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N ¼ 2 three-dimensional supergravity with internal R-symmetry generators can be understood as a two-
dimensional chiral Wess-Zumino-Witten model. In this paper, we present the reduced phase space
description of the theory, which turns out to be a flat limit of a generalized Liouville theory, up to zero
modes. The reduced phase space description can also be explained as a gauged chiral Wess-Zumino-Witten
model. We show that both these descriptions possess identical gauge and global (quantum N ¼ 2 super
BMS3) symmetries.
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I. INTRODUCTION AND SUMMARY

There is a connection between Dþ 1-dimensional dif-
feomorphism invariant theories and D-dimensional field
theories. The details of this duality strongly depend on the
precise form of boundary conditions on various fields. One
of the simplest contexts where this has been studied is
2þ 1-dimensional gravity theories. It is a well-known fact
that three-dimensional gravity can be described by a two-
dimensional field theory. 3D gravity solutions with non-
trivial topology correspond to stress-energy tensors of a
dual two-dimensional theory. This duality is best under-
stood in the Chern-Simons formulation of 3D gravity [1,2].
The reduced dual theory in this case is, in general, a (chiral)
Wess-Zumino-Witten (WZW) model[3], defined on a
closed spatial section, and is obtained by solving part of
the constraints in the Chern-Simons theory[4–6]. Such
reductions have been mostly performed for asymptotically
anti–de Sitter 3D gravity [7–15], where the dual 2D theory
is a conformal field theory with infinite-dimensional
symmetry. In this paper, we are interested in the dual of
asymptotically flat 3D (super)gravity. In particular, ordi-
nary asymptotically flat 3D gravity can be understood as a
ISO(2,1) Chern-Simons gauge theory with a flat boundary
condition at null infinity, where the Chern-Simons level k is
identified with Newton’s constant. Here, the spatial section
is a plane, and the choice of boundary conditions is crucial
in determining the dual theory. The reduction of ISO(2,1)

Chern-Simons (CS) to the WZWmodel was first studied in
Ref. [16]. An alternate route has been taken in Ref. [17],
where the dual WZW model has been constructed for flat
ordinary 3D gravity.1 In Ref. [17], other than ISO(2,1)
gauge algebra, the boundary conditions suitable for flat
asymptotics (at null infinity) have been applied for the
gauge field. As a result, the dual chiral WZW model, when
is gauged, shows invariance under infinite-dimensional
quantum BMS3 algebra, which is the asymptotic symmetry
of flat 3D gravity. The analysis was further extended for the
minimal N ¼ 1 supergravity theory in Ref. [26], higher
spin gravity [27], and recently, for the N ¼ 2 case, with
(out) internal R symmetry in Ref. [28].
In Refs. [17,26], it was further shown that, for the pure

and N ¼ 1 3D supergravity theory, the asymptotic boun-
dary conditions lead to a reduced phase space description as
a flat limit of (super)Liouville theory at null infinity (up to
zero modes). In view of CS-WZW duality, we can under-
stand this result as due to the fact that the asymptotic
conditions are strong enough to enforce the Hamiltonian
reduction from SL(2,R)-WZW to Liouville theory [29–31].
Another way of looking at it would be to recall that the dual
chiral WZW model shows further gauge invariance. It was
described in Refs. [32–36] that particular subsectors of
symmetry can be gauged without introducing any anomaly
to the system. The gauged chiral WZW model then can be
shown to be equivalent to the flat Liouville description. The
gauging is identical to imposing first-class constraints to
the WZWmodel that arises due to the asymptotic boundary
condition.
The current paper should be considered as a follow-up of

our recent work [28], where we have constructed the dual
chiral WZW model for N ¼ 2 3D supergravity with
internal R symmetry. Here, we present the reduced phase
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1Higher spin and supersymmetric generalizations were per-
formed in Refs. [18–25].

PHYSICAL REVIEW D 100, 105013 (2019)

2470-0010=2019=100(10)=105013(12) 105013-1 Published by the American Physical Society

https://orcid.org/0000-0002-5147-2898
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.105013&domain=pdf&date_stamp=2019-11-18
https://doi.org/10.1103/PhysRevD.100.105013
https://doi.org/10.1103/PhysRevD.100.105013
https://doi.org/10.1103/PhysRevD.100.105013
https://doi.org/10.1103/PhysRevD.100.105013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


space description of the theory and study its properties. The
reduced phase space turns out to be a flat limit of a
generalized super-Liouville-type theory and is identical to
the dual chiral WZW model constructed in Ref. [28], when
appropriately gauged. Finally, we present the gauge invari-
ance of the reduced system, which is the same as the residual
gauge invariance of the gauged chiral WZW model.
The paper is organized as follows: In Sec. II, we briefly

present the N ¼ 2 3D supergravity with internal R sym-
metry and its asymptotic boundary condition at null infinity
that reproduces the infinite-dimensional quantum BMS3
symmetry. In Sec. III, we write down the equivalent chiral
WZW model that describes the dynamics of the theory and
present its symmetries with minimal required details. Then
we present the gauged version of the theory. Section IV
contains the main result of this paper, where we present the
phase space description of the dual theory and show its
equivalence with the gauged chiral WZWmodel. Section V
points out an interesting outlook of this work. Our con-
ventions and some computational details have been pre-
sented in the Appendixes.

II. 3-DIMENSIONAL N = 2 SUPERGRAVITY
AND ITS ASYMPTOTIC SYMMETRY

There are two different versions ofN ¼ 2 super-Poincaré
algebra known in the literature [37]. One of them, commonly
known as N ¼ ð1; 1Þ, contains two supercharges but no
internal R symmetry. The other one, known as N ¼ ð2; 0Þ
super-Poincaré algebra, is more interesting, as it allows the
two supercharges to transformunder an internalR symmetry.
The algebra can be presented as

½Ja; Jb� ¼ ϵabcJc; ½Ja; Pb� ¼ ϵabcPc;

½Ja;Qi
α� ¼

1

2
ðΓaÞβαQi

β; ½Qi
α; T� ¼ ϵijQj

α;

fQi
α; Q

j
βg ¼ −

1

2
δijðCΓaÞαβPa þ Cαβϵ

ijZ: ð2:1Þ

Here, Ja andPa (a ¼ 0, 1, 2) are the Poincaré generators and
Qi

α, two distinct ði ¼ 1; 2Þ two-component ðα ¼ þ1;−1Þ
spinors, are the two fermionic generators of the algebra.
These fermionic generators transform under a spinor repre-
sentation of an internal R-symmetry generator T. The above
algebra has a nondegenerate invariant bilinear form only in
the presence of a central term Z [37]. Our conventions are
presented in Appendix A. In this paper, we shall work with a
3D supergravity theory invariant under the above symmetry.
In the CS formulation, 3D (super)gravity theory can be
represented as

I½A� ¼ k
4π

Z
M

�
A; dAþ 2

3
A2

�
: ð2:2Þ

Here, the gauge field A is regarded as a Lie-algebra-valued
one form, and hi represents ametric in the field space that one

obtains by construing a nondegenerate invariant bilinear
formon the Lie algebra space. k is the level for the theory, and
we expressA ¼ Aa

μTadxμ, where fTag is a particular basis of
the superalgebra. The equation of motion is given as

F≡ dAþ A ∧ A ¼ 0: ð2:3Þ

For our purpose, the gauge group is N ¼ ð2; 0Þ super-
Poincaré groups. The 3-manifold will be one with a boun-
dary, andwe shall identify the level kwithNewton’s constant
as k ¼ 1

4G. The basis elements fTag are Ja,Pa,Qi
α, T, andZ.

Using the supertrace elements, we get the corresponding
supergravity action as

Ið2;0Þμ;μ̄;γ ¼
k
4π

Z
½2eaR̂aþμLðω̂aÞ− Ψ̄i

β∇Ψβ
i −2BdCþ μ̄BdB�;

A¼ eaPaþ ω̂aJaþψα
i Q

i
αþBTþCZ; ð2:4Þ

where ω̂a ¼ ωa þ γea, for some constant γ and Ψ̄i
β, is the

Majorana conjugate gravitino. The N ¼ 2 supergravity
theory of Refs. [23,24] is recovered in the μ ¼ μ̄ ¼ γ ¼ 0

limit. The curvature two-form R̂a, the LorentzChern-Simons
three-form Lðω̂aÞ, and the covariant derivative of the
gravitino of Eq. (2.4) can, respectively, be defined as

R̂a ¼ dω̂a þ
1

2
ϵabcω̂

bω̂c;

Lðω̂aÞ ¼ ω̂adω̂a þ
1

3
ϵabcω̂aω̂bω̂c;

∇Ψβ
i ¼ dΨβ

i þ
1

2
ω̂aΨδ

i ðΓaÞβδ þ BΨβ
jϵ

ij: ð2:5Þ

Since the CS theory is a gauge theory, the equation ofmotion
(2.3) implies that locally the solution of a CS field is pure
gauge A ¼ G−1dG, where G is a local group element.
Defining ω̂ ¼ 1

2
ω̂aΓa, e ¼ 1

2
eaΓa, G1 ¼ 1

2
ðΨ1 − iΨ2Þ, and

G2 ¼ 1
2
ðΨ1 þ iΨ2Þ, the on-shell configuration for various

fields of Eq. (2.4) can be written as

ω̂ ¼ Λ−1dΛ; B ¼ dB̃;

G1 ¼ e−iB̃Λ−1dη1; G2 ¼ eiB̃Λ−1dη2;

C ¼ −iðη̄1αdηα2 − η̄2αdηα1 þ dC̃Þ;

e ¼ −Λ−1
�
1

2

�
η1 ¯dη2 −

1

2
η1dη̄2I

�

þ 1

2

�
η2 ¯dη1 −

1

2
η2dη̄1I

�
þ db

�
Λ: ð2:6Þ

Here, Λ is an arbitrary SLð2; RÞ group element of unit
determinant, andΓa is the generator of SLð2; RÞ.B andC are
SLð2; RÞ scalars, ηi, i ¼ 1, 2 are Grassmann-valued
SLð2; RÞ spinors, and b is a traceless 2 × 2 matrix. All of
these are local functions of three space time coordinates
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u;ϕ; r. Since we are dealing with a gauge theory, we further
choose a (radial) gauge condition ∂ϕAr ¼ 0, and, hence, the
group element splits as Gðu;ϕ; rÞ ¼ gðu;ϕÞhðu; rÞ. Thus,
the gauge fields have the following form:

A ¼ h−1ðaþ dÞh;
a ¼ g−1dg ¼ auðu;ϕÞduþ aϕðu;ϕÞdϕ:

We further choose that asymptotically h ¼ e−rP0 and, hence,
_hðu; rÞ ¼ ∂hðu;rÞ

∂u ¼ 0 at the boundary. The advantage of this
gauge choice is that the dependence in the radial coordinate is
completely absorbed by the group element h. Hence, the
boundary can be assumed to be uniquely located at any
arbitrary fixed value of r ¼ r0, in particular, to infinity. Thus,
the boundary describes a two-dimensional timelike surface
with the topology of a cylinder. The radial gauge condition
makes the above solutions of various field parameters
decompose as

Λ ¼ λðu;ϕÞζðu; rÞ;
B̃ ¼ aðu;ϕÞ þ ãðu; rÞ;
C̃ ¼ cðu;ϕÞ þ c̃ðu; rÞ þ d̄2λd̃1 − d̄1λd̃2;

η1 ¼ eiaðλd̃1ðu; rÞ þ d1ðu;ϕÞÞ;
η2 ¼ e−iaðλd̃2ðu; rÞ þ d2ðu;ϕÞÞ;

b ¼ λEðu; rÞλ−1 − 1

2
ðd1 ¯̃d2λ−1 − d1

¯̃d2λ−1IÞ

−
1

2
ðd2 ¯̃d1λ−1 − d2

¯̃d1λ−1IÞ þ Fðu;ϕÞ; ð2:7Þ

where _ζðu;r0Þ¼ _̃aðu;r0Þ¼ _̃cðu;r0Þ¼ _̃d1ðu;r0Þ¼ _̃d2ðu;r0Þ¼
_Eðu;r0Þ¼0. Thus, even on shell, the system contains
arbitrary local functions λ, F, a, c, d1, and d2 of time u
(and ϕ) as residual degrees of freedom of the gauge system.
In Ref. [23] for N ¼ 2 supergravity, the asymptotic fall

of condition on the r-independent part of the gauge field
was given as

a ¼
ffiffiffi
2

p �
J1 þ

π

k

�
P −

4π

k
Z2

�
J0 þ

π

k

�
J þ 2π

k
τZ
�
P0

−
π

k
ψ iQiþ −

2π

k
ZT −

2π

k
τZ

�
dϕ

þ
� ffiffiffi

2
p

P1 þ
8π

k
ZZ þ π

k

�
P −

4π

k
Z2

�
P0

�
du: ð2:8Þ

Here, P, J , Z, τ, and ψ i are functions of u and ϕ only.
These are the residual degrees of freedom that correspond
to λ, F, a, c, d1, and d2 as introduced above in Eq. (2.7). We
do not consider the holonomy terms, and, hence, the
resulting action principle at the boundary captures only
the asymptotic symmetries of the original gravitational
theory.

III. N = 2 SUPER-POINCARÉ WESS-ZUMINO-
WITTEN MODEL AND ITS SYMMETRIES

In this section, we shall write down the dual WZW
model that describes the dynamics of the above theory
(2.4). For this purpose, notice that the asymptotic gauge
field (2.8) is highly constrained. First, its u and ϕ
components are related as

eau ¼ ωa
ϕ; ωa

u ¼ 0; ψ�
Iu ¼ 0;

Bu ¼ 0; −4Bϕ ¼ Cu: ð3:1Þ
The u component of the gauge field (2.8) is further
constrained as

ω̂1
ϕ ¼

ffiffiffi
2

p
; ω2

ϕ ¼ 0;

ψ1þ
ϕ ¼ ψ2þ

ϕ ¼ 0; e1ϕ ¼ e2ϕ ¼ 0: ð3:2Þ
As the gauge field does not vanish at the boundary, for a
well-defined variational principle, we need the surface term
to vanish in the action. At the boundary, the surface term
looks like

Isurf ¼ −
k
2π

Z
dudϕhAu; δÃir0→∞

¼ −
k
4π

Z
∂M

dudϕ½ωa
ϕωaϕ þ 4B2

ϕ�r0→∞; ð3:3Þ

where the ϕ- total derivative has been set to zero as ϕ is a
compact direction. Using the field parameters as defined in
Eq. (2.4), the supertrace elements of the algebra,2 and the
configuration (2.7), the total on-shell action can be
expressed as

Ið2;0Þ ¼
k
4π

	Z
dudϕTr

�
2μλ−1λ0λ−1 _λ−2ðd̄10 _d2þ d̄20 _d1Þ

−2ia0ðd̄1 _d2− d̄2 _d1þ _λλ−1ðd2d̄1−d1d̄2ÞÞ

−4ða0Þ2−4_λλ−1
�
1

2
ðd1d̄02−d1d̄20IÞ

þ1

2
ðd2d̄01−d2d̄10IÞþF0

�
−2ðλ−1λ0Þ2þ2i _ac0þ μ̄a0 _a

�

þ2μ

3

Z
Tr½ðdΛΛ−1Þ3�



: ð3:4Þ

One can convince himself that the above action describes a
chiral WZW model with gauge group SLð2; RÞ. We refer
the readers to Ref. [28] for the detailed computations
required to arrive at the above result. The system shows
gauge invariance under the following (infinitesimal) gauge
transformation:

2Supertrace elements were computed in Ref. [28] and are
given as

hJa; Pbi ¼ ηab; hJa; Jbi ¼ μηab; hQI
α; QJ

βi ¼ δIJCαβ;

hT; Zi ¼ −1; hT; Ti ¼ μ̄:
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δλ ¼ βλ; δdi ¼ βdi; δF ¼ ½β; F�; ð3:5Þ
where the transformation parameter

β ¼
�
β1 β2

β3 β4

�
ð3:6Þ

is a function of u and other fields do not transform.

A. Global symmetries of the chiral WZW model

The WZW model of Eq. (3.4) is invariant under a set of
global symmetries. As shown in Ref. [28], various fields
change in a coordinate (u;ϕ)-dependent transformation
under these symmetries as

a→ aþAðϕÞ; c→ c− 4iuA0; d1 → e−iAd1;

d2 → eiAd2; c→ cþ CðϕÞ; λ→ λθ−1ðϕÞ;
F→ Fþ uλðθ−1θ0Þλ−1; F→ Fþ λNðϕÞλ−1;
d1 → d1 þ λD1ðϕÞ; c→ cþ D̄1ðϕÞλ−1d2;

F→ F−
1

2
d2D̄1ðϕÞλ−1; d2 → d2 þ λD2ðϕÞ;

c→ c− D̄2ðϕÞλ−1d1; F→ F−
1

2
d1D̄2ðϕÞλ−1: ð3:7Þ

In each of the above expressions, the fields that are not
written remain unchanged under that corresponding sym-
metry transformation. Symmetries are generated by scalar
parameters AðϕÞ and CðϕÞ, matrix-valued parameters θðϕÞ
and NðϕÞ, and spinor parameters D1ðϕÞ and D2ðϕÞ. These
parameters are independent of u, and, thus, they represent
global symmetry transformations.
The conserved currents corresponding to the above

symmetries have also been constructed in Ref. [28].
Below, we present those currents:

JμA ¼ δμ0
k
4π

Tr½2μ̄a0 þ 2ic0 − 8ua00

þ 2iðd̄20d1 − d̄10d2 − ia0ðd̄2d1 þ d̄1d2ÞÞ�A
¼ δμ0½ð−QAÞð−AÞ�;

JμC ¼ δμ0
k
4π

Tr½2ia0C� ¼ δμ0½QCð−iCÞ�; QC ¼ −
ka0

2π
;

JμΘ ¼ δμ0
k
2π

Tr½fλ−1α̂λþ 2uðλ−1λ0Þ0 − 2μλ−1λ0gΘ�
¼ δμ02Tr½QJ

aΘa�;

JμN ¼ δμ0
k
4π

Tr½−4λ−1λ0N� ¼ δμ02Tr½QP
a ð−NaÞ�;

JμD2
¼ δμ0

�
−
k
π

�
Tr½ðd̄10λþ ia0d̄1λÞD2� ¼ δμ0Tr½QG2

α Dα
2�;

JμD1
¼ δμ0

�
−
k
π

�
Tr½ðd̄20λ − ia0d̄2λÞD1�

¼ δμ0Tr½QG1
α Dα

1�; ð3:8Þ

where NðϕÞ and ΘðϕÞ are infinitesimal SLð2;RÞ matrices
which can be further expanded in the basis of Γ matrices as
NðϕÞ ¼ NaðϕÞΓa and ΘðϕÞ ¼ ΘaðϕÞΓa. Other parameters
have also been considered as infinitesimal. It can be checked
that the above currents satisfy the following current algebra:

fQP
a ðϕÞ; QP

b ðϕ0ÞgDB ¼ fQP
a ðϕÞ; QAðϕ0ÞgDB

¼ fQP
a ðϕÞ; QCðϕ0ÞgDB ¼ 0;

fQP
a ðϕÞ; QG1

α ðϕ0ÞgDB ¼ fQP
a ðϕÞ; QG2

α ðϕ0ÞgDB ¼ 0;

fQP
a ðϕÞ; QJ

bðϕ0ÞgDB ¼ fQJ
aðϕÞ; QP

b ðϕ0ÞgDB

¼ ϵabcQP
c ðϕÞδðϕ − ϕ0Þ

−
k
2π

ηab∂ϕδðϕ − ϕ0Þ;
fQJ

aðϕÞ; QJ
bðϕ0ÞgDB ¼ ϵabcQJ

cðϕÞδðϕ − ϕ0Þ

þ μ
k
2π

ηab∂ϕδðϕ − ϕ0Þ;
fQJ

aðϕÞ; QAðϕ0ÞgDB ¼ fQJ
aðϕÞ; QCðϕ0ÞgDB ¼ 0;

fQG1
α ðϕÞ; QJ

aðϕ0ÞgDB ¼ −
1

2
ðΓaÞβαQG1

β ðϕÞδðϕ − ϕ0Þ;

fQG2
α ðϕÞ; QJ

aðϕ0ÞgDB ¼ −
1

2
ðΓaÞβαQG2

β ðϕÞδðϕ − ϕ0Þ;
fQCðϕÞ; QCðϕ0ÞgDB ¼ fQCðϕÞ; QG1

α ðϕ0ÞgDB

¼ fQCðϕÞ; QG2
α ðϕ0ÞgDB ¼ 0;

fQCðϕÞ; QAðϕ0ÞgDB ¼ k
2π

∂ϕδðϕ − ϕ0Þ;

fQAðϕÞ; QAðϕ0ÞgDB ¼ k
2π

μ̄∂ϕδðϕ − ϕ0Þ;
fQG1

α ðϕÞ; QAðϕ0ÞgDB ¼ −iQG1
α ðϕÞδðϕ − ϕ0Þ;

fQG2
α ðϕÞ; QAðϕ0ÞgDB ¼ iQG2

α ðϕÞδðϕ − ϕ0Þ;
fQG1

α ðϕÞ; QG2

β ðϕ0Þg
DB

¼ −ðCΓaÞαβQP
aδðϕ − ϕ0Þ

−
k
π
Cαβ∂ϕδðϕ − ϕ0Þ

þ ia0
k
π
Cαβδðϕ − ϕ0Þ: ð3:9Þ

Next, we notice that the constraints of Eq. (3.2) further imply
that the canonical current generators are constrained as

QP
0 ¼

ffiffiffi
2

p k
2π

; QJ
0 ¼ −

ffiffiffi
2

p μk
2π

;

Q1þ ¼ 0; Q2þ ¼ 0;

QP
2 ¼ 0; QJ

2 ¼ 0; ð3:10Þ
where

Q1
αðϕÞ ¼

1

2
ðQG1

α ðϕÞ þQG2
α ðϕÞÞ;

Q2
αðϕÞ ¼

1

2i
ðQG1

α ðϕÞ −QG2
α ðϕÞÞ; α ¼ �:
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The above relations can be expressed as constraints on
various fields of the WZW model (3.4). Thus, we see that,
when the asymptotic boundary condition of Eq. (2.8) is
explored to its full capacity, the theory getsmore constrained.
The first four of Eqs. (3.10) are first-class constraints, and
they will produce a gauge invariance for the system. To
understand the proper symmetry structure of the theory, we
shall need gauge-invariant canonical symmetry generators.
Hence, we implement a modified Sugawara construction to
define these gauge invariant currents as

H ¼ H þ ∂ϕQP
2 ; J ¼ J − ∂ϕQJ

2;

ĜI ¼ GI þ ∂ϕQIþ; QA;QC; ð3:11Þ

where we have defined

H ¼ π

k
QP

aQP
a þ 4

π

k
QCQC;

J ¼ −μ
π

k
QP

aQP
a − 2

π

k
QJ

aQP
a þ π

k
CαβQ

G1
α QG2

β

þ 2
π

k
QAQC − μ̄

π

k
QCQC;

G1 ¼ π

k
ðQP

2Q
G1þ þ

ffiffiffi
2

p
QP

0Q
G1− Þ þ 2i

π

k
QG1þ QC;

G2 ¼ π

k
ðQP

2Q
G2þ þ

ffiffiffi
2

p
QP

0Q
G2− Þ − 2i

π

k
QG1þ QC: ð3:12Þ

It is easy to see that the above conserved charges are close to
following generalized quantum super BMS3 algebra on the
constrained surface as

fJ ðϕÞ;J ðϕ0ÞgDB ¼ ðJ ðϕÞ þ J ðϕ0ÞÞ∂ϕδðϕ − ϕ0Þ

− μ
k
2π

∂3
ϕδðϕ − ϕ0Þ;

fHðϕÞ;J ðϕ0ÞgDB ¼ ðHðϕÞ þHðϕ0ÞÞ∂ϕδðϕ − ϕ0Þ

−
k
2π

∂3
ϕδðϕ − ϕ0Þ;

fH̃ðϕÞ; H̃ðϕ0ÞgDB ¼ 0;

fHðϕÞ; QAðϕ0ÞgDB ¼ 4QCðϕÞ∂ϕδðϕ − ϕ0Þ;
fJ ðϕÞ; QAðϕ0ÞgDB ¼ QAðϕÞ∂ϕδðϕ − ϕ0Þ;
fJ ðϕÞ; QCðϕ0ÞgDB ¼ QCðϕÞ∂ϕδðϕ − ϕ0Þ;
fJ ðϕÞ; QAðϕ0ÞgDB ¼ QAðϕÞ∂ϕδðϕ − ϕ0Þ;

fQCðϕÞ; QAðϕ0ÞgDB ¼ k
2π

∂ϕδðϕ − ϕ0Þ;

fQAðϕÞ; QAðϕ0ÞgDB ¼ k
2π

μ̄∂ϕδðϕ − ϕ0Þ;

fJ ðϕÞ; Ĝiðϕ0ÞgDB ¼
�
ĜiðϕÞ þ 1

2
Ĝiðϕ0Þ

�
∂ϕδðϕ − ϕ0Þ

ði ¼ 1; 2Þ;

fHðϕÞ; Ĝiðϕ0ÞgDB ¼ 0 ði ¼ 1; 2Þ;
fĜ1ðϕÞ; QAðϕ0ÞgDB ¼ −iĜ1ðϕÞδðϕ − ϕ0Þ;
fĜ2ðϕÞ; QAðϕ0ÞgDB ¼ iĜ2ðϕÞδðϕ − ϕ0Þ;

fĜ1ðϕÞ; Ĝ2ðϕ0ÞgDB ¼ HðϕÞδðϕ − ϕ0Þ − k
π
∂2
ϕδðϕ − ϕ0Þ

− 2iðQCðϕÞ þQCðϕ0ÞÞδ0ðϕ − ϕ0Þ:
ð3:13Þ

Let us next gauge the symmetries introduced at the
beginning of Sec. III A in Eq. (3.7). As we have already
mentioned, there are four first-class constraints as noted in
Eq. (3.10), and they will produce four gauge symmetries to
the system. Thus, it is clear to see that the last four
transformations of Eq. (3.7) can be gauged; i.e., the
transformation parameters can be made a local function
of u as well. Below, we present the gauged version of the
chiral WZW model (3.4).

B. Gauging the chiral WZW model

Imposing the first-class constraints of Eq. (3.2) on on-
shell gauge field parameters implies the following relations:

ðλ−1λ0Þ1 ¼
ffiffiffi
2

p
;

�
λ−1

α̂

2
λ

�
1

¼ 0;

ðλ−1d01 þ ia0λ−1d1Þ− ¼ ðλ−1d02 − ia0λ−1d2Þ− ¼ 0:

The above relations can be equivalently recast in terms of
global symmetry currents as given in Eq. (3.10). Here, we
are setting a part of the currents to a constant or zero value
that comes from symmetry transformations involving
bosonic symmetry transformation parameter N, Θ along
Γ0 and fermionic parameters ½D̄1�þ ¼ ½D̄2�þ ¼ 0. To gauge
the corresponding symmetries, one needs four “gauge
fields” corresponding to four constrained currents J.
Since the currents are nontrivial along u directions, only
the u component of the gauge fields will appear in the
modified action. In general, for gauging a global symmetry,
we need to replace the ordinary derivatives on various fields
by the corresponding covariant ones. For the WZW model
on a Lie group G, only special subgroups of G can be
gauged, as, otherwise, the WZW term makes it anomalous.
The detailed procedure of gauging the WZW model has
been greatly described in a seminal paper [36], where it has
been noted that only subgroups generated by root vectors
associated with positive and negative roots can be gauged.
This implies the subgroup elements must be nilpotent
matrices. A similar strategy has already been implemented
in Refs. [17,26] for gauging SLð2; RÞ chiral WZW models
with(out) minimal supersymmetric extensions. We shall
follow the procedure of Ref. [14], which is also similar in
spirit. In this case, we introduce four Lagrange multipliers
for gauging the constrained (only first-class ones) currents.
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Since the constrained currents are along Γ0, the above
criteria is satisfied. Using these multipliers, we write down
an improved action, where the improvement term is local.
Furthermore, the transformations of the Lagrange multi-
pliers are derived by demanding that the full improved
action is invariant under the above-mentioned gauging of
symmetries. The improved action looks like

I½λ;c;a;F;d1;d2;Ψ;Aμ� ¼ I½λ;c;a;F;d1;d2�þ Ig; ð3:14Þ

where I½λ; C; F; d1; d2� is as given in Eq. (3.4) and

Ig ¼
k
π

Z
dudϕTr

�
Au

�
λ−1

α̂

2
λ

�
þ Ãuλ

−1λ0 − μMÃu

þ 1

2

�
λ−1ðd01 þ ia0d1Þ�Ψ̄2 þ

1

2
½λ−1ðd02 − ia0d2Þ�Ψ̄1

�
:

ð3:15Þ

Here, Ig is a local function of “gauge fields” A, Ã, and Ψ̄i,
i ¼ 1, 2. Au and Ãu are along Γ0 and ½Ψ̄1�þ ¼ 0 ¼ ½Ψ̄2�þ.
Furthermore, we have chosen μM ≔ μ̃Γ1,

3 where μ̃ is an
arbitrary constant, to be able to set the currents to the
required constant value. It can indeed be checked that the
above modified action (3.14) is invariant under the follow-
ing four gauge transformations:

T1∶ δNF¼ λNλ−1; δNλ¼ δNd1¼ δNd2¼ δNc¼ δNa¼ 0;

δNΨ1¼ δNΨ2¼ δNAu¼ 0; δNÃu ¼ð _Nþ½Au;N�Þ;
ð3:16Þ

T2∶ δΘλ ¼ −λΘ; δΘF ¼ uλΘ−1Θ0λ−1;

δΘd1 ¼ δΘd2 ¼ δNc ¼ δNa ¼ 0;

δΘAu ¼ −ð _Θþ ½Au;Θ�Þ; δΘΨ1 ¼ δΘΨ2 ¼ 0;

δΘÃu ¼ uð _Θ0 þ ½Au;Θ0�Þ þ μ

2
_Θ − ½Ãu;Θ�; ð3:17Þ

T3∶ δD1
λ ¼ δD1

d2 ¼ δNa ¼ 0; δD1
d1 ¼ λD1;

δD1
C ¼ D̄1λ

−1d2; δD1
F ¼ −

1

2
d2D̄1λ

−1;

δD1
Au ¼ δD1

Ãu ¼ δD1
Ψ2 ¼ 0; δD1

Ψ1 ¼ −∂μD̄1;

ð3:18Þ

T4∶δD2
λ ¼ δD2

d1 ¼ δNa ¼ 0; δD2
d2 ¼ λD2;

δD2
C ¼ −D̄2λ

−1d1; δD2
F ¼ −

1

2
d1D̄2λ

−1;

δD2
Au ¼ δD2

Ãu ¼ δD2
Ψ1 ¼ 0; δD2Ψ2 ¼ −∂μD̄2:

ð3:19Þ

Note that all the parameters of the transformation men-
tioned here depend on both ðu;ϕÞ and, as said earlier, Θ, N
are along Γ0 and ½D̄1�þ ¼ ½D̄2�þ ¼ 0. The equations of
motion of the four nondynamical Lagrange multipliers Au,
Ãu, Ψ̄1, and Ψ̄2 rightly reproduce back the constrained
relations as given in the beginning of this section if one
chooses μ̃ ¼ 1ffiffi

2
p . Thus, we conclude that Eq. (3.14) repre-

sents the gauged version of chiral WZWmodel (3.4), where
we have gauged the specific part of global symmetries
whose corresponding currents give first-class constraints.
The gauge symmetry along Γ2 is still present. In the next
section, we shall write down the reduced phase space
description for the WZW model (3.4) and show that the
reduced action is an equivalent description of the above
gauged chiral WZW model of (3.14). We shall also com-
ment on the equivalence of the residual symmetries of the
two descriptions.

IV. LIOUVILLE-LIKE THEORY

In this section, we present the reduced phase space
description of the chiral WZW model of Eq. (3.4). For this
purpose, a particular decomposition of the fields, known as
Gauss decomposition,4 is useful. The procedure is to
expand the fields in the Chevalley-Serre basis of the
corresponding gauge group, i.e., SLð2; RÞ for the present
case. Our conventions are listed in Appendix A. The
decomposition is

λ¼eσΓ1=2e−φΓ2=2eτΓ0 ; F¼−
�
η

2
Γ0þ

θ

2
Γ2þ

ζ

2
Γ1

�
; ð4:1Þ

where σ, φ, τ, η, θ, and ξ are scalar fields and are functions
of both u and ϕ. The Gaussian decomposition is useful, as
in this decomposition the 3D bulk part of the WZW model
(3.4) simplifies to a total derivative term as5

2

3
Tr½ðdΛΛ−1Þ3� ¼ drdudϕ ϵνγδ∂νðe−φ∂γτ∂δσÞ:

Thus, using Stoke’s formula, the bulk term can be reduced
to a two-dimensional integral. This makes further compu-
tations technically simple. Two product operators that are
mostly used are given as

λ−1λ0 ¼
�−σ0τe−ϕ−ϕ0=2 −

ffiffiffi
2

p
σ0τ2e−ϕþ ffiffiffi

2
p

τ0−
ffiffiffi
2

p
τϕ0

σ0ffiffi
2

p e−ϕ τσ0e−ϕþϕ0=2

�

ð4:2Þ

3Γ1 is also a nilpotent matrix.

4Important aspects of Gauss decomposition are discussed in
Ref. [38].

5Here, we have assumed the same notation for component
fields, but they have a dependence on all three directions, r, u,
and ϕ.
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and

_λλ−1 ¼
 

− _ϕ
2
− σ_τe−ϕ

ffiffiffi
2

p
_τe−ϕ

_σffiffi
2

p − σffiffi
2

p _ϕ − σ2ffiffi
2

p _τe−ϕ
_ϕ
2
þ σ_τe−ϕ

!
: ð4:3Þ

The first-class constraints can also be recast in terms of
these newly defined fields. Let us first look at the QP

0

condition. It reduces as

QP
0 ¼

ffiffiffi
2

p
k

2π
⇒ σ0 ¼

ffiffiffi
2

p
eφ: ð4:4Þ

Next, we look at two fermionic current constraints. They
are given as

Q1þ ¼ 0⇒

�
−d−1 0 þdþ1

0 σffiffiffi
2

p −d−2
0 þ σffiffiffi

2
p dþ2

0
�

þðia0Þ
�
−d−1 þdþ1

σffiffiffi
2

p þd−2 −
σffiffiffi
2

p dþ2

�
¼ 0;

Q2þ ¼ 0⇒

�
d−1

0−dþ1
0 σffiffiffi

2
p −d−2

0 þ σffiffiffi
2

p dþ2
0
�

þðia0Þ
�
d−1 −dþ1

σffiffiffi
2

p þd−2 −
σffiffiffi
2

p dþ2

�
¼ 0: ð4:5Þ

Redefining new fermionic parameters as d1 ¼ eiadN1 and
d2 ¼ e−iadN2 , the above two conditions can be written in a
compact form as

dN−
1

0 ¼ σffiffiffi
2

p dNþ
1

0; dN−
2

0 ¼ σffiffiffi
2

p dNþ
2

0: ð4:6Þ

Finally, we look at the QJ
0 constraint. The reduced con-

straint looks like

QJ
0 ¼−

ffiffiffi
2

p
μk

2π

⇒ 2μð
ffiffiffi
2

p
eφ−σ0Þþ2uðσ00−φ0σ0Þ−η0σ2−2σθ0 þ2ζ0

þ ðia0Þ½2σdþ2 d−1 −2
ffiffiffi
2

p
d−2 d

−
1 −

ffiffiffi
2

p
σ2dþ2 d

þ
1 þ2σd−2 d

þ
1 �

þðσÞðdþ2 d−1 0 þd−2 d
þ
1
0 þdþ1 d

−
2
0 þd−1 d

þ
2
0Þ

þð
ffiffiffi
2

p
Þð−d−2 d−1 0−d−1 d

−
2
0Þ−
�
σ2ffiffiffi
2

p
�
ðdþ2 dþ1 0 þdþ1 d

þ
2
0Þ ¼ 0:

Using the redefined fermions and the last three current
constraints, the above condition simplifies as

−η0σ2 − 2σθ0 þ 2ζ0 ¼ 0: ð4:7Þ

Equations (4.4), (4.6), and (4.7) represents the first-class
constraints in terms of the new fields.

A. The reduced action

We present the action by computing various terms of
Eq. (3.4) in terms of the above newly defined fields and
reducing it further by using the constraint relations of the
last section as6

I ¼ k
4π

Z
dudϕ½μφ0 _φþ ξ0 _φ − φ02 − 2i _a0Dþ μ̄a0 _a

− 4ða0Þ2 þ 2ð_χ1χ2 þ _χ2χ1Þ�; ð4:8Þ

where the redefined fields are

ξ ¼ 2ðθ þ σηÞ þ d̄2d1; χi ¼ eϕ=2dþi ;

D ¼ cþ ðdþ2 d−1 − dþ1 d
−
2 Þ −

ffiffiffi
2

p
σdþ2 d

þ
1 :

Equation (4.8) is a flat limit of a super-Liouville action with
two supercharges and two internalR-symmetry fields. This is
a generalized version of the flat limit of super-Liouville
actions presented in Refs. [17,26]. To understand the con-
nection with Liouville, we refer readers to Appendix C. The
above action (4.8) is equivalent to the gauged chiral WZW
model of Eq. (3.14). Solving the algebraic equation of
motions of the Lagrange multipliers and putting it back in
Eq. (3.14) will exactly give us Eq. (4.8), when expressed in
terms of Gauss variables.
Finally, we present a realization of super BMS3 gen-

erators of Eq. (3.11) in terms of Liouville fields. With
straight algebra and the use of (4.4), (4.6), and (4.7), they
can be found as

H¼ k
4π

½φ02−2φ00 þ4ða0Þ2�;

J ¼ k
4π

½ξ0φ0−ξ00 þuð2φ000−2φ0φ00−8a00a0Þ
þ2ðχ01χ2þχ02χ1Þþ2ia0D0 þ μ̄ða0Þ2−12μða0Þ2�þμH;

Ĝ1¼ k
π

��
φ0

2
þ ιa0

�
χ2−χ2

0
�
;

Ĝ2¼ k
π

��
φ0

2
− ιa0

�
χ1−χ1

0
�
;

QA¼−
k
4π

Tr½2μ̄a0 þ2iD0−8ua00 þ4iχ2χ1�;

QC¼−
ka0

2π
: ð4:9Þ

It can be checked that the above generators constitute a set
of global symmetries of the reduced action (4.8). To obtain
the symmetry transformations, we first find the canonical
conjugate momenta of fields of Eq. (4.8). They are given as

6Look at Appendix B for some details.
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pφ ¼
k
4π

ðξ0 þμφ0Þ; pξ¼
k
4π

φ0; pa¼
k
4π

ðμ̄a0 þ2iD0Þ;

pD ¼ k
4π

2ia0; pχ1 ¼
k
4π

4χ2; pχ2 ¼
k
4π

4χ1: ð4:10Þ

To obtain the variation of various fields, we use the
Hamiltonian formulation. The variation of fields can be
computed from their Poisson brackets with the global
charge as

−δA ¼ fA;Qg; ð4:11Þ

where

Q ¼
Z

2π

0

dϕ½HT þ J Y þQABþQCK þ 2G1ϵ1 þ 2G2ϵ2�

ð4:12Þ

and T, Y, B, K, ϵ1, and ϵ2 are ϕ-dependent symmetry
transformation parameters. The transformations of various
fields are then given as

−δφ ¼ Yφ0 þ Y 0; ð4:13Þ

−δξ ¼ 2fφ0 þ ξ0Y þ 2f0 − 4ϵ1χ2 − 4ϵ2χ1; ð4:14Þ

−δa ¼ a0Y − B; ð4:15Þ

−δD ¼ D0Y − 4ia0T þ 4iuB0 þ iK − 4iua0Y 0

− 4ϵ1χ2 þ 4ϵ2χ1 − ia0μ̄Y þ iμ̄B; ð4:16Þ

−δχ1 ¼ −χ01Y −
1

2
Y 0χ1 þ 2

�
φ0

2
þ ia0

�
ϵ1 þ 2ϵ01 − iχ1B;

ð4:17Þ

−δχ2 ¼ −χ02Y −
1

2
χ2Y 0 þ 2

�
φ0

2
− ia0

�
ϵ2 þ 2ϵ02 þ iχ2B;

ð4:18Þ

where

f ¼ TðϕÞ þ μYðϕÞ þ uY 0: ð4:19Þ

It can be checked that the above transformations are the
global (u-independent) symmetry of the reduced action
(4.8), as expected. The algebra of the corresponding
Noether charges is again super BMS3 of Eq. (3.13). The
system is also invariant under transformations

δφ ¼ F1ðuÞ; δξ ¼ F2ðuÞ; δD ¼ F3ðuÞ:

Let us briefly elaborate on the source of these local
u-dependent symmetries: The symmetry transformation

of ξ and D is an artifact of the form of the reduced action,
as it involves only the ϕ derivative of these fields. The
symmetry transformation of φ is related to the gauge
invariance of Eq. (3.4), as given in Eq. (3.5). For the
Gauss decomposed fields, Eq. (3.5) implies the following
transformation:

δφ ¼ −2β1 −
ffiffiffi
2

p
β2σ; δθ ¼

ffiffiffi
2

p
β2ζ −

ffiffiffi
2

p
β3η;

δη ¼ ðβ1 − β4Þη −
ffiffiffi
2

p
β2θ;

δσ ¼
ffiffiffi
2

p
β3 þ β4σ − β1σ − β2

σ2ffiffiffi
2

p ;

δdþi ¼ β1d
þ
i þ β2d−i ; δd−i ¼ β3d

þ
i þ β4d−i ð4:20Þ

with β1 þ β4 ¼ 0. Hence, we can decompose the β matrix
in the basis of SLð2; RÞ generators, like field F. Here, β1,
β2, and β3 are three independent transformation parameters
that depend on u. For the reduced fields of Eq. (4.8), we get

δφ¼−2β1−
ffiffiffi
2

p
β2σ; δξ¼2

ffiffiffi
2

p
β2ζ−2

ffiffiffi
2

p
σβ2θ−

ffiffiffi
2

p
β2ησ

2;

ð4:21Þ

δD ¼ 2β2d−2 d
−
1 −

ffiffiffi
2

p
σfβ2d−2 dþ1 þ β2d

þ
2 d

−
1 g þ β2σ

2dþ2 d
þ
1 ;

ð4:22Þ

δχi ¼ −
β2ffiffiffi
2

p σeφ=2dþi þ eφ=2β2d−i : ð4:23Þ

It can be checked that the above transformations, in the
presence of all three parameters β1, β2, and β3 are not
symmetries of Eq. (4.8). Instead, the transformation of φ by
turning on only β1 is a symmetry of the action. Turning on
β1 implies gauge transformation along Γ2, which is the only
non-nilpotent generator of SLð2; RÞ. This is the residual
gauge symmetry of the gauged chiral WZW model of
Eq. (3.14). Thus, we see that both the reduced phase space
Lagrangian (4.8) and the gauged chiral WZWmodel (3.14)
preserve identical global and gauge symmetry.

V. OUTLOOK

In this paper, we have presented three equivalent
descriptions of the N ¼ 2 three-dimensional supergravity
theory. The first description in terms of a chiral WZW
model was derived in Ref. [28], whereas the other two
equivalent descriptions in terms of a gauged version of the
chiral WZW model and a flat limit of generalized super-
Liouville theory have been derived in this paper. All these
theories are invariant under the most generic quantum
N ¼ 2 super BMS3 symmetry constructed in Ref. [28] at
null infinity.
One interesting point to note here is that the Liouville

theory can also be viewed as a free field theory under
proper Bäclund transformations [39]. In Refs. [40,41],
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we have presented a free field realization of BMS3 algebra
and its supersymmetric and higher spin generalizations. It
would be nice to find a connection between these two
realizations. We hope to report on this in the future.
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APPENDIX A: CONVENTIONS AND IDENTITIES

In this appendix, we shall present our conventions. The
tangent space metric ηab, a ¼ 0, 1, 2, is flat and off
diagonal, given as

ηab ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA:

The space time coordinates are u;ϕ; r with the positive
orientation in the bulk being dudϕdr. Accordingly, the
Levi-Civita symbol is chosen such that ϵ012 ¼ 1.
The three-dimensional Dirac matrices satisfy the usual

commutation relation fΓa;Γbg ¼ 2ηab. They also satisfy
the following useful identities:

ΓaΓb ¼ ϵabcΓc þ ηabI; ðΓaÞαβðΓaÞγδ ¼ 2δαδδ
γ
β − δαβδ

γ
δ:

The explicit forms of the Dirac matrices are chosen as

Γ0¼
ffiffiffi
2

p �
0 1

0 0

�
; Γ1¼

ffiffiffi
2

p �
0 0

1 0

�
; Γ2¼

�
1 0

0 −1

�
:

ðA1Þ

All spinors in this work are Majorana, and our con-
vention for the Majorana conjugate of the fermions is
given as

ψ̄αi ¼ ψβ
i Cβα; Cαβ ¼ ϵαβ ¼ Cαβ ¼

�
0 1

−1 0

�
:

Here, i ¼ 1, 2 is the internal index, and Cαβ is the charge
conjugation matrix that satisfies

CT ¼ −C; CΓaC−1 ¼ −ðΓaÞT; CαβCβγ ¼ −δαγ:

For any traceless 2 × 2 matrix A, it can be shown that
CαβA

β
γ ¼ ðCΓaÞαγTr½ΓaA�.

Other useful identities are

ζη̄ ¼ −
1

2
η̄ζ1 −

1

2
ðη̄ΓaζÞΓa; ψ̄Γaη ¼ η̄Γaψ ;

ψ̄Γaϵ ¼ −ϵ̄Γaψ ; ðA2Þ

where ζ, ψ , and η are Grassmannian one-forms, while ϵ is a
Grassmann parameter.
The generators of sLð2; RÞ are considered as Γi

2
.

Furthermore, in the Chevalley-Serre basis, they are given as

Eþ ¼
�
0 1

0 0

�
; E− ¼

�
0 0

1 0

�
; H ¼

�
1 0

0 −1

�
:

ðA3Þ

Thus, E� corresponds to the positive (negative) root of the
Cartan subalgebra, and they are nilpotent.

APPENDIX B: TERMS IN REDUCED ACTION

For writing the phase space reduced action, we need to
reduce various terms of Eq. (3.4) in terms of Gauss
decomposed fields and further use the first-class constraints
relations of (4.4), (4.6), and (4.7). Below, we note the
simplified forms of various terms:
bosonic terms:

Tr½2μλ−1λ0λ−1 _λ� ¼ μφ0 _φþ2μð _στ0e−φÞþ2μðσ0 _τe−φÞ; ðB1Þ

Tr½−4_λλ−1F0� ¼ −4
�
−
_φθ0

2
− σ_τe−φθ0 þ _τζ0e−φ þ _ση0

2

−
σ _φη0

2
−
σ2_τe−φη0

2

�
; ðB2Þ

Tr½−2ðλ−1λ0Þ2� ¼ −2
�
2σ0τ0e−φ þ φ02

2

�
; ðB3Þ

2μ

3

Z
Tr½ðdΛΛ−1Þ3�¼

Z
dudϕð−2μð _στ0e−φÞþ2μðσ0 _τe−φÞÞ:

ðB4Þ

The rest of the terms in the action are scalar
2i _aC0 þ μ̄a0 _a − 4ða0Þ2, and they will remain as it is.
Next, we look at the fermionic terms:

Tr½−2ðd̄01 _d2 þ d̄02 _d1Þ� ¼ 2d−1
0 _dþ2 − 2dþ1

0 _d−2 þ 2d−2
0 _dþ1 − 2dþ2

0 _d−1 ; ðB5Þ

Tr½−2ia0ðd̄1α _d2 − d̄2α _d1Þ� ¼ 2ia0d−1 _d
þ
2 − 2ia0dþ1 _d

−
2 − 2ia0d−2 _d

þ
1 þ 2ia0dþ2 _d

−
1 ; ðB6Þ
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Tr½−2ia0 _λλ−1ðd2d̄1 − d1d̄2Þ� ¼ ð−2ia0Þ½−2
ffiffiffi
2

p
_τe−φd−2 d

−
1 þ

ffiffiffi
2

p
_σdþ2 d

þ
1 −

ffiffiffi
2

p
σ _φdþ2 d

þ
1

−
ffiffiffi
2

p
σ2_τe−φdþ2 d

þ
1 − _φd−1 d

þ
2 − _φdþ1 d

−
2 − 2σ_τe−φd−1 d

þ
2 − 2σ_τe−φdþ1 d

−
2 �; ðB7Þ

Tr

�
−4_λλ−1

1

2
d1d̄02

�
¼ −2

�
_φ

2
dþ1 d

−
2
0 þ σ_τe−φdþ1 d

−
2
0 −

ffiffiffi
2

p
_τe−φd−1 d

−
2
0 þ _σffiffiffi

2
p dþ1 d

þ
2
0

−
σffiffiffi
2

p _φdþ1 d
þ
2
0 −

σ2ffiffiffi
2

p _τe−φdþ1 d
þ
2
0 þ _φ

2
d−1 d

þ
2
0 þ σ_τe−φd−1 d

þ
2
0
�
; ðB8Þ

Tr

�
−4_λλ−1

1

2
d2d̄01

�
¼ −2

�
_φ

2
dþ2 d

−
1
0 þ σ_τe−φdþ2 d

−
1
0 −

ffiffiffi
2

p
_τe−φd−2 d

−
1
0 þ _σffiffiffi

2
p dþ2 d

þ
1
0

−
σffiffiffi
2

p _φdþ2 d
þ
1
0 −

σ2ffiffiffi
2

p _τe−φdþ2 d
þ
1
0 þ _φ

2
d−2 d

þ
1
0 þ σ_τe−φd−2 d

þ
1
0
�
: ðB9Þ

The trace terms are trivially zero. We can further write all these terms in terms of newly defined fermions dN1 and dN2 . Finally,
combining them and using the constraints, the reduced action looks like

I ¼ k
4π

Z
dudϕ½μφ0 _φþ 2 _φθ0 þ 4σ_τe−φθ0 − 4_τζ0e−φ − 2_ση0 þ 2σ _φη0 þ 2σ2_τe−φη0

− φ02 þ 2i _aC0 þ μ̄a0 _a − 4ða0Þ2 þ _φdNþ
2 ðdN−

1 Þ0 −
ffiffiffi
2

p
_σdNþ

2 ðdNþ
1 Þ0 − _φdN−

2 ðdNþ
1 Þ0

þ _φdNþ
1 ðdN−

2 Þ0 −
ffiffiffi
2

p
_σdNþ

1 ðdNþ
2 Þ0 − _φdN−

1 ðdNþ
2 Þ0 þ

ffiffiffi
2

p
σi _aðdNþ

1 Þ0dNþ
2

þ
ffiffiffi
2

p
σðdNþ

1 Þ0 _ðdNþ
2 Þ − 2i _aðdNþ

1 Þ0dN−
2 − 2ðdNþ

1 Þ0 _ðdN−
2 Þ −

ffiffiffi
2

p
σi _aðdNþ

2 Þ0dNþ
1

þ
ffiffiffi
2

p
σðdNþ

2 Þ0 _ðdNþ
1 Þ þ 2i _aðdNþ

2 Þ0dN−
1 − 2ðdNþ

2 Þ0 _ðdN−
1 Þ�; ðB10Þ

and using reduction relations this can be further simplified as

I ¼ k
4π

Z
dudϕ½μφ0 _φþ ξ0 _φ − φ02 þ 2i _aC0 þ μ̄a0 _a − 4ða0Þ2 −

ffiffiffi
2

p
_σdNþ

2 ðdNþ
1 Þ0

−
ffiffiffi
2

p
_σdNþ

1 ðdNþ
2 Þ0 þ

ffiffiffi
2

p
σi _aðdNþ

1 Þ0dNþ
2

þ
ffiffiffi
2

p
σðdNþ

1 Þ0 _ðdNþ
2 Þ − 2i _aðdNþ

1 Þ0dN−
2 − 2ðdNþ

1 Þ0 _ðdN−
2 Þ −

ffiffiffi
2

p
σi _aðdNþ

2 Þ0dNþ
1

þ
ffiffiffi
2

p
σðdNþ

2 Þ0 _ðdNþ
1 Þ þ 2i _aðdNþ

2 Þ0dN−
1 − 2ðdNþ

2 Þ0 _ðdN−
1 Þ�; ðB11Þ

where ξ ¼ 2ðθ þ σηÞ þ ðdNþ
1 dN−

2 þ dNþ
2 dN−

1 Þ. Now notice one relation dNi
1 dNj

2 ¼ di1d
j
2; i.e., the product of redefined

fermions is the same as old ones. Next, to reduce the above action further, we look at terms with _a:

I _a ¼
�

k
4π

�Z
dudϕ½

ffiffiffi
2

p
σi _aðdNþ

1 Þ0dNþ
2 −

ffiffiffi
2

p
σi _aðdNþ

2 Þ0dNþ
1 − 2i _aðdNþ

1 Þ0dN−
2 þ 2i _aðdNþ

2 Þ0dN−
1 �: ðB12Þ

Up to total derivatives in ϕ and using the reduction conditions, we get

I _a ¼ −2i
�
k
4π

�Z
dudϕ½−2_aeϕdNþ

2 dNþ
1 þ ð _aÞ0ððdNþ

2 dN−
1 − dNþ

1 dN−
2 Þ −

ffiffiffi
2

p
σdNþ

2 dNþ
1 Þ�: ðB13Þ

Notice further that from all the above terms N can be omitted. Furthermore, the second term can be absorbed in the
redefinition of c of Eq. (3.4). Next, we look at two fermion terms without _a in Eq. (B11). There are six such terms given as

IFF ¼
�

k
4π

�Z
dudϕ½−

ffiffiffi
2

p
_σdNþ

2 ðdNþ
1 Þ0 −

ffiffiffi
2

p
_σdNþ

1 ðdNþ
2 Þ0

þ
ffiffiffi
2

p
σðdNþ

1 Þ0 _ðdNþ
2 Þ þ

ffiffiffi
2

p
σðdNþ

2 Þ0 _ðdNþ
1 Þ − 2ðdNþ

1 Þ0 _ðdN−
2 Þ − 2ðdNþ

2 Þ0 _ðdN−
1 Þ�: ðB14Þ
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The last two terms of the above expression are the same as the third and fourth terms up to total ϕ; u derivatives. Thus, we get

IFF ¼
�

k
4π

�Z
dudϕ½−

ffiffiffi
2

p
_σdNþ

2 ðdNþ
1 Þ0 −

ffiffiffi
2

p
_σdNþ

1 ðdNþ
2 Þ0 þ 2

ffiffiffi
2

p
σðdNþ

1 Þ0 _ðdNþ
2 Þ þ 2

ffiffiffi
2

p
σðdNþ

2 Þ0 _ðdNþ
1 Þ�: ðB15Þ

The above four terms can be further simplified up to total derivatives and reduction conditions as

IFF ¼
�

k
4π

�Z
dudϕ½2eϕð _dNþ

1 dNþ
2 þ _dNþ

2 dNþ
1 Þ�: ðB16Þ

Let us now put the above equation (B16) with the first term of (B13), and we get

I ¼ 2

�
k
4π

�Z
dudϕ½eϕð _dNþ

1 dNþ
2 þ _dNþ

2 dNþ
1 Þ þ 2i _aeϕdNþ

2 dNþ
1 � ¼ 2

�
k
4π

�Z
dudϕeϕð _dþ1 dþ2 þ _dþ2 d

þ
1 Þ: ðB17Þ

Finally, we redefine χi ¼ eϕ=2dþi , i ¼ 1, 2, and get

I ¼ 2

�
k
4π

�Z
dudϕð_χ1χ2 þ _χ2χ1Þ: ðB18Þ

Combining all the terms, we get the reduced action as in
Eq. (4.8).

APPENDIX C: FLAT LIMIT OF LIOUVILLE
THEORY AND ITS EQUIVALENT

DESCRIPTIONS

In this appendix, we shall present some equivalent
descriptions of the Liouville theory in the “flat” limit.
We shall mostly follow Refs. [39,42]. A classical Liouville
theory describes the dynamics of a two-dimensional scalar
field ϕ such that, when a two-dimensional metric is scaled
by e2ϕ, the transformed metric has constant curvature R.
The quantum Liouville action is given as

SL ¼
Z

d2x
ffiffiffiffiffi
jgj

p �
−
1

2
gab∂aϕ∂bϕþRϕ

γ2þ4

2γ
þ μ̃

2γ2
eγϕ
�
:

ðC1Þ

This is an interacting theory with γ and μ̃ being constants.
The above action in the Hamiltonian form (that contains
only one time derivative of the field) on the Minkowskian
cylinder (hence, R ¼ 0) with time coordinate time u,
compact angular coordinate θ,7 and metric ημν ¼ diagonal
ð−1; l2Þ can be expressed as

SL ¼
Z

dudθ
�
π _ϕ −

π2

2
−
ϕ02

2l2
−

μ̃

2γ2
eγϕ
�
; ðC2Þ

where π is conjugate momenta, _ϕ represents the u deri-
vative, and ϕ0 represents the θ derivative. The action is
invariant under two-dimensional conformal transformations.

We are interested in a large l limit of this theory such
that

ϕ ¼ lΦ; π ¼ Π
l
; β ¼ γl; ν ¼ μ̃l2

are fixed. The action in this limit looks like

SFL ¼
Z

dudθ

�
Π _Φ −

Φ02

2
−

ν

2β2
eβϕ
�
: ðC3Þ

This is the flat limit of Liouville that preserves BMS3
symmetrywith zeroJ − J central extension.One important
point to note that this is a first-order action, and it does not
have a second-order counterpart. There are two equivalent
descriptions of the same theory that we shall list below. The
first one is a free field realization given by

SFL ¼
Z

dudθ

�
πψ _ψ −

π2ψ
2

þ d
du

�
Φψ 0 −

ffiffiffi
ν

p
β

eβΦ=2ψ

��
;

ðC4Þ
where the fields are related by Bäcklund transformations:

Π ¼ ψ 0 −
ffiffiffi
ν

p
2

eβΦ=2ψ ; πψ ¼ Φ0 þ
ffiffiffi
ν

p
β

eβΦ=2:

The second realization is given as

SFL ¼ k
4π

Z
dudθðξ0 _φ − φ02Þ; ðC5Þ

where field transformations are

βΠ ¼ ξ0 − ðlog σÞ0ξ; βΦ ¼ 2φ − 2 log σ − log
8

ν
;

with β2 ¼ 32πG and σ0 ¼ ffiffiffi
2

p
eφ. The second description

arises as the reduced phase space description of the SLð2; RÞ
chiral WZW model with appropriately constrained (due to
specific asymptotic boundary conditions of fields at null
infinity) global currents.

7With respect to light cone coordinates of flat Minkowski
space, x� ¼ u

l � θ.
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