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We investigate the edge effects on the finite temperature fermionic condensate (FC) for a massive
fermionic field in a (2þ 1)-dimensional conical spacetime with a magnetic flux located at the cone apex.
The field obeys the bag boundary condition on a circle concentric with the apex. The analysis is presented
for both the fields realizing two irreducible representations of the Clifford algebra and for the general case
of the chemical potential. In both the regions outside and inside the circular boundary, the FC is
decomposed into the boundary-free and boundary-induced contributions. They are even functions under
the simultaneous change of the signs for the magnetic flux and the chemical potential. The dependence of
the FC on the magnetic flux becomes weaker with decreasing planar angle deficit. For points near the
boundary, the effects of finite temperature, of planar angle deficit, and of magnetic flux are weak. For a
fixed distance from the boundary and at high temperatures the FC is dominated by the Minkowskian part.
The FC in parity and time-reversal symmetric (2þ 1)-dimensional fermionic models is discussed and
applications are given to graphitic cones.
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I. INTRODUCTION

The investigation of field theoretical models in spatial
dimensions D other than 3 is motivated by several reasons.
Many high-energy theories unifying physical interactions
are formulated in higher-dimensional spaces, D > 3, with
compactified extra dimensions. Examples of these kinds of
models include Kaluza-Klein theories, supergravity, and
various types of string/M theories. In recent years the
models with D < 3 has attracted a great deal of attention.
Because of lower dimension they are easier to handle and
are treated as simplified models in particle physics. The
models in dimensions D < 3 appear as high temperature
limits of D ¼ 3 field theories and also as effective theories
describing the long-wavelength dynamics of excitations in
condensed matter systems [1–4]. The examples for these
kinds of systems include graphene made structures (such as

a graphene sheet, carbon nanotubes, nanoloops, and nano-
ribbons), topological insulators, Weyl semimetals, and
high-temperature superconductors. In the continuous limit,
the long-wavelength properties of these systems are well
described by the Dirac equation for fermionic fields living
in (2þ 1)-dimensional spacetime with the Fermi velocity
instead of the velocity of light [5–7]. This offers the
remarkable possibility to probe field theoretical effects in
condensed matter systems. Interesting features in (2þ 1)-
dimensional models include fractionalization of quantum
numbers, the possibility of the excitations with fractional
statistics, flavor symmetry breaking, and parity violation. In
the corresponding gauge theories, the presence of topo-
logically nontrivial gauge invariant terms in the action
provides an interesting possibility to give masses for gauge
bosons [8,9]. The infrared cutoff induced by the topological
mass term provides a way to solve the infrared problem
without changing the ultraviolet behavior.
In the present paper we investigate the combined effects

of nontrivial topology, induced by a conical defect, and of a
circular boundary on the finite temperature fermionic
condensate (FC) for a massive fermionic field in (2þ 1)-
dimensional spacetime. In order to have an exactly solvable
problem in the region inside the boundary, a simplified
model for the defect will be used with a pointlike core. The
FC is among the most important local characteristics of a
given state for a fermionic field. It carries also important
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information about the global properties of the background
spacetime. The FC plays a central role in the models of
dynamical breaking of chiral symmetry (for chiral sym-
metry breaking in models with nontrivial topology and in
curved specitimes see [10]). The vacuum FC, the vacuum
expectation values of the charge and current densities, and
of the energy-momentum tensor for a fermionic field in the
geometry under consideration have been investigated in
[11–13]. The finite temperature effects for the FC and for
the charge and current densities in a boundary-free (2þ 1)-
dimensional conical space were discussed in [14] (for the
corresponding effects in (3þ 1)-dimensional spacetime
with a cosmic string see [15]).
The (3þ 1)-dimensional analog of the setup we are

going to consider here is the geometry of an infinite
straight cosmic string with coaxial cylindrical boundary.
The combined effects of the topology and boundary
on the properties of the quantum vacuum in that geometry
have been considered for electromagnetic [16–18], scalar
[18,19], and fermionic [20] fields. The Casimir forces
for massless scalar fields with Dirichlet and Neumann
boundary conditions in the geometry of a conical
piston are investigated in [21]. The scalar and electromag-
netic Casimir densities in the presence of boundaries
perpendicular to the string axis are discussed in [22–
26]. Another type of boundary condition on quantum fields
arises for a cosmic string compactified along its axis. The
influence of the compactification on the properties of the
quantum vacuum were investigated in [27].
The organization of the paper is as follows. In the next

section we describe the bulk and boundary geometries and
the field and present complete sets of fermionic modes
outside and inside a circular boundary. By using those
modes, in Sec. III, the FC in the exterior region is evaluated.
It is presented in the form where the boundary-free and
boundary-induced contributions are explicitly separated.
The properties of the latter are investigated in various
asymptotic regions of the parameters. A similar investigation
for the interior region is presented in Sec. IV.We also discuss
the FC for the second type of boundary condition differing
from the previous one by the sign of the termwith the normal
to the boundary. The parity and time-reversal invariant
fermionic models in (2þ 1) dimensions can be constructed
by combining two spinor fields realizing two inequivalent
representations of the Clifford algebra. The FC in this
class of models and corresponding applications to graphitic
cones are discussed in Sec. V. The main results of the paper
are summarized in Sec. VI. In the Appendix Awe describe
the evaluation of the FC for a field with zero chemical
potential and show that, although the evaluation procedure is
different, the final result can be obtained from the corre-
sponding expression for the nonzero chemical potential
taking the zero chemical potential limit. In Appendix B
we consider the zero temperature limit and show that
both the representations for the FC give the same result.

II. PROBLEM SETUP AND THE FERMIONIC
MODES

In this section we describe the bulk and boundary
geometries for the problem under consideration and present
A complete set of fermionic modes outside and inside a
circular boundary. The metric tensor for the background
geometry is given by the (2þ 1)-dimensional line element

ds2 ¼ gμνdxμdxν ¼ dt2 − dr2 − r2dϕ2; ð2:1Þ

with the spatial coordinates defined in the ranges r ≥ 0 and
0 ≤ ϕ ≤ ϕ0. For ϕ0 ¼ 2π this corresponds to the standard
(2þ 1)-dimensional Minkwoski spacetime. In the case
ϕ0 < 2π one has a planar angle deficit 2π − ϕ0 and the
spatial geometry presents a cone with the apex at r ¼ 0. In
what follows, in addition to ϕ0 we will also use the
parameter q ¼ 2π=ϕ0, assuming that q ≥ 1. We will con-
sider the case of a two-component spinor field ψðxÞ
realizing the irreducible representation of the Clifford
algebra. Also we assume the presence of an external
electromagnetic field with the vector potential Aμ. The
field operator obeys the Dirac equation

ðiγμDμ− smÞψðxÞ¼ 0; Dμ ¼ ∂μþΓμþ ieAμ; ð2:2Þ

where Γμ is the spin connection and e the charge of the field
quanta. Here, s ¼ þ1 and s ¼ −1 correspond to two
inequivalent irreducible representations of the Clifford
algebra in (2þ 1) dimensions (see the discussion in
Sec. V below). With these representations, the mass term
violates the parity and time-reversal invariances [8]. In the
coordinates corresponding to (2.1), the gammamatrices can
be taken in the representation

γ0¼
�
1 0

0 −1

�
; γl ¼ i2−l

rl−1

�
0 e−iqϕ

ð−1Þl−1eiqϕ 0

�
; ð2:3Þ

with l ¼ 1, 2.
We consider the vector potential of the form Aμ ¼

ð0; 0; AÞ, where A2 ¼ A represents the angular component
in the coordinates system defined by ðt; r;ϕÞ. For the
physical component of the vector potential one has
Aϕ ¼ −A=r. This corresponds to an infinitely thin magnetic
flux Φ ¼ −ϕ0A located at r ¼ 0. As it will be seen below,
in the expressions for the FC the parameter A enters in the
form of the combination

α ¼ eA=q ¼ −eΦ=ð2πÞ: ð2:4Þ

We decompose it as

α ¼ α0 þ n0; jα0j < 1=2; ð2:5Þ
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with n0 being an integer. As we will see the FC depends
only on the fractional part α0 only.
Now we assume the presence of the circular boundary at

r ¼ a on which the field obeys the MIT bag boundary
condition

ð1þ inμγμÞψðxÞ ¼ 0; r ¼ a; ð2:6Þ

with nμ being the inward pointing unit vector normal to the
boundary. One has nμ ¼ δ1μ and nμ ¼ −δ1μ in the regions
r ≤ a and r ≥ a, respectively. The main objective of this
paper is to investigate the influence of the boundary on the
FC assuming that the field is in thermal equilibrium at
temperature T. The FC is defined as

hψ̄ψi ¼ tr½ρ̂ ψ̄ ψ �; ð2:7Þ

where ψ̄ ¼ ψ†γ0 is the Dirac adjoint and the angular
brackets denote the ensemble average with the density
matrix

ρ̂ ¼ 1

Z
e−βðĤ−μ0Q̂Þ; β ¼ 1

T
: ð2:8Þ

Here Ĥ is the Hamilton operator, Q̂ is a conserved
charge with the related chemical potential μ0, and
Z ¼ tr½e−βðĤ−μ0Q̂Þ�.
Let fψ ðþÞ

σ ðxÞ;ψ ð−Þ
σ ðxÞg be a complete orthonormal set of

the positive- and negative-energy solutions of the field
equation (2.2), specified by a set of quantum numbers σ.

Expanding the field operator ψðxÞ in terms of ψ ð�Þ
σ ðxÞ, the

FC is decomposed as

hψ̄ψi ¼ hψ̄ψivac þ hψ̄ψiTþ þ hψ̄ψiT−: ð2:9Þ

Here,

hψ̄ψivac ¼
X
σ

ψ̄ ð−Þ
σ ðxÞψ ð−Þ

σ ðxÞ ð2:10Þ

is the FC in the vacuum state and hψ̄ψiT� are the
contributions from particles (upper sign) and antiparticles
(lower signs). They are given by

hψ̄ψiT� ¼ �
X
σ

ψ̄ ð�Þ
σ ðxÞψ ð�Þ

σ ðxÞ
eβðEσ∓μÞ þ 1

; ð2:11Þ

where μ ¼ eμ0 and �Eσ are the energies corresponding to

the modes ψ ð�Þ
σ ðxÞ. In (2.10) and (2.11),

P
σ includes the

summation over the discrete quantum numbers and the
integration over the continuous ones. The modes are
normalized in accordance with the standard normalization
condition

Z
d2xrψ ð�Þ†

σ ðxÞψ ð�Þ
σ0 ðxÞ ¼ δσσ0 ; ð2:12Þ

where the radial integration goes over the region under
consideration. The part in the FC corresponding to the
vacuum expectation value, hψ̄ψivac, has been investigated
in [11] and here we will be mainly concerned with the finite
temperature parts hψ̄ψiT�. In order to evaluate these parts

we need to specify the mode functions ψ ð�Þ
σ ðxÞ.

First let us consider the exterior region, r ≥ a. The
corresponding mode functions are specified by the quan-
tum numbers (γ; j), with 0 ≤ γ < ∞, j ¼ �1=2;�3=2;…,
and have the form

ψ ð�Þ
σ ðxÞ ¼ cð�Þ

e eiqjϕ∓iEt

0
@ gð�Þ

βj;βj
ðγa; γrÞe−iqϕ=2

ϵj
γeiqϕ=2

�Eþsm g
ð�Þ
βj;βjþϵj

ðγa; γrÞ

1
CA;

ð2:13Þ

where E ¼ Eσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þm2

p
, ϵj ¼ 1 for j > −α and ϵj ¼

−1 for j < −α,

βj ¼ qjjþ αj − ϵj=2: ð2:14Þ

The function gð�Þ
βj;ν

ðγa; γrÞ, with ν ¼ βj and ν ¼ βj þ ϵj, is

expressed in terms of the Bessel and Neumann functions as

gð�Þ
βj;ν

ðγa; γrÞ ¼ Ȳð�Þ
βj

ðγaÞJνðγrÞ − J̄ð�Þ
βj

ðγaÞYνðγrÞ: ð2:15Þ

Here the notation with the bar is defined as

F̄ð�Þ
βj

ðzÞ ¼ zF0
βj
ðzÞ −

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

a

q
þ sma þ ϵjβj

�
FβjðzÞ

¼ −ϵjzFβjþϵjðzÞ −
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

a

q
þ sma

�
FβjðzÞ;

ð2:16Þ

and ma ¼ ma. The relative coefficient of the linear combi-
nation of the Bessel and Neumann functions in (2.15) is
determined by the boundary condition (2.6). The normali-

zation coefficient cð�Þ
e is obtained from the condition

(2.12) with the radial integration over [a;∞) and with
δσσ0 ¼ δðγ − γ0Þδjj0 . It is given by

jcð�Þ
e j2 ¼ γ

2ϕ0E
E� sm

J̄ð�Þ2
βj

ðγaÞ þ Ȳð�Þ2
βj

ðγaÞ
: ð2:17Þ

In the interior region, r ≤ a, the mode functions are
given as
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ψ ð�Þ
σ ðxÞ ¼ cð�Þ

i eiqjϕ∓iEt

0
B@ JβjðγrÞe−iqϕ=2

ϵj
γeiqϕ=2

�Eþsm JβjþϵjðγrÞ

1
CA: ð2:18Þ

From the boundary condition (2.6) it follows that the
eigenvalues of γ are solutions of the equation

J̃ð�Þ
βj

ðγaÞ ¼ 0; ð2:19Þ

where the notation with tilde for the cylinder functions is
defined as

F̃ð�Þ
βj

ðzÞ ¼ zF0
βj
ðzÞ þ

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

a

q
þ sma − ϵjβj

�
FβjðzÞ

¼ −ϵjzFβjþϵjðzÞ þ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

a

q
þ sma

�
FβjðzÞ:

ð2:20Þ

We denote the positive roots of Eq. (2.19) by γa ¼ γð�Þ
j;l ,

l ¼ 1; 2;…. It can be seen that the modes for the positive
energy solution with j > −α coincide with the modes for
negative energy solution with j < −α if we replace α → −α
(particles replaced by antiparticles).
The normalization constant cð�Þ

i is determined
from (2.12) with the radial integration over [0; a] and
δσσ0 ¼ δll0δjj0 :

cð�Þ2
i ¼ γ

2ϕ0a
E� sm

E
TβjðγaÞ; ð2:21Þ

where we have defined

Tð�Þ
βj

ðzÞ¼
zJ−2βj ðzÞ

z2þðsma− ϵjβjÞðsma�aEÞ∓ z2
2aE

; z¼ γa:

ð2:22Þ

with aE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

a

p
and z ¼ γð�Þ

j;l .
We have determined complete sets of fermionic mode

functions outside and inside the circular boundary with the
boundary condition (2.6) on it. At this point two comments
should be made. The radial functions of the modes are
solutions of the Bessel equation. In the exterior region these
functions are uniquely determined by the boundary con-
dition on the circle r ¼ a. Inside the circular boundary and
for 2jα0j ≤ 1 − 1=q the fermionic modes are uniquely
determined by the normalizability condition and, as
the solution of the Bessel equation, the function JβjðγrÞ
must be taken. In the case 2jα0j > 1 − 1=q and for the
mode with j ¼ −sgnðα0Þ=2 both the solutions with the
functions JβjðγrÞ and YβjðγrÞ are normalizable. The general
solution is a linear combination of these functions. One of

the coefficients is determined from the normalization
conditions of the modes. In order to determine the second
coefficient, a boundary condition on the cone apex must be
specified. Here the situation is similar to that for the region
around an Aharonov-Bohm gauge field. For the latter
problem it is well known that the theory of von Neumann
deficiency indices leads to a one-parameter family of
allowed boundary conditions [28] (see also [29] for a
discussion related to graphene with a topological defect).
The boundary condition for our choice of the modes (2.18)
in the case j ¼ −sgnðα0Þ=2 corresponds to the situation
when the bag boundary condition is imposed on the circle
r ¼ ε with small ε > 0 and then the limit ε → 0 is taken.
The second comment is related to the periodicity con-

dition with respect to the rotation around the apex. The
mode functions (2.13) and (2.18) are periodic with respect
to that rotation: ψ ð�Þ

σ ðt; r;ϕþ ϕ0Þ ¼ ψ ð�Þ
σ ðt; r;ϕÞ. We can

consider a more general quasiperiodicity condition

ψ ð�Þ
σ ðt; r;ϕþ ϕ0Þ ¼ e2πiχψ ð�Þ

σ ðt; r;ϕÞ; ð2:23Þ

with a constant phase 2πχ. The corresponding mode
functions are simply obtained from (2.13) and (2.18) by
the replacement j → jþ χ. The physical results will depend
on A and χ in the form of the combination α̃ ¼ αþ χ ¼
eA=qþ χ. Though the separate terms α and χ are gauge
dependent, the combination α̃ is gauge invariant. The results
for a field obeying the quasiperiodicity condition with the
phase 2πχ are obtained from those given below by the
replacement α → α̃.

III. FC IN THE EXTERIOR REGION

Having specified the mode functions, we start our
investigation for the FC in the exterior region. In that
region, the FC in the vacuum state is decomposed as [11]

hψ̄ψivac ¼ hψ̄ψið0Þvac þ hψ̄ψiðbÞvac; ð3:1Þ
where the FC for the vacuum state in the boundary-free
geometry is given by the expression

hψ̄ψið0Þvac ¼ −
sm
2πr

�X½q=2�
l¼1

ð−1Þl cotðπl=qÞ
e2mr sinðπl=qÞ cosð2πlα0Þ

−
q
π

Z
∞

0

dy
e−2mr cosh y

cosh y
f1ðq; α0; yÞ

coshð2qyÞ − cosðqπÞ
�
;

ð3:2Þ
with [q=2] being the integer part of q=2 and

f1ðq; α0; yÞ ¼ − sinh y
X
δ¼�1

cosðqπð1=2 − δα0ÞÞ

× sinhðð1þ 2δα0ÞqyÞ: ð3:3Þ
For the boundary-induced contribution in the vacuum state
one has
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hψ̄ψiðbÞvac¼−
1

πϕ0

X
j

Z
∞

m
dxx

�
Im

�
ĪβjðxaÞ
K̄βjðxaÞ

�

× ½K2
βj
ðxrÞþK2

βjþϵj
ðxrÞ�

þsmRe
�
ĪβjðxaÞ
K̄βjðxaÞ

�K2
βjþϵj

ðxrÞ−K2
βj
ðxrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−m2
p

�
; ð3:4Þ

where for the modified Bessel functions we use the notation

F̄βjðuÞ ¼ uF0
βj
ðuÞ −

�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2

a

q
þ sma þ ϵjβj

�
FβjðuÞ:

ð3:5Þ

Note that for 1 ≤ q < 2 the first term in figure braces of
(3.2) is absent. Here we are interested in the finite temper-
ature contributions.
Taking into account (2.11) and (2.13), after some

intermediate steps we get

hψ̄ψiT�¼� 1

2ϕ0

X
j

Z
∞

0

dγ
γ=E

eβðE∓μÞþ1

×
ðE�smÞgð�Þ2

βj;βj
ðγa;γrÞ−ðE∓smÞgð�Þ2

βj;βjþϵj
ðγa;γrÞ

J̄ð�Þ2
βj

ðγaÞþȲð�Þ2
βj

ðγaÞ
:

ð3:6Þ

In order to find an explicit expression for the boundary-
induced part, we subtract from (3.6) the corresponding
boundary-free term hψ̄ψið0ÞT�. The expression for the latter is
obtained from (3.6) by the replacements gð�Þ2

βj;ν
ðx; yÞ=

½J̄ð�Þ2
βj

ðxÞ þ Ȳð�Þ2
βj

ðxÞ� → J2νðyÞ with ν ¼ βj and ν ¼ βj þ
ϵj (see [14]). For the evaluation of the boundary-induced
part, we use the identity

gð�Þ2
βj;ν

ðx; yÞ
J̄ð�Þ2
βj

ðxÞ þ Ȳð�Þ2
βj

ðxÞ
− J2νðyÞ ¼ −

1

2

X
l¼1;2

J̄ð�Þ
βj

ðxÞ
H̄ðl;�Þ

βj
ðxÞ

HðlÞ2
ν ðyÞ;

ð3:7Þ

valid for both ν ¼ βj; βj þ ϵj, and with HðlÞ
ν ðxÞ being the

Hankel functions. In this way, for the boundary-induced
parts

hψ̄ψiðbÞT� ¼ hψ̄ψiT� − hψ̄ψið0ÞT� ð3:8Þ

we get

hψ̄ψiðbÞTλ ¼ −λ
1

4ϕ0

X
j

X
l¼1;2

Z
∞

0

dγ
γ

E

J̄ðλÞβj
ðγaÞ

H̄ðl;λÞ
βj

ðγaÞ

×
ðEþ λsmÞHðlÞ2

βj
ðγrÞ − ðE − λsmÞHðlÞ2

βjþϵj
ðγrÞ

eβðE−λμÞ þ 1
;

ð3:9Þ

with λ ¼ �. For the further transformation of (3.9) we will
assume that μ ≠ 0. The case μ ¼ 0 will be considered in
Appendix A.
The integrand in (3.9) has simple poles for

E ¼ EðλÞ
n ≡ λμþ iπð2nþ 1ÞT; ð3:10Þ

with n ¼ 0;�1;�2;…. One has n ¼ 0; 1; 2;… for the
poles in the upper half-plane and n ¼ …;−2;−1 in the

lower half-plane. For the values of γ ¼ γðλÞn corresponding
to the poles (3.10) we get

γðλÞ2n ¼ ½λμþ iπð2nþ 1ÞT�2 −m2; ð3:11Þ
where, again, n ¼ 0; 1; 2;… (n ¼ …;−2;−1) for the poles
in the upper (lower) half-plane. Note that for the poles in
the upper and lower half-planes one has the relations

EðλÞ
n ¼EðλÞ�

−n−1; γðλÞn ¼ γðλÞ�−n−1; n¼…;−2;−1; ð3:12Þ
where the star stands for the complex conjugate.
For the transformation of (3.9) we rotate the integration

contour in the complex plane γ by the angle π=2 for the
term with l ¼ 1 and by the angle −π=2 for the term with
l ¼ 2. For λμ < 0 the thermal factor 1=½eβðE−λμÞ þ 1� has no
poles in the right half-plane and the integral is transformed
to the integrals over the imaginary axis. In the case λμ > 0,
in addition to the latter integrals the residue terms from the
poles (3.11) should be added. In the integral over the
positive imaginary semiaxis we introduce the modified
Bessel functions IνðzÞ and KνðzÞ by using the relations

J̄ðλÞβj
ðeπi=2zÞ ¼ eiπβj=2ĪðλÞβj

ðzÞ;

H̄ð1;λÞ
βj

ðeπi=2zÞ ¼ 2

πi
e−iπβj=2K̄ðλÞ

βj
ðzÞ; ð3:13Þ

where for the modified Bessel functions we use the notation

F̄ðλÞ
βj
ðzÞ¼zF0

βj
ðzÞ−

�
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeπi=2zÞ2þm2

a

q
þsmaþϵjβj

�
FβjðzÞ;

ð3:14Þ

with F ¼ I, K. For the functions in the integral over the

negative imaginary semiaxis one has J̄ðλÞβj
ðe−πi=2zÞ ¼

eiπβj=2ĪðλÞ�βj
ðzÞ and H̄ð2;λÞ

βj
ðe−πi=2zÞ ¼ − 2

πi e
iπβj=2K̄ðλÞ�

βj
ðzÞ.

Note that for z ≥ 0 the square root is understood as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe�πi=2zÞ2þm2

a

q
¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a−z2
p

; z<ma;

e�πi=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2−m2

a

p
; z>ma:

ð3:15Þ

From here it follows that F̄ðλÞ�
βj

ðzÞ¼F̄ðλÞ
βj
ðzÞ for z<ma. By

using this relation we can see that the integrals over the
intervals ð0; imaÞ and ð0;−imaÞ cancel eachother. For λμ>0,

the contributions to hψ̄ψiðTÞb;λ from the residue terms at the
poles in the upper and lower half-planes are combined as

−λ
π

ϕ0

θðλμÞT
X
j

X∞
n¼0

Im

� J̄ðλÞβj
ðγðλÞn aÞ

H̄ð1;λÞ
βj

ðγðλÞn aÞ

× ½ðEðλÞ
n þλsmÞHð1Þ2

βj
ðγðλÞn rÞ−ðEðλÞ

n −λsmÞHð1Þ2
βjþϵj

ðγðλÞn rÞ�
�
;

ð3:16Þ

where θðxÞ is the Heaviside step function and for the
poles in the lower half-plane we have used the relations
(3.12). We find it convenient to introduce in (3.16) a

new quantity uðλÞn in accordance with γðλÞn ¼ iuðλÞn ,

ReuðλÞn > 0,

uðλÞn ¼ f½πð2nþ 1ÞT − iλμ�2 þm2g1=2: ð3:17Þ

Note that uð−Þn ¼ uðþÞ�
n .

After the transformations described above, the boundary-
induced contribution in the thermal part of the FC is
presented as

hψ̄ψiðbÞTλ ¼ λ
1

πϕ0

X
j

Z
∞

m
dxxIm

� ĪðλÞβj
ðxaÞ

K̄ðλÞ
βj
ðxaÞ

1

eβði
ffiffiffiffiffiffiffiffiffiffi
x2−m2

p
−λμÞ þ1

��
1−

iλsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−m2

p
�
K2

βj
ðxrÞþ

�
1þ iλsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−m2
p

�
K2

βjþϵj
ðxrÞ

��

−λ
2

ϕ0

θðλμÞT
X
j

X∞
n¼0

Im

� ĪðλÞβj
ðuðλÞn aÞ

K̄ðλÞ
βj
ðuðλÞn aÞ

½ðπð2nþ1ÞT− iλðμþ smÞÞK2
βj
ðuðλÞn rÞ

þðπð2nþ1ÞT− iλðμ− smÞÞK2
βjþϵj

ðuðλÞn rÞ�
�
: ð3:18Þ

By taking into account the relations Īð−Þβj
ðxaÞ ¼ ĪðþÞ�

βj
ðxaÞ, K̄ð−Þ

βj
ðxaÞ ¼ K̄ðþÞ�

βj
ðxaÞ, we can see that for λ ¼ − the expressions

under the sign of the summation over n in (3.18) differs from that for λ ¼ þ by the sign. As a consequence, the expression
(3.18) is transformed to

hψ̄ψiðbÞTλ ¼ 1

πϕ0

X
j

Z
∞

m
dx xIm

�
ĪβjðxaÞ
K̄βjðxaÞ

1

eλβði
ffiffiffiffiffiffiffiffiffiffi
x2−m2

p
−μÞ þ 1

��
1 −

ismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
�
K2

βj
ðxrÞ þ

�
1þ ismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 −m2
p

�
K2

βjþϵj
ðxrÞ

��

−
2

ϕ0

θðλμÞT
X
j

X∞
n¼0

Im

�
ĪβjðunaÞ
K̄βjðunaÞ

½ðπð2nþ 1ÞT − iðμþ smÞÞK2
βj
ðunrÞ

þ ðπð2nþ 1ÞT − iðμ − smÞÞK2
βjþϵj

ðunrÞ�
�
: ð3:19Þ

Here

un ¼ f½πð2nþ 1ÞT − iμ�2 þm2g1=2; ð3:20Þ

and for the modified Bessel functions we use the nota-
tion F̄βjðzÞ ¼ F̄ðþÞ

βj
ðzÞ, defined by (3.5) with F ¼ I, K. The

expressions (3.19) with λ ¼ þ and λ ¼ − present the
contributions to the boundary-induced FC coming from
particles and antiparticles.
Combining the contribution from the separate terms for

λ ¼ þ and λ ¼ −, we can see that in evaluating the

boundary-induced part hψ̄ψiðbÞT ¼ P
λ¼�hψ̄ψiðbTλ the sum

of the first terms on the right-hand side of (3.19) is equal to

−hψ̄ψiðbÞvac with hψ̄ψiðbÞvac from (3.4). Hence, the boundary-
induced contribution at temperature T, given by

hψ̄ψiðbÞ ¼ hψ̄ψiðbÞvac þ hψ̄ψiðbÞT ; ð3:21Þ

is presented in the form
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hψ̄ψiðbÞ ¼−
2T
ϕ0

X
j

X∞
n¼0

Im

�
ĪβjðunaÞ
K̄βjðunaÞ

× ½ðπð2nþ1ÞT− iðμþsmÞÞK2
βj
ðunrÞ

þðπð2nþ1ÞT− iðμ−smÞÞK2
βjþϵj

ðunrÞ�
�
:

ð3:22Þ
The ratio under the imaginary part in this expression can be
written in the form

ĪβjðzÞ
K̄βjðzÞ

¼
Wð−Þ

βj;βjþϵj
ðzÞ þ ½iπð2nþ 1ÞT þ μ�a=z

z½K2
βjþϵj

ðzÞ þ K2
βj
ðzÞ� þ 2smaKβjðzÞKβjþϵjðzÞ

;

ð3:23Þ
with the notation (the notation with the þ sign will appear
in the expression for the FC in the interior region)

Wð�Þ
βj;βjþϵj

ðzÞ ¼ z½IβjðzÞKβjðzÞ − IβjþϵjðzÞKβjþϵjðzÞ�
� sma½IβjþϵjðzÞKβjðzÞ − IβjðzÞKβjþϵjðzÞ�;

ð3:24Þ
and with z ¼ una.
For the total FC one has

hψ̄ψi ¼ hψ̄ψið0Þ þ hψ̄ψiðbÞ; ð3:25Þ
where hψ̄ψið0Þ is the FC at temperature T in the absence of
the boundary [14]. The notation with bar in (3.22) can also
be presented in the form

F̄βjðzÞ ¼ δFzFβjþϵjðzÞ − ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −m2

a

q
þ smaÞFβjðzÞ;

ð3:26Þ

where δI ¼ −δK ¼ 1. Under the replacements α → −α,
j → −j one has βj ⇄ βj þ ϵj. By using this and the
representation (3.26), it can be seen that under the same
replacements we get

ĪβjðunaÞ
K̄βjðunaÞ

→ −
�
Īβjðu�naÞ
K̄βjðu�naÞ

��
: ð3:27Þ

Now, by taking into account the relation u�nðμÞ ¼ unð−μÞ,
one can show that hψ̄ψiðbÞ is an even function under the
simultaneous replacements α → −α, μ → −μ.
In [14], the boundary-free contribution is presented in

the form

hψ̄ψið0Þ ¼ hψ̄ψið0ÞM þ hψ̄ψið0Þt ; ð3:28Þ
where

hψ̄ψið0ÞM ¼ smT
2π

½ln ð1þ e−ðm−μÞ=TÞ þ ln ð1þ e−ðmþμÞ=TÞ�;
ð3:29Þ

is the FC in (2þ 1)-dimensional Minkowski spacetime (the
magnetic flux and the planar angle deficit are absent, q ¼ 1,

α ¼ 0) and hψ̄ψið0Þt is the topological part induced by the
conical geometry and by the magnetic flux. The latter is
given by the expression [14]

hψ̄ψið0Þt ¼ −
2mT
π

X∞
n¼−∞

�
s
X½q=2�
l¼1

ð−1Þlcl cosð2πlα0ÞK0ð2rslunÞ −
sq
π

Z
∞

0

dy
f1ðq; α0; yÞK0ð2run cosh yÞ

coshð2qyÞ − cosðqπÞ

þ μþ iπð2nþ 1ÞT
m

�X½q=2�
l¼1

ð−1Þlsl sinð2πlα0ÞK0ð2rslunÞ−
q
π

Z
∞

0

dy
f2ðq; α0; yÞK0ð2run cosh yÞ

coshð2qyÞ − cosðqπÞ
��

; ð3:30Þ

where cl ¼ cosðπl=qÞ, sl ¼ sinðπl=qÞ, and
f2ðq; α0; yÞ ¼ cosh y

X
δ¼�1

δ cosðqπð1=2 − δα0ÞÞ coshðð1þ 2δα0ÞqyÞ: ð3:31Þ

The representation (3.30) is well adapted for the investigation of high-temperature asymptotic. An alternative
representation, convenient in the low-temperature limit, is provided in Ref. [14].
In the case of zero chemical potential, μ ¼ 0, the poles of the integrand in (3.9) are located on the imaginary axis and the

procedure for the transformation is different from what we have described above. This case is considered in Appendix A,
where it has been shown that the final result is obtained from (3.22) in the limit μ → 0. The corresponding expression can
also be presented in the form

hψ̄ψiðbÞ ¼−
2T
ϕ0

X
j

X∞
n¼0

�
πð2nþ1ÞTIm

�
Īβjðu0naÞ
K̄βjðu0naÞ

�
½K2

βj
ðu0nrÞþK2

βjþϵj
ðu0nrÞ�

− smRe

�
Īβjðu0naÞ
K̄βjðu0naÞ

�
½K2

βj
ðu0nrÞ−K2

βjþϵj
ðu0nrÞ�

�
; ð3:32Þ
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where u0n is defined by

u0n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½πð2nþ 1ÞT�2 þm2

q
: ð3:33Þ

The boundary-induced FC (3.32) is an even function
of α. The ratio under the imaginary and real parts is
presented in the form (3.23), where now z ¼ u0nr is real
and the imaginary and real parts are easily separated. The
expression (3.32) is further simplified for a massless field:

hψ̄ψiðbÞ ¼−
2T
ϕ0a

X
j

X∞
n¼0

K2
βj
ðurÞþK2

βjþϵj
ðurÞ

K2
βj
ðuaÞþK2

βjþϵj
ðuaÞ

				
u¼πð2nþ1ÞT

:

ð3:34Þ

Of course, in this case the FC does not depend on the
parameter s. The corresponding boundary-free part van-
ishes, hψ̄ψið0Þ ¼ 0 (see [14]), and the total FC hψ̄ψi ¼
hψ̄ψiðbÞ is always negative. It is a monotonically increasing
function of the radial coordinate r.
Now we move to the investigation of the boundary-

induced FC in asymptotic regions for the values of the
parameters. For general values of the chemical potential
and the mass, at large distances from the boundary, in
(3.22) we use the asymptotic expression of the Macdonald
function for large arguments. To leading order this gives

hψ̄ψiðbÞ ≈ −
qT
r

X
j

X∞
n¼0

Im

�
ĪβjðunaÞ
K̄βjðunaÞ

e−2unr

un

× ½πð2nþ 1ÞT − iμ�
�
: ð3:35Þ

For T ≳m; jμj the dominant contribution comes from the
term n ¼ 0 and the boundary-induced contribution is sup-
pressed by the factor e−2ru0. For q < 2, a similar suppression

takes place for the topological part hψ̄ψið0Þt in the boundary-
free geometry. For q > 2, the suppression of the latter at
large distances is weaker, by the factor e−2ru0 sinðπ=qÞ. The
Minkowskian part (3.29) does not depend on the radial
coordinate and for a massive field it dominates at large
distances. For a massless field with zero chemical potential
and for Tr ≫ 1 one has

hψ̄ψiðbÞ≈−
2e−2πTr

ϕ0ar

X
j

1

K2
βj
ðπTaÞþK2

βjþϵj
ðπTaÞ : ð3:36Þ

Hence, the boundary-induced FC is exponentially sup-
pressed at large distances. Note that at large distances the
boundary-induced contribution in the vacuum FC behaves

like hψ̄ψiðbÞvac ∝ e−2mr=r2,mr ≫ 1, for a massive field and as

hψ̄ψiðbÞvac ∝ 1=rqð1−2jα0jÞþ2 in the case of a massless field.

In the high temperature limit, T ≫ m; jμj; 1=ðr − aÞ,
again, the contribution of the n ¼ 0 term dominates
in (3.22) and, similar to (3.35), we can see that the
boundary-induced FC for a given r is suppressed by the
factor e−2πTr. For the boundary-free topological part we

have similar behavior, hψ̄ψið0Þt ∝ e−2πTr for q < 2. In the

case q > 2 one has hψ̄ψið0Þt ∝ e−2πTr sinðπ=qÞ and the decay
is slower. As a consequence, at high temperatures and for
points not too close to the boundary, the total FC is
dominated by the Minkowskian part that behaves

like hψ̄ψið0ÞM ≈ smT ln 2=ð2πÞ.
The boundary-induced FC (3.22) diverges on the boun-

dary. This kind of surface divergence in the vacuum
expectation values (VEVs) of local physical observables
are well known in quantum field theory with boundaries.
They are related to the idealized boundary conditions on
fields acting in the same way for all the modes of the field.
For points near the boundary, assuming that Tðr − aÞ ≪ 1,
the dominant contribution to the series over n in (3.22)
comes from large n and, to the leading order, we can
replace the corresponding summation by the integration. In
Appendix B, it is shown that, with this replacement, the
corresponding expectation value is obtained for the vacuum
state. Hence, we conclude that for points near the boundary
and for temperatures T ≪ 1=ðr − aÞ the finite temperature
effects on the FC are small and the leading term coincides
with the vacuum FC. Near the boundary the latter is
dominated by the boundary-induced part and behaves as

hψ̄ψivac ≈ hψ̄ψiðbÞvac ≈ −1=½8πðr − aÞ2�. Note that this lead-
ing term does not depend on the planar angle deficit or the
magnetic flux.
It is also of interest to consider the behavior of the

boundary-induced FC for small values of the radius a and
for fixed r, assuming that Ta;ma ≪ 1. By using the
asymptotic expressions for the modified Bessel functions
for small values of the argument, from (3.22) one can see
that hψ̄ψiðbÞ ∝ aqð1−2jα0jÞ and for jα0j < 1=2 the boundary-
induced contribution tends to zero in the limit a → 0. In the
special case jα0j ¼ 1=2 the part hψ̄ψiðbÞ tends to a finite
limiting value. The case jα0j ¼ 1=2 is also special for the
boundary-free geometry. For example, the VEVs of the
charge and current densities, as functions of the parameter
α from (2.4), are discontinuous at the points corresponding
to half-odd-integer values of α (see, e.g., Ref. [12]). In
accordance with (2.5), this corresponds to the case
jα0j ¼ 1=2. A similar feature for the persistent current in
carbon nanotube based rings has been observed in
Ref. [30]. Note that the VEVs of the charge and current
densities in the region r > a vanish for jα0j ¼ 1=2.
The numerical examples for the dependence of the FC on

the parameters of the problem will be given for a simple
case of a massless field with a zero chemical potential (for
the effects of the nonzero mass see Fig. 5). In the boundary-
free geometry the FC vanishes and the nonzero FC is
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induced by the boundary. The left panel in Fig. 1 displays
the FC in the exterior region versus the parameter α0 for
fixed values of r=a ¼ 1.5, Ta ¼ 0.5. The numbers near the
curves correspond to the values of the parameter q. As seen,
for small values of the planar angle deficit, the dependence
of the FC on the magnetic flux is weak. In the right panel of
Fig. 1 we have plotted the FC versus the temperature (in
units of 1=a) for r=a ¼ 1.5. The numbers near the curves
are the values of the parameter q and the full (dashed)
curves correspond to α0 ¼ 0 (α0 ¼ 0.4). For q ¼ 1 (the
curve between the full and dashed curves for q ¼ 3) the
dependence of the FC on α0 is weak and for that case
the full and dashed curves are almost the same. As seen
from the graphs, the dependence on the magnetic flux
becomes weaker with decreasing planar angle deficit

(decreasing q). In accordance with the asymptotic analysis
given above, the suppression of the FC at high temperatures
is seen in the right panel.
The dependence of the FC on the radial coordinate is

shown in the left panel of Fig. 2 for fixed temperature
corresponding to Ta ¼ 0.5. The numbers near the curves
present the values of the parameter q. The full and dashed
curves correspond to α0 ¼ 0 and α0 ¼ 0.4, respectively.
Again, for q ¼ 1 (the curves between the full and dashed
curves for q ¼ 3) the curves for α0 ¼ 0 and α0 ¼ 0.4 are
almost the same. As it has been shown above by the
asymptotic analysis, for large values of Tr the FC is
suppressed by the factor e−2πTr. The dependence of the
FC in the exterior region on the planar angle deficit
is displayed in the right panel of Fig. 2 for r=a ¼ 1.5,

FIG. 2. FC in the exterior region for a massless field with a zero chemical potential as a function of the radial coordinate (left) and of
the parameter q (right). For the left panel Ta ¼ 0.5 and the full/dashed curves correspond to α0 ¼ 0=α0 ¼ 0.4. The numbers near the
curves are the values of q. The right panel is plotted for r=a ¼ 1.5, Ta ¼ 0.5 (full curves), Ta ¼ 0.25 (dashed curves) and the numbers
near the curves are the corresponding values of α0.

FIG. 1. FC in the exterior region for a massless field with a zero chemical potential versus the parameter α0 (left) and the temperature
(right). The graphs are plotted for r=a ¼ 1.5 and the numbers near the curves correspond to the values of q. For the left panel we have
taken Ta ¼ 0.5. The full/dashed curves in the right panel correspond to α0 ¼ 0=α0 ¼ 0.4.
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Ta ¼ 0.5 (full curves) and Ta ¼ 0.25 (dashed curves). The
figures near the curves correspond to the values of the
parameter α0. As seen from the right panel, the behavior of
the boundary-induced FC as a function of q is essentially
different for α0 ¼ 0 and α0 ¼ 0.4.
Note that the boundary r ¼ a separates the exterior

region from the region where the magnetic flux is located.
As a consequence of that, the results presented in this

section are valid for an arbitrary distribution of the
magnetic flux in the region r < a.

IV. FC INSIDE A CIRCULAR BOUNDARY

In this section we consider the region r≤ a. The corre-
sponding FC in the vacuum state is presented as (3.1), where
the boundary-induced contribution is given by [11]

hψ̄ψiðbÞvac ¼ −
1

πϕ0

X
j

Z
∞

m
dx x

�
Im

�
K̃βjðxaÞ
ĨβjðxaÞ

�
½I2βjðxrÞ þ I2βjþϵj

ðzrÞ�þsmRe

�
K̃βjðxaÞ
ĨβjðxaÞ

� I2βjþϵj
ðzrÞ − I2βjðxrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
�
; ð4:1Þ

with the notation for the modified Bessel functions

F̃βjðuÞ ¼ uF0
βj
ðuÞ þ

�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2

a

q
þ sma − ϵjβj

�
FβjðuÞ;

ð4:2Þ

where F ¼ I, K.
Substituting the fermionic modes (2.18) in the mode-

sum formula (2.11), for the contributions of the positive
and negative energy modes to the thermal part in the FC
one gets

hψ̄ψiTλ ¼ λ
1

2ϕ0a2
X
j

X∞
l¼1

TβjðγðλÞj;l ÞgðγðλÞj;l Þ
eβðE

ðλÞ
j;l −λμÞ þ 1

; ð4:3Þ

where λ ¼ þ;−, EðλÞ
j;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðλÞ2j;l =a2 þm2

q
, z ¼ γðλÞj;l are the

positive zeros of the function J̃ðλÞβj
ðzÞ defined in accordance

with (2.20) and we have introduced the notation

gðzÞ ¼ z

��
1þ λsmaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þm2
a

p
�
J2βjðzr=aÞ

−
�
1 −

λsmaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

a

p
�
J2βjþϵj

ðzr=aÞ
�
: ð4:4Þ

The roots γðλÞj;l are given implicitly and the representation (4.3)
is not convenient for the evaluationof theFC.The summation

formula for series of the type
P∞

l¼1 TβjðγðλÞj;l ÞfðγðλÞj;l Þ has
been derived in [31] by using the generalized Abel-Plana
formula from [32,33] assuming that the function fðzÞ is
analytic in the right half-plane of the complex variable z. In
the problem at hand

fðzÞ ¼ gðzÞ
eβð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=a2þm2

p
−λμÞ þ 1

; ð4:5Þ

and for λμ > 0 this function has simple poles z ¼ γðλÞn ,
n ¼ 0;�1;�2;…, in the right half-plane (the case μ ¼ 0

when the poles are located on the imaginary axis will be
discussed in Appendix A).
The procedure described in [31] can be generalized

keeping the terms in the generalized Abel-Plana formula
coming from the poles in the right half-plane. For the
functions fðxÞ real for real values of x, this leads to the
following summation formula:

X∞
l¼1

TβjðγðλÞj;l ÞfðγðλÞj;l Þ

¼
Z

∞

0

dx fðxÞ þ π

2
Res
z¼0

ỸðλÞ
βj
ðzÞ

J̃ðλÞβj
ðzÞ

fðzÞ

− 4
X∞
n¼0

Re

�
e−iπβj

K̃ðλÞ
βj
ðuðλÞn Þ

ĨðλÞβj
ðuðλÞn Þ

Res
z¼iuðλÞn

fðzÞ
�

−
2

π

Z
∞

0

dxRe

�
e−βjπifðxeπi=2Þ

K̃ðλÞ
βj
ðxÞ

ĨðλÞβj
ðxÞ

�
; ð4:6Þ

where uðλÞn ¼ −iγðλÞn and for the modified Bessel functions
we have defined the notation

F̃ðλÞ
βj
ðzÞ¼ zF0

βj
ðzÞþ



λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeπi=2zÞ2þm2

a

q
þsma−ϵjβj

�
FβjðzÞ;
ð4:7Þ

with F ¼ I, K. The second term on the right-hand side of
(4.6) comes from the poles of the function fðzÞ in the right
half-plane. For an analytic function fðzÞ the formula (4.6)
is reduced to the one in [31].
In the problem at hand the function fðzÞ is given by

(4.5). For this function the integrand in the last term of (4.6)
vanishes for x < ma. The residue term at z ¼ 0 vanishes as
well. The part in hψ̄ψiTλ coming from the first integral on
the right-hand side of (4.6) presents the corresponding
quantity in the boundary-free geometry, denoted here as

hψ̄ψið0ÞTλ . As a result, hψ̄ψiTλ is presented as (3.8), where for
the boundary-induced contribution (3.8) one gets
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hψ̄ψiðbÞTλ ¼ λ
1

πϕ0

X
j

Z
∞

m
dx Im

�K̃ðλÞ
βj
ðxaÞ

ĨðλÞβj
ðxaÞ

x

eβði
ffiffiffiffiffiffiffiffiffiffi
x2−m2

p
−λμÞ þ 1

��
1 −

λismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
�
I2βjðxrÞ þ

�
1þ λismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 −m2
p

�
I2βjþϵj

ðzrÞ
��

− λ
2

ϕ0

θðλμÞT
X
j

X∞
n¼0

Im

�K̃ðλÞ
βj
ðuðλÞn aÞ

ĨðλÞβj
ðuðλÞn aÞ

½ðπð2nþ 1ÞT − iλðμþ smÞÞI2βjðu
ðλÞ
n rÞ

þ ðπð2nþ 1ÞT − iλðμ − smÞÞI2βjþϵj
ðuðλÞn rÞ�

�
: ð4:8Þ

The further transformation is similar to that for (3.18) with the representation

hψ̄ψiðbÞTλ ¼
1

πϕ0

X
j

Z
∞

m
dx Im

�
K̃βjðxaÞ
ĨβjðxaÞ

x

eλβði
ffiffiffiffiffiffiffiffiffiffi
x2−m2

p
−μÞ þ1

��
1−

ismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−m2

p
�
I2βjðxrÞþ

�
1þ ismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−m2
p

�
I2βjþϵj

ðzrÞ
��

−
2

ϕ0

θðλμÞT
X
j

X∞
n¼0

Im

�
K̃βjðunaÞ
ĨβjðunaÞ

½ðπð2nþ1ÞT− iðμþ smÞÞI2βjðunrÞþðπð2nþ1ÞT− iðμ− smÞÞI2βjþϵj
ðunrÞ�

�
;

ð4:9Þ

where the notation with tilde is defined in accordance with (4.2).
Summing the contributions from λ ¼ þ and λ ¼ −, we can see that the sum of the first terms on the right-hand side of

(4.9) gives −hψ̄ψiðbÞvac. As a consequence, for the boundary-induced contribution (3.21) one finds

hψ̄ψiðbÞ ¼−
2T
ϕ0

X
j

X∞
n¼0

Im

�
K̃βjðunaÞ
ĨβjðunaÞ

½ðπð2nþ1ÞT− iðμþsmÞÞI2βjðunrÞþðπð2nþ1ÞT− iðμ−smÞÞI2βjþϵj
ðunrÞ�

�
; ð4:10Þ

where un is defined by (3.20). The total FC is presented as (3.25). An equivalent representation for the notation in (4.10) is
given by

F̃βjðuÞ ¼ δFuFβjþϵjðuÞ þ
�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2

a

q
þ sma

�
FβjðuÞ: ð4:11Þ

Similar to the case of the exterior region, we can see that hψ̄ψiðbÞ is an even function under the simultaneous reflections
α → −α, μ → −μ. In (4.10), the ratio of the modified Bessel functions can be presented in the form

K̃βjðzÞ
ĨβjðzÞ

¼
WðþÞ

βj;βjþϵj
ðzÞ þ ½iπð2nþ 1ÞT þ μ�a=z

z½I2βjðzÞ þ I2βjþϵj
ðzÞ� þ 2smaIβjðzÞIβjþϵjðzÞ

; ð4:12Þ

where z ¼ una and WðþÞ
βj;βjþϵj

ðzÞ is defined by (3.24).

The FC in the case μ ¼ 0 is considered in Appendix A. Though the corresponding procedure for the evaluation of (4.10)
differs from what we have described above for μ ≠ 0, the final result can be obtained from (4.10) taking the limit μ → 0:

hψ̄ψiðbÞ ¼−
2T
ϕ0

X
j

X∞
n¼0

�
πð2nþ1ÞTIm

�
K̃βjðu0naÞ
Ĩβjðu0naÞ

�
½I2βjðu0nrÞþI2βjþϵj

ðunrÞ�−smRe

�
K̃βjðu0naÞ
Ĩβjðu0naÞ

�
½I2βjðu0nrÞ−I2βjþϵj

ðu0nrÞ�
�
;

ð4:13Þ

with u0n from (3.33). Note that now the arguments u0na are real and the imaginary and real parts in (4.13) are directly
obtained from (4.12). For a massless field the expression for the boundary-induced contribution in FC is reduced to

hψ̄ψiðbÞ ¼ −
2T
ϕ0a

X
j

X∞
n¼0

I2βjðurÞ þ I2βjþϵj
ðurÞ

I2βjðuaÞ þ I2βjþϵj
ðuaÞ

				
u¼πð2nþ1ÞT

; ð4:14Þ
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and it is negative. In this special case the boundary-free FC
is zero and the total FC is negative as well. For 2jα0j ≤
1 − 1=q the FC given by (4.14) is a monotonically
decreasing function of the radial coordinate. That is not
the case for 2jα0j > 1 − 1=q when one of the orders of the
Bessel modified functions can be negative.
Now we return to a general case of the chemical potential

and the mass and consider the behavior of the boundary-
induced FC (4.10) near the cone apex corresponding to
small values of r. Redefining the summation variable
jþ n0 → j, the order βj of the modified Bessel function
is expressed in terms of α0. It can be seen that in the limit
r → 0 the dominant contribution to the FC (4.10) comes
from the mode with j ¼ −sgnðα0Þ=2. Expanding the Bessel
modified function for small values of the argument, to
leading order we get

hψ̄ψiðbÞ ≈ −
qTðr=2Þq−2qjα0j−1

πΓ2ððqþ 1Þ=2 − qjα0jÞ
X∞
n¼0

Im

�
½πð2nþ 1ÞT

− iðμ − sgnðα0ÞsmÞ�u2βjn
K̃βjðunaÞ
ĨβjðunaÞ

�
; ð4:15Þ

where βj ¼ qð1=2 − jα0jÞ þ sgnðα0Þ=2. As seen, the boun-
dary-induced FC vanishes on the cone apex for 2jα0j <
1 − 1=q and diverges for 2jα0j > 1 − 1=q. The divergence
in the latter case is related to the contribution of the
irregular mode at the cone apex. Note that, near the apex,
for a massive field the FC in the boundary-free geometry is
dominated by the vacuum part and the latter behaves as 1=r
[14]. Similar to the case of the exterior region, it can be seen
that for points near the boundary, under the assumption
Tðr − aÞ ≪ 1, the leading term in the asymptotic expan-
sion over the distance from the boundary coincides with
that for the vacuum FC and does not depend on the planar
angle deficit and on the magnetic flux. It diverges
like 1=ða − rÞ2.

In the expressions for the FC in the exterior and
interior regions, for the modified Bessel functions
FβjðuÞ ¼ IβjðuÞ, KβjðuÞ, we have introduced the notations

F̄βjðuÞ and F̃βjðuÞ. These notations are combined in a
single expression

FðηÞ
βj
ðuÞ¼ uF0

βj
ðuÞþ

h
η


i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2−m2

a

q
þ sma

�
− ϵjβj

i
FβjðuÞ

¼ δFuFβjþϵjðuÞþη


i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2−m2

a

q
þ sma

�
FβjðuÞ;

ð4:16Þ

with η ¼ �1. For the normal to the boundary one nμ ¼ ηδ1μ,
where η ¼ þ1 in the interior region and η ¼ −1 in the

exterior region, and Fðþ1Þ
βj

ðuÞ¼ F̃βjðuÞ, Fð−1Þ
βj

ðuÞ ¼ F̄βjðuÞ.
In Fig. 3, for a massless field with μ ¼ 0, we have

presented the dependence of the FC inside a circular
boundary on the parameter α0 and on the temperature
for fixed r=a ¼ 0.5. For the left panel Ta ¼ 0.5 and in the
right panel the full and dashed curves correspond to α0 ¼ 0
and α0 ¼ 0.4, respectively. In both the panels, the numbers
near the curves correspond to the values of q. Again, we see
that for a planar geometry, q ¼ 1, the dependence of the FC
on the magnetic flux is weak.
In Fig. 4 we display the FC inside a circular boundary

as a function of the radial coordinate and of the parameter q.
In the left panel the numbers near the curves are the values
of the parameter q, the full/dashed curves correspond to
α0¼ 0=α0 ¼ 0.4, and the graphs are plotted for Ta ¼ 0.5. In
the right panel r=a ¼ 0.5,Ta ¼ 0.5 for full curves andTa ¼
0.25 for dashed curves. The numbers near the curves
correspond to the values of α0. As it was mentioned above,
in the case 2jα0j > 1 − 1=q the FC in the interior region is
not a monotonic function of the radial coordinate.
In the numerical examples above we have considered the

case of a massless field. It is of interest to consider the effect
of the mass on the FC. For a massive field the FC will

FIG. 3. The same as in Fig. 1 for the interior region with fixed r=a ¼ 0.5.
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depend on the parameter s. For a field with zero chemical
potential, in Fig. 5 we have plotted the dependence of the
FC on the mass outside (left panel) and inside (right panel)
a circular boundary for a conical space with q ¼ 2.5 and for
the magnetic flux corresponding to α0 ¼ 0.4. The full and
dashed curves correspond to s ¼ 1 and s ¼ −1, respec-
tively, and the numbers near the curves are the values of Ta.
For the left and right panels we have taken r=a ¼ 1.5 and
r=a ¼ 0.5, respectively. As is seen, the influence of the
mass on the FC is different for the cases s ¼ 1 and s ¼ −1.
In the first case the absolute value of the FC decreases with
increasing mass, whereas in the second case the absolute
value of the FC takes its maximum for some intermediate
value of the mass parameter. Note that Fig. 5 presents
the boundary-induced contribution. For a massive field,
there is also a nonzero boundary-free part discussed in [14].
In order to see the importance of the effects of a boundary

on the finite temperature FC, let us compare the boundary-
induced FC, depicted in Fig. 5 with the corresponding

quantity in the boundary-free conical space. First of all, we
note that for a massless field the FC in the boundary-free
geometry vanishes and the nonzero FC is a purely boundary-
induced effect. In this case, the influence of the finite
temperature on the FC is seen from Figs. 1 and 3. For a
massive field the boundary-free part of the FC is given by
Eq. (3.28) with separate contributions from Eqs. (3.29) and
(3.30). This part has opposite signs for the cases s ¼ 1 and
s ¼ −1. In Fig. 6 we have displayed the boundary-free FC
(full curves) for the case s ¼ 1 as a function of the fieldmass.
The left and right panels correspond to r=a ¼ 1.5 and r=a ¼
0.5 and in the numerical evaluation we have taken q ¼ 2.5
and α0 ¼ 0.4 (the same as in Fig. 5). Similar to Fig. 5, the
numbers near the curves correspond to the values of Ta. The

dashed curves correspond to the quantity a2hψ̄ψið0ÞM , where

the FC hψ̄ψið0ÞM in (2þ 1)-dimensional Minkowski space-
time, in the absence of the magnetic flux, is given by (3.29)

with s ¼ 1. The FC hψ̄ψið0ÞM does not depend on the radial

FIG. 4. The same as in Fig. 2 for the interior region. For the right panel we have taken r=a ¼ 0.5.

FIG. 5. Boundary-induced FC as a function of the field mass in the case of a zero chemical potential in the exterior (left panel,
r=a ¼ 1.5) and interior (right panel, r=a ¼ 0.5) regions. The full and dashed curves correspond to s ¼ 1 and s ¼ −1, respectively. The
numbers near the curves are the values of Ta and for remaining parameters we have taken q ¼ 2.5, α0 ¼ 0.4.
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coordinate and the dashed curves on the left and right panels
coincide. At large distances from the cone apex the relative
contribution of the topological part is small, whereas near the
apex it is essential. As seen from the graphs, the topological
contribution may change the sign of the FC (the graph for
Ta ¼ 0.25 on the left panel and the graphs for Ta ¼ 0.25,
0.7 on the right panel). Now, comparing the graphs in Figs. 5
and 6, we see that, for the values of the parameters used in the
numerical evaluation, the boundary-induced contributions to
the finite temperature FC are essential and they may
qualitatively change the behavior of the FC.
The geometry inside a circular boundary, discussed in

this section, can be considered as a limiting case of a
conical ring with a fermionic field localized in the region
b < r < a and obeying the MIT bag boundary condition
(2.6) on the edges r ¼ a, b. Similar to the limiting
transition a → 0, discussed in the previous section, we
expect that for fixed r and jα0j ≠ 1=2, the contribution of
the boundary at r ¼ b to the FC will tend to zero in the limit
b → 0. Consequently, for Tb, mb, b=r ≪ 1, the results of
this section will approximate the FC in conical rings
threaded by a magnetic flux.

We could consider the boundary condition

ð1 − inμγμÞψðxÞ ¼ 0; ð4:17Þ

that differs from (2.6) by the sign of the term containing the
normal to the boundary. As it has been already noticed in
[34], this type of condition is an equally acceptable one for
the Dirac equation. The mode functions for the case of
boundary condition (4.17) are obtained from the mode
functions (2.13) and (2.18) by changing the signs of the
terms with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

a

p
and sma in the definitions of the

notations (2.16) and (2.20). The final formulas for
the boundary-induced contribution in the FC, hψ̄ψiðbÞ,
are obtained from (3.22) and (4.10) by changing the
signs of the terms with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −m2

a

p
and sma in the notations

(3.5) and (4.2). Note that this corresponds to the change
η → −η in (4.16). Let us denote the boundary-induced
FC for given s and μ in the cases of the boundary condi-

tions (2.6) and (4.17) by hψ̄ψiðb;þ1Þ
s ðμÞ and hψ̄ψiðb;−1Þs ðμÞ,

respectively. The corresponding expressions can be written
in combined form

hψ̄ψiðb;ηÞs ðμÞ¼−
2T
ϕ0

X
j

X∞
n¼0

Im

�KðηÞ
βj
ðunaÞ

IðηÞβj
ðunaÞ

½ðπð2nþ1ÞT− iðμþ smÞÞI2βjðunrÞþðπð2nþ1ÞT− iðμ− smÞÞI2βjþϵj
ðunrÞ�

�
;

ð4:18Þ
in the interior region and

hψ̄ψiðb;ηÞs ðμÞ¼−
2T
ϕ0

X
j

X∞
n¼0

Im

� Ið−ηÞβj
ðunaÞ

Kð−ηÞ
βj

ðunaÞ
½ðπð2nþ1ÞT− iðμþ smÞÞK2

βj
ðunrÞþðπð2nþ1ÞT− iðμ− smÞÞK2

βjþϵj
ðunrÞ�

�

ð4:19Þ

FIG. 6. Boundary-free part in the FC (full curves) versus the field mass in the case of a zero chemical potential and for the field with
s ¼ 1. The left and right panels are plotted for r=a ¼ 1.5 and r=a ¼ 0.5, respectively. The dashed curves present the FC in (2þ 1)-
dimensional Minkowski spacetime when the magnetic flux is absent. The values of the remaining parameters are the same as those for
Fig. 5.
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in the exterior region. Here η specifies the boundary
condition: η ¼ þ1 for (2.6) and η ¼ −1 for (4.17). On
the basis of these formulas, by taking into account the
relations

Fð−ηÞ
βj

ðunð−μÞaÞ
			
s¼�1

¼ ½FðηÞ
βj
ðunðμÞaÞ��s¼∓1

; ð4:20Þ

we see that

hψ̄ψiðb;−1Þs ðμÞ ¼ −hψ̄ψiðb;þ1Þ
−s ð−μÞ: ð4:21Þ

This gives the relation between the boundary-induced FCs
for the boundary conditions (2.6) and (4.17). In particular,
for a massless field with zero chemical potential the FC is
given by (3.34) and (4.14) for the boundary condition (2.6)
and by the same expressions with the opposite signs for the
condition (4.17).

V. FC IN PARITY AND TIME-REVERSAL
SYMMETRIC MODELS

As was mentioned above, in (2þ 1) dimensions one has
two inequivalent irreducible representations of the Clifford
algebra. These representations can be realized by two sets
of 2 × 2 gamma matrices γμðsÞ ¼ ðγ0; γ1; γ2ðsÞ ¼ −isγ0γ1=rÞ,
where γ0 and γ1 are given by (2.3) and s ¼ �1. The
representation with s ¼ þ1 corresponds to γ2 in (2.3). In
separate representations with given s, the mass term in the
Lagrangian density Ls ¼ ψ̄ ðsÞðiγμðsÞDμ −mÞψ ðsÞ breaks the
parity (P) and time-reversal (T) invariances of the fer-
mionic model. In the absence of magnetic fields, P- and T-
invariant models in (2þ 1) dimensions can be constructed
considering a set of two fields ψ ðþ1Þ and ψ ð−1Þ with the
Lagrangian density L ¼ P

s¼�1 Ls. First let us consider the
case when both the fields obey the boundary condition (2.6)
on the circle r ¼ a:

ð1þ inμγ
μ
ðsÞÞψ ðsÞðxÞ ¼ 0: ð5:1Þ

We can formulate the model in terms of new
fields ψ 0

ðsÞ defined as ψ 0
ðþ1Þ¼ψ ðþ1Þ and ψ 0

ð−1Þ¼γ0γ1ψ ð−1Þ.
The Lagrangian density is presented as L ¼P

s¼�1 ψ̄
0
ðsÞðiγμDμ − smÞψ 0

ðsÞ with the gamma matrices

defined by (2.3) and the Dirac equation for the separate
fields is in the form (2.2). The boundary conditions for new
fields take the form ð1þ isnμγμÞψ 0

ðsÞðxÞ ¼ 0. Introducing

4-component spinor Ψ ¼ ðψ 0
ðþ1Þ;ψ

0
ð−1ÞÞT and 4 × 4 Dirac

matrices γμð4Þ ¼ σ3 ⊗ γμ, with σ3 ¼ diagð1;−1Þ, the

Lagrangian density is written as L ¼ Ψ̄ðiγμð4ÞDμ −mÞΨ
with the boundary condition ð1þ inμγ

μ
ð4ÞÞΨðxÞ ¼ 0 on

r ¼ a. The latter is the bag boundary condition for the
4-component spinor.

For the FC corresponding to the field ψ ðsÞ one has
hψ̄ ðsÞψ ðsÞi ¼ shψ̄ 0

ðsÞψ
0
ðsÞi and for the total FC we get

hΨ̄Ψi ¼
X
s¼�1

hψ̄ ðsÞψ ðsÞi ¼
X
s¼�1

shψ̄ 0
ðsÞψ

0
ðsÞi: ð5:2Þ

The expressions for the separate terms in the last sum of
(5.2) are obtained from the results of the previous sections.
The field ψ 0

ðþ1Þ obeys the same equation and the boundary

condition [the condition (2.6)] as the field ψðxÞ in Sec. II
with s ¼ þ1 and the boundary-induced contribution to the
corresponding FC in the interior and exterior regions is
given by (4.18) and (4.19) with s ¼ 1 and η ¼ þ1. The
field ψ 0

ð−1Þ obeys the same equation as the field ψðxÞ with
s ¼ −1 and the boundary condition (4.17). The corre-
sponding boundary-induced contribution to the FC is given
by (4.18) and (4.19) with s ¼ −1 and η ¼ −1. By taking
into account the relation (4.21) we see that

hψ̄ 0
ð−1Þψ

0
ð−1ÞiðbÞðμÞ ¼ −hψ̄ 0

ðþ1Þψ
0
ðþ1ÞiðbÞð−μÞ: ð5:3Þ

Hence, the boundary-induced contribution to the total FC is
presented in the form

hΨ̄ΨiðbÞ ¼
X
l¼�1

hψ̄ 0
ðþ1Þψ

0
ðþ1ÞiðbÞðlμÞ; ð5:4Þ

where hψ̄ 0
ðþ1Þψ

0
ðþ1ÞiðbÞðμÞ is given by (4.18) and (4.19) with

s ¼ 1 and η ¼ þ1. By taking into account that
hψ̄ 0

ðþ1Þψ
0
ðþ1ÞiðbÞðμÞ is an even function under the trans-

formation α → −α, μ → −μ, from (5.4) it follows that the
FC hΨ̄ΨiðbÞ is an even function of μ and α separately. In the
case of the zero chemical potential, μ ¼ 0, we
get hΨ̄ΨiðbÞ ¼ 2hψ̄ 0

ðþ1Þψ
0
ðþ1ÞiðbÞ.

We could consider the case when the fields ψ ðsÞ with
s ¼ þ1 and s ¼ −1 obey different boundary conditions:
ð1þ isnμγ

μ
ðsÞÞψ ðsÞðxÞ ¼ 0, r ¼ a. This type of problem has

been discussed in [35] for graphene rings, where the
parameter s corresponds to valley degree of freedom
(see below). In this case, the transformed fields ψ 0

ðsÞðxÞ
obey the same boundary condition ð1þ inμγμÞψ 0

ðsÞðxÞ ¼ 0.

The corresponding condensate hψ̄ 0
ðsÞψ

0
ðsÞiðbÞ is given by

(4.18) and (4.19) with η ¼ þ1 and the total FC is obtained
by using the last relation in (5.2). For a massless field one
has hψ̄ 0

ð−1Þψ
0
ð−1ÞiðbÞ ¼ hψ̄ 0

ðþ1Þψ
0
ðþ1ÞiðbÞ and the total FC

vanishes hΨ̄ΨiðbÞ ¼ 0.
Among the condensed matter realizations of the fer-

mionic model we have considered are graphitic cones
(carbon nanocones in another terminology). The long-
wavelength properties of the corresponding electronic
subsystem are well described by a set of two-component
spinors ðψ ðþ1Þ;ψ ð−1ÞÞ, obeying the Dirac equation with the
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speed of light replaced by the Fermi velocity of electrons
(see, e.g., [5]). These spinors correspond to the two
different inequivalent points Kþ and K− at the corners
of the two-dimensional Brillouin zone for the graphene
hexagonal lattice. The parameter s ¼ �1 in the discussion
above corresponds to valley degree of freedom in graphene.
The components of the separate spinors ψ ðsÞ give the
amplitude of the electron wave function on triangular
sublattices A and B of the graphene hexagonal lattice.
Graphitic cones are obtained from a planar graphene sheet
if one or more sectors with the angle π=3 are excised and
the remainder is joined. The opening angle of the cone is
given by ϕ0 ¼ 2πð1 − nc=6Þ, where nc ¼ 1; 2;…; 5 is the
number of the removed sectors. The graphitic cones
with these values of opening angle have been experimen-
tally observed [36]. The electronic structure of graphitic
cones was investigated in [37–43]. Note that the graphitic
cones have been observed in both the forms as caps
on the ends of the nanotubes and as free-standing structures
(see, for instance, [38] and references therein). The
geometry outside the circular boundary, which we have
considered above, corresponds to the continuum descrip-
tion of graphitic cones with a cut apex. As was discussed in
[37], that can be done with acid or with an scanning
tunneling microscope. For even values of nc the periodicity
condition for 4-spinor Ψ ¼ ðψ ðþ1Þ;ψ ð−1ÞÞT under the rota-
tion around the cone apex has the form Ψðt; r;ϕþ ϕ0Þ ¼
− cos ðπnc=2ÞΨðt; r;ϕÞ and it does not mix the spinors
ψ ðþ1Þ and ψ ð−1Þ. For nc ¼ 2 this corresponds to the con-
dition we have discussed in the preceding sections and the
corresponding FC is obtained by combining the contribu-
tions from s ¼ þ1 and s ¼ −1 in thewaywe have described
above. For nc ¼ 4 one has an antiperiodic boundary con-
dition and for the parameter χ in (2.23) we get χ ¼ 1=2. In
this case the FC for separate fieldsψ ðsÞ are obtained from the
formulas given in the preceding sections by the replacement
α → αþ 1=2. By a gauge transformation this can be
interpreted as a shift in the magnetic flux. Note that the
Dirac mass m in the formulas given above is expressed in
terms of the energy gap Δ in graphene by the relation
m ¼ Δ=v2F, where vF ≈ 7.9 × 107 cm=s is the Fermi veloc-
ity of electrons. Depending on the gap generation mecha-
nism, the energy gap varies in the range 1 meV≲ Δ≲ 1 eV.

VI. CONCLUSION

We have considered the combined effects of finite
temperature and circular boundary on the FC in a (2þ 1)-
dimensional conical spacetime with an arbitrary value of
the planar angle deficit. Two types of boundary conditions
were used. The first one corresponds to the MIT bag
boundary condition and the second one, given by (4.17),
differs by the sign in front of the term containing the normal
to the boundary. In two-dimensional spaces there exist two
inequivalent representations of the Clifford algebra and we

have presented the investigation for both fields realizing
those representations. For the evaluation of the FC, the
direct summation over a complete set of fermionic modes is
employed. In the case of the bag boundary condition those
modes outside and inside the circular boundary are given
by (2.13) and (2.18). In the region inside the circular
boundary the eigenvalues of the radial quantum number γ
are roots of Eq. (2.19). They are given implicitly and for the
summation of the corresponding series in the mode sum we
have generalized the formula from [31] for functions
having poles in the right-half plane. That allowed us to
present the FC in the form where the explicit knowledge of
the eigenvalues for γ is not required.
The FCs in both the exterior and interior regions are

decomposed into boundary-free and boundary-induced
contributions, as given by (3.25). The boundary-free geom-
etry has been discussed in [14] and we were mainly
concerned with the effects induced by the boundary. For
a general case of a massive fermionic field with nonzero
chemical potential, the boundary-induced contributions in
the exterior and interior regions are given by expressions
(3.22) and (4.10). They are periodic functions of the
magnetic flux with the period equal to the flux quantum
and even functions under the simultaneous reflections
α → −α, μ → −μ. The expressions for the boundary-
induced FCs are further simplified for a field with zero
chemical potential [see (3.32) and (4.13)]. For a massless
field they are reduced to (3.34) and (4.14). The dependence
of the FC on the magnetic flux becomes weaker with
decreasing planar angle deficit. For points near the boun-
dary, the contribution of the high-energy modes dominates
in the expectation values and the leading term in the
asymptotic expansion over the distance from the boundary
coincides with that for the vacuum FC. In this region the
effects of finite temperature, of planar angle deficit, and of
magnetic flux areweak. As expected, at large distances from
the boundary the FC is dominated by theMinkowskian term

hψ̄ψið0ÞM , given by (3.29). For Tr ≫ 1 the boundary-induced
FC is exponentially suppressed. Similar behavior takes
place for the topological part in the boundary-free FC.
The behavior of the boundary-induced FC near the cone
apex critically depends on the magnetic flux and on the
planar angle deficit. It vanishes on the cone apex for 2jα0j <
1 − 1=q and diverges for 2jα0j > 1 − 1=q. The divergence is
related to the presence of themode irregular at the cone apex.
For a fixed distance from the boundary and at high temper-
atures the FC is dominated by the Minkowskian part.
We have also considered the FC for the boundary

condition (4.17) that differs from the condition (2.6) by
the sign of the term with the normal to the boundary. The
corresponding formulas are obtained from those for the
condition (2.6) by using the relations (4.21). In the special
case of a massless field with zero chemical potential the
FCs for the boundary conditions (2.6) and (4.17) differ by
the sign only.
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For a fermionic field realizing a irreducible representa-
tion of the Clifford algebra, the mass term breaks the P and
T invariances. In order to construct P- and T-invariant
models one can combine two fields corresponding to
inequivalent representations. If both of the fields obey
the boundary condition (2.6), the boundary-induced con-
tribution in the total FC for this type of model is obtained
from the results discussed in Secs. III and IV by using the
relation (5.4) and it is an even function of the chemical
potential and of the parameter α. Another possibility
corresponds to the situation when the fields in different
irreducible representations obey boundary conditions with
different signs of the term involving the normal to the
boundary. In this case the total FC is obtained with the help
of the first relation in (5.4) where the separate terms are
directly taken from the results in Secs. III and IV for the
boundary condition (2.6). For a massless field the parts
hψ̄ 0

ðsÞψ
0
ðsÞiðbÞ do not depend on the parameter s and the total

FC is zero. From the results presented in the present paper
the FC can be obtained in graphitic cones with edges for the
values of the opening angle ϕ0 ¼ 2πð1 − nc=6Þ corre-
sponding to even values of nc (the number of the sectors
with the angle π=3, excised from planar graphene).
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APPENDIX A: ZERO CHEMICAL POTENTIAL

In this Appendix we consider the transformation of the
mode-sum for the FC in the case of the zero chemical
potential, μ ¼ 0. First we consider the exterior region, r > a.
The boundary-induced contribution in the thermal part of the
FC is given by the expression (3.9) with μ ¼ 0. Now the
poles of the integrand are located on the imaginary axis:

E ¼ En ≡ iπð2nþ 1ÞT; n ¼ 0;�1;�2;…; ðA1Þ

with n ¼ 0;�1;�2;…. For the values of γ ¼ γn corre-
sponding to the poles (A1) in the upper half-plane one has

γn ¼ iu0n; n ¼ 0; 1; 2;…; ðA2Þ

with u0n defined in (3.33), and for the poles in the lower half-

plane we get EðλÞ
n ¼EðλÞ�

−n−1, γn ¼ γ�−n−1,n ¼ …;−2;−1. As
the next step, we rotate the integration contour in (3.9) by the
angle π=2 for l ¼ 1 and by the angle −π=2 for l ¼ 2. The
poles γn, n ¼ 0;�1;�2;… are avoided by semicircles
CρðγnÞ in the right half-plane with centers at γ ¼ γn and
with small radius ρ. We get the following terms: the sum of
the integrals over the straight segments of the positive and
negative imaginary semiaxes between the poles γn and the
sum of the integrals over the semicircles CρðγnÞ. In the limit
ρ → 0 the sum of the integrals over the straight segments
gives the principal values of the integrals over the positive
and negative imaginary semiaxes (denoted here as p.v.). The
integrals over the intervals ð0; imÞ and ð0;−imÞ cancel each
other, whereas the integral over ð−im;−i∞Þ is the complex
conjugate of the integral over ðim; i∞Þ. For the sum of the
integrals along the semicircles CρðγnÞ, n ¼ 0; 1; 2;…,
one gets

X∞
n¼0

Z
CðγnÞ

dγ
J̄ðλÞβj

ðγaÞ
H̄ð1;λÞ

βj
ðγaÞ

½ðEþ λsmÞHð1Þ2
βj

ðγrÞ − ðE − λsmÞHð1Þ2
βjþϵj

ðγrÞ� γ=E
eβE þ 1

¼ −2T
X∞
n¼0

ĪðλÞβj
ðu0naÞ

K̄ðλÞ
βj
ðu0naÞ

½ðiπð2nþ 1ÞT þ λsmÞK2
βj
ðu0nrÞ þ ðiπð2nþ 1ÞT − λsmÞK2

βjþϵj
ðu0nrÞ�; ðA3Þ

where the notations for the modified Bessel functions with the bar are defined in accordance of (3.14) withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeπi=2u0naÞ2 þm2

a

p
¼ iπð2nþ 1ÞTa. It can be seen that the sum of the integrals for CρðγnÞ with n ¼ …;−2;−1 is

the complex conjugate of the right-hand side of (A3). Introducing the modified Bessel functions in the integral over
ðim; i∞Þ we get

hψ̄ψiðbÞTλ ¼ λ
1

πϕ0

X
j

p:v:
Z

∞

m
dx Im

�
x

eiβ
ffiffiffiffiffiffiffiffiffiffi
x2−m2

p
þ 1

ĪðλÞβj
ðxaÞ

K̄ðλÞ
βj
ðxaÞ

��
1 −

λismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
�
K2

βj
ðxrÞ þ

�
1þ λismffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 −m2
p

�
K2

βjþϵj
ðxrÞ

�

− λ
T
ϕ0

X
j

X∞
n¼0

Im

� ĪðλÞβj
ðu0naÞ

K̄ðλÞ
βj
ðu0naÞ

½ðπð2nþ 1ÞT − λismÞK2
βj
ðu0nrÞþðπð2nþ 1ÞT þ λismÞK2

βjþϵj
ðu0nrÞ�

�
: ðA4Þ
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Now, by using the relations Īð−Þβj
ðzÞ ¼ ĪðþÞ�

βj
ðzÞ, K̄ð−Þ

βj
ðzÞ ¼ K̄ðþÞ�

βj
ðzÞ, we can see that the contributions from the first term on

the right-hand side of (A4) to the sum hψ̄ψiðbÞT ¼ P
λ¼�hψ̄ψiðbÞTλ give −hψ̄ψiðbÞvac and one finds

hψ̄ψiðbÞT ¼ −
2T
ϕ0

X
j

X∞
n¼0

Im
�
Īβjðu0naÞ
K̄βjðu0naÞ

½ðπð2nþ 1ÞT − ismÞK2
βj
ðu0nrÞþðπð2nþ 1ÞT þ ismÞK2

βjþϵj
ðu0nrÞ�

�
− hψ̄ψiðbÞvac:

ðA5Þ

For the total boundary-induced FC (3.25) the last term on
the right of (A5) is canceled by the boundary-induced part
in the vacuum FC, hψ̄ψiðbÞvac, and we get the representation
(3.32) for the boundary-induced FC in the case of zero
chemical potential. The corresponding formula is also
obtained from (3.22) in the limit μ → 0.
Now let us consider the interior region, r < a. The

thermal contributions to the FC coming from particles and
antiparticles are given by (4.3) with μ ¼ 0. For the zero
chemical potential the procedure we have used to obtain the
summation formula (4.6) from the generalized Abel-Plana
formula should be modified by taking into account that the
function in the integrand has poles z ¼ �iγn ¼ �iu0na,
n ¼ 0; 1; 2;… on the imaginary axis, corresponding to the

zeros of eβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=a2þm2

p
þ 1. In the part of the generalized

Abel-Plana formula corresponding to the integral along the
imaginary axis these poles are avoided by the semicircles
CρðγnÞ. In the limit ρ → 0 we get

X∞
l¼1

TβjðγðλÞj;l ÞfðγðλÞj;l Þ

¼
Z

∞

0

dx fðxÞ þ π

2
Res
z¼0

ỸðλÞ
βj
ðzÞ

J̃ðλÞβj
ðzÞ

fðzÞ

− 2
X∞
n¼0

Re

�
e−iπβj

K̃ðλÞ
βj
ðu0nÞ

ĨðλÞβj
ðu0nÞ

Res
z¼iu0n

fðzÞ
�

−
2

π
p:v:

Z
∞

0

dxRe

�
e−iπβjfðxeπi=2Þ

K̃ðλÞ
βj
ðxÞ

ĨðλÞβj
ðxÞ

�
: ðA6Þ

Note that in applying this formula to the FC the term
coming from the poles iu0n is present for both λ ¼ þ and
λ ¼ −, whereas in (4.6) the pole term is present only in case
λμ > 0. Further transformations of the FC are similar to
those for the exterior region. In the region r < a, the

expressions for hψ̄ψiðbÞTλ and hψ̄ψiðbÞT are obtained from (A4)
and (A5) by the replacements I ⇄ K, Ī → Ĩ, and K̄ → K̃.
We see that the expression for hψ̄ψib is also directly
obtained from (4.10) in the limit μ → 0.

APPENDIX B: ZERO TEMPERATURE LIMIT

In this section we consider the zero temperature limit of
the expressions for the FC obtained above. First of all for
jμj < m from (2.11) it follows that limT→0hψ̄ψi ¼ hψ̄ψivac
and the FC coincides with that for the vacuum state. In the
case jμj > m and for the exterior region one gets

lim
T→0

hψ̄ψi¼ hψ̄ψivacþλ
1

2ϕ0

X
j

Z ffiffiffiffiffiffiffiffiffiffi
μ2−m2

p

0

dγ
γ

E

×
ðEþλsmÞgðλÞ2βj;βj

ðγa;γrÞ− ðE−λsmÞgðλÞ2βj;βjþϵj
ðγa;γrÞ

J̄ðλÞ2βj
ðγaÞþ ȲðλÞ2

βj
ðγaÞ

;

ðB1Þ

where λ ¼ þ for μ > 0 and λ ¼ − for μ < 0 (μ ¼ λjμj). For
the interior region

hψ̄ψi ¼ hψ̄ψivac þ λ
a−2

2ϕ0

X
j

Xlm
l¼1

TβjðγðλÞj;l ÞgðγðλÞj;l Þ; ðB2Þ

with the same λ as in (B1) and lm defined by

γðλÞj;lm
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
< γðλÞj;lmþ1: ðB3Þ

The last terms in (B1) and (B2) come from particles for
μ > 0 and antiparticles for μ < 0. They occupy the states
with energies E ≤ jμj.
Now let us consider the limit T → 0 for the boundary-

induced contribution of the FC in the exterior region on the
base of the formula (3.22). For small temperatures the
dominant contribution to the sum over n in (3.22) comes
from large values n and, to the leading order, we can replace
the summation by the integration. The leading term does
not depend on temperature and is presented as

hψ̄ψiðbÞ ≈ −
1

πϕ0

X
j

Im

�Z
∞−iμ

−iμ
dx

ĪβjðuaÞ
K̄βjðuaÞ

× ½ðx − ismÞK2
βj
ðurÞ þ ðxþ ismÞK2

βjþϵj
ðurÞ�

�
;

ðB4Þ
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where u ¼ ðx2 þm2Þ1=2. The integral on the right-hand
side can be written as the sum of two integrals:R∞−iμ
−iμ dx ¼ R∞

0 dxþ R
0
−iμ dx. The part in the FC with the

integral
R∞
0 dx coincides with the boundary-induced FC in

the vacuum state. For jμj < m, introducing in the integralR
0
−iμ dx the integration variable y ¼ −ix, we can see that the
corresponding integral under the imaginary sign is real and,
hence, the contribution of the integral

R
0
−iμ dx to the FC is

zero. Consequently, we get limT→0hψ̄ψiðbÞ ¼ hψ̄ψiðbÞvac.

For jμj > m, we decompose the second integral asR
0
−iμ dx ¼ R

−λim
−iμ dxþ R

0
−λim dx, where λ is defined by the

relation μ ¼ λjμj. The contribution of part with the integralR
0
−λim dx to the FC is zero by the same reason as that for the
integral

R
0
−iμ dx in the case jμj < m. In the integral

R −λim
−iμ dx

we introduce y in accordance with x ¼ −λiy and then pass
to a new integration variable z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 −m2

p
. Introducing

the Bessel and Hankel functions instead of the modified
Bessel functions, the limiting value of the boundary-
induced FC is presented in the form

lim
T→0

hψ̄ψiðbÞ ¼ hψ̄ψiðbÞvac−λ
1

2ϕ0

X
j

Re

�Z ffiffiffiffiffiffiffiffiffiffi
μ2−m2

p

0

dzz
J̄ðλÞβj

ðzaÞ
H̄ðl;λÞ

βj
ðzaÞ

��
1þ λsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þm2
p

�
HðlÞ2

βj
ðzrÞ−

�
1−

λsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þm2

p
�
HðlÞ2

βjþϵj
ðzrÞ

��
;

ðB5Þ

where μ ¼ λjμj, l ¼ 1 for λ ¼ þ, l ¼ 2 for λ ¼ −, and we use the notation (2.16). This coincides with the boundary-induced
part obtained from (B1) by using the relation (3.7).
Now we consider the zero temperature limit in the interior region, based on the representation (4.10) for the boundary-

induced part. To leading order, we replace the summation over n by integration with the result

lim
T→0

hψ̄ψiðbÞ ¼ −
1

πϕ0

X
j

Im
�Z

∞−iμ

−iμ
dx

K̃βjðuaÞ
ĨβjðuaÞ

½ðx − ismÞI2βjðurÞ þ ðxþ ismÞI2βjþϵj
ðurÞ�

�
; ðB6Þ

where u ¼ ðx2 þm2Þ1=2. Similar to the case of the exterior region, we split the integral as
R∞−iμ
−iμ dx ¼ R∞

0 dxþ R
0
−iμ dx. The

part in the FC corresponding to the integral over [0;∞) gives hψ̄ψiðbÞvac [see (4.1)]. For jμj < m and for the integral over
½−iμ; 0�, in the arguments of the modified Bessel functions u is positive. Introducing a new integration variable y ¼ iλx, we

see that the integral is real and does not contribute to (B6). Hence, for jμj < m, again we get limT→0hψ̄ψiðbÞ ¼ hψ̄ψiðbÞvac. In
the case jμj > m, the nonzero contribution comes from the part of the integral over ½−iμ;−λim�. In addition we should take
into account that the integrand in (B6) may have poles corresponding to ua ¼ −λiγðλÞj;l , l ¼ 1; 2;…; lm [defined by (B3)] in

that segment of the imaginary axis. Passing to a new integration variable z ¼ λiðx2 þm2Þ1=2, we avoid possible poles

z ¼ γðλÞj;l =a by small semicircles CρðγðλÞj;l =aÞ in the right-half plane with a small radius ρ and with the center at z ¼ γðλÞj;l =a. In
the limit ρ → 0, the sum of the integrals over the straight segments between the poles gives the principal value of the integral
and we get the following representation:

lim
T→0

hψ̄ψiðbÞ ¼ hψ̄ψiðbÞvac −
1

πϕ0

X
j

Im

��
p:v:

Z ffiffiffiffiffiffiffiffiffiffi
μ2−m2

p

0

dz −
Xlm
l¼1

Z
CρðγðλÞj;l =aÞ

dz

�
z
K̃βjðuaÞ
ĨβjðuaÞ

×

��
1þ λsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þm2
p

�
I2βjðurÞ þ

�
1 −

λsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

p
�
I2βjþϵj

ðurÞ
�
u¼−λiz

�
: ðB7Þ

By using the relations J̃ðλÞ0βj
ðwÞ ¼ −2=½TðλÞ

βj
ðwÞJβjðwÞ� and ỸðλÞ

βj
ðxÞ ¼ 2=½πJβjðxÞ�, valid for w ¼ γðλÞj;l , it can be shown that the

integral over CρðγðλÞj;l =aÞ is equal to λiπTðλÞ
βj
ðwÞgðwÞ=ð2a2Þ. Introducing in the integral over ½0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
� the Bessel and

Hankel functions, the integrand becomes H̃ðl;λÞ
βj

ðzaÞgðzaÞ=J̃ðλÞβj
ðzaÞwith the real part gðzaÞ. As a result, the zero-temperature

limit is presented as

lim
T→0

hψ̄ψiðbÞ ¼ hψ̄ψiðbÞvac − λ
1

2ϕ0a

X
j

Z ffiffiffiffiffiffiffiffiffiffi
μ2−m2

p

0

dz gðzaÞ þ λ
a−2

2ϕ0

X
j

Xlm
l¼1

TðλÞ
βj
ðγðλÞj;l ÞgðγðλÞj;l Þ: ðB8Þ
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From (4.4) it follows that gðzaÞ=a does not depend on a. By taking into account that for the boundary-free geometry one has

lim
T→0

hψ̄ψið0Þ ¼ hψ̄ψið0Þvac þ λ
1

2ϕ0a

X
j

Z ffiffiffiffiffiffiffiffiffiffi
μ2−m2

p

0

dz gðzaÞ; ðB9Þ

we see that in the zero-temperature limit for the total FC the integral term in (B8) is canceled by the last term in (B9) and the
formula (B2) is obtained. Hence, we have shown that both the representations for exterior and interior FCs give the same
zero-temperature limit.
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