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Equivalent dual theories for 3D A =2 supergravity
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N = 2 three-dimensional supergravity with internal R-symmetry generators can be understood as a two-
dimensional chiral Wess-Zumino-Witten model. In this paper, we present the reduced phase space
description of the theory, which turns out to be a flat limit of a generalized Liouville theory, up to zero
modes. The reduced phase space description can also be explained as a gauged chiral Wess-Zumino-Witten
model. We show that both these descriptions possess identical gauge and global (quantum A = 2 super

BMS;) symmetries.
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I. INTRODUCTION AND SUMMARY

There is a connection between D + 1-dimensional dif-
feomorphism invariant theories and D-dimensional field
theories. The details of this duality strongly depend on the
precise form of boundary conditions on various fields. One
of the simplest contexts where this has been studied is
2 4 1-dimensional gravity theories. It is a well-known fact
that three-dimensional gravity can be described by a two-
dimensional field theory. 3D gravity solutions with non-
trivial topology correspond to stress-energy tensors of a
dual two-dimensional theory. This duality is best under-
stood in the Chern-Simons formulation of 3D gravity [1,2].
The reduced dual theory in this case is, in general, a (chiral)
Wess-Zumino-Witten (WZW) model[3], defined on a
closed spatial section, and is obtained by solving part of
the constraints in the Chern-Simons theory[4—6]. Such
reductions have been mostly performed for asymptotically
anti—de Sitter 3D gravity [7-15], where the dual 2D theory
is a conformal field theory with infinite-dimensional
symmetry. In this paper, we are interested in the dual of
asymptotically flat 3D (super)gravity. In particular, ordi-
nary asymptotically flat 3D gravity can be understood as a
ISO(2,1) Chern-Simons gauge theory with a flat boundary
condition at null infinity, where the Chern-Simons level & is
identified with Newton’s constant. Here, the spatial section
is a plane, and the choice of boundary conditions is crucial
in determining the dual theory. The reduction of ISO(2,1)
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Chern-Simons (CS) to the WZW model was first studied in
Ref. [16]. An alternate route has been taken in Ref. [17],
where the dual WZW model has been constructed for flat
ordinary 3D gravity.1 In Ref. [17], other than ISO(2,1)
gauge algebra, the boundary conditions suitable for flat
asymptotics (at null infinity) have been applied for the
gauge field. As a result, the dual chiral WZW model, when
is gauged, shows invariance under infinite-dimensional
quantum BMS; algebra, which is the asymptotic symmetry
of flat 3D gravity. The analysis was further extended for the
minimal A" = 1 supergravity theory in Ref. [26], higher
spin gravity [27], and recently, for the N = 2 case, with
(out) internal R symmetry in Ref. [28].

In Refs. [17,26], it was further shown that, for the pure
and N = 1 3D supergravity theory, the asymptotic boun-
dary conditions lead to a reduced phase space description as
a flat limit of (super)Liouville theory at null infinity (up to
zero modes). In view of CS-WZW duality, we can under-
stand this result as due to the fact that the asymptotic
conditions are strong enough to enforce the Hamiltonian
reduction from SL(2,R)-WZW to Liouville theory [29-31].
Another way of looking at it would be to recall that the dual
chiral WZW model shows further gauge invariance. It was
described in Refs. [32-36] that particular subsectors of
symmetry can be gauged without introducing any anomaly
to the system. The gauged chiral WZW model then can be
shown to be equivalent to the flat Liouville description. The
gauging is identical to imposing first-class constraints to
the WZW model that arises due to the asymptotic boundary
condition.

The current paper should be considered as a follow-up of
our recent work [28], where we have constructed the dual
chiral WZW model for N'=2 3D supergravity with
internal R symmetry. Here, we present the reduced phase

1Higher spin and supersymmetric generalizations were per-
formed in Refs. [18-25].
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space description of the theory and study its properties. The
reduced phase space turns out to be a flat limit of a
generalized super-Liouville-type theory and is identical to
the dual chiral WZW model constructed in Ref. [28], when
appropriately gauged. Finally, we present the gauge invari-
ance of the reduced system, which is the same as the residual
gauge invariance of the gauged chiral WZW model.

The paper is organized as follows: In Sec. II, we briefly
present the N' = 2 3D supergravity with internal R sym-
metry and its asymptotic boundary condition at null infinity
that reproduces the infinite-dimensional quantum BMS;
symmetry. In Sec. III, we write down the equivalent chiral
WZW model that describes the dynamics of the theory and
present its symmetries with minimal required details. Then
we present the gauged version of the theory. Section IV
contains the main result of this paper, where we present the
phase space description of the dual theory and show its
equivalence with the gauged chiral WZW model. Section V
points out an interesting outlook of this work. Our con-
ventions and some computational details have been pre-
sented in the Appendixes.

II. 3-DIMENSIONAL N =2 SUPERGRAVITY
AND ITS ASYMPTOTIC SYMMETRY

There are two different versions of NV = 2 super-Poincaré
algebra known in the literature [37]. One of them, commonly
known as N = (1, 1), contains two supercharges but no
internal R symmetry. The other one, known as N = (2,0)
super-Poincaré algebra, is more interesting, as it allows the
two supercharges to transform under an internal R symmetry.
The algebra can be presented as

Uaﬂ Jb] = €achC7

1 B i
E (Fu)aQ/}’

o 1. N
{060y} = —E&J(cra)aﬂpa + Cope Z.

Uaﬂpb] = eabcPC7

[Jm Qﬁl] = [Qf)u T] = €ij Qléz,

(2.1)

Here, J, and P, (a = 0, 1, 2) are the Poincaré generators and

i, two distinct (i = 1,2) two-component (@ = +1,—1)
spinors, are the two fermionic generators of the algebra.
These fermionic generators transform under a spinor repre-
sentation of an internal R-symmetry generator 7. The above
algebra has a nondegenerate invariant bilinear form only in
the presence of a central term Z [37]. Our conventions are
presented in Appendix A. In this paper, we shall work with a
3D supergravity theory invariant under the above symmetry.
In the CS formulation, 3D (super)gravity theory can be
represented as

k 2
IIA] = — A, dA+=A2%).
4] 471A4< +3 >

Here, the gauge field A is regarded as a Lie-algebra-valued
one form, and () represents a metric in the field space that one

(2.2)

obtains by construing a nondegenerate invariant bilinear
form on the Lie algebra space. k is the level for the theory, and
we express A = AT, dx*, where {T, } is a particular basis of
the superalgebra. The equation of motion is given as

F=dA+AnNA=0. (2.3)
For our purpose, the gauge group is N = (2,0) super-
Poincaré groups. The 3-manifold will be one with a boun-
dary, and we shall identify the level k with Newton’s constant
as k = z=. The basis elements {T', } are J,, P,, Q%,, T, and Z.
Using the supertrace elements, we get the corresponding
supergravity action as

k . .
150 = = / 2e°R,+uL(&,) - PyV¥ —2BdC +iBdB],
’ T

Hifi

A=eP,+&J,+y?Qi,+BT+CZ, (2.4)
where @“ = w“ + ye®, for some constant y and Pl s the
Majorana conjugate gravitino. The N = 2 supergravity
theory of Refs. [23,24] is recovered inthe y =g =y =0
limit. The curvature two-form R ,, the Lorentz Chern-Simons
three-form L(®,), and the covariant derivative of the
gravitino of Eq. (2.4) can, respectively, be defined as

N 1
R, =dw, + Eeabcwba)",

A

N 1
L(®,) = odd, + ge“bcé)aa)h&)c,
1 ~Na a ij
V] = d¥] + 5o (I); + BYe. (2.5)

Since the CS theory is a gauge theory, the equation of motion
(2.3) implies that locally the solution of a CS field is pure
gauge A = G~ 'dG, where G is a local group element.
Defining & = $&T,, e =1e'T,, G' =1 (¥, —i¥,), and
G* =1(¥, + i¥,), the on-shell configuration for various
fields of Eq. (2.4) can be written as

& = AdA, B = dB,
Gy = e BA-Ndyy, G, = eBAldp,,
C= _i<’71ad’13 - ’7]2ad’1? + dé)a
1 I
e=—A"! [5 (ﬂldﬂz —5771617721>
1 S
+§ nadny —Enzdml +db|A. (2.6)

Here, A is an arbitrary SL(2,R) group element of unit
determinant, and I, is the generator of SL(2, R). B and C are
SL(2,R) scalars, n;, i=1, 2 are Grassmann-valued
SL(2,R) spinors, and b is a traceless 2 x 2 matrix. All of
these are local functions of three space time coordinates
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u, ¢, r. Since we are dealing with a gauge theory, we further
choose a (radial) gauge condition 8¢A, = 0, and, hence, the
group element splits as G(u, ¢, r) = g(u, p)h(u, r). Thus,
the gauge fields have the following form:

A=h"Ya+d)h,
a=g'dg=a,(u ¢)du+ay(u, P)dp.

We further choose that asymptotically 1 = e~""0 and, hence,

h(u,r) = ah(“ ") = 0 at the boundary. The advantage of this
gauge ch01ce is that the dependence in the radial coordinate is
completely absorbed by the group element /4. Hence, the
boundary can be assumed to be uniquely located at any
arbitrary fixed value of r = r, in particular, to infinity. Thus,
the boundary describes a two-dimensional timelike surface
with the topology of a cylinder. The radial gauge condition
makes the above solutions of various field parameters
decompose as

A= A(u, @) (u, ),

B =a(u,¢) +a(u.r),
= c(u ¢) (14 r) + dzj.dl d_lﬂd;,
m = € (ad, (u,r) +dy(u.9)).
ny = e (Ady(u, r) + do(u. ).
b= AE(u,r)i~" — % (dydy2™" = dydrd~'T)
- % (dod (A~ = dyd A7'1) + F(u, ), (2.7)
where C(u ro) = (u ro)—c(u rg) = éi](u,ro):glz(u,ro):

E(u,ry)=0. Thus, even on shell, the system contains
arbitrary local functions 4, F, a, ¢, d;, and d, of time u
(and ¢) as residual degrees of freedom of the gauge system.

In Ref. [23] for N = 2 supergravity, the asymptotic fall
of condition on the r-independent part of the gauge field
was given as

a= \/E[Jl + = (7?——22)]0 + = <j+—TZ>PO

2—EZT —Z—ETZ} d¢

r i
El//iQ+ X X

[\f P+ 8k ZZ+- <P - 7:#) PO} du. (2.8)
Here, P, J, Z, 7, and y; are functions of u and ¢ only.
These are the residual degrees of freedom that correspond
tol, F,a, c,d;, and d, as introduced above in Eq. (2.7). We
do not consider the holonomy terms, and, hence, the
resulting action principle at the boundary captures only
the asymptotic symmetries of the original gravitational
theory.

IIL A =2 SUPER-POINCARE WESS-ZUMINO-
WITTEN MODEL AND ITS SYMMETRIES

In this section, we shall write down the dual WZW
model that describes the dynamics of the above theory
(2.4). For this purpose, notice that the asymptotic gauge

field (2.8) is highly constrained. First, its u and ¢
components are related as

el = 0, ot =0, v, =0,

B, =0, —4B, = C,. (3.1)

The u component of the gauge field (2.8) is further
constrained as

1 . 2 _ 0

Wy = V2, wy =0;

w;ﬁ —_ l//¢ =0:

As the gauge field does not vanish at the boundary, for a

well-defined variational principle, we need the surface term

to vanish in the action. At the boundary, the surface term
looks like

ey =ey=0. (3.2)

[ / dudi(A,. 53),, .

(3.3)

¢lrog—o0?

= _E o dud¢[60¢60u(/) +4B ]
where the ¢- total derivative has been set to zero as ¢ is a
compact direction. Using the field parameters as defined in
Eq. (2.4), the supertrace elements of the algebra,” and the
configuration (2.7), the total on-shell action can be
expressed as

k . - . — .
feo :4717{ / dudgTr [Zﬂﬂ"ﬂ’ﬂ‘lﬂ—%dl’dz+d2’d1)

—2id (d\dy—dyd, + 127" (drd, —d\d>))

. 1 - -
—4(a)2—4j)! <§(d1d’2—d1d2’1)

1 - -
+§<d2dll —dzdlll) +F’> —2(/1_1}/)2 +21ac’+ﬁa’a

+2?M/Tr[(dAA“)3}}.

One can convince himself that the above action describes a
chiral WZW model with gauge group SL(2, R). We refer
the readers to Ref. [28] for the detailed computations
required to arrive at the above result. The system shows
gauge invariance under the following (infinitesimal) gauge
transformation:

(3.4)

Supertrace elements were computed in Ref. [28] and are
given as

<Ja»Pb> = Nabp>
(T,7) = -1,

<Ja’ Jb> = Klab> <Q£z7 Q‘//}> = 51]Caﬂv

(T.T) =
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0L = pA, od; = pd,, SF = [B,F], (3.5)
where the transformation parameter
5 (ﬁl ﬂ2> 36
B3 Pa

is a function of u and other fields do not transform.

A. Global symmetries of the chiral WZW model

The WZW model of Eq. (3.4) is invariant under a set of
global symmetries. As shown in Ref. [28], various fields
change in a coordinate (i, ¢)-dependent transformation
under these symmetries as

a—a+A(p); c—c—4iud's  dy—ed;
d, - etd,, c—c+C(p), 1—107(p);
Fo Fyud0-'0)i, F—F+iN@)i,
di—d,+D\(¢); c—c+Di(p)Ady;

1 _
F— F—Edle(qﬁ)A‘l, dy — dy + 4D, (¢h);

¢ c—Dy(@)ild);  F— F—%dlD_z(qb)/l‘l. (3.7)
In each of the above expressions, the fields that are not
written remain unchanged under that corresponding sym-
metry transformation. Symmetries are generated by scalar
parameters A(¢) and C(¢), matrix-valued parameters 0(¢)
and N(¢), and spinor parameters D;(¢) and D,(¢). These
parameters are independent of u, and, thus, they represent
global symmetry transformations.

The conserved currents corresponding to the above
symmetries have also been constructed in Ref. [28].
Below, we present those currents:

k
Jh = 5”4— r[2pd’ + 2ic’ — 8ua”
v

+2i(dy'dy — d\'dy — id (dyd, + dd;))]A
= %[(—QA)(—A)L
k ka'
J/é:%ET 1[2id'C] = [QC( C)l, Qc:—g,

k
Jo = 85 Trl{27ad + 2u(A'X) ~ 2u07'7}€)]
T

= sp2Ti0ler)

k
Py = 8% 1 Te[=4a7 2N = S42T 08 (N,
k _ _
J"£2 = 5”0 (— ;) Tr[(dllﬂ + ialdlﬂ)Dz] = 56TI'[QSZD(21},
Mo gH k T g/ s 1T
JD] —50 —; r[(d2j.—la dzﬂ)Dl]

= S4Tr[QS' DY), (3.8)

where N(¢) and ©(¢) are infinitesimal SL(2, R) matrices
which can be further expanded in the basis of I" matrices as
N(¢) = N*(¢)T, and ©(¢p) = ©%(¢)T,,. Other parameters
have also been considered as infinitesimal. It can be checked
that the above currents satisfy the following current algebra:

{Qg(d’)’ Q£(¢/)}DB = {Qap(gb), QA(¢,>}DB
- {Qap(d’)’ QC(¢/)}DB =0,
{QZ)(C[’)’ Qr(z;] (45/)}03 = {Q5(¢)’ 1(1;2(45/)}03 =0,
{00(9). 01(¢)} pp = {QU(9). 01 (¢) } b
= eachc (¢)5(¢ - ¢/)
— Dy =)
{Qé(ﬁb), Qi(gb/)}DB = eachg(gb)‘s(d) - ¢/)
£ ’7ab3¢5(¢ ¢/)

+/42
{Qé(@’ QA(¢/)}DB = {Qé( ) QC(¢/)}DB =
(09 ). QL)) o = =5 (TIACT ()5~ 4.

{0%(9). 04} on = —5

{Q°(#). 0°(¢")}ps = {Q°(4).
={0°(#).

{0°(#). Q" (#)}ps =

L2052 ()8 —¢').
' (¢)}ps
gz(ff)/)}DB =0,

k /
584)5@5 -4,

(0" (@), Q@) pu = 5 (6~ ).
(07(#). 0¥}y = ~i0 (91006~ ),
(0% (8). (@) pu = 0L D6~ ).

{05(), 05> (¢} = —(CT) (s QR 5(p — ¢)

k /
~ 2 Cpyd(r - §)
FidS Cpdlp - ).

Next, we notice that the constraints of Eq. (3.2) further imply
that the canonical current generators are constrained as

k uk
Qg:\/i_v Qéz_\/iﬂv

(3.9)

2
oL =0 Qi=0,
0;=0, Q5= (3.10)
where
1
Qi(¢) =5 (0 (¢) + Q*(9)).
1
0a(¢) = 2 Q(P) - 03(¢). a==+
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The above relations can be expressed as constraints on
various fields of the WZW model (3.4). Thus, we see that,
when the asymptotic boundary condition of Eq. (2.8) is
explored to its full capacity, the theory gets more constrained.
The first four of Egs. (3.10) are first-class constraints, and
they will produce a gauge invariance for the system. To
understand the proper symmetry structure of the theory, we
shall need gauge-invariant canonical symmetry generators.
Hence, we implement a modified Sugawara construction to
define these gauge invariant currents as

H=H+0,0y; J=J-0,0%
§' =g +0,0.0" 0, (3.11)
where we have defined
_ T PP T cHC
PN PN P PN R Gy AG»
J=—n7 0404 =27 0a0; +7 CopQu' Oy
+27.040° A7 0°0°.
gl—z( +\/—Q0QG)+21 ¢oC,
g %(Q2Q$Z+WQOQG2)— ¢1oC. (3.12)

It is easy to see that the above conserved charges are close to
following generalized quantum super BMS; algebra on the
constrained surface as

(T@).TW)on = (T + T @)~ ¢)
~ iy 3009~ ).

(M), T (@)} = (H(@) + H(@))go(9 ~ &)
~ 3000~ )

{7:(((?)’ ,H(¢/)}DB =0,
[H(B). 0N} s = 40°($)0,5(6 - ).
(T@). Q@) o = O (D)0, — &),
(T 0o = O3 - ).
(T(B). 0 @) o = O (D05 — &),
{QC((ﬁ)v QA(¢'>}DB - —8¢5(¢ ¢ )
{01 #). Q")) on = 505~ §).
(T@). G @)}y = (g @) +) g’<¢'>) 2,5~ ¢)
(i=1,2),

{H().G'(¢)}ps =0 (i=1.2),
{G'(#). QM (¢")} o = —iG" (9)5(p — ).
{G*(#). QM@)o = iG (D)3 — o).

H(g)o(¢ - 4)’)——5‘2 (¢ —¢")

—2i(Q°()) + Q€ (¢)8 (¢ — ¢).
(3.13)

{G'(9).G°(#)} o5 =

Let us next gauge the symmetries introduced at the
beginning of Sec. Il A in Eq. (3.7). As we have already
mentioned, there are four first-class constraints as noted in
Eq. (3.10), and they will produce four gauge symmetries to
the system. Thus, it is clear to see that the last four
transformations of Eq. (3.7) can be gauged; i.e., the
transformation parameters can be made a local function
of u as well. Below, we present the gauged version of the
chiral WZW model (3.4).

B. Gauging the chiral WZW model

Imposing the first-class constraints of Eq. (3.2) on on-
shell gauge field parameters implies the following relations:

A~ 1
</1‘1 g,l> —0,

l.alll_ldz)_ == 0

(/1—1/1/)1 _ \/i
(A71d, + id'A7'dy) = (AN d —

The above relations can be equivalently recast in terms of
global symmetry currents as given in Eq. (3.10). Here, we
are setting a part of the currents to a constant or zero value
that comes from symmetry transformations involving
bosonic symmetry transformation parameter N, ® along
Iy and fermionic parameters [D,], = [D], = 0. To gauge
the corresponding symmetries, one needs four ‘“‘gauge
fields” corresponding to four constrained currents J.
Since the currents are nontrivial along u directions, only
the u component of the gauge fields will appear in the
modified action. In general, for gauging a global symmetry,
we need to replace the ordinary derivatives on various fields
by the corresponding covariant ones. For the WZW model
on a Lie group G, only special subgroups of G can be
gauged, as, otherwise, the WZW term makes it anomalous.
The detailed procedure of gauging the WZW model has
been greatly described in a seminal paper [36], where it has
been noted that only subgroups generated by root vectors
associated with positive and negative roots can be gauged.
This implies the subgroup elements must be nilpotent
matrices. A similar strategy has already been implemented
in Refs. [17,26] for gauging SL(2, R) chiral WZW models
with(out) minimal supersymmetric extensions. We shall
follow the procedure of Ref. [14], which is also similar in
spirit. In this case, we introduce four Lagrange multipliers
for gauging the constrained (only first-class ones) currents.
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Since the constrained currents are along I'y, the above
criteria is satisfied. Using these multipliers, we write down
an improved action, where the improvement term is local.
Furthermore, the transformations of the Lagrange multi-
pliers are derived by demanding that the full improved
action is invariant under the above-mentioned gauging of
symmetries. The improved action looks like

I[/I,C,Q,F,dl,dz,lP,AM} :I[A,C,Q,F,dl,dﬂ +1g’ (314)

where I[A, C, F,d;,d,] is as given in Eq. (3.4) and
k —l& A =117 A
I, = | dudpTr|A, (A7 50) + A4 = A,

1 o _
+3 [xl‘l(d’] +iady)| ¥y + 5 17 (dy — id'dy)) ¥

(3.15)

Here, I, is a local function of “gauge fields” A, A, and ‘i‘i,
i=1,2.A,and A, are along Ty and [¥,], = 0= [P,] .
Furthermore, we have chosen u,, := l";,” where i is an
arbitrary constant, to be able to set the currents to the
required constant value. It can indeed be checked that the
above modified action (3.14) is invariant under the follow-
ing four gauge transformations:
Tl: 5NF:lN/1_1, 5N/1=5Nd1 :5Nd2:5NC:5Na:0,

SNy =5y =dyA, =0, SyA, = (N+[A,.N]);

(3.16)

Tz: 5@/1 = —/16, (s@F = M/,{@_l@/ﬂ_l,

5®d1 = 5@(12 = 5NC = 5N(l = O,

deA, = —(© +[A,.0]), oW = 6e¥2 =0,

oA, = u(® + [A,.0]) +§® —[4,.0]; (3.17)
T3: 8p A =208pdy=08ya=0,  &pd =D,
6p,C=D"'dy,  Sp F = —%dzi)lrl,
8p, A, =68p,A, =8p ¥, =0, 5p, ¥ =-0,Dy;
(3.18)
T,:6p,A=0p,d =dya=0,  &pdy,=AaD,,
69,C = =Do”Md), 5 F =~ diDyi”
op,A, = Op, A, =8p ¥, =0, 8D,¥, = —0,D,.
(3.19)

°T, is also a nilpotent matrix.

Note that all the parameters of the transformation men-
tioned here depend on both (u, ¢b) and, as said earlier, ®, N
are along I'y and [D;], = [D,], = 0. The equations of
motion of the four nondynamical Lagrange multipliers A,,,
A,, ¥, and ¥, rightly reproduce back the constrained
relations as given in the beginning of this section if one
chooses ji = % Thus, we conclude that Eq. (3.14) repre-

sents the gauged version of chiral WZW model (3.4), where
we have gauged the specific part of global symmetries
whose corresponding currents give first-class constraints.
The gauge symmetry along I', is still present. In the next
section, we shall write down the reduced phase space
description for the WZW model (3.4) and show that the
reduced action is an equivalent description of the above
gauged chiral WZW model of (3.14). We shall also com-
ment on the equivalence of the residual symmetries of the
two descriptions.

IV. LIOUVILLE-LIKE THEORY

In this section, we present the reduced phase space
description of the chiral WZW model of Eq. (3.4). For this
purpose, a particular decomposition of the fields, known as
Gauss decomposition,4 is useful. The procedure is to
expand the fields in the Chevalley-Serre basis of the
corresponding gauge group, i.e., SL(2, R) for the present
case. Our conventions are listed in Appendix A. The
decomposition is

0
A:eorl/ze_‘ﬂré/zefro’ F:—(gro +5F2 +grl), (41)

where o, ¢, 7, 1, 6, and ¢ are scalar fields and are functions
of both u and ¢. The Gaussian decomposition is useful, as

in this decomposition the 3D bulk part of the WZW model
(3.4) simplifies to a total derivative term as’

%Tr[(dAA‘l)ﬂ =drdudd €7°0,(e*0,10;0).

Thus, using Stoke’s formula, the bulk term can be reduced
to a two-dimensional integral. This makes further compu-
tations technically simple. Two product operators that are
mostly used are given as

. (—J’Te"/’ —-¢'/2 —V26't2e™? +/27 — \/§T¢’>

ﬁe“ﬁ e+ )2

(4.2)

4Impor“[ant aspects of Gauss decomposition are discussed in
Ref. [38].

Here, we have assumed the same notation for component
fields, but they have a dependence on all three directions, r, u,
and ¢.
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and

. ( —%—aie“”
M= :

V2te™?

. . 4.3
R Ry (4.3)
N RV RG]

% +ote™®

The first-class constraints can also be recast in terms of
these newly defined fields. Let us first look at the QF
condition. It reduces as

\/_k

o = o = V2er.

Q) = (4.4)
Next, we look at two fermionic current constraints. They
are given as

0l =0= [—d‘ N +id2+']

RCEEC

)[ dr +df -2+ d5 -

e 5]
[d —dy’ i—d +—d+/}
(i C ds—

V22
i) |d; - i S5 - Zaz | <o

Redefining new fermionic parameters as d; = e*“d) and
d, = e""déV , the above two conditions can be written in a
compact form as

- =0,

- (4.5)

o AV V- — o AN+

ﬁl? 2_752

Finally, we look at the Qé constraint. The reduced con-
straint looks like

= 2u(V2e? — )+ 2u(c” — ¢'c") — 6% — 260 +2¢
+ (id)[20d5 dy —=2V2d; df —V262df df +20d; df ]
+(o)(dydy +dyd{+didy' +dydy’)

+(V2)(=d3

dV' = (4.6)

2
di’' - did3') - (%) (dfd’+dfdf") =0,

Using the redefined fermions and the last three current
constraints, the above condition simplifies as
—n'6* =260 +2{ =0 (4.7)

Equations (4.4), (4.6), and (4.7) represents the first-class
constraints in terms of the new fields.

A. The reduced action

We present the action by computing various terms of
Eq. (3.4) in terms of the above newly defined fields and
reducing it further by using the constraint relations of the
last section as

k
I= 4—/ dudp(ug'ep + ¢ — ¢'* = 2id'D + jid'a
/1
—4(d')? + 20122 + 2211)]s (4.8)

where the redefined fields are

E=2(0+0n) +drd,,
D=c+(dydy —d{d;) -

xi=e’df,
V26d;d;.

Equation (4.8) is a flat limit of a super-Liouville action with
two supercharges and two internal R-symmetry fields. This is
a generalized version of the flat limit of super-Liouville
actions presented in Refs. [17,26]. To understand the con-
nection with Liouville, we refer readers to Appendix C. The
above action (4.8) is equivalent to the gauged chiral WZW
model of Eq. (3.14). Solving the algebraic equation of
motions of the Lagrange multipliers and putting it back in
Eq. (3.14) will exactly give us Eq. (4.8), when expressed in
terms of Gauss variables.

Finally, we present a realization of super BMS; gen-
erators of Eq. (3.11) in terms of Liouville fields. With
straight algebra and the use of (4.4), (4.6), and (4.7), they
can be found as

(p/Z _2¢// +4((1/)2},

l l/ 8a// /)

:_ﬂ[é/(p/ _é// + M(z(p///
+2(¢ 2+ b)) +2id D'+ ji(a')? = 12u(a’ )+ wH,

N k /

G'== ( (24‘“1/))(2 —)(2/> ,
T 2

N k /

g2 T ( ((p_ la/)ﬂ{l _X1/> ,
V3 2

k
04 = = Tr[2pd’ +2iD' = 8ua" +4ixoy1].

ka'

c__ka
0 21"

(4.9)
It can be checked that the above generators constitute a set
of global symmetries of the reduced action (4.8). To obtain
the symmetry transformations, we first find the canonical
conjugate momenta of fields of Eq. (4.8). They are given as

®Look at Appendix B for some details.
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k k k _ .
Po=3 (& +ug).  pe= ¢ p.=,_(d' +2iD),
. k
Pp :EZM', Py 254)(2, Py, 254)(1. (4.10)

To obtain the variation of various fields, we use the
Hamiltonian formulation. The variation of fields can be
computed from their Poisson brackets with the global
charge as

—6A = {A, 0}, (4.11)

where

0— /2” dP[HT + TY + 0°B + QK +2G'¢, + 2G%¢)]
0
(4.12)

and 7, Y, B, K, €, and €, are ¢-dependent symmetry
transformation parameters. The transformations of various
fields are then given as

—5p=Y¢' +7Y, (4.13)
=6 =2f¢ + &Y +2f —dey, — ey, (4.14)
—8a = d'Y — B, (4.15)

—6D = D'Y — 4id'T + 4iuB’ + iK — 4iud'Y’
—dey, + dery, — id pY + inB, (4.16)

1 /
-5y, = —;(’IY—EY’)Q —|—2(%—|— ia’)G] +2¢| — iy, B,

(4.17)

/

1
—5){2 = —}(/ZY - EJ(QY/ + 2(% - ia’> €y + 26/2 + i){zB,
(4.18)

where

f=T(p)+puY(¢p) + uY'. (4.19)
It can be checked that the above transformations are the
global (u#-independent) symmetry of the reduced action
(4.8), as expected. The algebra of the corresponding
Noether charges is again super BMS; of Eq. (3.13). The
system is also invariant under transformations
Sp = Fy(u), 66 = Fy(u), 6D = F3(u).

Let us briefly elaborate on the source of these local
u-dependent symmetries: The symmetry transformation

of £ and D is an artifact of the form of the reduced action,
as it involves only the ¢ derivative of these fields. The
symmetry transformation of ¢ is related to the gauge
invariance of Eq. (3.4), as given in Eq. (3.5). For the
Gauss decomposed fields, Eq. (3.5) implies the following
transformation:

Sp = =281 —\V2By6, 80 = V2p,¢ — V2P,

o = (B — Pa)n — V2,0,
86 = 2P+ Pyo — p1o— P

o>
\/j ’
5df = pdf + prdy, 8d; = Pyd + Pady (4.20)
with B, + 4 = 0. Hence, we can decompose the f matrix
in the basis of SL(2, R) generators, like field F. Here, f,
P>, and S5 are three independent transformation parameters

that depend on u. For the reduced fields of Eq. (4.8), we get

Sp==2B— V2P0, SE=2V2Pr0~2V20p,0— 2107,
(4.21)

8D = 2prdydy —V20{prdyd} + od; di} + pro*dfdy
(4.22)

22

Sy = —7§0€¢/2d;r + e??B,d7 . (4.23)

It can be checked that the above transformations, in the
presence of all three parameters f;, f,, and f; are not
symmetries of Eq. (4.8). Instead, the transformation of ¢ by
turning on only f; is a symmetry of the action. Turning on
p implies gauge transformation along I',, which is the only
non-nilpotent generator of SL(2,R). This is the residual
gauge symmetry of the gauged chiral WZW model of
Eq. (3.14). Thus, we see that both the reduced phase space
Lagrangian (4.8) and the gauged chiral WZW model (3.14)
preserve identical global and gauge symmetry.

V. OUTLOOK

In this paper, we have presented three equivalent
descriptions of the N' = 2 three-dimensional supergravity
theory. The first description in terms of a chiral WZW
model was derived in Ref. [28], whereas the other two
equivalent descriptions in terms of a gauged version of the
chiral WZW model and a flat limit of generalized super-
Liouville theory have been derived in this paper. All these
theories are invariant under the most generic quantum
N =2 super BMS; symmetry constructed in Ref. [28] at
null infinity.

One interesting point to note here is that the Liouville
theory can also be viewed as a free field theory under
proper Biclund transformations [39]. In Refs. [40,41],
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we have presented a free field realization of BMS; algebra
and its supersymmetric and higher spin generalizations. It
would be nice to find a connection between these two
realizations. We hope to report on this in the future.
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APPENDIX A: CONVENTIONS AND IDENTITIES

In this appendix, we shall present our conventions. The
tangent space metric 7,,, a =0, 1, 2, is flat and off
diagonal, given as

- O O

0 1
Nab = 1 0
0 0

The space time coordinates are u, ¢, r with the positive
orientation in the bulk being dudgpdr. Accordingly, the
Levi-Civita symbol is chosen such that ¢y, = 1.

The three-dimensional Dirac matrices satisfy the usual
commutation relation {I',,I',} = 2#,,. They also satisfy
the following useful identities:

Farb = eabcrc + nabH’ (Fa);(ra)z; = 2526; - 5;)’152

The explicit forms of the Dirac matrices are chosen as

wen(§2), mea12) ne )

(A1)

All spinors in this work are Majorana, and our con-
vention for the Majorana conjugate of the fermions is
given as

0 1
Wai = W Cpas Caﬂzeaﬂzcaﬂ:< 1 0>'

Here, i = 1, 2 is the internal index, and C, is the charge
conjugation matrix that satisfies
CT=—-C,

Crac_l = _(Fa)T’ Cll/fc/f}’ = _60‘7'

Tr[-2(d}dy + dydy)] = 2d7'd; —

Tr[-2id (dods — dood,)] = 2id d7dy —2id d}d;y - 2id dydy + 2id'd} dy,

2di'dy + 2dy'df - 2d}'dy,

For any traceless 2 x 2 matrix A, it can be shown that
CopA) = (CT?),, Tr[[,A].
Other useful identities are

R U
¢ = =511 =5

wpl,e = —ely,

nregr,, ylan =il .y,

(A2)
where £, y, and 5 are Grassmannian one-forms, while € is a
Grassmann parameter.

The generators of sL(2,R) are considered as
Furthermore, in the Chevalley-Serre basis, they are given as

(o) () ()

(A3)
Thus, E. corresponds to the positive (negative) root of the
Cartan subalgebra, and they are nilpotent.

L

i

APPENDIX B: TERMS IN REDUCED ACTION

For writing the phase space reduced action, we need to
reduce various terms of Eq. (3.4) in terms of Gauss
decomposed fields and further use the first-class constraints
relations of (4.4), (4.6), and (4.7). Below, we note the
simplified forms of various terms:

bosonic terms:

Tr[2pd~ X270 = ug p + 2u(67'e=?) + 2u(c'te™?), (B1)

. 20’ “ !
Tr[-4A47'F) = —4 [— ”’7 —ote "0 + il'e™ + %

opny  o*te?y
S (82
(p/2
Tr[-2(A7'X)?] = =2 <2G/T/€_¢ + ) (B3)

2

3fl/Tr[(dAA_l)ﬂ:/dudqb(—2,14(&7’6_‘”)Jr2/4(a’%e_‘/’)).
(B4)

The rest of the terms in the action are scalar

2iaC' + pid'a — 4(a’)?, and they will remain as it is.
Next, we look at the fermionic terms:
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Tr[—2id 227" (dyd, — ddy)] = (=2id)[-2V2te™?dy dy + V26dfdf — \26pdS df

— \/Eazie“”d;’df” —@didy — @pdfd; —20te™didy — 20te™?d]| d;], (B7)
_ . . )
Tr [—4/1/1‘1 Edld/z} =2 E dfdg’ + m"e“”dfdg’ - \/Ei'e“/’dl‘dg’ +\/i§dfd2+’
_ i 2dtdT — 0_2 re~?dtd! + Qd—dJr/ + o1 —d-dT’ (B8)
\/E(/)IZ \/57612 R ote “d;d, |,

o : :
Tr [—4/1/1-1 zdzd@ =2 B’ dfdy' + ote v didy' — V2ie vdsdy’ + %d;dﬁ

c . o’ . @ s e
—Tzfpd;df/—%’[e wd;dfl'*‘zdzd;ﬂ-f—ﬁfe ¢d2dir/:|. (B9)

The trace terms are trivially zero. We can further write all these terms in terms of newly defined fermions ¢ and @5 . Finally,
combining them and using the constraints, the reduced action looks like

1= %/ dudplug' o + 2¢0 + 4ote=*0 — 41'e™? = 260" + 2000 + 20*te "y
— @ +2iaC' + pd'a — 4(d')? + pdy T (V) = V26dYF (AN ) — pdy-(al Y
+ g\ (dy7) = V26d\ T (YY) = pdY = (dY) + V2oia(d) ) dy
+V20(dV Y (dY) - 2ia(d) Yy~ = 2(a Y (dY") = V2oia(dy Yl
+V26(dY) (V) + 2ia(dY Y dN- — 2(d¥ ) (dV-)), (B10)
and using reduction relations this can be further simplified as
= % / dudplug' o + Ep — ¢* + 2iaC' + pa'a — 4(d')* — V26dY+ (dVY
—V26aYH(dY) + V2sia(dY ") dyt
+ V20(d Y (d)) - 2ia(d) Yy~ = 2(a) Y (dY) - V2oia(ay Yyt
+V20(d Y (AN + 2ida(d )Y - 2(d) ) (@), (B11)

where & =2(0 4 on) + (d)*d)~ + d)*d)~). Now notice one relation d)'d)’ = did}; i.e., the product of redefined
fermions is the same as old ones. Next, to reduce the above action further, we look at terms with a:

k
I, = (E) / dudp[V2eia(dV ) dYT = V2eia(dy ) dY T = 2ia(dY Y dY + 2ia(dy*) dY). (B12)
Up to total derivatives in ¢ and using the reduction conditions, we get
k
1, = —2i<E> /dudqﬁ[—Zc'ze(/’d’z\'*d[]\’+ + (&) (dytdY~ —dYTdh—) - ﬂad?*dll\’*)]. (B13)

Notice further that from all the above terms N can be omitted. Furthermore, the second term can be absorbed in the
redefinition of ¢ of Eq. (3.4). Next, we look at two fermion terms without ¢ in Eq. (B11). There are six such terms given as

ter = (3) | ndol=2ea ey = 3oy

+V20(d) ) () + V20 (d) ) (V) = 2(d) ) () = 2(d) Y (@), (B14)
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The last two terms of the above expression are the same as the third and fourth terms up to total ¢b, u derivatives. Thus, we get

trr = (35 [ dudbi=VBoy" @77 = VB @) + 22l () + 2B} )

4

(B15)

The above four terms can be further simplified up to total derivatives and reduction conditions as

47

k . .
Ipp = (> / dudp2e? (Y TdYt + dy a7t

(B16)

Let us now put the above equation (B16) with the first term of (B13), and we get

k . . k ) .
1= 2(@) / dudgle? (d) T dY* + &Yt dVT) 4 2iaetdY ) = 2(@) / dudpe?(didf +d5df). (B17)

Finally, we redefine y; = e?/?d;", i = 1, 2, and get

1= 2(%) [ auddtie + ). 19

Combining all the terms, we get the reduced action as in
Eq. (4.8).

APPENDIX C: FLAT LIMIT OF LIOUVILLE
THEORY AND ITS EQUIVALENT
DESCRIPTIONS

In this appendix, we shall present some equivalent
descriptions of the Liouville theory in the “flat” limit.
We shall mostly follow Refs. [39,42]. A classical Liouville
theory describes the dynamics of a two-dimensional scalar
field ¢ such that, when a two-dimensional metric is scaled
by e??, the transformed metric has constant curvature R.
The quantum Liouville action is given as

1 P4

— 2 b

SL_/d xV/ gl (—59" 5a¢3b¢+R¢2—7+2—y267¢>-
(C1)

This is an interacting theory with y and /i being constants.
The above action in the Hamiltonian form (that contains
only one time derivative of the field) on the Minkowskian
cylinder (hence, R =0) with time coordinate time u,
compact angular coordinate 0,” and metric N = diagonal

(=1, %) can be expressed as

R TV, R
SL:/dud9<ﬂ¢—%—f—lz—2LyzeV‘/’>, (C2)

where 7 is conjugate momenta, ¢ represents the u deri-
vative, and ¢’ represents the @ derivative. The action is
invariant under two-dimensional conformal transformations.

"With respect to light cone coordinates of flat Minkowski
u

space, x, =7+ 0.

[

We are interested in a large / limit of this theory such
that

p=10, 1= V= QP

I1
7 p=rl

are fixed. The action in this limit looks like

. q)l2 v

This is the flat limit of Liouville that preserves BMS;
symmetry with zero J — J central extension. One important
point to note that this is a first-order action, and it does not
have a second-order counterpart. There are two equivalent
descriptions of the same theory that we shall list below. The
first one is a free field realization given by

. m, d
SFL B / dud0<ﬂ'wl// - 7”” + E (@y// —_ %eﬂq)/zll,) ) s
(C4)

where the fields are related by Bicklund transformations:

0=y _\/7’761@/2% T, =@ +%ﬂeﬂq’/2.

The second realization is given as

k
S =y [ dudo@o-o?). (€9
T

where field transformations are

P =& — (logo)'E, ﬁ¢>:2(p—210g0—log§,
with > = 322G and ¢’ = v/2¢?. The second description
arises as the reduced phase space description of the SL(2, R)
chiral WZW model with appropriately constrained (due to
specific asymptotic boundary conditions of fields at null
infinity) global currents.
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