has n, = 6} and n, = —5} in the regions
r < a and r > a, respectively. The main objective of this
paper is to investigate the influence of the boundary on the
FC assuming that the field is in thermal equilibrium at
temperature 7. The FC is defined as

(py) = ulpyyl. (2.7)
where 7 = y'y? is the Dirac adjoint and the angular
brackets denote the ensemble average with the density
matrix

(2.8)

Here H is the Hamilton operator, Q is a conserved
charge with the related chemical potential 4, and
Z = trle PE-1Q).

Let {y/ff) (x), y/(_) (x)} be a complete orthonormal set of
the positive- and negative-energy solutions of the field
equation (2.2), specified by a set of quantum numbers o.

Expanding the field operator y/(x) in terms of p (x), the
FC is decomposed as

Here,

(2.10)

is the FC in the vacuum state and (pw),, are the
contributions from particles (upper sign) and antiparticles
(lower signs). They are given by

w5 (s (x)

PEFH) {1 (2.11)

Wy)re =+

where u = ey’ and +E, are the energies corresponding to

the modes wgi)(x). In (2.10) and (2.11), >, includes the
summation over the discrete quantum numbers and the
integration over the continuous ones. The modes are
normalized in accordance with the standard normalization
condition

[t e W =a. @12

where the radial integration goes over the region under
consideration. The part in the FC corresponding to the
vacuum expectation value, (yy),,., has been investigated
in [11] and here we will be mainly concerned with the finite
temperature parts (), . In order to evaluate these parts

we need to specify the mode functions 1//1(,i> (x).

First let us consider the exterior region, r > a. The
corresponding mode functions are specified by the quan-
tum numbers (y, j), with 0 <y < o0, j = +1/2,43/2, ...,
and have the form

j: _;
9,3, v )10

P () ’
€j +E+sm gﬁj,/)’j+€j (ya, J/I”)

Wgﬂt) (x) _ C‘(:i) el diPFiEl

(2.13)

where E = E, = \/y> + m?, ¢, = 1 for j > —a and €=
—1 for j < —a,

pi=qlj+al—e;/2. (2.14)

The function g},ﬁ(ya, yr), withv = B; and v = B; + ¢}, is
expressed in terms of the Bessel and Neumann functions as

7(£)

gylrayr) = V5 (ra)d,(rr) = I3 (ra)Y, (rr).  (2.15)

Here the notation with the bar is defined as

RO =2y (@) - (/2 i om, -, ) By 0
— —€jZF/}j+€j (Z) — (:l:\ / ZZ + mz + Sma) Fﬁj (Z),

(2.16)

and m, = ma. The relative coefficient of the linear combi-
nation of the Bessel and Neumann functions in (2.15) is
determined by the boundary condition (2.6). The normali-
zation coefficient céi) is obtained from the condition
(2.12) with the radial integration over [a, co) and with

8t = 6(y —7')6,. It is given by

E T 4 E+sm
| = — . (2.17)
200E 15 (va) + ¥ (va)

In the interior region, r < a, the mode functions are
given as
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J/sj(yr)e_iq(/)/z

w(ﬁi)(x) _ Ci(i)eiqqu;iEz (2.18)

) yeiq</1/2
€ TErsm Jﬂf+€j (yr)

From the boundary condition (2.6) it follows that the
eigenvalues of y are solutions of the equation
~(+
7 (ra) =0, (2.19)

where the notation with tilde for the cylinder functions is
defined as

F;?(Z) = 2F) (z) + <i, /22 + m2 + sm, — ejﬂj) Fy.(2)
— _esz/}j+5j(Z) + <i1 / Zz + m[% + Sma>F/}j(Z).

(2.20)

We denote the positive roots of Eq. (2.19) by ya = yﬁ.?

[=1,2,.... It can be seen that the modes for the positive

energy solution with j > —a coincide with the modes for

negative energy solution with j < —a if we replace a — —a
(particles replaced by antiparticles).

N +) . .

The normalization constant c¢; is determined

from (2.12) with the radial integration over [0, a] and

560’ = 511’5jj’:

’

(+)2 y Efsm

T = —7T , 2.21
Cl 2¢0a E /}j (]/a) ( )
where we have defined
2J5%(z)
Ty (2) = " - 2=vra.
/ 7+ (smy—e;p;)(sm, £aE) F 55
(2.22)

with aE = \/z> +m2 and 7 = y}il).

We have determined complete sets of fermionic mode
functions outside and inside the circular boundary with the
boundary condition (2.6) on it. At this point two comments
should be made. The radial functions of the modes are
solutions of the Bessel equation. In the exterior region these
functions are uniquely determined by the boundary con-
dition on the circle r = a. Inside the circular boundary and
for 2|ay| < 1—1/g the fermionic modes are uniquely
determined by the normalizability condition and, as
the solution of the Bessel equation, the function J; (y7)

must be taken. In the case 2|ay| > 1 —1/g and for the
mode with j = —sgn(ag)/2 both the solutions with the
functions J; (yr) and Yy (yr) are normalizable. The general

solution is a linear combination of these functions. One of

the coefficients is determined from the normalization
conditions of the modes. In order to determine the second
coefficient, a boundary condition on the cone apex must be
specified. Here the situation is similar to that for the region
around an Aharonov-Bohm gauge field. For the Ilatter
problem it is well known that the theory of von Neumann
deficiency indices leads to a one-parameter family of
allowed boundary conditions [28] (see also [29] for a
discussion related to graphene with a topological defect).
The boundary condition for our choice of the modes (2.18)
in the case j = —sgn(qy)/2 corresponds to the situation
when the bag boundary condition is imposed on the circle
r = ¢ with small € > 0 and then the limit € — 0 is taken.
The second comment is related to the periodicity con-
dition with respect to the rotation around the apex. The
mode functions (2.13) and (2.18) are periodic with respect
to that rotation: w,(,i)(t, g+ dy) = z//((,i)(t, r,¢). We can
consider a more general quasiperiodicity condition

w1+ do) = &y (e ). (2.23)
with a constant phase 2zy. The corresponding mode
functions are simply obtained from (2.13) and (2.18) by
the replacement j — j + y. The physical results will depend
on A and y in the form of the combination & = a + y =
eA/q + y. Though the separate terms « and y are gauge
dependent, the combination & is gauge invariant. The results
for a field obeying the quasiperiodicity condition with the
phase 2zy are obtained from those given below by the
replacement a — @.

III. FC IN THE EXTERIOR REGION

Having specified the mode functions, we start our
investigation for the FC in the exterior region. In that
region, the FC in the vacuum state is decomposed as [11]

(W) vae = (P + () (3.1)

where the FC for the vacuum state in the boundary-free
geometry is given by the expression

la/2]
_ (0 sm cot(zl/q)
<I//l//>$/az: = _% {;(_l)lebnrsin(ﬂl/q)cos(zﬂla())
B z\/c,o 4 e—2mrcoshy f1<q, ap, y>
7 Jo Y coshy cosh(2gy) —cos(gn) '
(3.2)

with [¢/2] being the integer part of ¢/2 and
f1(q @, y) = —sinhy Y " cos(gr(1/2 — day))
o=l

x sinh((1 + 26ag)qy). (3.3)

For the boundary-induced contribution in the vacuum state
one has

105014-4



FINITE TEMPERATURE FERMIONIC CONDENSATE IN A ...

PHYS. REV. D 100, 105014 (2019)

=2 | ”dxx{lm [%]

% [K3 (xr) + K3 ., (x)]

onRe [ 1%/_(();?)] K} e, (zf;)_—;/%,- (xr)}’ 3.4

where for the modified Bessel functions we use the notation
F/;](M) = MF;}I(M) — <l\/ Mz - m(% + sm, + GJ,B]> F/}I(M)
(3.5)

Note that for 1 < g < 2 the first term in figure braces of
(3.2) is absent. Here we are interested in the finite temper-
ature contributions.

Taking into account (2.11) and (2.13), after some
intermediate steps we get

v/E
i ”_iw Z/ FE ||

X

152 (ra)+ Y5 (va)
(3.6)

In order to find an explicit expression for the boundary-
induced part, we subtract from (3.6) the corresponding
boundary-free term <1//z//>(T i The expression for the latter is
obtained from (3.6) by the replacements 9(,.,2 (x,y)/
- :t .

7572 (x) + V2 ()] = J2(y) with v =p; and v =B, +
€; (see [14]). For the evaluation of the boundary-induced
part, we use the identity

+)2 S(+
g}jj,z (x,y) JZ( ) 1 éj )<x) H(l)z( )
- - —SH\V)=—3 a0, < ),
J;f)z(x) + Y},j_t)z(x) 255 ,%’i) (x)

valid for both v = 8, B, + €;, and with H ( ) being the
Hankel functions. In this way, for the boundary-induced
parts

(3.8)

we get

(Esm)gy’ ) (rayr)—(EFsm)gy ), (va.yr)

4o 5 5 o EH%M(VG)

(E+ /lsm)H},lj)z(yr) - (E- lsm)H}ijej (yr)
P E=H) 1 ’

(3.9)

with A = =. For the further transformation of (3.9) we will
assume that y # 0. The case y = 0 will be considered in
Appendix A.

The integrand in (3.9) has simple poles for

E=EY =+ in(2n+ 1T, (3.10)
with n =0,%+1,+2,.... One has n =0,1,2,... for the
poles in the upper half-plane and n = ..., -2, —1 in the
lower half-plane. For the values of y = yff ) corresponding
to the poles (3.10) we get

y 02— A+ in(2n + 1)T)> — m?, (3.11)
where, again,n =0, 1,2, ... (n = ..., =2, —1) for the poles

in the upper (lower) half-plane. Note that for the poles in
the upper and lower half-planes one has the relations

ED g 0

A W on=..-2.-1, (3.12)

where the star stands for the complex conjugate.

For the transformation of (3.9) we rotate the integration
contour in the complex plane y by the angle z/2 for the
term with / = 1 and by the angle —z/2 for the term with
I = 2. For Au < 0 the thermal factor 1/[e#(*=*) + 1] has no
poles in the right half-plane and the integral is transformed
to the integrals over the imaginary axis. In the case Au > 0,
in addition to the latter integrals the residue terms from the
poles (3.11) should be added. In the integral over the
positive imaginary semiaxis we introduce the modified
Bessel functions 7,(z) and K, (z) by using the relations

T (e22) = SBRI),

Hf,l"l)(e”"/zz) _~

—inp;)2 &r(4)
j ”ie inp; Kﬁj (Z),

(3.13)

where for the modified Bessel functions we use the notation

F%) (2) :zF’ﬂj (z)— (/1 (e™22)2 +-m2+smy, +€jﬂj) Fﬁj (2),

(3.14)

with F' =1, K. For the functions in the integral over the

negative imaginary semiaxis one has J< >( /2 7) =
urﬂj/ZI (Z) and H( )( —ri/2 ) — _ 17:/3!/2K(> ( )
Note that for z > 0 the square root is understood as
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Vm2 =722,

e\ /72 —m2, z>m,.

<m,,
¢ (3.15)

From here it follows that F[(,?*(z):i?%) (z) for z<m,. By

using this relation we can see that the integrals over the
intervals (0, im,) and (0, —im,, ) cancel each other. For Au >0,

the contributions to <1/71//>,(]9 from the residue terms at the

poles in the upper and lower half-planes are combined as

—z 9 (Ap) TZZI

Jj n=0

{ w(ywa)
7 a)
< [(EY) + Asm)H >(y£,)r) (Eﬁf’—Asm>Hglf€j<y9>r)]},

(3.16)
|

xa) 1

where 6(x) is the Heaviside step function and for the
poles in the lower half-plane we have used the relations
(3.12). We find it convenient to introduce in (3.16) a
() @ _ . (4)

new quantity uy’ in accordance with vy, =iu, ,
Reun > 0,
ul) = {[z(2n+ )T = idu]? + m*}2. (3.17)

Note that uﬁf) = uﬁlﬂ*.

After the transformations described above, the boundary-
induced contribution in the thermal part of the FC is
presented as

(wy mﬁOZ/ dxxlm{ ﬁ’
—,1 e (Au) TZZI

j n=0

+ (22 1)T = id(u—sm))K3 | (uy'r)] }

u,, a)

By taking into account the relations / 1 ( a)=1, 1 (xa), I_(E,_) (xa) =

)eﬁz\/x —m*—Ay) +1

iAsm ) iAsm )
(1-A ) 0+ (1 A2 ) 6 o) |

5 (x
70 (0

{ S ( )[( 2n+1)T-
b

ixl(ﬂ+sm))K§j(u,(f)r)

(3.18)

I_([(;_r) (xa), we can see that for 1 = — the expressions

under the sign of the summation over nin (3.18) dlffers from that for A = + by the sign. As a consequence, the expression

(3.18) is transformed to

. /} _ sm > sm )
”  wy Z/ & XIm{K/J (xa) pH(VaP=m=p) 4 [(1 x? — m2> Ky (xr) % (1 " x? = m2> Kirva (xr)] }

——9 TZZI

=0

+ (z(2n+ )T —i(u — sm))Klzjj+€j(u,,r)]}.

Here

u, = {[x(2n + DT — iu)> + m*}'/2, (3.20)
and for the modiﬁed Bessel functions we use the nota-
tion Fy (z) = ) (2), defined by (3.5) with F = I, K. The
expressions (3 19) with A =+ and A = — present the
contributions to the boundary-induced FC coming from
particles and antiparticles.

Combining the contribution from the separate terms for

A=+ and 1= —, we can see that in evaluating the

{Kﬂ oy (20 + 1T =

i(u+ sm))K/Z,j(u,,r)

(3.19)

boundary-induced part <l//l//> => jE<1//z,1/> r;, the sum
of the first terms on the right-hand side of (3.19) is equal to
—(z/'/w>\(,l;g with <1/71//>‘(,ZZ; from (3.4). Hence, the boundary-

induced contribution at temperature 7', given by

() = ()8 + ()P,

is presented in the form
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B 2T Iﬂ/ u,a)

ZZ() {Kﬂ (Mna)
(w204 )T+ 5m)K, (1,1
il )]

(3.22)

+(z(2n+1)T

The ratio under the imaginary part in this expression can be
written in the form

Iy (z) W;;)ﬁj+€j (z) + [iz(2n + 1)T + pla/z
KE () + K (] + 25mKp, (Kp, 0 (2)
(3.23)

with the notation (the notation with the + sign will appear
in the expression for the FC in the interior region)

+
Wiy o (2) = 2ll (2K (2) = I e (2K e (2)]
= 5[l ey (K, (2) = Iy, (K g 1, (2)].
(3.24)
and with z = u,a.
For the total FC one has
(oy) = (@) + (py) ), (3.25)

where (y)(©) is the FC at temperature T in the absence of
the boundary [14]. The notation with bar in (3.22) can also
be presented in the form

_% i { [51/2]

T

n=-—0o =1

L ptin(n+ DT [Wﬂ
m =1

where ¢; = cos(zl/q), s; = sin(zl/q), and

f2(q, g, y) = coshy Z Scos(qn(1/2 = dag)) cosh((1 4 28ap)qy).

o==%1

s Z(—l)lcl cos(2mlay)Ko(2rsu,) — —

Z(—l)lsl sin(2zlag)Ko(2rs;u,)—

Fy,(2) = 6p2Fp 1 (2) = (iy/ 22 = mG + smy) Fy (2),

(3.26)

where 0; = —6x = 1. Under the replacements a — —a,
J— —j one has ;2 p;+¢;. By using this and the
representation (3.26), it can be seen that under the same
replacements we get

1y, (u,a) L [7/3,(142“) } *'

Ky (una) Ky (una)

(3.27)

Now, by taking into account the relation u};(¢) = u,(—p),
one can show that (y)(®) is an even function under the
simultaneous replacements o — —a, y — —u.

In [14], the boundary-free contribution is presented in
the form

(3.28)

- smT

[In (14 e=m=1/T) 4 1n (1 + e~(m+1/T))],

T

(3.29)

is the FC in (2 + 1)-dimensional Minkowski spacetime (the
magnetic flux and the planar angle deficit are absent, ¢ = 1,
a = 0) and <1Z/l//>t<0> is the topological part induced by the
conical geometry and by the magnetic flux. The latter is
given by the expression [14]

SC]/""d f1(q, a9, y)Ko(2ru, coshy)
0 cosh(2gy) — cos(gr)

q [ fa(q,a,y)Ko(2ru, coshy)
;A y cosh(2¢y) — cos(gr) }} (3.30)

(3.31)

The representation (3.30) is well adapted for the investigation of high-temperature asymptotic. An alternative
representation, convenient in the low-temperature limit, is provided in Ref. [14].

In the case of zero chemical potential, 4 = 0, the poles of the integrand in (3.9) are located on the imaginary axis and the
procedure for the transformation is different from what we have described above. This case is considered in Appendix A,
where it has been shown that the final result is obtained from (3.22) in the limit 4 — 0. The corresponding expression can

also be presented in the form

j n=0
15 (ug,a
_ste{_ﬁ]( 0 )][K;,_(u(),, )
/}j(MOHa) !

14 (ug,a)
p;\*0n
J7a1| [K?jj(MOnr> + K§j+ej(u0n r)]

(3.32)
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where u, is defined by

on = \/[H(Zn + DT +m?

The boundary-induced FC (3.32) is an even function
of a. The ratio under the imaginary and real parts is
presented in the form (3.23), where now z = ug,r is real
and the imaginary and real parts are easily separated. The
expression (3.32) is further simplified for a massless field:

o0 2
ZZf
oﬁ

(3.33)

Ké +e,< )
+K21+e ( )

(ry) ")
u=r(2n+1)T

(3.34)

Of course, in this case the FC does not depend on the
parameter s. The corresponding boundary-free part van-
ishes, (yy)(®) =0 (see [14]), and the total FC (jy) =
() (%) is always negative. It is a monotonically increasing
function of the radial coordinate r.

Now we move to the investigation of the boundary-
induced FC in asymptotic regions for the values of the
parameters. For general values of the chemical potential
and the mass, at large distances from the boundary, in
(3.22) we use the asymptotic expression of the Macdonald
function for large arguments. To leading order this gives

T © 1 _(u d) e~ 2"
) ~ — 1 Imd 2™
LN m{Kﬂj<una> .

(3.35)

For T Z m,
term n = 0 and the boundary-induced contribution is sup-
pressed by the factor >0, For ¢ < 2, a similar suppression

takes place for the topological part (1/71//)5()) in the boundary-
free geometry. For ¢ > 2, the suppression of the latter at
large distances is weaker, by the factor e=2""0%"(#/4) The
Minkowskian part (3.29) does not depend on the radial
coordinate and for a massive field it dominates at large
distances. For a massless field with zero chemical potential
and for Tr > 1 one has

26—27zTr 1

)P s — . .
() doar zj:K (nTa)+ K3 Brve; (zTa) (3.36)

Hence, the boundary-induced FC is exponentially sup-
pressed at large distances. Note that at large distances the

boundary-induced contribution in the vacuum FC behaves

like <1/71//>ng x e /2 mr > 1, for amassive field and as

<1/71//>5ﬁl o 1/r20-2@D+2 ip the case of a massless field.

(r-a).
again, the contribution of the n =0 term dominates
in (3.22) and, similar to (3.35), we can see that the
boundary-induced FC for a given r is suppressed by the
factor e=2*7". For the boundary-free topological part we
(0)

have similar behavior, (g ),

x e 2" for g < 2. In the

case ¢ > 2 one has ()" o e=27T7sin(#/9) and the decay
is slower. As a consequence, at high temperatures and for
points not too close to the boundary, the total FC is
dominated by the Minkowskian part that behaves

like (py)\V ~ smT In2/(2x).

The boundary-induced FC (3.22) diverges on the boun-
dary. This kind of surface divergence in the vacuum
expectation values (VEVs) of local physical observables
are well known in quantum field theory with boundaries.
They are related to the idealized boundary conditions on
fields acting in the same way for all the modes of the field.
For points near the boundary, assuming that 7'(r — a) < 1,
the dominant contribution to the series over n in (3.22)
comes from large n and, to the leading order, we can
replace the corresponding summation by the integration. In
Appendix B, it is shown that, with this replacement, the
corresponding expectation value is obtained for the vacuum
state. Hence, we conclude that for points near the boundary
and for temperatures 7 < 1/(r — a) the finite temperature
effects on the FC are small and the leading term coincides
with the vacuum FC. Near the boundary the latter is
dominated by the boundary-induced part and behaves as

<1//z//>vac <1//1//>st ~ —1/[8z(r — a)?]. Note that this lead-
ing term does not depend on the planar angle deficit or the
magnetic flux.

It is also of interest to consider the behavior of the
boundary-induced FC for small values of the radius a and
for fixed r, assuming that Ta,ma < 1. By using the
asymptotic expressions for the modified Bessel functions
for small values of the argument, from (3.22) one can see
that ()" o« a?(!=2%l) and for |ay| < 1/2 the boundary-
induced contribution tends to zero in the limit a — 0. In the
special case |ay| = 1/2 the part (py)®) tends to a finite
limiting value. The case |ay| = 1/2 is also special for the
boundary-free geometry. For example, the VEVs of the
charge and current densities, as functions of the parameter
a from (2.4), are discontinuous at the points corresponding
to half-odd-integer values of a (see, e.g., Ref. [12]). In
accordance with (2.5), this corresponds to the case
lag| = 1/2. A similar feature for the persistent current in
carbon nanotube based rings has been observed in
Ref. [30]. Note that the VEVs of the charge and current
densities in the region r > a vanish for |ay| = 1/2.

The numerical examples for the dependence of the FC on
the parameters of the problem will be given for a simple
case of a massless field with a zero chemical potential (for
the effects of the nonzero mass see Fig. 5). In the boundary-
free geometry the FC vanishes and the nonzero FC is
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FC in the exterior region for a massless field with a zero chemical potential versus the parameter a (left) and the temperature

(right). The graphs are plotted for r/a = 1.5 and the numbers near the curves correspond to the values of ¢. For the left panel we have
taken Ta = 0.5. The full/dashed curves in the right panel correspond to @y = 0/ag = 0.4.

induced by the boundary. The left panel in Fig. 1 displays
the FC in the exterior region versus the parameter « for
fixed values of r/a = 1.5, Ta = 0.5. The numbers near the
curves correspond to the values of the parameter g. As seen,
for small values of the planar angle deficit, the dependence
of the FC on the magnetic flux is weak. In the right panel of
Fig. 1 we have plotted the FC versus the temperature (in
units of 1/a) for r/a = 1.5. The numbers near the curves
are the values of the parameter ¢ and the full (dashed)
curves correspond to ayg =0 (g = 0.4). For ¢ =1 (the
curve between the full and dashed curves for g = 3) the
dependence of the FC on « is weak and for that case
the full and dashed curves are almost the same. As seen
from the graphs, the dependence on the magnetic flux
becomes weaker with decreasing planar angle deficit

0.00
-0.02}

~0.04}

al<yy>®

~0.06}

-0.08"

14 16 18 20 22 24 26

(decreasing ¢). In accordance with the asymptotic analysis
given above, the suppression of the FC at high temperatures
is seen in the right panel.

The dependence of the FC on the radial coordinate is
shown in the left panel of Fig. 2 for fixed temperature
corresponding to Ta = 0.5. The numbers near the curves
present the values of the parameter ¢g. The full and dashed
curves correspond to ap =0 and a, = 0.4, respectively.
Again, for g = 1 (the curves between the full and dashed
curves for g = 3) the curves for @y = 0 and ay = 0.4 are
almost the same. As it has been shown above by the
asymptotic analysis, for large values of Tr the FC is
suppressed by the factor e=>*’". The dependence of the
FC in the exterior region on the planar angle deficit
is displayed in the right panel of Fig. 2 for r/a = 1.5,

~0.08}
—0.10}

~0.12}

al<yy>®

~0.14}

~0.16}

ol ]

FIG. 2. FC in the exterior region for a massless field with a zero chemical potential as a function of the radial coordinate (left) and of
the parameter ¢ (right). For the left panel Ta = 0.5 and the full/dashed curves correspond to y = 0/ay = 0.4. The numbers near the
curves are the values of g. The right panel is plotted for r/a = 1.5, Ta = 0.5 (full curves), Ta = 0.25 (dashed curves) and the numbers

near the curves are the corresponding values of .
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Ta = 0.5 (full curves) and T'a = 0.25 (dashed curves). The
figures near the curves correspond to the values of the
parameter a,. As seen from the right panel, the behavior of
the boundary-induced FC as a function of ¢ is essentially
different for oy = 0 and oy = 0.4.

Note that the boundary r = a separates the exterior
region from the region where the magnetic flux is located.
As a consequence of that, the results presented in this

|

=5 [ dxx{lm{ ((aﬂ[,,(xrwﬂ+€<zr>]+ste[,ﬂj( .

with the notation for the modified Bessel functions

Fﬁj(u):uF},j(u)—l- <l\/u2—m + sm, —€ﬂ>Fﬁ( )

(4.2)

where F = I, K.
Substituting the fermionic modes (2.18) in the mode-
sum formula (2.11), for the contributions of the positive

and negative energy modes to the thermal part in the FC
one gets

T )
_ P },j 1 }/] l
<WW Tﬁ 2¢ Clz Z Z E( )—1/4 ’ (43)

where 1 = +, —, Ej/? = \/yf;z/az +m?, 7= yj/? are the

positive zeros of the function .7},'} ) (z) defined in accordance
with (2.20) and we have introduced the notation

9(z) =z Kl +
Asm,

_ (1 _ sma
Vi +m
Therootsy;

;1 are given implicitly and the representation (4.3)
is not convenient for the evaluation of the FC. The summation

Asm,

) J3 (2r/a)

22+ m
) jolerfa). @

*

formula for series of the type > &, T ﬁj(yfl) ) (yﬁ’? ) has
been derived in [31] by using the generalized Abel-Plana
formula from [32,33] assuming that the function f(z) is
analytic in the right half-plane of the complex variable z. In

the problem at hand

7y =28
e/f'( 22/ a*+m?—p) 41 ’
(4)

and for Au > 0O this function has simple poles z =y, ’,
n=0,x1,+£2,..., in the right half-plane (the case u =0

(4.5)

section are valid for an arbitrary distribution of the
magnetic flux in the region r < a.

IV. FC INSIDE A CIRCULAR BOUNDARY

In this section we consider the region r < a. The corre-
sponding FC in the vacuum state is presented as (3.1), where
the boundary-induced contribution is given by [11]

& e Ty (21) - ’ﬁj(’”)}, @)

|
when the poles are located on the imaginary axis will be
discussed in Appendix A).

The procedure described in [31] can be generalized
keeping the terms in the generalized Abel-Plana formula
coming from the poles in the right half-plane. For the
functions f(x) real for real values of x, this leads to the
following summation formula:

ZTﬂ 7’,1 7//l)

o f(M)
_2 / dxRe [e‘ﬂf”if(xe”i/z) Nﬂji(x)] , (4.6)
0

A
7 5 ()
() ()

where u,,’ = —iy,;’ and for the modified Bessel functions
we have defined the notation

§(2) = 2Fy (2)+ () (5222 2 - 5my = e,) Fy, (2),
(4.7)

with F = I, K. The second term on the right-hand side of
(4.6) comes from the poles of the function f(z) in the right
half-plane. For an analytic function f(z) the formula (4.6)
is reduced to the one in [31].

In the problem at hand the function f(z) is given by
(4.5). For this function the integrand in the last term of (4.6)
vanishes for x < m,,. The residue term at z = 0 vanishes as
well. The part in (yy);, coming from the first integral on
the right-hand side of (4.6) presents the corresponding

quantity in the boundary-free geometry, denoted here as

<l/_/l//>§%). As aresult, (W), is presented as (3.8), where for

the boundary-induced contribution (3.8) one gets
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oot o Az (A ]
—/1— (2 Tzzlm{ ”’(p:)) (w20 + )T = iA(u + sm) 1} (' r)
+ (2(2n+ DT = id(p — ))1,% Y (uﬁﬁr)]}. (4.8)

The further transformation is similar to that for (3.18) with the representation

_omy 1 /dI Ky, (xa) x L Bsm . ism
W) = ”4,02 I, (xa) ez/som_ﬂ) T = ) 13, o)+ (U T, (@)

__e(zﬂ TZZIm{ 7, (u,,a) ( (2n—|—1)T—i(pt+sm))l%j(unr)—|—(Jr(2n+l)T—i(ﬂ—sm))llz}jJrEj(unr)]},

0
(4.9)
where the notation with tilde is defined in accordance with (4.2).

Summing the contributions from 4 = 4 and 4 = —, we can see that the sum of the first terms on the right-hand side of

(4.9) gives —<W>£’;2. As a consequence, for the boundary-induced contribution (3.21) one finds

)(®) _2r Kﬁl . 2 . 2
— ZZO Iﬂ - ( m(2n+ )T —i(u+sm))I5 (u,r)+(z2n+ 1T —i(u—sm))lz (u,r)] ¢, (4.10)
j n

where u,, is defined by (3.20). The total FC is presented as (3.25). An equivalent representation for the notation in (4.10) is

given by
Fﬁj(u) = 6puFy o (u) + <i\ Ju? —m2 + sma> Fp (u). (4.11)

Similar to the case of the exterior region, we can see that <1/71//>(b) is an even function under the simultaneous reflections
a— —a, 4 — —pu. In (4.10), the ratio of the modified Bessel functions can be presented in the form

Ky(x) Wi () + [in2n+ DT + gla/z
Tﬂj(z) N [Iﬂj( 72)+ Iﬁj+€j(z)] + 2smly, (Z)I/;j+€j (2)

: (4.12)

where z = u,a and W}'} | (2) is defined by (3.24).
The FC in the case y = 0 is considered in Appendix A. Though the corresponding procedure for the evaluation of (4.10)
differs from what we have described above for u # 0, the final result can be obtained from (4.10) taking the limit 4 — 0:

<w>(b>__Ezz{ﬂanﬂmm[w} 12 () + 2, (1)) —smRe {M

1 (ug,a) 15 (ug,a)

:| [1[2jj<u0nr) _Iz’jJrej(uOnr)} }7
(4.13)

with ug, from (3.33). Note that now the arguments u,a are real and the imaginary and real parts in (4.13) are directly
obtained from (4.12). For a massless field the expression for the boundary-induced contribution in FC is reduced to

© 2 (
—\(b) ﬂ + ﬂ+e,(ur)
(py) sz; ; )+ /}+ej( ua)

J

, (4.14)
u=nr(2n+1)T
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FIG. 3.

and it is negative. In this special case the boundary-free FC
is zero and the total FC is negative as well. For 2|ag| <
1-1/g the FC given by (4.14) is a monotonically
decreasing function of the radial coordinate. That is not
the case for 2|ay| > 1 — 1/q when one of the orders of the
Bessel modified functions can be negative.

Now we return to a general case of the chemical potential
and the mass and consider the behavior of the boundary-
induced FC (4.10) near the cone apex corresponding to
small values of r. Redefining the summation variable
J +ng — j, the order f3; of the modified Bessel function
is expressed in terms of «. It can be seen that in the limit
r — 0 the dominant contribution to the FC (4.10) comes
from the mode with j = —sgn(a,)/2. Expanding the Bessel
modified function for small values of the argument, to
leading order we get

(py) ) ~ —

qT(r/2)q 2qlag|—1 ©
(g + 1)/2— qlao)) 21‘“{ w2n+ 1T

Ky, (u,0)

— i = sgn(ap)sm)]u” (
/jj u,a

L

where f8; = q(1/2 — |a|) + sgn(ay)/2. As seen, the boun-
dary-induced FC vanishes on the cone apex for 2|ay| <
1 — 1/4q and diverges for 2|ag| > 1 — 1/g. The divergence
in the latter case is related to the contribution of the
irregular mode at the cone apex. Note that, near the apex,
for a massive field the FC in the boundary-free geometry is
dominated by the vacuum part and the latter behaves as 1/r
[14]. Similar to the case of the exterior region, it can be seen
that for points near the boundary, under the assumption
T(r—a) < 1, the leading term in the asymptotic expan-
sion over the distance from the boundary coincides with
that for the vacuum FC and does not depend on the planar
angle deficit and on the magnetic flux. It diverges
like 1/(a —r)%.

— 77T

al<yys>®

The same as in Fig. 1 for the interior region with fixed r/a = 0.5.

In the expressions for the FC in the exterior and
interior regions, for the modified Bessel functions
Fp (u) =15 (u), K (u), we have introduced the notations

Fj4 (u) and Fj (u). These notations are combined in a
B B
single expression

Fé’j)(u) = uF},/_(u) + [ﬂ(i\ [u? —m? —‘,—sma> —ejﬂj} Fﬂi(u)
=06puFy . (u )—|—i’]( i/ u? —m2+sm )Fﬁj(u),

(4.16)

with 7 = +1. For the normal to the boundary one n, = nol,
where 7 = 41 in the interior region and 7 = —1 in the

exterior region, and Fgrl)( )=Fp (u), Flgjl)(u) = Fy,(u).

In Fig. 3, for a massless field with y = 0, we have
presented the dependence of the FC inside a circular
boundary on the parameter a, and on the temperature
for fixed r/a = 0.5. For the left panel Ta = 0.5 and in the
right panel the full and dashed curves correspond to oy = 0
and oy = 0.4, respectively. In both the panels, the numbers
near the curves correspond to the values of g. Again, we see
that for a planar geometry, ¢ = 1, the dependence of the FC
on the magnetic flux is weak.

In Fig. 4 we display the FC inside a circular boundary
as a function of the radial coordinate and of the parameter g.
In the left panel the numbers near the curves are the values
of the parameter ¢, the full/dashed curves correspond to
ay=0/ay = 0.4, and the graphs are plotted for Ta = 0.5.In
therightpanel r/a = 0.5, Ta = 0.5 for full curves and Ta =
0.25 for dashed curves. The numbers near the curves
correspond to the values of a. As it was mentioned above,
in the case 2|qy| > 1 — 1/¢ the FC in the interior region is
not a monotonic function of the radial coordinate.

In the numerical examples above we have considered the
case of a massless field. It is of interest to consider the effect
of the mass on the FC. For a massive field the FC will
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FIG. 4. The same as in Fig. 2 for the interior region. For the right panel we have taken r/a = 0.5.

depend on the parameter s. For a field with zero chemical
potential, in Fig. 5 we have plotted the dependence of the
FC on the mass outside (left panel) and inside (right panel)
a circular boundary for a conical space with ¢ = 2.5 and for
the magnetic flux corresponding to y = 0.4. The full and
dashed curves correspond to s =1 and s = —1, respec-
tively, and the numbers near the curves are the values of T'a.
For the left and right panels we have taken r/a = 1.5 and
r/a = 0.5, respectively. As is seen, the influence of the
mass on the FC is different for the cases s = 1 and s = —1.
In the first case the absolute value of the FC decreases with
increasing mass, whereas in the second case the absolute
value of the FC takes its maximum for some intermediate
value of the mass parameter. Note that Fig. 5 presents
the boundary-induced contribution. For a massive field,
there is also a nonzero boundary-free part discussed in [14].

In order to see the importance of the effects of a boundary
on the finite temperature FC, let us compare the boundary-
induced FC, depicted in Fig. 5 with the corresponding

0.00

-0.05

quantity in the boundary-free conical space. First of all, we
note that for a massless field the FC in the boundary-free
geometry vanishes and the nonzero FC is a purely boundary-
induced effect. In this case, the influence of the finite
temperature on the FC is seen from Figs. 1 and 3. For a
massive field the boundary-free part of the FC is given by
Eq. (3.28) with separate contributions from Egs. (3.29) and
(3.30). This part has opposite signs for the cases s = 1 and
s = —1. In Fig. 6 we have displayed the boundary-free FC
(full curves) for the case s = 1 as a function of the field mass.
The left and right panels correspond to r/a = 1.5and r/a =
0.5 and in the numerical evaluation we have taken g = 2.5
and ay = 0.4 (the same as in Fig. 5). Similar to Fig. 5, the
numbers near the curves correspond to the values of Ta. The
dashed curves correspond to the quantity a” () 1(\(,)[), where
the FC (1/71//><M0> in (2 + 1)-dimensional Minkowski space-
time, in the absence of the magnetic flux, is given by (3.29)

with s = 1. The FC <1/71//)(M0) does not depend on the radial

al<py>®

-0.15
0 1 2 3 4 0 1 2 3 4
ma ma
FIG. 5. Boundary-induced FC as a function of the field mass in the case of a zero chemical potential in the exterior (left panel,
r/a = 1.5) and interior (right panel, »/a = 0.5) regions. The full and dashed curves correspond to s = 1 and s = —1, respectively. The

numbers near the curves are the values of T'a and for remaining parameters we have taken ¢ = 2.5, ag = 0.4.
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FIG. 6. Boundary-free part in the FC (full curves) versus the field mass in the case of a zero chemical potential and for the field with
s = 1. The left and right panels are plotted for r/a = 1.5 and r/a = 0.5, respectively. The dashed curves present the FC in (2 + 1)-
dimensional Minkowski spacetime when the magnetic flux is absent. The values of the remaining parameters are the same as those for

Fig. 5.

coordinate and the dashed curves on the left and right panels
coincide. At large distances from the cone apex the relative
contribution of the topological part is small, whereas near the
apex it is essential. As seen from the graphs, the topological
contribution may change the sign of the FC (the graph for
Ta = 0.25 on the left panel and the graphs for Ta = 0.25,
0.7 on the right panel). Now, comparing the graphs in Figs. 5
and 6, we see that, for the values of the parameters used in the
numerical evaluation, the boundary-induced contributions to
the finite temperature FC are essential and they may
qualitatively change the behavior of the FC.

The geometry inside a circular boundary, discussed in
this section, can be considered as a limiting case of a
conical ring with a fermionic field localized in the region
b < r < a and obeying the MIT bag boundary condition
(2.6) on the edges r=a, b. Similar to the limiting
transition a — 0, discussed in the previous section, we
expect that for fixed r and |ay| # 1/2, the contribution of
the boundary at r = b to the FC will tend to zero in the limit
b — 0. Consequently, for Th, mb, b/r < 1, the results of
this section will approximate the FC in conical rings
threaded by a magnetic flux.
|

K" (u,a)

0 (n)
<w>£”’")<u>:—Z—TZZIm{%Kn(m1>T—i<u+sm>>1,%j<unr>+<n<zn+1>T—i<u—
¢O i n=0 Iﬁﬂ (

7 (u1,0)

in the interior region and

)

K

We could consider the boundary condition

(1 =in,y")w(x) =0, (4.17)
that differs from (2.6) by the sign of the term containing the
normal to the boundary. As it has been already noticed in
[34], this type of condition is an equally acceptable one for
the Dirac equation. The mode functions for the case of
boundary condition (4.17) are obtained from the mode
functions (2.13) and (2.18) by changing the signs of the
terms with \/z> + m2 and sm, in the definitions of the
notations (2.16) and (2.20). The final formulas for
the boundary-induced contribution in the FC, (jy)®),
are obtained from (3.22) and (4.10) by changing the

signs of the terms with \/u*> — m2 and sm,, in the notations
(3.5) and (4.2). Note that this corresponds to the change
n — —n in (4.16). Let us denote the boundary-induced
FC for given s and p in the cases of the boundary condi-
tions (2.6) and (4.17) by ()" (u) and ()" (),
respectively. The corresponding expressions can be written
in combined form

s )]

(4.18)

© 1! u,a
() <u>=—fb—fzzlm{%umm1>T—i<u+sm>>1<;j<unr>+<n<2n+ 1>T—i(u—sm>>1<,%,+€j<unr>}}
Jj n=0 B u

(una)

J
B

(4.19)
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in the exterior region. Here 5 specifies the boundary
condition: 7 = +1 for (2.6) and n = —1 for (4.17). On
the basis of these formulas, by taking into account the
relations

(4.20)

we see that

_ b,—
()Y

(1) = =) % ().
This gives the relation between the boundary-induced FCs
for the boundary conditions (2.6) and (4.17). In particular,
for a massless field with zero chemical potential the FC is
given by (3.34) and (4.14) for the boundary condition (2.6)
and by the same expressions with the opposite signs for the
condition (4.17).

(4.21)

V. FC IN PARITY AND TIME-REVERSAL
SYMMETRIC MODELS

As was mentioned above, in (2 + 1) dimensions one has
two inequivalent irreducible representations of the Clifford
algebra. These representations can be realized by two sets
of 2 x 2 gamma matrices y’(‘s) = (¥°, yl,y(zs) = —isy%/r),
where y° and y' are given by (2.3) and s = £1. The
representation with s = +1 corresponds to y? in (2.3). In
separate representations with given s, the mass term in the
Lagrangian density L, = l/_/(x)(l']//(ls)Dﬂ — m)y () breaks the
parity (P) and time-reversal (7') invariances of the fer-
mionic model. In the absence of magnetic fields, P- and 7-
invariant models in (2 + 1) dimensions can be constructed
considering a set of two fields y () and y ;) with the
Lagrangian density L = >, L,. First let us consider the
case when both the fields obey the boundary condition (2.6)
on the circle r = a:

(1 + inr( ) Jw s (x) = 0. (5.1)

We can formulate the model in terms of new
fields y(,) defined as y[,, =w .1 and 1//’(_1):7/07/11//(_1>.
The Lagrangian density 1is presented as L =
> s—t1 Wy (iY" Dy, — sm)y, with the gamma matrices
defined by (2.3) and the Dirac equation for the separate

fields is in the form (2.2). The boundary conditions for new
fields take the form (1 + isn,y* )y (x) = 0. Introducing
4-component spinor ¥ = (y{, ). y/’(_l))T and 4 x 4 Dirac
matrices y’(‘4) =03 @y, with 03 = Qiag(l, —1), the
Lagrangian density is written as L = ‘P(iy@)D” -m)¥
with the boundary condition (1 + inﬂy’(‘4))‘11(x) =0 on
r = a. The latter is the bag boundary condition for the
4-component spinor.

For the FC corresponding to the field y, one has
W) = S<ll_/(x)wl(s)> and for the total FC we get

<LP‘P> = Z <l/_/(s)l//(s)> = ZSW/ES)W/(XQ'

s==+1 s==+1

(5.2)

The expressions for the separate terms in the last sum of
(5.2) are obtained from the results of the previous sections.
The field 1;/( ) obeys the same equation and the boundary

condition [the condition (2.6)] as the field w(x) in Sec. II
with s = +1 and the boundary-induced contribution to the
corresponding FC in the interior and exterior regions is
given by (4.18) and (4.19) with s = 1 and n = +1. The
field y_,, obeys the same equation as the field y(x) with
s = —1 and the boundary condition (4.17). The corre-
sponding boundary-induced contribution to the FC is given
by (4.18) and (4.19) with s = —1 and # = —1. By taking
into account the relation (4.21) we see that

@) ) = =@ ywi )P (=n). (53)

Hence, the boundary-induced contribution to the total FC is
presented in the form

) = S ) ). (54)

I==%1

where (@, y{, 1)) () is given by (4.18) and (4.19) with
and n=+1. By taking into account that
<1/7’( +1)'//I( H))(b) (1) is an even function under the trans-

s=1

formation @ — —a, u — —u, from (5.4) it follows that the
FC (P¥P)®) is an even function of u and & separately. In the
case of the zero chemical potential, =0, we
get (B)) =25 w0

We could consider the case when the fields y ) with
s =41 and s = —1 obey different boundary conditions:
(1+ isnﬂy’(‘s>)y/(s) (x) = 0, r = a. This type of problem has
been discussed in [35] for graphene rings, where the
parameter s corresponds to valley degree of freedom
(see below). In this case, the transformed fields z//’m(x)
obey the same boundary condition (1 + in,y* )y (x) = 0.

/

The corresponding condensate <1/7(_Y)w’(x>>(h> is given by
(4.18) and (4.19) with = +1 and the total FC is obtained

by using the last relation in (5.2). For a massless field one
/ ! !

has <1/7’(_1)z//(_1)>(b) = (1/‘/(+1)1//(+1))(b) and the total FC
vanishes (P¥)(?) = 0.

Among the condensed matter realizations of the fer-
mionic model we have considered are graphitic cones
(carbon nanocones in another terminology). The long-
wavelength properties of the corresponding electronic
subsystem are well described by a set of two-component
spinors (y(41), ¥(-1)), obeying the Dirac equation with the
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speed of light replaced by the Fermi velocity of electrons
(see, e.g., [5]). These spinors correspond to the two
different inequivalent points K, and K_ at the corners
of the two-dimensional Brillouin zone for the graphene
hexagonal lattice. The parameter s = 41 in the discussion
above corresponds to valley degree of freedom in graphene.
The components of the separate spinors y () give the
amplitude of the electron wave function on triangular
sublattices A and B of the graphene hexagonal lattice.
Graphitic cones are obtained from a planar graphene sheet
if one or more sectors with the angle z/3 are excised and
the remainder is joined. The opening angle of the cone is
given by ¢y = 2z(1 — n./6), where n. = 1,2, ...,5 is the
number of the removed sectors. The graphitic cones
with these values of opening angle have been experimen-
tally observed [36]. The electronic structure of graphitic
cones was investigated in [37-43]. Note that the graphitic
cones have been observed in both the forms as caps
on the ends of the nanotubes and as free-standing structures
(see, for instance, [38] and references therein). The
geometry outside the circular boundary, which we have
considered above, corresponds to the continuum descrip-
tion of graphitic cones with a cut apex. As was discussed in
[37], that can be done with acid or with an scanning
tunneling microscope. For even values of 7, the periodicity
condition for 4-spinor ¥ = (y(4), w(_l))T under the rota-
tion around the cone apex has the form ¥(z,r, ¢ + ¢y) =
—cos (zn./2)¥(t,r,¢) and it does not mix the spinors
¥(+1) and y(_y). For n. =2 this corresponds to the con-
dition we have discussed in the preceding sections and the
corresponding FC is obtained by combining the contribu-
tions from s = 41 and s = —1 in the way we have described
above. For n. = 4 one has an antiperiodic boundary con-
dition and for the parameter y in (2.23) we get y = 1/2. In
this case the FC for separate fields y () are obtained from the
formulas given in the preceding sections by the replacement
a—a+1/2. By a gauge transformation this can be
interpreted as a shift in the magnetic flux. Note that the
Dirac mass m in the formulas given above is expressed in
terms of the energy gap A in graphene by the relation
m = A/v2%, where v ~ 7.9 x 107 cm/s is the Fermi veloc-
ity of electrons. Depending on the gap generation mecha-
nism, the energy gap varies intherange 1 meV S A <1 eV.

VI. CONCLUSION

We have considered the combined effects of finite
temperature and circular boundary on the FC in a (2 + 1)-
dimensional conical spacetime with an arbitrary value of
the planar angle deficit. Two types of boundary conditions
were used. The first one corresponds to the MIT bag
boundary condition and the second one, given by (4.17),
differs by the sign in front of the term containing the normal
to the boundary. In two-dimensional spaces there exist two
inequivalent representations of the Clifford algebra and we

have presented the investigation for both fields realizing
those representations. For the evaluation of the FC, the
direct summation over a complete set of fermionic modes is
employed. In the case of the bag boundary condition those
modes outside and inside the circular boundary are given
by (2.13) and (2.18). In the region inside the circular
boundary the eigenvalues of the radial quantum number y
are roots of Eq. (2.19). They are given implicitly and for the
summation of the corresponding series in the mode sum we
have generalized the formula from [31] for functions
having poles in the right-half plane. That allowed us to
present the FC in the form where the explicit knowledge of
the eigenvalues for y is not required.

The FCs in both the exterior and interior regions are
decomposed into boundary-free and boundary-induced
contributions, as given by (3.25). The boundary-free geom-
etry has been discussed in [14] and we were mainly
concerned with the effects induced by the boundary. For
a general case of a massive fermionic field with nonzero
chemical potential, the boundary-induced contributions in
the exterior and interior regions are given by expressions
(3.22) and (4.10). They are periodic functions of the
magnetic flux with the period equal to the flux quantum
and even functions under the simultaneous reflections
a — —a, pu— —u. The expressions for the boundary-
induced FCs are further simplified for a field with zero
chemical potential [see (3.32) and (4.13)]. For a massless
field they are reduced to (3.34) and (4.14). The dependence
of the FC on the magnetic flux becomes weaker with
decreasing planar angle deficit. For points near the boun-
dary, the contribution of the high-energy modes dominates
in the expectation values and the leading term in the
asymptotic expansion over the distance from the boundary
coincides with that for the vacuum FC. In this region the
effects of finite temperature, of planar angle deficit, and of
magnetic flux are weak. As expected, at large distances from
the boundary the FC is dominated by the Minkowskian term

(1;'/1//>1<\2), given by (3.29). For Tr > 1 the boundary-induced

FC is exponentially suppressed. Similar behavior takes
place for the topological part in the boundary-free FC.
The behavior of the boundary-induced FC near the cone
apex critically depends on the magnetic flux and on the
planar angle deficit. It vanishes on the cone apex for 2|ag| <
1 — 1/g and diverges for 2|ay| > 1 — 1/¢. The divergence is
related to the presence of the mode irregular at the cone apex.
For a fixed distance from the boundary and at high temper-
atures the FC is dominated by the Minkowskian part.

We have also considered the FC for the boundary
condition (4.17) that differs from the condition (2.6) by
the sign of the term with the normal to the boundary. The
corresponding formulas are obtained from those for the
condition (2.6) by using the relations (4.21). In the special
case of a massless field with zero chemical potential the
FCs for the boundary conditions (2.6) and (4.17) differ by
the sign only.
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For a fermionic field realizing a irreducible representa-
tion of the Clifford algebra, the mass term breaks the P and
T invariances. In order to construct P- and T-invariant
models one can combine two fields corresponding to
inequivalent representations. If both of the fields obey
the boundary condition (2.6), the boundary-induced con-
tribution in the total FC for this type of model is obtained
from the results discussed in Secs. III and IV by using the
relation (5.4) and it is an even function of the chemical
potential and of the parameter a. Another possibility
corresponds to the situation when the fields in different
irreducible representations obey boundary conditions with
different signs of the term involving the normal to the
boundary. In this case the total FC is obtained with the help
of the first relation in (5.4) where the separate terms are
directly taken from the results in Secs. III and IV for the
boundary condition (2.6). For a massless field the parts
(J/?S)q/’(s)ﬂb) do not depend on the parameter s and the total

FC is zero. From the results presented in the present paper
the FC can be obtained in graphitic cones with edges for the
values of the opening angle ¢, = 2z(1 —n./6) corre-
sponding to even values of n,. (the number of the sectors
with the angle 7/3, excised from planar graphene).
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[(E + Asm)Hy (yr) -

(E — Asm)

[(iz(2n+ 1)T + ﬂsm)K%j(uOnr) +

APPENDIX A: ZERO CHEMICAL POTENTIAL

In this Appendix we consider the transformation of the
mode-sum for the FC in the case of the zero chemical
potential, u = 0. First we consider the exterior region, r > a.
The boundary-induced contribution in the thermal part of the
FC is given by the expression (3.9) with y = 0. Now the
poles of the integrand are located on the imaginary axis:

E=E,=iz(2n+ 1T, n=0,+1,42,..., (Al)
with n =0,+1,42,.... For the values of y =y, corre-
sponding to the poles (A1) in the upper half-plane one has
n=20,12,...,

Yn = iu()na (AZ)

with u, defined in (3.33), and for the poles in the lower half-
plane we get E%):E@:l, Ya =7, n=...—2,—1. As
the next step, we rotate the integration contour in (3.9) by the
angle z/2 for I = 1 and by the angle —z/2 for [ = 2. The
poles y,, n=0,%1,£2,... are avoided by semicircles
C,(7,) in the right half-plane with centers at y =y, and
with small radius p. We get the following terms: the sum of
the integrals over the straight segments of the positive and
negative imaginary semiaxes between the poles y, and the
sum of the integrals over the semicircles C,(y,). In the limit
p — 0 the sum of the integrals over the straight segments
gives the principal values of the integrals over the positive
and negative imaginary semiaxes (denoted here as p.v.). The
integrals over the intervals (0, im) and (0, —im) cancel each
other, whereas the integral over (—im, —ico) is the complex
conjugate of the integral over (im, ico). For the sum of the
integrals along the semicircles C, (yn), n=0,1,2,...,
one gets

r/E
ePE+ 1

1)2
Hy)? (rr)]

(iz(2n + 1)T — Asm)K?> brve; (tg,r)]s (A3)

where the notations for the modified Bessel functions with the bar are defined in accordance of (3.14) with

V (e"?ug,a)? +m2 = in(2n 4 1)Ta. It can be seen that the sum of the integrals for C,(y,) with n = ...,

-2,—11s

the complex conjugate of the right-hand side of (A3). Introducing the modified Bessel functions in the integral over

(im, ic0) we get

1% (xa)

Aism

o ®) — 4L ® X s
YY)y, = A—— p.V./ dxlm{ . - -
s e

Sl Sl

/)’ (MOna)

(=) i+ (1 G2 i)

[(z(2n + 1)T - /Iism)K%,j(uo,,r)—}—(ﬂQn + )T + ﬂism)K/Z,j+€j(u0nr)] } (A4)
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Now, by using the relations 7, 1) =17 (2), Kk ( ) =

the right-hand side of (A4) to the sum <1/71//)T =3 l:i<l/_/l//>(le) give

I'{(/f)*

(z), we can see that the contributions from the first term on

—<1/71//)522 and one finds

() — _2_TZ Z Im{M [((2n + )T = ism)Kj (ug,r)+(x(2n + 1T + ism)K%j+€j(u0,lr)]} — () 8.

For the total boundary-induced FC (3.25) the last term on
the right of (A5) is canceled by the boundary-induced part
in the vacuum FC, (z/"/l//)y;g, and we get the representation
(3.32) for the boundary-induced FC in the case of zero
chemical potential. The corresponding formula is also
obtained from (3.22) in the limit y — O.

Now let us consider the interior region, r < a. The
thermal contributions to the FC coming from particles and
antiparticles are given by (4.3) with u = 0. For the zero
chemical potential the procedure we have used to obtain the
summation formula (4.6) from the generalized Abel-Plana
formula should be modified by taking into account that the
function in the integrand has poles z = +iy, = *iug,a,
n=0,1,2,... on the imaginary axis, corresponding to the

zeros of efVE/@+m L1 In the part of the generalized
Abel-Plana formula corresponding to the integral along the
imaginary axis these poles are avoided by the semicircles

C,(y,)- In the limit p — 0 we get

ZT/’/ 7,1 7]1)

ey a ()
= [t + e e

J

@ Ky ()
—inm, /jf
_2ZR{ P Res Gz >]
n=0 I/’, ( ) On
2 e —inp; i i(;ﬂ/)(x)
—;p.V.A dee{e Pi f (xe /2)%} (A6)

Note that in applying this formula to the FC the term
coming from the poles iu,, is present for both 4 = + and
A = —, whereas in (4.6) the pole term is present only in case
Au > 0. Further transformations of the FC are similar to

those for the exterior region. In the region r < a, the

expressions for <1/71//>(le> and () (Tb) are obtained from (A4)

and (A5) by the replacements I 2 K, I — I, and K — K.
We see that the expression for (py), is also directly
obtained from (4.10) in the limit 4 — O.

(AS)

APPENDIX B: ZERO TEMPERATURE LIMIT

In this section we consider the zero temperature limit of
the expressions for the FC obtained above. First of all for
lu| < m from (2.11) it follows that limy_q (fw) = (W),
and the FC coincides with that for the vacuum state. In the
case |u| > m and for the exterior region one gets

EnA

(E-+asm)gy; (va,yr)—(E—ism)g); .. (va.yr)
132 (va) + 7 (va)

lim () = () yae +

14
d s
T—0 7/E

X

s

(BI)

where 4 = + foru > 0and A = — for u < 0 (u = A|p|). For
the interior region

() = (P9 e ¢ ZZTﬁ rDa).  (B2)
with the same A as in (B1) and /,, defined by
2 2
7’§1) <\ -m? < VE'.I)WH' (B3)

The last terms in (B1) and (B2) come from particles for
u > 0 and antiparticles for y < 0. They occupy the states
with energies E < |u|.

Now let us consider the limit 7 — O for the boundary-
induced contribution of the FC in the exterior region on the
base of the formula (3.22). For small temperatures the
dominant contribution to the sum over n in (3.22) comes
from large values n and, to the leading order, we can replace
the summation by the integration. The leading term does
not depend on temperature and is presented as

) - Zlm{/ L x%f(»:;))

x [(x = ism)K%j(ur) + (x4 ism)K;/_Jrej(ur)] },

(B4)
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where u = (x*> + m?)!/?. The integral on the right-hand
side can be written as the sum of two integrals:
IS “dx = [ dx+ J°,, dx. The part in the FC with the

integral [ dx coincides with the boundary-induced FC in
the vacuum state. For |u| < m, introducing in the integral
ffiﬂ dx the integration variable y = —ix, we can see that the
corresponding integral under the imaginary sign is real and,
hence, the contribution of the integral ff’iﬂ dx to the FC is
(b)

For |u| > m, we decompose the second integral as
SO dx = [Fimdx + [, dx, where 2 is defined by the
relatlon u = Alp|. The contribution of part with the integral

,um dx to the FC is zero by the same reason as that for the
integral %, dxin the case [u| < m. In the integral [~/ dx
we 1ntr0duce y in accordance with x = —Aiy and then pass
to a new integration variable z = \/y*> — m?. Introducing
the Bessel and Hankel functions instead of the modified
Bessel functions, the limiting value of the boundary-

zero. Consequently, we get limr_o ()" = () vac. induced FC is presented in the form
|
7(4)
Iy, (za) Asm Asm
CRCETIES Sy P 1N (RN R O (R T R
T_)0<‘//‘//> C 24)0 I:I(I"D(za) Zem2) P (z7) 2+ m? /5,+e,( )

b
(BS)

where y = A|u|, | = 1for A = +, 1 = 2 for A = —, and we use the notation (2.16). This coincides with the boundary-induced
part obtained from (B1) by using the relation (3.7).

Now we consider the zero temperature limit in the interior region, based on the representation (4.10) for the boundary-
induced part. To leading order, we replace the summation over n by integration with the result

1 00—i i{ )
;iir(l)<1/_/w>(h) == d Im{/_iﬂ " dx 72((:5)) [(x — ism)lf,/_(ur) + (x+ ism)lf,/_Jrel_(ur)}},

(B6)

1/2

where u = (x> + m?)'/2. Similar to the case of the exterior region, we split the integral as [~ “dx = [ dx+ ffiﬂ dx. The

part in the FC corresponding to the integral over [0, co) gives <l//l//>vac [see (4.1)]. For |u| < m and for the integral over
[—iu, 0], in the arguments of the modified Bessel functions u is positive. Introducing a new integration variable y = ilx, we
see that the integral is real and does not contribute to (B6). Hence, for |u| < m, again we get limy_,o () ?) = <1/7y/>‘<,22. In

the case || > m, the nonzero contribution comes from the part of the integral over [—iu, —Aim]. In addition we should take
l,, [defined by (B3)] in
that segment of the imaginary axis. Passing to a new integration variable z = Ai(x> + m?)!/2, we avoid possible poles

into account that the integrand in (B6) may have poles corresponding to ua = —Aiyy_ll) ,I=1,2,...,

= yﬁ’? /a by small semicircles C,,(y;f? /a) in the right-half plane with a small radius p and with the center at 7 = yﬁ'll) /a.In

the limit p — 0, the sum of the integrals over the straight segments between the poles gives the principal value of the integral
and we get the following representation:

Kj (ua)
b
lim () (?) =

# m I” .
vac_— Im p-v. / dz — / dZ:|Z~7
-0 Z { { Z ¢, (") /a) Iy (ua)

Asm Asm
. 1+>zz, ur +<1_>12 ) ] }
K 22 +m? p ) VZ +m2) P (ur) w=—1Jiz

By using the relations jl(,i)’(w) =2/ [T;’? (w)Jp,(w)] and Y/(;? (x) = 2/[mJ g (x)], valid for w = 75/11) , it can be shown that the

integral over C, (yu,) /a) is equal to AizT (/1) (w) (w)/(2a?). Introducing in the integral over [0, \/u?> — m?] the Bessel and

(B7)

Hankel functions, the integrand becomes H 1) (za)g(za)/ J (za) with the real part g(za). As a result, the zero-temperature

limit is presented as

\ 2-m?
®) — (g —
lim () = (gy )t — 5 le / dz g(za) H ZZTﬂ, YiDari)-

(B8)
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From (4.4) it follows that g(za)/a does not depend on a. By taking into account that for the boundary-free geometry one has

lim () ©) = ()% + A

T-0

2¢0 a

Z/o " dz g(za) (89)

we see that in the zero-temperature limit for the total FC the integral term in (B8) is canceled by the last term in (B9) and the
formula (B2) is obtained. Hence, we have shown that both the representations for exterior and interior FCs give the same

zero-temperature limit.
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