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We consider a Finslerian-type geometrization of the nonrelativistic quantum mechanics in its
hydrodynamical (Madelung) formulation, by also taking into account the effects of the presence of the
electromagnetic fields on the particle motion. In the Madelung representation, the Schrödinger equation
can be reformulated as the classical continuity and Euler equations of classical fluid mechanics in the
presence of a quantum potential, representing the quantum hydrodynamical evolution equations. The
equation of particle motion can then be obtained from a Lagrangian similarly to its classical counterpart.
After the reparametrization of the Lagrangian, it turns out that the Finsler metric describing the geometric
properties of quantum hydrodynamics is a Kropina metric. We present and discuss in detail the metric and
the geodesic equations describing the geometric properties of the quantum motion in the presence of
electromagnetic fields. As an application of the obtained formalism, we consider the Zermelo navigation
problem in a quantum hydrodynamical system, whose solution is given by a Kropina metric. The case of
the Finsler geometrization of the quantum hydrodynamical motion of spinless particles in the absence of
electromagnetic interactions is also considered in detail, and the Zermelo navigation problem for this case
is also discussed.
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I. INTRODUCTION

The extremely successful geometrization of the gravita-
tional interaction via Riemannian geometry, general rela-
tivity, and the Einstein gravitational field equations has
raised the important question of whether geometrical
methods could be also successfully applied for the geo-
metrical description of other branches of physics. For
Newtonian mechanics and gravity a first step in this
direction was taken by Cartan [1] (see also Ref. [2]),
who showed that the motion of a particle in a gravitational
field can be reformulated as a geodesic equation of motion.
Hence, the geometric interpretation of classical mechan-

ics, or, more generally, of classical physics, is a long-
standing subject in both mathematical and theoretical
physics, representing a very active field of research
[3–24]. Two main metric approaches have been developed
for a geometric description of classical mechanics. In the
first approach, the Jacobi metric approach, in order to
describe Hamiltonian mechanical dynamical systems one

introduces a metric of the form ds2J ¼ WðqaÞδabdqadqb,
whereW represents the conformal factor given byWðqaÞ ¼
E − VðqaÞ [6]. This metric is called the Jacobi metric. The
flow associated with a time-dependent Hamiltonian can
then be reformulated as a geodesic flow in a curved, but
conformally flat, manifold [6].
An alternative metric description of classical dynamics is

based on the Eisenhart metric [10,12,15,16,22,23]. In this
approach, one considers an ambient space with an extra
dimension, M ×R2, with local coordinates ðq0; q1;…;
qi;…; qN; qNþ1Þ. On this space we can introduce a
nondegenerate pseudo-Riemannian metric, called the

Eisenhart metric, given by ds2E ¼ gðEÞμν dqμdqν¼ δijdqidqj−
2VðqÞðdq0Þ2þ2dq0dqNþ1, where μ and ν run from 0 to
N þ 1, while i and j run from 1 to N. Then it can be shown
that the motions of a Hamiltonian dynamical system can be
obtained as the canonical projection of the geodesics of
ðM ×R2; gðEÞÞ on the configuration spacetime, π∶M ×
R2 ↦ M ×R [10].
We may call the above interpretations of physical theories

the geometrodynamical approach. Such approaches have
been known for a long time in the framework of the general
geometric theory of the dynamical systems.
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Perhaps the most important field of study of theoretical
physics, quantum mechanics, can also be formulated as a
geometric theory, in which standard methods of differential
geometry play an important role. Quantum mechanics
can be cast into a classical Hamiltonian form in terms of a
symplectic structure, not on the Hilbert space of state vectors
but on the more physically relevant infinite-dimensional
manifold of instantaneous pure states [25]. This geometrical
structure can accommodate generalizations of quantum
mechanics, including nonlinear relativistic models [26]. A
metric tensor from the underlying Hilbert space structure for
any submanifold of quantum states was defined in Ref. [27].
The case where the manifold is generated by the action of a
Lie group on a fixed state vector (generalized coherent states
manifold) was studied in detail. In Ref. [28], it was argued
that quantum mechanics is fundamentally a geometric
theory. Using the natural metric on the projective space,
the Schrödinger equation for an isolated system can be
reformulated in geometric terms. On the other hand, the
manifold of pure quantum states can be regarded as a
complex projective space endowedwith the unitary-invariant
Fubini-Study metric [29].
A geometrization of the nonrelativistic quantum

mechanics for mixed states was introduced in Ref. [30],
making use of the Uhlmann’s principal fiber bundle. A
formulation of the formalism of quantum mechanics in
a geometrical form based on the Kähler structure of the
complex projective space was proposed in Ref. [31]. A
geometric framework for mixed quantum states represented
by density matrices was discussed in Ref. [32]. A geometric
setting of quantum variational principles and their extension
to include the interaction between classical and quantum
degrees of freedom was considered in Ref. [33]. The
construction of a general prescription to set up awell-defined
and self-consistent geometric Hamiltonian formulation of
finite-dimensional quantum theories, where phase space is
given by the Hilbert projective space (as a Kähler manifold)
was considered in Ref. [34].
One of the important extensions of Riemannian geom-

etry is the Finsler geometry [35–40]. A Finsler space is
based on the general line element ds ¼ Fðx1; x2;…; xn;
dx1; dx2;…; dxnÞ, where Fðx; yÞ > 0 for y ≠ 0 is a func-
tion on the tangent bundle TðMÞ and is homogeneous of
degree 1 in y. In fact, Finsler geometry is not just another
generalization of Riemannian geometry; it is Riemannian
geometry without the restriction that the line element must
be quadratic [41]. If in Riemannian geometry we have
F2 ¼ gijðxÞdxidxj, in a Finsler space the length of a
differential line element at x depends in general on both
x and y according to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx⃗ · dx⃗

p
¼ ½gABðx; yÞdxAdxB�1=2.

Finsler geometry has many important applications in
electromagnetism, gravitation, and continuum mechanics
[42–45]. A Finslerian approach to classical mechanics was
developed in Refs. [46–49].

One of the classic problems in optimization theory is the
Zermelo navigation problem [50], requiring the extremiza-
tion of the travel time of an aeroplane in the presence of
wind. As shown in Ref. [51], the solution of the Zermelo
problem is equivalent to the determination of the minimal
time travel curves in a Finsler-type geometry with a
Randers metric [52]. More recently, it was shown that
Kropina metrics are actually singular solutions of the
Zermelo navigation problem [53]. The Zermelo navigation
problem and its applications have been intensively inves-
tigated in both the mathematical and physical literature
[54–58] and has also been considered in the fields of
quantum mechanics and quantum computation [59–63].
The quantum navigation problem can be formulated as
finding the time-optimal control Hamiltonian, which trans-
ports a given initial state to a target state in the presence of a
quantum wind—that is, under the influence of external
fields or potentials [62]. It is possible to obtain a universal
quantum speed limit by lifting the problem from the state
space to the space of unitary gates. The optimal times for
implementing unitary quantum gates in a constrained finite-
dimensional controlled quantum system were analyzed in
Ref. [60]. A Randers metric was constructed, the geodesics
of which are the time-optimal trajectories compatible with
the prescribed constraint.
Recently, a Finsler-type geometrization of quantum

mechanics that describes the time evolution of particles
as geodesic lines in a curved space was proposed in
Ref. [64], in which the curvature of the Finsler space is
induced by the quantum potential. A description of the
phenomenon of self-interference using Finslerian geomet-
rical formulation was discussed in Ref. [65]. This formal-
ism removes the need for the concept of wave function
collapse in the interpretation of the act of measurement—
that is, of the emergence of the classical world. The
Finslerian geometrical formulation of quantum field theory
in spacetime was unified with classical Einstein’s general
relativity in Ref. [66]. In Ref. [67] it was shown that for a
system of two entangled particles, there is a dual descrip-
tion to the particle equations in terms of the classical theory
of conformally stretched spacetime. These entangled par-
ticle equations can be interpreted via the framework of
Finsler geometry. A geometrization of quantum hydro-
dynamics was discussed in Ref. [68].
It is the goal of the present paper to consider a Finsler-

type geometrization of quantum mechanics along the lines
suggested in Refs. [64,65] for a charged particle under the
influence of an exterior electromagnetic field. After refor-
mulating, with the use of the Madelung representation of
the wave function [69,70], the Schrödinger equation as a
quantum hydrodynamical system, it follows that the equa-
tion of motion of the quantum particles can be derived from
a classical action principle, with the Lagrangian containing
the kinetic energy of the particle, the electromagnetic
potentials and exterior potentials, as well as the quantum
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potential VQ, which determines the quantum properties of
the dynamical evolution.
With the help of a particular reparametrization of the

time coordinate, one can associate with this Lagrangian
a Finsler-type fundamental function, and a Finsler-type
fundamental metric. It turns out that the corresponding
Finsler fundamental function belongs to the class of (α, β)
metrics [71,72], or, more exactly, to the Kropina metrics
[73,74]. Hence, the Finsler-type representation of quantum
mechanics can be discussed in the framework of a well-
known geometric approach. The Finslerian approach
allows us to reformulate the equation of motion of quantum
particles as a geodesic equation. Moreover, the important
Zermelo quantum navigation problem has an immediate
solution within the quantum hydrodynamical approach and
the Finslerian representation of quantum mechanics. We
discuss in detail the Finsler geometric approach to quantum
hydrodynamics for charged particles in the presence of
electromagnetic interactions, as well as the limiting case of
neutral spinless particles. In all cases, the corresponding
Finsler metrics and geodesic equations are obtained.
The present paper is organized as follows: In Sec. II, we

introduce the hydrodynamic formulation of quantum
mechanics for charged particles in the presence of electro-
magnetic interactions. In Sec. III, we briefly review the
basic mathematical properties and definitions of the Finsler
geometries, of the (α, β) and Kropina metrics, and of the
Zermelo navigation problem. The Finslerian quantization
of the hydrodynamic version of quantum mechanics in the
presence of electromagnetic fields in presented in Sec. IV.
The solution of the Zermelo navigation problem in the
hydrodynamical formulation of quantum mechanics is
considered in Sec. V. The case of the Finslerian geo-
metrization of the standard hydrodynamic representation of
the Schrödinger for the case of the neutral particle is
presented in detail in Sec. VI. Finally, we discuss and
conclude our results in Sec. VII.

II. HYDRODYNAMICAL FORMULATION OF
NONRELATIVISTIC QUANTUM MECHANICS

In the presence of an external electromagnetic field, the
quantum dynamics of a spinless particle with mass m is
described by the Schrödinger equation given by

iℏ
∂Ψðr⃗; tÞ

∂t ¼ 1

2m

�
ℏ
i
∇ −

e
c
A⃗ðr⃗; tÞ

�
2

Ψðr⃗; tÞ

þ eϕðr⃗; tÞϕðr⃗; tÞ þ Vðr⃗; tÞΨðr⃗; tÞ; ð1Þ

where ϕðr⃗; tÞ and A⃗ðr⃗; tÞ are the scalar and vector potential
of the electromagnetic field, and V ¼ Vðr⃗; tÞ is the poten-
tial of the nonelectromagnetic forces. The electric and
magnetic fields can be obtained from the electromagnetic

potentials as B⃗ ¼ ∇ × A⃗ and E⃗ ¼ −e∇ϕ − _A⃗=c, respec-
tively [75]. From the Schrödinger equation, one can obtain

immediately the conservation law for the probability
current density as given by

∂jΨðr⃗; tÞj2
∂t þ∇ · j⃗ ¼ 0; ð2Þ

where j⃗ ¼ ðΨ� ˆv⃗ΨþΨ ˆv⃗�Ψ�Þ=2 ¼ ReðΨ� ˆv⃗ΨÞ, and ˆv⃗ ¼
ð ˆp⃗ − eA⃗=cÞ=m.
In general, the operators ˆp⃗ ¼ ðℏ=iÞ∇ and A⃗ do not

commute, so that ½ ˆp⃗; A⃗� ¼ −iℏ∂iAi ¼ −iℏ∇ · A⃗. In order to
make these operators commutative, in the following wewill
adopt for the vector potential of the magnetic field the
Coulomb gauge ∇ · A⃗ ¼ 0.
As a next step, we introduce the Madelung (quantum

hydrodynamical) representation of the wave function as

Ψðr⃗; tÞ ¼ Rðr⃗; tÞeiSðr⃗;tÞ=ℏ; ð3Þ

where both R and S are real quantities. For a given wave
function Ψ, this representation does not determine Ψ
uniquely, since S0 ¼ Sþ nh=2 and R0 ¼ ð−1ÞnR, where
n ∈ N gives the same Ψ. However, if we restrict our
analysis to non-negative R, then R is uniquely determined
[70]. Moreover, S is also undetermined at the nodal point
R ¼ 0. By substituting the wave function as given by
Eq. (3) into the Schrödinger Eq. (1), after separating the real
and imaginary parts we obtain [70,76–79]

R

�∂S
∂tþ

1

2m

�
∇S−e

c
A⃗

�
2

þeϕþV

�
−
ℏ2

2m
ΔR¼0 ð4Þ

and

∂R2

∂t þ∇ ·

�
R2

m

�
∇S −

e
c
A⃗

��
¼ 0; ð5Þ

respectively. By introducing the velocity v⃗ of the quantum
particle, defined as mv⃗ ¼ ∇S − eA⃗=c, and by denoting
ρðr⃗; tÞ ¼ R2ðr⃗; tÞ ¼ Ψ�ðr⃗; tÞΨðr⃗; tÞ, Eqs. (4) and (5) take
the forms

∂S
∂t þ

1

2
mv⃗2 þ eϕþ V þ VQ ¼ 0; ð6Þ

∂ρ
∂t þ∇ · ðρv⃗Þ ¼ 0; ð7Þ

where we have introduced the quantum potential VQ

defined as

VQ ¼ −
ℏ2

2m
ΔR
R

¼ −
ℏ2

2m

�
Δρ
ρ

−
ð∇ρÞ2
2ρ

�
: ð8Þ

By taking the gradient of Eq. (6), we obtain the equation of
motion of the quantum particle as
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m
dv⃗
dt

¼ F⃗ −∇ðV þ VQÞ; ð9Þ

where d=dt ¼ ∂
∂t þ v⃗ ·∇, and F⃗ ¼ eE⃗þ ðe=cÞv⃗ × B⃗ is the

Lorentz force acting on the particle. Equation (9) can be
rewritten as

dvi
dt

¼ 1

m
Fi −

1

mρ

X
k

∂σik
∂xk −

1

m
∂V
∂xi ; ð10Þ

where σik ¼ − ℏ2
4m

∂2 ln ρ
∂xi∂xk.

We introduce now the quantum trajectories via the
definition v⃗ ¼ dr⃗=dt [76,80,81], which allows us to write
the equation of motion (9) in the form

m
d2r⃗
dt2

¼ F⃗ −∇ðV þ VQÞ: ð11Þ

III. A BRIEF REVIEW OF FINSLER GEOMETRY,
GENERAL (α, β) METRICS, AND ZERMELO

NAVIGATION

In the present section, we will briefly review the basics of
the Finsler geometry, of the (α, β) metrics, and of the
Zermelo navigation problem.
Finsler geometry naturally appears in the framework of

classical mechanics when dissipative effects are taken into
account. Let us assume that the equations of motion of a
dynamical system, defined on an n-dimensional differ-
entiable manifold M, can be obtained from a Lagrangian L
by using the Euler-Lagrange equations, given by

d
dt

∂L
∂yi −

∂L
∂xi ¼ Fi; i ∈ f1; 2;…; ng; ð12Þ

where Fi are the external forces [48]. We call the triplet
ðM;L; FiÞ a Finslerian mechanical system [49]. If the
Lagrangian L is regular, then the above Euler-Lagrange
equations are equivalent to a system of second-order
differential equations of the form

d2xi

dt2
þ 2Giðxj; yj; tÞ ¼ 0; i ∈ f1; 2;…; ng; ð13Þ

where in a neighborhood of some initial conditions (ðxÞ0,
ðyÞ0, t0) each function Giðxj; yj; tÞ is C∞ in Ω. These
equations can be naturally interpreted as describing geo-
desic motion in a Finsler space.

A. Finsler geometry

One of the fundamental assumptions of modern theo-
retical physics is that spacetime can be described math-
ematically as a four-dimensional differentiable manifoldM,
endowed with a pseudo-Riemannian tensor gIJ, where
I; J; K… ¼ 0, 1, 2, 3. Then the spacetime interval between

two events xI and xI þ dxI on the world line of a standard
clock is defined by the chronological hypothesis to be
ds ¼ ðgIJdxIdxJÞ1=2 (using Einstein’s summation conven-
tion) [82,83]. One of the most important metrical gener-
alizations of the Riemannian geometry that was already
hinted at by Riemann himself [84] is the geometry
subsequently initiated by Finsler [35] (for a detailed
description of Finsler geometry, see Refs. [36–40]).
Finsler spaces are metric spaces in which the interval ds

between two infinitesimally close points x ¼ ðxIÞ and
xþ dx ¼ ðxI þ dxIÞ is given by

ds ¼ Fðx; dxÞ; ð14Þ

where the Finsler metric function F is positively homo-
geneous of degree 1 in dx, so that

Fðx; λdxÞ ¼ λFðx; dxÞ: ð15Þ

In order to allow the use of local coordinates in compu-
tations, the Finsler metric functionF can be written in terms
of ðx; yÞ ¼ ðxI; yIÞ, the canonical coordinates of the tangent
bundle, where y ¼ yI ∂

∂xI, is any tangent vector y at x. The
Finsler tensor gIJ is defined then as

gIJðx; yÞ ¼
1

2

∂2F2ðx; yÞ
∂yI∂yJ ; ð16Þ

which allows us to write Eq. (14) as ds2 ¼ gIJðx; yÞyIyJ.
Riemann spaces are special cases of Finsler spaces, corre-
sponding to gIJðx; yÞ ¼ gIJðxÞ and yI ¼ dxI , respectively.
With the use of the Finsler metric, we can obtain the

geodesic equations in a Finsler space in the form [82,83]

d2xI

dλ2
þ 2GIðx; _xÞ ¼ 0; ð17Þ

or, equivalently,

d2xI

dλ2
þ ΓI

JKðx; _xÞ
dxJ

dλ
dxK

dλ
¼ 0; ð18Þ

where

GIðx; _xÞ¼1

2
ΓI
JKy

JyK¼1

4
gIJ

� ∂2F2

∂xK∂yJ y
K−

∂F2

∂xJ
�
; ð19Þ

and ΓI
JK are the analogues of the Christoffel symbols of the

Riemann geometry, defined as
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ΓI
JKðx; _xÞ ¼

1

2
gILðx; _xÞ

�∂gLJðx; _xÞ
∂xK

þ ∂gLKðx; _xÞ
∂xJ −

∂gJKðx; _xÞ
∂xL

�
: ð20Þ

A special class of Finsler spaces, called Berwald spaces,
can be obtained when ΓI

JKðxA; _xAÞ ¼ ΓI
JKðxAÞ [36].

The functions GI defined above are called the coeffi-
cients of the spray of F. They are used to define the vector
field S on TMn0 by

S ¼ yI
∂
∂xI − 2GI ∂

∂yI :

S is called the spray induced by F. A curve γ on M is a
geodesic of F if and only if its canonical lift γ̂ðtÞ ¼
ðγðtÞ; _γðtÞÞ to TM is an integral curve of S.

B. Kropina and general (α, β) metrics

A special kind of Finsler space is the Randers space [52],
having

F ¼ ½aIJðxÞdxIdxJ�1=2 þ bIðxÞdxI; ð21Þ

where aIJ is the fundamental tensor (metric) of a
Riemannian space, and bIðxÞdxI is a linear one-form on
the tangent bundle TM. Later on, Kropina [73,74] consi-
dered Finsler spaces equipped with metrics of the form

Fðx; yÞ ¼ aIJðxÞyIyJ
bIðxÞyI

: ð22Þ

Generalizing these results, Matsumoto [71,72] intro-
duced the notion of the (α, β) metrics as follows: a
Finsler metric function Fðx; yÞ is called an (α, β) metric
when F is a positively homogeneous function Fðα; βÞ of
first degree in two variables, αðx; yÞ ¼ ½aIJðxÞdxIdxJ�1=2
and βðx; yÞ ¼ bIðxÞyI , respectively. In the following, we
will suppose that α is a Riemannian metric—that is, it is
nondegenerate (regular) and positive-definite. In the case of
the Randers and Kropina metrics, we have F ¼ αþ β and
F ¼ α2

β , respectively. Hence, the Randers and Kropina
metrics belong to the class of the (α, β) metrics.
Alternatively, we can consider general (α, β) metrics as
metrics of the form Fðα; βÞ ¼ αϕðβ=αÞ ¼ αϕðsÞ, where
s ¼ β=α, and ϕ ¼ ϕðsÞ is a C∞ positive function on an
open interval ð−bo; boÞ.
In the following, we introduce the quantities rIJ ≔

ðbIjJ þ bJjIÞ=2, sIJ ≔ ðbIjJ − bJjIÞ=2, sIJ ≔ aIKsKJ, sI ≔
bJsJI ¼ bKsKI , and eIJ ≔ rIJ þ bIsJ þ bJsI , where “j”
denotes the covariant derivative with respect to the Levi-
Civita connection of α. In Finsler geometry, it customary to
denote r00 ≔ rIJyIyJ, s0 ≔ sIyI, etc.

1. Geodesic equations for the Kropina metric

The fundamental tensor of a Kropina space with
F ¼ α2

β ¼ αϕðsÞ, where ϕðsÞ ¼ 1
s, s ¼ β

α, reads [85]

gIJ ¼
2α2

β2
aIJ þ

3α4

β4
bIbJ −

4α3

β3
ðbIαJ þ bIαJÞ þ

4α2

β2
αIαJ:

ð23Þ

For the geodesic spray of a general Kropina metric, we
obtain

GI ¼ ḠI −
α2

2β
sI0 −

β

b2α2

�
α2

β
s0 þ r00

�
yI

þ 1

2b2

�
α2

β
s0 þ r00

�
bI; ð24Þ

where the index 0 means contraction by yI.
Then the Kropina-space unit speed geodesics’ equations

are given by

d2xI

dt2
þ 2GI

�
xðtÞ; dxðtÞ

dt

�
¼ 0: ð25Þ

C. The Zermelo navigation problem

We start by recalling the famous Zermelo navigation
problem [50]. Imagine a ship sailing on the sea in the
presence of a wind of speed Wi relative to the ground. The
main task of the ship’s captain is to minimize the travel
time, by assuming that the ship sails at constant speed
relative to the sea. If the ship travels a long distance, the
captain must take into account the curvature of the Earth. In
the absence of the wind, the optimal travel route would be a
circle—that is, the geodesic of the Riemannian manifold
with metric hij. In the following, we describe the sea by a
Riemannian space (M, h). The pair ðhij;WiÞ is referred to
as the Zermelo navigation data. It was shown in Ref. [86]
that the Zermelo problem is equivalent to finding the
minimal travel-time curve in a manifold equipped with a
Randers-Finsler metric with original data ðaij; biÞ. The
Randers geodesics are given by

d2xI

ds2
þ ΓI

JK
dxJ

ds
dxK

ds
¼ aIJFJK

dxK

ds
; ð26Þ

where ds is the arc length of the Riemannian metric aIJ,
ΓI
JK are the Christoffel symbols constructed from aIJ, and

FJK ¼ ∂JbK − ∂KbJ ([39]).
Suppose now that the ship can sail with a constant speed

for a unit time on the calm sea. Let the speed be h-unit
speed. We denote the velocity of the ship on the calm sea by
a unit vector u. And let us suppose that the wind is blowing
with the h-unit speed, which is the same as that of the ship
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on the calm sea. We denote the wind and the velocity of the
ship on the windy sea by the h-unit vector field W and
the vector v, respectively. Then we have the equation
uþW ¼ v. From it we find jv −Wj ¼ 1.
The length of v is the speed of the ship on the windy sea

for a unit time. The above equation means that the tip of the
velocity of the ship on the windy sea lies on theW-translate
of the indicatrix of the Riemannian space (M, h). In other
words, the indicatrix of the space in which we consider the
velocity of the ship on the windy sea is the W-translate of
the unit sphere of (M, h).

1. Zermelo navigation and Kropina metrics

In this section, we characterize a Kropina metric
Fðx; yÞ ¼ α2=β on M, where α2 ¼ aIJðxÞyIyJ and β ¼
bIðxÞyI , by a Riemannian metric h and a unit vector fieldW
onM. Since we suppose that the matrix ðaIJðxÞÞ is positive
definite, it follows that the matrix ðgIJðx; yÞÞ is also positive
definite [53].
The Kropina metrics can be described as another

solution of the Zermelo navigation problem already
explained above [53]. For a Kropina metric F ¼ α2=β,
we define a Riemannian metric h and a vector field W by

hIJ ¼ eκðxÞaIJ; WI ¼
1

2
eκðxÞbI; ð27Þ

where WI ¼ hIJWJ, where κðxÞ is a function of ðxIÞ alone
and satisfies the equation

eκðxÞb2 ¼ 4; ð28Þ

i.e., jWj ¼ 1. Then we obtain

				 y
Fðx; yÞ −W

				 ¼ 1; ð29Þ

and hence it follows that F is a solution of the Zermelo
navigation problem. Observe that hIJ ¼ e−κðxÞaIJ, and
WI ¼ bI=2, respectively.
Conversely, consider the metric Fðx; yÞ defined by

Eq. (29), where jWj ¼ 1. Solving for F, we obtain

Fðx; yÞ ¼ jyj2
2hðy;WÞ :

Defining aIJ and bI by aIJ ≔ e−κðxÞhIJ and bI ≔
2e−κðxÞWI , respectively, we have Fðx; yÞ ¼ α2=β.
Summarizing the above discussion, we obtain the

following results [53,87,88]:
For a Kropina space ðM;F ¼ α2=βÞ, where α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðy; yÞp

and β ¼ bIðxÞyI , we define a new Riemannian
metric h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðy; yÞp
and a unit vector field W ¼

WIð∂=∂xIÞ by Eqs. (27) and (28). Then, the Kropina

metric F satisfies Eq. (29), and hence it is a solution of
Zermelo’s navigation problem.
Conversely, suppose that h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðy; yÞp
is a Riemannian

metric andW ¼ WIð∂=∂xIÞ is a unit vector field on (M, h).
Consider the metric F defined by Eq. (29). Let κðxÞ be a
function of ðxIÞ alone, which satisfies Eq. (28), and define
aIJ and bI by aIJðxÞ ≔ e−κðxÞhIJðxÞ and bIðxÞ≔ 2e−κðxÞWI ,
respectively. Then, we have F ¼ α2=β.

IV. FINSLERIAN GEOMETRIZATION
OF QUANTUM HYDRODYNAMICS

In the present section, starting from the equivalent
Lagrangian formulation of quantum hydrodynamics, we
will consider a geometric formulation of the Schrödinger
equation in the presence of the electromagnetic inter-
actions. In particular, we will show that quantummechanics
can be interpreted as describing geodesic motion in a
Kropina space. A similar approach for the Finsler geo-
metrization of classical mechanics was introduced in
Ref. [85].

A. Kropina space representation
of quantum hydrodynamics

As a first step in our approach, we consider a general
Lagrangian of the form Lðt; xi; _xiÞ, i ¼ 1, 2, 3, with which
we associate the arc-length element ds given by

ds ¼ Lðt; xi; _xiÞdt: ð30Þ
We introduce now a new evolution parameter τ ¼ τðtÞ,
which allows us to rewrite the ds as

ds ¼ L

�
t; xi;

dxi
dτ
dt
dτ

�
dt
dτ

dτ: ð31Þ

We next introduce the new coordinate x0 ¼ t, and we
relabel the coordinates as xI ¼ ðx0; xiÞ, i ¼ 1, 2, 3.
Moreover, we denote yI ¼ dxI=dτ ¼ ðdt=dτ; dxi=dτÞ.
Then Eq. (31) can be written as

ds ¼ FðxI; yIÞdτ; ð32Þ

where

FðxI; yIÞ ¼ L

�
t; xi;

yi

y0

�
y0: ð33Þ

Equation (11), giving the equation of motion of a
quantum particle in the hydrodynamic representation,
can be derived from the classical Lagrangian

Lðt; xi; _xiÞ ¼ 1

2
mijðxÞ_xi _xj þ

e
c
Ai _xi − ðeϕþ V þ VQÞ;

ð34Þ
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where for the sake of generality we assume that the
components of the mass matrix mij are functions of xi,
and that the matrix mij is positive definite. Equation (34)
will be the starting point for our Finsler geometrization of
the hydrodynamic version of quantum mechanics.
Therefore, we obtain for F the expression

FðxI; yIÞ ¼ 1

2
mij

yiyj

y0
þ e
c
Aiyi

− ðeϕþ V þ VQÞy0; i; j ¼ 1; 2; 3: ð35Þ

Equation (35) can be rewritten as follows:

FðxI; yJÞ ¼
1
2
mijyiyj þ e

c Aiy0yi − ðeϕþ V þ VQÞðy0Þ2
y0

¼ α2

β
ðxI; yJÞ; ð36Þ

where we have introduced the notations

α2 ≔ aIJðxÞyIyJ; β ≔ y0; ð37Þ

and ðaIJÞI;J¼0;…;3 is the symmetric matrix with the entries

a00ðx0; xiÞ ≔ −ðeϕþ V þ VQÞ;

a0iðxiÞ ≔
e
2c

Ai; aijðxiÞ ¼
1

2
mij; i ∈ f1; 2; 3g:

ð38Þ

We will call this Riemannian metric the associated
Riemannian metric to the Lagrangian (34).
From the definitions in Eq. (37), we observe that

β ¼ bIyI ¼ y0—that is, the linear one-form has only
one nonvanishing coefficient, ðb0; b1; b2; b3Þ ¼ ð1; 0; 0; 0Þ.
Moreover, the determinant of the matrix aIJ can be
explicitly written in terms of the initial data in the
Lagrangian [Eq. (34)].
For aij ¼ ð1=2Þmδij, wherem is the mass of the particle,

we find

det jaIJj ¼−
1

8
m3

�
e2

2mc2
ðA2

1þA2
2þA2

3ÞþðeϕþVþVQÞ
�
:

ð39Þ

For the sake of simplicity, we will assume that the matrix
aIJ is positive defined—that is, we have a Riemannian
metric on the manifold M ¼ R ×M, called the extended
configurations space, with the local coordinates ðxIÞ.
Under this assumption, it follows that the function F in
Eq. (36) is a Kropina metric on M, hence the theory
presented in the previous sections applies. Of course, in the
case when the associated metric aIJ has a more general
signature, the theory can be studied in a similar manner.

In the absence of the external magnetic field, Ai ¼ 0,
i ¼ 1, 2, 3, we obtain for aIJ the inverse of thematrixaIJ, the
simple form aIJ¼−ðeϕþVþVQÞ−1×diagð1;a11;a22;a33Þ,
where aii ¼ −ð2=mÞðeϕþ V þ VQÞ, i ¼ 1, 2, 3.
The α-norm of β is given by b2 ¼ aIJbIbJ ¼

a00 ¼ a11a22a33= det jaj > 0, under the assumption that
det jaj is positive. For later use, we remark that
bI ≔ aIJbJ ¼ aI0b0 ¼ aI0.
We can now summarize our findings as the following:
Theorem 1. The fundamental function F ¼ α2

β , associ-
ated with the Lagrangian of the hydrodynamic representa-
tion of the quantum mechanics, in the presence of external
electromagnetic fields, is a globally defined Kropina metric
on the extended configurations space M, where α2 ¼
aIJyIyJ is the associated Riemannian metric to the hydro-
dynamic Lagrangian of the quantummechanics, and β ¼ y0.
Remark.—Kropina-type Finsler metrics were associated

with a time-dependent Lagrangian in several studies—like,
for example, Refs. [85,89,90]. The starting point is the
fundamental observation that the Euler-Lagrange equations
of the initial time-dependent Lagrangian actually coincide
with the Euler-Lagrange equations of the associated
Kropina metric (see the references above for the proof
of this result).

B. The fundamental metric tensor of the Finslerian
representation of quantum mechanics

Let us consider the fundamental tensor

gIJ ¼
1

2

∂2F2

∂yI∂yJ ¼
∂F
∂yI

∂F
∂yJ þ F

∂2F
∂yI∂yJ ð40Þ

for the globally defined Kropina metric describing the
geometric properties of quantum hydrodynamics.
First, we mention here an important result on the

geometry of Kropina metrics (Ref. [53]), which states that
the metric tensor of a Kropina space F ¼ α2

β is positive
defined, provided α is a positive-defined Riemannian met-
ric [53].
Let us now turn back to the computation of the

fundamental tensor of the Kropina metric [Eq. (36)]
associated with the Schrödinger equation. For the Finsler
metric tensor, we obtain the general expression

gIJ ¼
�
B2 þ 2F

T
ðy0Þ3

�
δ0Iδ

0
J þ

�
B
y0

−
F

ðy0Þ2
�

× ðδ0I TJ þ δ0JTIÞ þ 2Bða0jδ0IδjJ þ a0iδ0jδ
i
IÞ

þ
�
2a0iδiI þ

TI

y0

��
2a0jδiJ þ

TJ

y0

�
þ F

TIJ

y0
; ð41Þ

where we have denoted
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B ¼ a00 −
T

ðy0Þ2 ; T ¼ aijðxÞyiyj;

TI ¼
∂T
∂yI ; TIJ ¼

∂2T
∂yI∂yJ : ð42Þ

Explicitly, the Finslerian metric tensor components can
be given as

g00 ¼ a200 þ 4
a0iyi

ðy0Þ3 T þ 3
T2

ðy0Þ4 ; ð43Þ

g0i ¼ 2a0i

�
a00 −

T
ðy0Þ2

�
−
4aijyj

ðy0Þ2
�
T
y0

þ a0jyj
�
; ð44Þ

gij ¼ 4a0ia0j þ
4ðaikykÞðajlylÞ

ðy0Þ2 þ 4a0j
ailyl

y0

þ 4a0i
ajlyl

y0
þ 2

�
T

ðy0Þ2 þ
2a0kyk

y0
þ a00

�
aij: ð45Þ

Alternatively, we can express the Finsler metric asso-
ciated with the quantum hydrodynamical evolution as

gIJ ¼ 2

�
α

β

�
2

aIJ þ
�
α

β

�
2
�
4αIαJ −

3α

β

× ðαIbJ þ αJbIÞ þ
3α2

β2
bIbJ

�
: ð46Þ

A simple computation shows that det jgIJj ¼
24ðαβÞ8ð1þ d2Þ det jaIJj, where d2 ¼ 3

2
aIJðαI − α

β bIÞ
ðαJ − α

β bJÞ. Hence, the Kropina metric gIJ’s positive
definiteness is equivalent to the positive definiteness of aIJ.

C. The local equations of the geodesics
of the Kropina space

We consider now the geodesics spray GI associated with
the Kropina metric obtained in Eq. (24). In this case
rIJ ¼ −Γ̄0

IJ, sIJ ¼ 0, where Γ̄K
IJ are the Christoffel coef-

ficients of the associated Riemannian metric α on M.
By components, we have

G0 ¼ Ḡ0 −
�

β

b2α2
y0 −

1

2b2

�
r00

¼ Ḡ0 þ
�

β

b2α2
y0 −

1

2b2

�
Γ̄0
IJy

IyJ; ð47Þ

Gi ¼ Ḡi −
�

β

b2α2
yi
�
r00 ¼ Ḡi þ

�
β

b2α2
yi
�
Γ̄0
IJy

IyJ; ð48Þ

where ḠI ¼ 1
2
Γ̄I
JKy

IyJ are the spray coefficients of the
Riemannian metric aIJ, obtained from the formulas (52),
(54), and (56), respectively.

Hence, the Kropina metric geodesic equations are
given by

d2x0

dτ2
þ 2G0

�
xðτÞ; dx

dτ

�
¼ 0;

d2xi

dτ2
þ 2Gi

�
xðτÞ; dx

dτ

�
¼ 0; ð49Þ

where τ is the F-unit parameter on the Kropina geodesics.

D. The geodesics of the associated Riemann metric

It is worth observing that the associated Riemannian
metric [Eq. (38)] is a metric on the extended configuration
space that includes the external potential, the electromag-
netic potential, and the quantum potential generating the
quantum effects during the evolution of the particle. This
represents a new kind of Riemannian structure associated
with such a Lagrangian function.
The Levi-Civita connection coefficients of the

Riemannian metric aIJ are given by

Γ̄I
JK ¼ 1

2
aIL

�∂aKL
∂xJ þ ∂aJL

∂xK −
∂aJK
∂xL

�
: ð50Þ

Generally, any second-order tensor ∂Ai=∂xj can be
decomposed into a symmetric and an antisymmetric part:

∂Ai

∂xj ¼
1

2

�∂Ai

∂xj þ
∂Aj

∂xi
�
þ 1

2

�∂Ai

∂xj −
∂Aj

∂xi
�

¼ 1

2
Dij þ

1

2
Fij; ð51Þ

where Dij represents the “strain” associated with the
potential vector, while Fij can be interpreted physically
as the strength of the magnetic field. The trace of Dij gives
the divergence of the vector potential, Dii ¼

P
3
i¼1∂Ai=∂xi.

Thus, for the Christoffel symbols of the associated
Riemann metric we obtain

Γ̄0
00 ¼

1

2

�
a00

∂a00
∂x0 − a0i

∂a00
∂xi

�
; ð52Þ

Γ̄i
00 ¼

1

2

�
ai0

∂a00
∂x0 − aij

∂a00
∂xj

�
; ð53Þ

Γ̄0
j0 ¼

1

2
a00

∂a00
∂xj þ a0i

e
4c

Fij; ð54Þ

Γ̄i
j0 ¼

1

2
ai0

∂a00
∂xj þ aik

e
4c

Fkj; ð55Þ

Γ̄0
jk ¼ a00

e
4c

Djk − a00Aiγ
i
jk; ð56Þ

Γ̄i
jk ¼ a00

e
4c

Djk þ γijk; ð57Þ
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where we have denoted by γijk the Levi-Civita connection
coefficients of the Riemannian metric aij, i; j ∈ f1; 2; 3g.
The geodesics of the Riemannian metric aIJ read now

d2x0

dσ2
þ Γ̄0

IJ
dxI

dσ
dxJ

dσ
¼ 0;

d2xi

dσ2
þ Γ̄i

IJ
dxI

dσ
dxJ

dσ
¼ 0; ð58Þ

where σ is the α-unit parameter, and Γ̄K
IJ are given above.

For a general Kropina metric F ¼ α2

β , it is easy to see that
F is projectively equivalent to the Riemannian metric α;
i.e., the F-geodesics coincide with the α-geodesics, if and
only if β is parallel with respect to the Levi-Civita con-
nection of α—that is, bIjJ ¼ 0. In our case, the projectively
equivalent condition is Γ̄0

IJ ¼ 0, for all I; J ∈ f0;…; 4g.
The geodesic equations [Eq. (58)] describe the motion of

a quantum particle in fields generated by an external
(nonelectromagnetic), electromagnetic, and quantum
potential, in a purely “physical” geometry, generated by
the potentials only. The derivative d2xI=dσ2 gives, from a
physical point of view, the four-acceleration of the particle.
Therefore, the quantity−Γ̄I

JK
dxJ
dσ

dxK
dσ can be interpreted as the

four-force acting on the particle as the result of the presence
of the three types of potentials. Moreover, the tensor aIJ
plays the role of the “potential” of the total field, since its
derivatives determine the total field “intensity” Γ̄I

JK .

V. THE ZERMELO NAVIGATION PROBLEM
IN THE HYDRODYNAMICS REPRESENTATION

OF QUANTUM MECHANICS

The navigation data (h, W) on M corresponding to the
Kropina metric geometrizing quantum hydrodynamics are

hIJ ¼ eκðxÞaIJ;WI ¼
1

2
eκðxÞbI; ð59Þ

respectively, where the conformal factor eκðxÞ is obtained as

eκðxÞ ¼ 4

a00
¼ 4 det jaIJj

a11a22a33
; ð60Þ

where we assume that aIJ is positive defined. More exactly,
WI has only a nonzero component,W0 ¼ 1

2
eκðxÞb0 ¼ 1

2
eκðxÞ

and Wi ¼ 0, for i ∈ f1;…; ng.
Taking into account that hIJ ¼ e−kðxÞaIJ, we find

WI ¼ hIJWJ ¼ hI0W0 ¼
1

2
eκðxÞhI0 ¼ 1

2
aI0; ð61Þ

and therefore the Kropina metric is determined by the
Riemannian metric h ¼ hIJ and the h-unit vector field
W ¼ WI ∂

∂xI, jWjh ¼ 1, defined on the manifold M.
We point out that
(1) The Riemannian metric hIJ obtained in the navi-

gation data above is actually a conformal change of

the extended Riemannian metric aIJ. Hence, one can
study the geometrical and physical properties of
the Riemannian metrics aIJ and hIJ by means of
conformal transformations and conformal geometry.

(2) The quantumwindW is actually the vector field with
the components

WI ¼ 1

2 det jaIJj
×

�
a11a22a33;−

e
2c

A1a22a33;

−
e
2c

A2a11a33;−
e
2c

A3a11a22

�
; ð62Þ

that is, the wind is given by a combination of the
mass field aij and the electromagnetic potential Ai.

In the case of a single particle with constant mass, we
have a11 ¼ a22 ¼ a33 ¼ m=2, and the components of the
quantum wind vector W are given by

WI ¼ ð−1; e
mc A⃗Þ

ðe2=mc2ÞjA⃗j2 þ 2ðeϕþ V þ VQÞ
; ð63Þ

where we have denoted by A⃗ ¼ ðA1; A2; A3Þ the three-
dimensional vector potential of the magnetic field, and
jA⃗j2 ¼ A2

1 þ A2
2 þ A2

3. The “timelike” component of the
quantum wind is determined by 1= det jaIJj only, while the
spacelike components are proportional to the vector poten-
tial components, scaled by the determinant of the
Riemannian metric. It is interesting to note that the wind
is a function of the potentials only, and not of the fields,
which are generally obtained as the gradients of the
potentials. In the absence of the electromagnetic fields,
the quantum wind takes the form

WI ¼
�
−

1

2ðV þ VQÞ
; 0; 0; 0

�

¼
�

1

2ð−V þ ℏ2
2m

ΔR
R Þ ; 0; 0; 0

�
; ð64Þ

where the real function R is related to the wave function
Ψðr⃗; tÞ by the relation jΨðr⃗; tÞj ¼ R2ðr⃗; tÞ. It is interesting
to point out that the quantum wind is generated by the
quantum potential VQ, together with the external potential.
When the magnitude of the quantum potential is much
larger than that of the external potential, we obtain

WI ≈
m
ℏ2

�
R
ΔR

; 0; 0; 0

�
: ð65Þ

On the other hand, if the vector potential of the
magnetic field satisfies the condition ðe2=mc2ÞjA⃗j2 ≫
2ðeϕþ V þ VQÞ, then the quantum wind is a purely
classical quantity, which can be approximated as
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WI ≈
�
−

mc2

e2jA⃗j2
;
c
e

A⃗

jA⃗j2
�
: ð66Þ

Hence, the wind acting on the quantum particle is
determined by the magnetic field potential only. The
conformal factor eκðxÞ is explicitly given by

eκðxÞ ¼ −4
�

e2

2mc2
jA⃗j2 þ ðeϕþ V þ VQÞ

�
; ð67Þ

and it must satisfy the condition eκðxÞ > 0. Such a con-
formal factor can always be obtained by taking into account
that the vector potential of the magnetic field is not
uniquely fixed, since if A⃗ is a vector potential, then
A⃗þ∇χ is also a vector potential, with χ being an arbitrary
function of the coordinates. Similarly, the electric field
potential and the external potential can be rescaled.
Therefore, one can always choose a particular gauge for
which the conformal factor is positive. For the components
of the navigation metric, we obtain the explicit components

h00ðx0; xiÞ ¼ 4

�
a

e2

2mc2
jA⃗j2 þ ðeϕþ V þ VQÞ

�

× ðeϕþ V þ VQÞ; ð68Þ

h0iðx0; xiÞ ¼ −2
2

c
Ai

�
e2

2mc2
jA⃗j2 þ ðeϕþV þVQÞ

�
; ð69Þ

hijðx0; xiÞ ¼ −2mij

�
e2

2mc2
jA⃗j2 þ ðeϕþV þVQÞ

�
: ð70Þ

Even if the components of the metric aIJ are functions of
the spacelike coordinates only, or constants, the confor-
mally transformed navigation metric is a function of both
space and time coordinates. In the particular case of a
neutral particle or in the absence of the electromagnetic
interactions, ϕ≡ 0 and A⃗≡ 0, and thus the conformal
factor and the navigation metric take the simple forms

eκðxÞ ¼ −4ðV þ VQÞ ¼ −4
�
V −

ℏ2

2m
ΔR
R

�
; ð71Þ

h00ðx0; xiÞ ¼ 4ðV þ VQÞ2 ¼ 4

�
V −

ℏ2

2m
ΔR
R

�
2

; ð72Þ

h0iðx0; xiÞ ¼ 0; i ¼ 1; 2; 3; ð73Þ

hijðx0; xiÞ ¼ −2mδijðV þ VQÞ ¼ −2mδij

×

�
V −

ℏ2

2m
ΔR
R

�
; i; j ¼ 1; 2; 3: ð74Þ

The navigation metric is diagonal, and it is completely
determined by the sum of the external potential, and of the
quantum potential. Since V þ VQ is the potential energy Ep
of the quantum hydrodynamic system, it turns out that all
the components of the navigation metric are expressed in
terms of the potential energy in the energy space. Similarly,
the conformal factor eκðxÞ is basically the potential energy
of the quantum system. On the other hand, in the case of the
metric aIJ, only the component a00 ¼ −ðV þ VQÞ gives the
potential energy of the quantum system, with the compo-
nents aij being proportional to the mass (or rest-mass
energy mc2) of the system, assumed to be a constant. But
all the components of the conformal metric hIJ are
expressed in terms of the same physical variable, the
potential energy of the quantum system.
Observe that the vector field W has no zeros on M.

Indeed, if W had zeros, then at such a point, the functions
aI0 would vanish, for all I ∈ f0; 1;…; ng, but this is not
possible, because it would imply that at such a point
det jaIJj ¼ 0. Also, at a zero point of W, the potential
eϕþ V þ VQ and Ai must vanish simultaneously, and this
is not possible from a physical point of view, since during
the quantum evolution VQ ≠ 0.
Moreover, it easily follows that aIJbIbJ ¼ aIJaI0aJ0 ¼

a00 ¼ b2, and therefore hIJWIWJ ¼ 1. Hence, our results
are consistent with the general theory.
We can formulate now our findings by means of a

theorem as follows.
Theorem 2. The fundamental function F ¼ α2

β ∶TðR ×
MÞ → R given by Eq. (36), associated with the Lagrangian
[Eq. (34)] describing the quantum hydrodynamical motion
of a particle in the presence of external electromagnetic and
nonelectromagnetic fields, is the solution of the Zermelo
navigation problem on the Riemannian manifold ðR ×M;
hIJÞ under the influence of the h-unit wind W.
In other words, the time-minimizing trajectories of a

point on the space R ×M are not the Riemannian geodesics
of aIJ, but the geodesics of the globally defined Kropina
metric ðR ×M;FÞ.
The Kropina metric obtained from the quantum

Lagrangian in Eq. (34) is therefore obtained by a rigid
translation of the Riemannian metric hIJ by the h-unit
vector field W. Hence, the quantum Lagrangian is equiv-
alent to a Kropina type-1 homogeneous Lagrangian, and
this is obtained by the deformation of a Riemannian
conformal metric by means of W.

VI. FINSLERIAN GEOMETRIZATION OF THE
SCHRÖDINGER EQUATION FOR A SPINLESS

UNCHARGED PARTICLE

Let us consider the simple Lagrangian describing
the evolution of a single uncharged particle in the
hydrodynamic representation of the Schrödinger equation,
given by
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Lðt; x; _xÞ ¼ 1

2

X3
i¼1

mð_xiÞ2 −Qðt; xÞ; ð75Þ

where Qðt; xÞ ¼ Vðt; xÞ þ VQðt; xÞ, with V denoting the
external potential, while VQ is the quantum potential,
responsible for the intrinsic quantum features of the
dynamic evolution. The associated Kropina metric is given
by F ¼ α2

β , where α2 ¼ aIJyIyJ has the entries

a00ðx0;xiÞ≔−Q; a0i≔0; aij≔
1

2
mδij; i;j∈f1;2;3g:

ð76Þ

As for β, it is given by β ¼ bIyI ¼ y0—that is, the linear
one-form has only one nonvanishing coefficient,
ðb0; b1; b2; b3Þ ¼ ð1; 0; 0; 0Þ.
The determinant of aIJ is given by det jaIJj ¼ −m3Q=8.

The associated Riemannian metric is positive definite if and
only if Q < 0—that is, we need to be in the setting where
the potential energy is positive. This can always be
achieved by changing the reference system.
We can conclude therefore our preliminary investiga-

tions of the geometric description of the quantum hydro-
dynamics of a single particle by stating the following.
Theorem 3. The fundamental function F¼ α2

β ∶
TðR×MÞ→R, associatedwith theLagrangian (75) describ-
ing the quantum motion of a neutral spinless particle, is a
globally defined Kropina metric on the extended configu-
rations space M, provided Q < 0.
The inverse of the matrix aIJ is given by aIJ ¼

diagð−1=Q; 2=m; 2=m; 2=mÞ.

A. Geodesic evolution in the Finsler space

The Finsler metric function F associated with the
Lagrangian (75) is given by

FðxI;yIÞ¼α2

β
¼mδijyiyj=2−Qðx0;xiÞy0

y0

¼a00ðx0;xiÞðy0Þ2þT
y0

¼a00ðx0;xiÞy0þ
T
y0
; ð77Þ

where we have denoted α2¼a00ðy0Þ2þT, T ¼ mδijyiyj=2,
and β ¼ y0.
Then, with the use of Eq. (40), the fundamental tensor

of the Kropina space describing the geometric structure
of the Schrödinger equation for a spinless particle is
obtained as

gIJ ¼
�
a200ðxIÞ þ

3T2

ðy0Þ4
�
δ0Iδ

0
J −

2T
ðy0Þ3 ðTIδ

0
J þ TJδ

0
I Þ

þ 1

ðy0Þ2 TITJ þ TIJ

�
a00ðxIÞ þ

T
ðy0Þ2

�
: ð78Þ

Explicitly, the components of the Finslerian metric
tensor are given by

g00 ¼ Q2 þ 3
T2

ðy0Þ4 ; g0i ¼ −2m
δijyj

ðy0Þ3 T; ð79Þ

gij ¼ mδij

�
a00 þ

T
ðy0Þ2

�
þm2

δilylδjkyk

ðy0Þ2 : ð80Þ

The spray coefficients describing the evolution of a
neutral spinless quantum particle in the associated Kropina
space are defined as

GIðx; yÞ ¼ 1

2
ΓI
JKy

JyK ¼ 1

4
gIJ

� ∂2F2

∂xK∂yJ y
K −

∂F2

∂xJ
�
; ð81Þ

where ΓI
JK are the analogues of the Christoffel symbols of

the Riemann geometry. By taking into account the explicit
form of the Finslerian metric tensor coefficients as given by
Eq. (78), we obtain

ΓI
JKðx; yÞ ¼ gILa00

� ∂
∂xK ½a00δ0Lδ0J þ ln

ffiffiffiffiffiffiffiffiffi
ja00j

p
TJL�

þ ∂
∂xJ ½a00δ

0
Lδ

0
K þ ln

ffiffiffiffiffiffiffiffiffi
ja00j

p
TLK�

− ∂
∂xL ½ja00jδ

0
Jδ

0
K þ ln

ffiffiffiffiffiffiffiffiffi
ja00j

p
TJK�

�
: ð82Þ

By denoting

g̃IJ ¼ a00ðXIÞδ0Iδ0J þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a00ðXIÞ

q
TIJ; ð83Þ

we find for the spray coefficients the expressions

GIðx; yÞ ¼ 1

2
gILa00

�∂g̃LJ
∂xK þ ∂g̃LK

∂xJ −
∂g̃JK
∂xL

�
yJyK; ð84Þ

which allows us to write the equations of the geodesics of
the Finslerian geometric formulation of the quantum
hydrodynamics as

d2xI

dλ2
þ 2GIðx; yÞ ¼ 0: ð85Þ

B. Geodesic equations in the associated Riemann space

Let us observe that the Levi-Civita connection coeffi-
cients of the Riemannian metric aIJ given by Eq. (50) can
be written as

Γ̄0
00¼

1

2
a00

∂a00
∂x0 ; Γ̄i

00¼−
1

2
aij

∂a00
∂xj ; Γ̄0

j0¼
1

2
a00

∂a00
∂xj ;

Γ̄i
j0 ¼ 0; Γ̄0

jk ¼ 0; Γ̄i
jk ¼ γijk ¼ 0; ð86Þ
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where we have denoted by γijk the Levi-Civita connection
coefficients of the Riemannian metric aij (obviously
γijk ¼ 0 because aij are constants).
The geodesics of the Riemannian metric aIJ are given by

d2x0

dσ2
þ 1

2Q

�∂Q
∂x0

dx0

dσ
þ 2

∂Q
∂xi

dxi

dσ

�
dx0

dσ
¼ 0; ð87Þ

d2xi

dσ2
þ 1

m
∂Q
∂xj δ

ij

�
dx0

dσ

�
2

¼ 0; ð88Þ

where σ is the α-unit parameter. Equation (87) can be
rewritten as

d
dσ

ln

�
dx0

dσ

ffiffiffiffi
Q

p �
¼ −

1

2

�
1

Q
∂Q
∂xi

�				
ðx0ðσÞ;xiðσÞÞ

dxi

dσ
: ð89Þ

By integrating the above equation from 0 to σ and by
substituting the resulting expression of dx0=dσ in Eq. (88),
it follows that the equation of evolution of the spacelike
coordinates xi of the spinless neutral quantum particle in
the associated Riemann space is described by the equation

d2xi

dσ2
þC2

m
∂Q
∂xjδ

ij exp

�
−
Z

σ

0

�
1

Q
∂Q
∂xi

�				
ðx0ðσÞ;xiðσÞÞ

dxi

dσ
dσ

�
¼0;

ð90Þ

where C is an arbitrary integration constant. Once the
explicit form of the potential Q is known, the solutions of
the geodesic equations in the associated Riemann space
can be obtained by using either analytical or numerical
methods.

C. The Zermelo navigation problem

We also observe that we can formulate the Zermelo
navigation problem for this simple Lagrangian. Indeed, for
the navigation data (H, W), where hIJ ¼ ekðxÞaIJ ¼
−4Qdiagð−Q;m=2; m=2; m=2Þ and WI ¼ ðW0; 0; 0; 0Þ ¼
ð−Q=2; 0; 0; 0Þ, we have the following theorem. Here we
have used ekðxÞ ¼ 4=a00 ¼ −4Q:
Theorem 4. The fundamental function F ¼ α2

β ∶TðR ×
MÞ → R associated with the Lagrangian (75) is the solution
of the Zermelo navigation problem on the Riemannian
manifold ðR ×M; hIJÞ under the influence of the h-unit
windW. In other words, the time-minimizing trajectories of
a point on the space R ×M are not the Riemannian
geodesics of aIJ, but the geodesics of the globally defined
Kropina metric ðR ×M;FÞ.
For the Christoffel symbols in the h space, we obtain

Γ
ðhÞ

0
00 ¼

5

2

1

Q
∂Q
∂t ; Γ

ðhÞ
0
ij ¼ 0; Γ

ðhÞ
0
0j ¼

3

2

1

Q
∂Q
∂xj : ð91Þ

Then the Killing conditions read

∂Q
∂t ¼ 0;

∂Q
∂xj ¼ 0; ð92Þ

that is, the wind W is Killing for the globally defined
Kropina metric induced by the Lagrangian (75) if and only
if Q is a constant. For the sake of convenience, we will
consider this constant to be negative: Q < 0.
In this case, we can apply the general theory presented in

Ref. [88] to this Kropina metric; however, the following
peculiarities appear:
(1) Since the potential Q is constant, the Lagrangian

(75) is a time-independent Lagrangian, so the
new coordinates ðx0; y0Þ are no longer geometrically
intrinsic.

(2) Since all the entries of the matrix aIJ are constants, it
follows that the Riemannian metric α is Euclidean,
the Levi-Civita connection coefficients Γ̄K

IJ all van-
ish, and the one-form β is parallel. This means that
the F-geodesics coincide with the α-geodesics. In
other words, the F-geodesics are straight lines.

Even though the Riemannian metric and the unit Killing
vector field W are both complete, this does not mean that
we can join any two points by an F-geodesic.

VII. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have considered an alternative
geometric perspective of one of the fundamental fields of
theoretical physics, quantum mechanics. Even that quan-
tum mechanics is intrinsically a geometric theory, formu-
lated in a Hilbert space, and its structure is completely
different from the spacetime geometrical approach that was
so successful in the description of gravitational interaction.
The geometrizations of quantum mechanics in its standard
formulation, even if they use some of the theoretical
tools of Riemannian geometry, still present fundamental
differences as compared to the spacetime geometry of
special and general relativity. In our work, we have adopted
a different approach to the geometrization of quantum
mechanics: namely, we have adopted as a starting point the
so-called hydrodynamical (or Madelung) formulation of
quantum mechanics. In this formulation, extensively used
in many fields of physics, the quantum motion of the
particle is described by the standard equations of classical
fluid dynamics (continuity and Euler equations), in the
presence of a quantum potential, which essentially deter-
mines the quantum properties of the motion. The hydro-
dynamical interpretation is a standard theoretical tool in the
physics of quantum gases, superfluidity, and Bose-Einstein
condensation theory, and it allows the realization of a
deeper connection between experiment and theory. This
formulation is also at the basis of the de Broglie–Bohm
pilot-wave (deterministic) interpretation of quantum
mechanics (see Ref. [76] for an in-depth analysis of the
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causal interpretation of the quantum theory). Hence, in the
hydrodynamic interpretation of the Schrödinger equation,
the evolution of the quantum particle is described by the
motion of a classical fluid in the presence of a specific
potential. However, the Madelung representation of the
wave mechanics can be seen as a mathematical tool, which
does not change the physical interpretation of the quantum
mechanics.
On the other hand, any spacetime-type geometrization of

quantum mechanics requires the introduction of the con-
cept of quantum trajectory [91]. In the Bohmian interpre-
tation of quantum mechanics, the quantum trajectory plays
the role of a hidden variable, with the path being the
fundamental dynamical variable of the theory [80,81],
while the wave function evolves in time along the
Lagrangian motion of the path [68]. However, it is
important to point out that the particle dynamics along
the Bohmian trajectories is not equivalent to the point-
particle evolution along classical Newtonian trajectories
[68]. One reason is that in principle, the classical behavior
should be obtained by adopting a pointlike initial density of
the Dirac delta function type for the density, and then
integrating the Euler-Lagrange equation over a reference
density. However, the structure of the quantum potential
does not allow this type of initial condition [68].
Once the definition of the quantum trajectory is intro-

duced, the equations of motion of the quantum particle can
be derived from an action principle, which, in the presence
of electromagnetic fields, contain the standard classical
terms plus the quantum potential, responsible for the
nonclassical features of the motion. The Lagrangian func-
tion can be taken as the starting point for the geometrization
of quantum hydrodynamics. After performing the homog-
enization procedure of the Lagrangian introduced in
Ref. [85], it turns out that the Finsler function associated
with the Lagrangian of the quantum mechanics takes the
form of the Kropina function [73,74], which is a particular
form of the general (α, β) metrics [71,72], whose geometric
properties have been extensively studied in the mathemati-
cal literature. The Kropina metric can also be expressed in
terms of a Riemann metric aIJ associated with the quantum
Lagrangian, and which is entirely determined by the
components of the external potentials (including the quan-
tum potential and the electromagnetic potentials). Once the
Finsler metric function is known, the Finslerian metric

tensor components can be obtained in a straightforward
way, as well as the geodesic equations, which are equiv-
alent to the quantum equations of motion of the particle. It
is interesting that similar equations of motion, fully
determined by the external potentials, can also be written
down in the associated Riemann space, with metric aIJ.
They describe the motion of the quantum particle in the
presence of a particular force generated via the Christoffel
symbols associated with the Riemann metric.
The geometrization of the hydrodynamic formulation of

the quantum mechanics also opens some new perspectives
on the quantum Zermelo navigation problem, a subject of
major interest in quantum computation. Once the geometric
Finsler-type structure of the quantum hydrodynamic flow is
known, the Zermelo navigation data can be easily con-
structed by means of a conformal transformation of the
associated Riemannian metric aIJ, and of the vector bI. The
quantum wind can be obtained as a function of the external
and quantum potentials, respectively. The Kropina funda-
mental function of quantum hydrodynamics is a solution of
the Zermelo problem, a result that may find some useful
applications in the study of quantum speed limits and
quantum information transfer.
One of the main advantages of the Finslerian geomet-

rization of quantum mechanics is that the entire formalism
is constructed in the ordinary spacetime geometry, with all
geometrical quantities being functions of the external
physical variables (field potentials). Even though the
expressions of the Finslerian metric tensors and of the
geodesic sprays are relatively complicated, they can be
handled from a mathematical point of view in a much easier
way than their purely quantum counterparts defined on a
Hilbert space. Hence, the results obtained in the present
paper may provide some deeper insights into the complex
relation between the classical and quantum worlds, as well
as on the geometrical structures underlying the quantum
mechanical dynamics.
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