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We consider time-ordered (or Feynman) propagators between two different a—states of a linear de Sitter
quantum field in the global de Sitter manifold and in the Poincaré patch. We separately examine o — f3, in—in
and in—out propagators and find the imaginary contribution to the effective actions. The in—in propagators
are real in both the Poincaré patch and in the global de Sitter manifold. On the other side the in—out
propagators at coincident points contain finite imaginary contributions in both patches in even dimensions,
but they are not equivalent. In odd dimensions in both patches the imaginary contributions are zero. For
completeness, we also consider the static patch and identify in our construction the state that is equivalent to

the Bunch—Davies one in the Poincaré patch.
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I. INTRODUCTION

To explain the point of our study let us consider a real
massive scalar field in a curved space. Here and below we
denote the mass of the scalar field ¢ as m, metric as g,,,
and the modulus of the determinant of metric as |g|.
The effective action is defined as:

eiSc('(' = eif‘ce{fdx = /d{(p]eis[‘ﬂ],

where S[p] = /de l9/(0,00"@ — m*¢?).  (1.1)

It is straightforward to see that

g iSlp] _ [ dx [ dplp(x)p(x)eS!
szloe [ dlole = = felet g

:—i/dep(x,x).

and this allows to express the effective Lagrangian via the
Feynman (T-ordered) propagator:
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‘Ceff = /m dszF(x, )C). (12)

(e8]

Since (out|in) = exp(i [ Legdx), when Loy is real the
transition probability from the in- to the out- state is equal
to one.' But if the effective Lagrangian has an imaginary
part the probability of such a transition is not equal to one:

|(outlin)|? # 1], (1.3)
which is usually interpreted as a signal of particle creation.
The Feynman propagators in de Sitter space having an
imaginary part at coincident points is the object of study of
this note.

The situation in de Sitter space has certain peculiarities
that were pointed out in [1,2]. It is well known that this
space has a maximal isometry group. When quantizing
fields it is natural to try to respect the isometry if possible.

lProbably it is worth stressing here the following fact. There is
an equality for the amplitudes as follows:

<0ut|Te_if—+: Ho0d! i) = (out|in)

only if H is time independent and if |in) is the true ground state
of the free Hamiltonian. Otherwise the approximate equality
between these two amplitudes holds only for the week back-
ground field. We come back to this point in the main body of the

paper.
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In this case the correlation functions depend only on the
scalar invariants. However, while in Minkowski space there
is a unique Poincaré invariant ground state of positive
energy, in de Sitter space there is a family of states called
the alpha-vacua that respect the isometry at tree-level [3-5].
To calculate the above in-out amplitude one has to specify
which states he wishes to consider. It is possible to calculate
the amplitude using the T—ordered in—in (or even alpha—
alpha) propagator, or to consider the T—ordered in—out (or
even alpha—beta) propagator. Which one should be chosen?
We would like to reconsider this question in this paper.

The paper is organized as follows. In Sec. II we derive
analogs of the a—modes [3-5] in the Poincaré patch and
then consider T-ordered propagators corresponding to the
evolution from one a—state to another. We then compute the
imaginary contributions to the effective actions correspond-
ing to the in—in and in—out propagators.

Section III contains the derivation of the rate of pair
creation in the Poincaré patch. In particular we observe that
the rate is zero in any odd dimensional de Sitter spacetime;
the in-in propagator is real and provides vanishing imagi-
nary contribution to the effective action in any dimension. At
the same time the in—out propagator leads to a non—zero
creation rate in even dimension. We explain which propa-
gator is appropriate to consider in the present circumstances.

In Sec. IV we study the global de Sitter manifold. We
show how to relate the a—modes in global de Sitter to those
previously computed in the Poincaré patch, namely, we
relate those modes which have equivalent tree—level propa-
gators. We observe that in any odd dimensional de Sitter
spacetime the in—and the out-modes do coincide; also we
show that in—modes in global de Sitter do not provide the
same two—point functions as the in—-modes in Poincaré
patch in any dimension. The in—modes in Poincaré patch,
which are frequently referred to as Bunch-Davies modes,
correspond to the so called Euclieian modes in global de
Sitter space.

In Sec. V we derive once more the well known result that
the Bunch—Davies state [6] is seen in static patch as a
thermal equilibrium state [7-10], while the ground state of
the free Hamiltonian does not respect the de Sitter isometry.

In the concluding section we present a heuristic explan-
ation why the pair creation rate should be zero in odd
dimensions and explain why there still can be nontrivial
stress-energy flux although the rate is vanishing.

II. FEYNMAN a - PROPAGATOR
IN THE POINCARE PATCH

A. Free modes in the Poincaré patch

Let us consider a massive scalar field theory in the
Poincaré patch of the D-dimensional de Sitter spacetime:

ds® = —di* + e*dx?,

where we set the radius of the de Sitter manifold to one. In
these coordinates the de Sitter Klein-Gordon (KG) equation
for a real, massive, minimally coupled scalar field is written
as follows:
[0? + (D= 1)0, — e A + m?]p = 0. (2.1)
By using the conformal time
e=ng (2.2)

and separating the variables by defining ¢(n,X) =

0T h(pn)e'* one obtains that h(pn) must solve the
Bessel differential equation:

(7205 +nd, + (pn)* + w?lh(pn) =0.  (2.3)
where

(D-1)
(O-12,

Below we restrict our attention to the case m > % (u real);
with this restriction modes oscillate at future infinity. The
modes we are going to consider are therefore of the
following form:

D-1
> N\ ipx
g = (32) e e (on) st ()] 24

,(»:,’2) denote the first and second type Hankel

functions and a; and @, are complex constants. The mode
expansion of the field operator ¢ is then as usual

where H

pa(Fo) = / 4P plit 5 (F )y + w5 (FEom)al).  (2.5)

The relevant Wronskians for the Bessel and the Hankel
functions are given by

W{(3). I (2)) = - 2o,
V54
Wi (2). B ()} = - (2.6)
7z
Taking into account the following relations
HY () =i (z).  HO() = e™H(2),
H' () =H? (),  HY'(:) = H (") (2.7)
one obtains the commutation relations
[@(x.n), 2(y.m)] = —inP~2 4(|a22e—”””— e
x 8P~ (X - ¥) (2.8)
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where 7 = -0, ¢ [see Eq. (2.2)]. Canonicity gives

|y [P = i

2 um _
|ay|“e 4"

(2.9)

The in—or Bunch—Davis (BD) modes are proportional to the
Hankel function of the first kind Hl(.li), ie., a, = 0; they
behave as pure oscillating exponentials at past infinity:
Hl(.;)(pn) ~ e'P! for pn>> u. The out-modes are propor-
tional to the Bessel functions J;, and behave as pure
oscillating exponentials at future infinity: J,,(pn) ~ e™1
for pn < p. While BD-modes do approximately diago-
nalize the Hamiltonian at past infinity of the Poincaré
patch, the out-modes do not diagonalize the Hamiltonian at
any time. None of the modes under consideration diago-
nalize the Hamiltonian for all times.

Suppose now to have a second family of canonical
modes of the same form as in Eq. (2.4):

)%

N — (L lpx

st = (52) " em DA

(pﬂ) + ﬂzH (o).

(2.10)

There is a Bogoliubov transformation of a particularly
simple kind:

ug 5(X.0) = yug(X,n) + 6uy_5(X.n), (2.11)

where

b= Hapmapy). (212)

4
14 :;(O‘Tﬂl et —asfhre™™),

B aP=1 pdP-1k (Blb il
G plt.) _/(111112) p (ﬂlwpl?;\a)

X [0(ny — ) eP¥ =R [p, HYY (pny ) + poH|

(27)P-!

+ 6(m

Using (2.13) one finds that:

(Blbyaila)

{Bla)

— ) eI =K HY) (i) + poH

Correspondingly, the Bogoliubov transformation of the
canonical operators is given by

b}, =yay —da_, (2.13)

and we may expand the field in terms of this second family:

p(Fn) = / AP (g (Eom)by 105 S(Fm)bh). (2.14)

Obviously, at the algebraic level

@o(X.1)

In the following we will call |@) and |f) the vacua®
annihilated by the a, and, respectively, the b, operators.
Of course the above Bogoliubov transformation is not
implementable, the vacua |a) and |f) are not equivalent and
the scalar product (f3|a) appearing below is just a formal
expression.

= @p(X. 1) (2.15)

B. Time-ordered a —f propagator

Let us now compute the following time-ordered corre-
lation function:

BITps(n, X) @ (12, ¥) )
(Bla)

This expression is formal because |@) and |) do not belong
to the same Fock space. However, we will obtain a finite
ratio in this equation for generic |@) and |). By taking into
account Eq. (2.15) we get

Grl—ﬂ(x’ y) = (216)

2 (pn)[enHL) (ki) + azHE,?(knz)]*
2 (o)l HYY (ki) + aH (k)] ') (2.17)
~5P1(p—k). (2.18)

To calculate the integral in (2.17) we pass to spherical coordinates® and take into account the following formula [11]:

VaCT (w4 p+ DI

/Ooo dpp**'K,(ap)K,(bp)J,(cp)=

2%(ab)’“+1

D—M+l)(u2_ ) 1v+3 )P l]:;(u) (219)

*None of the |a)—states is a ground state of the Hamiltonian of the theory under consideration. The Hamiltonian depends on time.
The BD state is the ground state of the Hamiltonian only at past infinity.

*Recall that for an arbitrary function f(p):

[ ot

ePif(p) =

|7 an= o (o).
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Here K, is the MacDonald function which is related to the
Hankel functions as follows:

(e—iﬂ/z)iﬂ+1 Kiﬂ (e_%’z),

(ein/Z)iﬂ+1Kiﬂ(ein/2Z);

i / (nim>)"d ' p

y (27)P!

de™ By (mm)T Dot - -
= 1 qﬂ/dpp T Joa(plE =)

[9 (m —

(27)5 ' 2%y|3 - 5|

X [0(ny — 1)K, (e ‘7”"'6171p)Kiﬂ(e%‘ienzp)+9(n1
_or Dol bl _
(5 + i) T(’5 — i) e by (22 — 1) 2P
ya(27)?
where
N2z 2

2mn,

is the hyperbolic distance. The ie shifts are such that the
relation Re(a + b) > [Imc| is satisfied. By computing
similarly the other terms we get the following expression
for the time ordered propagator:

[(h,)T(h_)
2(a; et —azfre ) (2m)?
x[emaip (22~ 1) P

ety (2 - 1) TP (-2,

Ga—ﬁ(x’y) =

'+1/4( Z_)

e L, D2
— e (ZE 1) P (Z.)
—t+iu
et o (D=2
—aipreti T (22 -1)"F P m
2
where:

(2.22)

For generic complex a’s and f’s it depends simultaneously
on Z, and is only piecewise analytic. It is invariant only
with respect to the connected part of the isometry group.

Recall also that while in Minkowski space QFT there is a
unique Poincaré invariant state of positive energy, in de
Sitter space there is a family of invariant states parametrized
by solutions of (2.9), because the notion of positivity of
the energy become meaningless. The BD state however
is peculiar: it is the only one to a thermal interpretation.

m)ePEDHL) (p VHY (pno)* + 6(ny

l+lﬂ(

L
Pﬂi 12(z) is the associated Legendre function of the first kind,
2

defined on the complex z—plane cut along the real axis from
minus infinity to z = 1; the parameters are such that u =
@40 4¢ and Re(a + b) > [Imc|. Let us apply (2.19) to
evaluate for instance the terms at the right-hand side
(RHS) of (2.17) which are proportional to ajf:

— )PSO HY (py) HY (pny )]

- ’72)Ki;4(e_%_ieﬂzp)Kiy(3%_i€’11p)]

7).

We will come back on this point as we explain in the section
concerning the static patch.

C. Special cases

1. In-in and in-out Feynman (T-ordered) propagators

The in-out propagator corresponds to the choice a; = a,
and p, = 0:

e—iﬂ(D—Z)

Gin-ow(Z) = W (22

D-2

R R A R CANCE)

where Q is the associated Legendre function of the second
kind. The in-in propagator corresponds to the choice

a2:ﬂ2:0:

T(hy)0(h_) L b

Ginin(Z) = 2(27[)%- (Z2-1)"P7, (- (2.24)

The propagator (2.24) has maximal analyticity properties.
It is related to the propagator on the Euclidean sphere via
analytical continuation in a suitable time coordinate or
in Z. On the other hand, (2.23) it is also related to the
Feynman propagators on the Euclidean anti de Sitter (resp.
Minkowskian anti de Sitter) via analytical continuation in
the radius of curvature (resp. simultaneously in time and
radius of curvature) [2]. We will use these propagators to
study the imaginary contributions to the corresponding
effective actions.

2. Behavior of the a —p propagator at coincident points

The short distance behavior of the a — f propagator is as
follows:

105011-4
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L2532 (a;pre™ + aspre™™)

, aso—0,
4776072 (aifpr '™ — azfre )

Ga—ﬂ(z) ~ —

(2.25)

where ¢ is the Minkowski geodesic distance and Z = 1 — %
as 0 — 0. Although 6 — 0 corresponds to light-like sep-
aration, but we call shortly this limit as the coincidence
limit. The limit (2.25) is equal to the flat spacetime
propagator at coincident points multiplied by a certain
constant. The latter is equal to one only for the in-in and the
in-out propagators.

The propagator (2.24) has only the standard singularity
at Z = 1 while all other @ — f propagators, including in-out
(2.23), have an extra singularity at Z = —1.

To evaluate explicitly the coincidence limit for the in-in
propagators we may insert the following integral repre-
sentation of the Legendre function of the first kind [12]

P () 22— 1)F
i \&) = 1 ;
T DR — i) TG+ ip)

X /oo dt(z 4 coshr)="7 ~#(sinh 7)2# (2.26)
0

into Eq. (2.24) and then set Z_ = 1. The integral at the RHS
is then divergent for D > 2 but the divergence can be cured
as usual by analytical continuation in D. We get

D

Ginin(Z_=1)= (4ﬂ)—%r<1 _E> INCSERMINCSE )

LG+ i) (5 —ip)
(2.27)

This result agrees with [13,14].
Similar calculations for the coincidence limit in the in-
out case give

> (2.28)

i rD=2 .

—irT D\ T(in + 251

Gin-out(l) = : 2D il (l.ﬂ - 33) :
(47)2 I(ip =757

Although both coincidence limits (2.27) are divergent in
D = 4, their ratio is one:

Gin—out( 1 )

G =1 (2.29)

D=4

Now we are ready to discuss imaginary parts of the
propagators.

The divergent imaginary part of the generic a—f propa-
gator does not vanish in even dimensions ImG,_4(1) # 0
while in odd dimension ImG,,_4(1) = 0 (more details will
be given in Sec. IV). In particular for even D

I G (1) = WZE(DT; S (EEY
)T (3)
and in odd dimensions:
Im Gy ou(1) =0.] (2.31)
For the in-in propagator for any D
Im G5, (1) =0 (2.32)

In Sec. IV we give a formal explanation why in odd
dimensional de Sitter space the Feynman propagators do
not contain imaginary contributions. In the concluding
Section we also provide a heuristic argument why the
effective action in odd dimensional de Sitter space should
be real.

One could ask at this point, which propagator one should
use to investigate particle creation in de Sitter space? We
come back to the discussion of this point in the concluding
section. For now we remark that

e ST (hy)

LR — 7~ NeimL’ as Z — oo,
T () 2 I T (i +-1)

and

Gini z—;[Z‘i"F(h (1 — ip)Z "
in-in 4(2”)%1/4 +

—2HC(h)C(1 + ip)Z7-] ~ A e + A_e™imE,

as Z — oo. Here L is the geodesic distance and Z ~ e’
when L — oo. The Feynman propagator G, has the
expected large distance behavior while the Gj,;, does
not [1,2].

III. PAIR CREATION IN D=4
DE SITTER SPACE

As an application of our results on Feynman propagators
in the Poincaré patch, let us discuss pair creation in four-
dimensional de Sitter space. Here we shall assume that
the usual relation holds between the pair creation rate P (in
the limit of low pair creation) and the imaginary part of the
effective Lagrangian,

P~2ImL. (3.1)
To get the effective Lagrangian, we will use (1.2) with the
in-out Green’s function at coincident points as given in
(2.28), renormalized in D = 4.

We perform the renormalization using dimensional
regularization and minimal subtraction in the MS scheme.
Using the relation I'(x + ¢) = ['(x)(1 + ey (x)) + O(€?),
wherey = (d/dx) InT'(x) is the digamma function, leads to

105011-5
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As expected, this expression has an imaginary part, and
using the identity [12]

Im {w G + iy)] = gtanh(ﬂy), (3.3)

we can write it as

ImGe (1) = %ﬂ{&mh (n\/;ﬂ———g) - 1]. (3.4)

Using (1.2) we get the imaginary part of the effective
Lagrangian in the form

L [22 9\ _
Im£_167f/oo dm*(m 2)[tanh<ﬂ m = L.

(3.5)

Although this integral can be evaluated analytically in
terms of polylogarithms, let us discuss here only the large-
mass/weak-curvature limit. In this approximation, (3.4)
simplifies to

2

MG (1)~ — =2, (3.6)
8x
and integration yields
ImL ~ . mae=2mm, (3.7)
82

This is in agreement with the pair production rate predicted
by the Bogoliubov transformation method [4,5,15,16].
This makes it also clear that a previous failure by Das
and Dunne [14] to find the usual relation between the
pair creation rate and the imaginary part of the effective
Lagrangian was due to their inappropriate use of the in-in
Green’s function for the construction of the effective
Lagrangian. The use of the in-out Green’s function pre-
serves the analogy between the de Sitter and the proto-
typical constant electric field case. This extends also to
another aspect of Schwinger pair creation analyzed in [14]
for the de Sitter case, namely the possibility of constructing
the imaginary part of the effective Lagrangian by a Borel
summation of the weak-field expansion of its real part [17].
In QED, this can be seen as a natural extrapolation of the
optical theorem to zero-energy photons, and has been found

particularly useful for multiloop considerations [18,19]. To
see that it works for the case at hand, note once more that
the weak-field expansion is equivalent to the large-mass
expansion, and that the leading terms of this asymptotic
expansion in (3.2) come from the digamma function. The
asymptotic expansion of its real part is [12]

1 N L
Re {w(i + lu)] ~Inyu+ ,15—1 (1) 5 By, ",
(3.8)

where the B,, are Bernoulli numbers. Approximating these
numbers by their leading asymptotic growth

(2n)

By, ~ (—1)"12
2n ( ) (2ﬂ)2n

(3.9)

the series turns into a nonalternating divergent one. Its
Borel summation leads to an imaginary part [14]

. n 1 - 21_2” —2n =27 —2zm
Im Z(—l) Tan'u ~ —JTc "~ —me

n=1

(3.10)

2

in agreement with (3.6). By integration in m~ one obtains

the same correspondence for L itself.

IV. TIME-ORDERED PROPAGATORS
IN GLOBAL DS SPACE

A. Free modes in global de Sitter space

In global spherical coordinates the de Sitter metric takes
the following form:

ds®> = —di* + cosh?(1)dQ?. (4.1)

dQ? is the line element on the unit sphere, and \/5_} =

cosh?~1(1)\/|ga|, where |gg| is the determinant of the
spherical metric. Correspondingly, the KG equation is as
follows:

(O+ m?)¢ = 0?p + (D — 1) tanh(1)0,
—cosh™2(1) Agg + m*>¢ = 0.
Here Ag is the Laplace operator on the unit sphere. To find
the general solution one canexpand ¢ = ), ()Y ,, ()
in hyperspherical harmonics:

AQij = _.](.] +D - 2)ij

and get

105011-6



PROPAGATORS AND GAUSSIAN EFFECTIVE ACTIONS IN ...

PHYS. REV. D 100, 105011 (2019)

(07 4 (D —1)tanh(1)9, + j(j + D —2) cosh™ (1) +m?*)p;(t)
o0, (4.2)

where j is a non-negative integer and m = (1,2,....N;p)
(N;p is the dimension of the jth space of (D —1)-
dimensional hyperspherical harmonics). Two linearly inde-
pendent solutions are the Ferrers functions P and Q also
known as the Legendre functions on the cut:

@;(t) = Clcosh‘%(t)P_"”

iy D=3
5

(tanh 1)

2 . »
+ C, =Zcosh™= (1)Q*
T

- D=3
7

(tanhr). (4.3)

P(z) and Q(z) are proportional to the Legendre functions
P(z) and Q(z) both in the upper and, separately, in the
lower complex plane with coefficients such that the
Ferrers function are analytic in the cut-complex plane
{C\((=0 = 1] U [1,0))} while the Legendre functions
are analytic in the cut-complex plane {C\(—o0, 1]}.

Our goal is again to find in- and out- modes. At future
infinity

e—im

P;iﬂ (tanh t) ~ m R

(4.4)

r— 400,

behaves as a single wave with frequency equal to u. Modes
(4.3) with C, = 0 are usually referred to as out-modes in
global dS space.

As regards the in-modes,” at past infinity P and Q behave
as follows:

sin (vr)
sin (ium)[(1 — ip)
_ sin(w—ig)n)l(v—in+1)
T(v+ ip+ 1) sin (ium)T(1 + in)

P, *(tanh 1) ~ et

e~

(4.5)

*One may use the following known relations:

TR TEE
sin (ipr) —in(_
IR
o p O
cos (iur) i,
To—iurn

zcos(vm)
2sin(ipm)I(1 — ip) ¢
_meos((v —ip)m)T(v —ip+ 1)
2sin(ipum)l'(v + ip + DI(1 + ip)

it

Q;*(tanh 1) =

—iut

(4.6)

To set the coefficient of e in (4.3) to zero one should
impose the condition

D -3 D-3
ClsinKj+ 5 )ﬂ]—i—CzcosKj—k 5 )ﬂ]:o;

(4.7)

the corresponding solution (4.3) behaves as a single wave at
past infinity, usually referred to as in-modes in global dS
space. One sees that in even dimensions C; = 0 and in odd
dimensions C, = 0. So, in odd dimensions in and out
modes are identical’ and this implies that there is no
imaginary contribution to the effective action in odd
dimensional de Sitter spacetime. Because of that from
now on we will not consider y—states in odd dimensions.
The discussion of y—states below considers only even
dimensional spacetimes. None of the y—states however
diagonalizes the Hamiltonian. Here the situation is different
from the one seen in Poincaré patch. There every mode
experiences an infinite blue shift toward past infinity such
that the modes are almost “insensitive” to the curvature of
the de Sitter space and behave as if they were in flat space.
This means that at past infinity of the Poincaré patch the
background field is effectively switched off and the
Hamiltonian can be diagonalized there.

B. Commutation relations

Consider the field operator (7 = tanh 1):

- D-1 iy~ 2 i~
o(6) = Seost 2| (1 P70 + 1220
XY, (X)a;,,

in % 2 i\ pe (=
+(iPrO + 52000 ) V] @

where X is a unit vector on the (D — 1)-dimensional sphere
and [a;,,. a]’.,’m,] =6, j6m- Letus pose f; = (v, P, " (7) +
r22Q " (7)) cosh(7)="7". The canonical commutation rela-
tions are

>This means that the Eq. (4.2) for odd D has an integrable
(nonscattering) “potential,” if considered as a quantum mechani-
cal equation. Namely single wave on one side of the potential
goes through it without scattering.
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N
= > (1Y m®)Y5,0)
Y;m ()_é) Yj.,m (5;)) .

One can change the summation over m in such a way that

[o(2.%). ¢(2.5)] =

—fif; (4.9)

Yin@)Y () = Y ju(X)Y,,(5):
{(p(t X ZYj m /m y)(f/f/ fjfj)
- ZY]m (f]vf*)

where W, is the Wronskian of two solutions of (4.2), which
does not depend on j:

(=St
Vgl

where C is some constant which depends on y, ;. By using
the completeness of the hyperspherical harmonics one sees
that it should be C = i. Therefore

W,(f,f*) = Ce~J(P=Damh(dr _ cooop~(D-

W, (P20 + 13 Q00 riPEO) + 13 2O )

2 cosh(ur
= (P + InsP) 2 cashipur)

=i (4.10)

2i sinh(urx . .
% —(riva=—rar1)

This condition on the coefficients y,, guarantees the
canonical commutation relations. The out-modes corre-

spond to:
- z and 7, =0.  (4.11)
= 2sinh(uz)’ £ '
The in-modes correspond to:
= ” =0, in odd dimensions
7/1 - 2Slnh(/,lﬂ')’ 7/2 - Y )
and y, = m, y1 = 0, in even dimensions.

C. Bogoliubov transformation

As before, let us consider a second mode expansion of
the field operator (¢, X) of the same form as (4.8) but with
other coefficients y; and y, and corresponding operators

bt and b im- X1 and y, also obey to the relation (4.10).

j.m
Using (4.6) and comparing the two expressions of the field
operator we obtain two identities:

12YCra+(ri+r3CL)Y*a" =, YC b+ (xi + 15CE) Vb7,
1Y CLat +(r1+72C)Ya= Y CLb" + (11 +1,.C )Y,

we denote Y;, = Y here to simplify these expressions and

Fv—ip+1)
sinh(uz)U(v + i+ 1)

C,=-i and C_ = icoth(un).
One can write the solution of the above equations in the

following form &' = ubl;T + u,a. For the discussion below
we need to know only u;:

L1+ 0C_ P = |C | xal?

. 4.12
X2 +rixt + 30 Cl+rixnCe (4.12)

u, =
Note that u;, does not depend on .

D. Feynman y —y propagator

1. Mode expansion

Here we compute the Feynman propagator between |y)
and |y) states, which are defined® as ajly) =0 and
bjm|x) = 0: Let us denote

e 2 i
fri(n) = (71Pv (1) + 72—Qp ”(t1)> cosh(t))™ 7,
frj(n) = ()(lP ) +;(27Q,, (7 )> cosh(r,)~7".
(4.13)
For 1, < t; we get

(X|To(t, X)p(t2,Y)lr)
(xlr)

_ZfZJ I f]j(tZ)ub /m( )Y* ()_;)’

G,_,(t,.x

t29§) =

(4.14)

where u, is defined in Eq. (4.12). When D > 2 one can use
the relation:

: e 2j+D—-2 p=2,_
Z Yj,m('x)Yj,m(y) = mcjz (X-¥),

D

where C, z (y X) are the Gegenbauer polynomials and
ISP is the volume of the (D — 1)-dimensional sphere:

®Note that these y—states are not the same as defined in the
section on the Poincaré patch. We discuss the relation between
these y—states and those in Poincaré patch at the end of this
section.
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D—1 D—-1

o = _ upcosh(t)™7 cosh(t;)" 2 ) g 2 i -
Gy—){(tlvx|t29y)_ |SD_1|<D—2) 2(2]+D_2) lej+%(tl)+x2;Qj+%(tl)
(1P + 202 ) 67 = (@.15)
2uy, . 2up xori .
=—(Al 5 T coth Al) ——2— — (A2) —— = T coth
—(ADLnrs + iy cothpuz] = ( )ﬂ_smhzﬂﬂ_ ( “inhﬂﬂ[wm X2y} coth ur]
4uy,
+(A3)— 3 Lxars + i xari coth ur] = (4.16)
_CEUT I (Bt B T8, + 57 2 (B + Baet + B
T 2R iﬂ_%( )| B + Bye 503 + ,»ﬂ_%( ) Bi+ Bye +7 3
)
— b T e _pr
+ B, (S_iﬂ_%(ZJr) + S_l.ﬂ_%(Z_) B; > coshun (Fiﬂ_%(ZJr) Fl.ﬂ_%(Z_)ﬂ ) (4.17)
|
In the intermediate step (Al), (A2) and (A3) are the  where h. are defined in (2.22) and F(x)=

expressions computed in Appendix (recall that D is
assumed to be even);

iy i +X§
V1-1721-52
is again the scalar invariant (hyperbolic distance) between

(t;,X) and (1,,y) expressed in global de Sitter coordinates.
We also used the following notations:

Z.=Z+tie= + ie. (4.18)

F(x) = (= 1)3Pk(x), and Sk(x) = (x2—1)70%(~x),
(4.19)
2u . 2up  xors
B ==" 175 +ixy; cothux], By=-""— 221 ,
7 m sinh“un
2l/£b
By=——"—Tiy,vi — v,y cothuxl|,
2 ﬂsinhw[wm X2vi coth px]

4Mb « . «
B; = = [x275 + i 2y cothum|.

E. Behavior of the generic y —y propagator
at coincident points

As we did in the Poincaré patch, let us expand Z ~ 1 — 7
where 6 — 0. The coefficient of B; in (4.17) vanishes. To
find the behavior of the other terms we need the following

formula [20]:

Si(Z)

B frapomr (22

(4.20)

Fi(hy, h_, %, x). Only the first term in (4.20) is singular

at Z = 1. So in the limit in question one can divide the
propagator into two parts:

52
Gy—)( (Z ~ - 2> = Gsing(é) + Ginite (5) (421)
Since
1
f(557)~
2

one finds that:

1IrQres?) 42
4 |D(hy)* 8272

as 6 — 0, (4.22)

I'(%3) 2u 2uy
4n35P2 «
—isinhpz(yy; -
F(D—Z)

2
p— T’
473 6P-2

Giing (6) ~ [coshuz(1yi + x273)

)(2}’7)]

as 6 — 0, (4.23)

which is the same behavior of the flat space propagator at
coincident points multiplied by some constant 7" which
depends on y and y. The finite term in (4.20) is as follows:
2(=1)"7|C(hy) Puy

5 as o — 0.
7(4m)2T(

Gfinite ® Ly + xarils

IS |+
SN—

(4.24)

Below we study both contributions Gy, and Gy for
special values of y;, and y;,. As in the case of the
Poincaré patch the generic y — y propagator has another
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singularity at Z = —1. Moreover, there can be a divergent
imaginary part.

F. Specially interesting cases

Because in odd dimensions |out) = |in) as we explained
above, in such a case Gy, = Gjn.oue and the first one is
always real at the coincident points.

1. In-in in even dimensions

According to the definition of the in-modes, the in-in
propagator corresponds to

f 7
= X1 =\ =y, =0, =1,
V1= X1 2 sinh(ux) V2= X2 up
as follows from Eq. (4.12). Hence
res
Gin—in<6) ~ 4”%5D—2 coth HTT. (425)

This propagator has no imaginary part and its finite part
vanishes.

2. In-out in even dimensions

Here

T

—_—, =itanh .
2sinh(urn) up = itanh(uz)

Y2=x1= ri=x2=0,

The sum of (4.23) and (4.24) has the following form:

I ~1)F |0 (hy)
Gin-out(6) & (Q ZD_)Ztanh/m—f—i ( 5 zl|) (h)] , 6—0.
4726 (47)2T'(5) coshu
(4.26)
This propagator has a finite imaginary part:
(=D ()P
ImGipou(Z =1) = — = (4.27)
(47)2T() cosh

This result corresponds to the one obtained for the Poincaré
patch in (2.30). But there is an important difference,
because the in—state in global de Sitter space does not
coincide with the in—(or BD) state in the Poincaré patch. As
a consequence the expression (4.27) differs from (2.30).

3. y —x propagator
In this case y1 = y1, v = xo, U, = 1;

L) 2
= h 2 2
471%5[,_2”[008 ur ([ + r2l*)

+ isinhun(yiy, — v571)]
e

2
—WT, 356—)0,

Gy_y ~

(4.28)

The condition (4.10) implies that: 7 > 1. The minimum
value of T correspond to

prs
4ehr’

—iy1 =7, = (4.29)

The value T =1 cannot be achieved if y; and y, are
both real.

G. Relation to the a—modes in the Poincaré patch

Let us make the following transformation:

v, =i(as —ap),

X2 = i(ﬁ; —ﬂT)»

Y1 = OIT +a§9
X1 =P+ P

then the condition (4.10) for y;, and y,, transform into:
7
|y [Per™ — |ay |Pe7 = T

and the same condition for f; ;. In this case u,:

T
u;, = s
" Hapio — afre )

as follows from (4.12). With the new coefficients f; , and
a; , the finite part of the y — y propagator has the following
form:

)|2 Pion —pra;
a e —ayfye

Giinite () ® asd— 0,

and the singular part is:

L5 fiare” + frae™

GanelO) % 553 ™ — aofye
I
= 10502 T, asé— 0.

This is a manifestation of the fact that there is the so called
Euclidean state |E) in global de Sitter [4,16], which
corresponds to the |[BD) or |in)-state in the Poincaré
patch. Namely BD-BD (or in-in) propagator in Poincaré
patch coincides with the E-E propagator, which is just the
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y — y—propagator for a concrete value of y, in global de
Sitter. Of course this coincidence is no surprise since the
BD vacuum is maximally analytic [9,10].

One can prove that for any coefficients a, f:

0 < |T| < 0.

Let us consider the following values of the coefficients:

=Vx*+ le‘ﬂzﬂ\/g, =Vx*+ 16_”2”\/§,

.y T i wr [T
ay = ixezy[— = Xxezq/—
4 4

for some x. Then the corresponding Feynman o —f8
propagator has divergent imaginary part, because:

(P 1) +ix?

— i (4.30)

Thus, in the case of generic y — y—propagator one can have
complex singular part both in the global de Sitter and in
Poincaré patch. Moreover, as we have mentioned several
times above, the generic y — y—propagator has another
singularity at Z = —1.

V. THE STATIC PATCH

In this section we shall discuss the properties of a
massive real scalar field in the static patch of the
de Sitter manifold. The main feature of this patch is the
existence of a timelike Killing vector that allows to
introduce a notion of energy; the free Hamiltonian is the
generator of the above-mentioned time translations.

For notational simplicity here we restrict ourselves to the
two-dimensional spacetime; what follows that can be easily
generalized to the general case. The de Sitter metric now is
written as

dr? dt* — dx?
ds> = (1= )df - = ,
s=(1-r) 1—-72  cosh®x

r =tanhx.

(5.1)

In these coordinates the scalar invariant is given by

_ cosh(t; —t,) + sinhx; sinh x, (52)
N cosh x; cosh x, ' '

Time translation invariant Green functions now solve the
following equation:

2
Gr(x,y|lt -1
wMJFuﬂ )

=—i(x—y)s(t—1),

[a% -0+
(5.3)

Let us consider the spatial part of this differential equation.
The eigen—functions of the operator consideration solve the
following equation:

[—ai L (5.4)

cosh?x

]WW=WWW

Its general solution is a combination of Legendre functions

w(x) = AkPZC%W(tanh x) + BkP:gjrm(tanhx)

(5.5)

This problem is obviously related to the text book quantum
mechanical one-dimensional problem with the potential
V(x) = m?/cosh?x. The spectrum of such a problem is
known. At each energy E = k?> > 0, there are two states
that can be characterized by the quantum numbers k, —k. It
means that there exists a full set of functions satisfying the
orthogonality

) 2 sinh 7k
ik ik _ I/
[ o) =R ok - ),
(5.6)

and the completness

o kdk . 4
/_oo mMi‘%ﬂﬂ(tanhx)M:;kH”(tanh y) = 5(x - y),

(5.7)

relations. The exact form of the coefficients A, and B is
not important for us here and will be provided elsewhere.

Using these relations one can obtain the following
integral representation of the Green function:

do kdk
// 27 2 sinh 7k Al@, k)

X Mf%ﬂ.ﬂ (tanh x)M_%'ii”(tanh ye~i @ (5.8)
The Feynman prescription gives
Alw, k) = - (5.9)

—@* + k> + i€’

precisely as in flat space-time. After that the integral over w
in (5.8) can be calculated, which yields

o dk
D= —% Mk (tanh
) /_oo4sinh7r|k| g 12002)

X M:giw(tanhy)e"‘k”".

Gr(x.

(5.10)

From this one we can rewrite it via the positive defined
harmonics as

Gp(x, (M‘{i’iﬂ(tanhx)Mi_“;+

Isinho p(tanhy)

iw —iw —iw|t
+M—5+m (tanhx)M_%ﬂ.”(tanhy))e R

(5.11)

105011-11



E. T. AKHMEDOV et al.

PHYS. REV. D 100, 105011 (2019)

This is the Feynman propagator for the ground state of the
free Hamiltonian in the static patch.

We will show now that the last expression cannot be a
function of the invariant Z. In fact, consider the point
x =y = 0. Then,

_ [ dk ik 2 —ilkllr]
Gr(0.0[1) = /_mmw_%wmﬂ e,

If this were a function of Z = cosh ¢, then it would have
been periodic under the change ¢ — ¢+ 2xzi, but if one
analytically continue this function in the complex variable
7, he finds that:

(5.12)

Gr(0,0(0)
e dk )
= ————— M, (0)]2[1 — 2K 0.
/;oo4slnh7[|k| _%*Fl,,{( )| [ e ]>

Which means that the ground state of the time independent
free Hamiltonian in the static patch does not respect the
de Sitter isometry, i.e., does not provide two-point func-
tions which depend only on the invariant Z. So then one can
ask which state in static patch does provide de Sitter
invariant propagators?

The well-known answer is that the BD or Euclidean state
correspond to the thermal one in the static patch [7-10] with

— G (0,0)27i)

(5.13)

inverse temperature equal to f = 2z. We give here a fresh
derivation of this fact. The thermal Wightman propagator in
the real time formalism has the following form

© dw et
G (x.y[1) = /_oo 4sinh 7w P — 1

X [M"_“;H.M (tanh x)M:’%";’w (tanhy)

+ M"_“;H.” (tanh y)M:é‘j:iﬂ (tanh x)],

where f = 2, (5.14)

which appears as a modification of (5.11) where we
changed the distribution to the thermal one with
n(w) = /,(, ;- Using the Wightman function one can con-
struct the other propagators, e.g.,:

Gp(x,
Gr(x.y,

1) = 0()Im Gy (x, y[1),
1) =0(t)Gw (x.y|t) +0(-

Then using the identity

)Gy (y.x|—1). (5.15)

1 —le
- = 5.16
e — / 27it + 2zin — i€’ ( )

in the last equation, one obtains that:

eia)(t—r)

wlx,ylt) =

Ry Y

X [Mﬁ . (tanhx)M:i". (tanhy) + Mf‘%+

X
4 s1nh TWT + 27win — ie

;,(tanh y)M‘lk ,(tanh x)]

N 22/ 27i

T+ 2mn — i€

o dr ,y|7)
=2 — , 5.17
Zl:/_oc2m't—r+27rin—ie ( )

where we shifted the integral over the variable 7 in the last line and used the relation

ImGy (x, y|t) = 5 [Gw (x y[t) = Giy(x.y[1)] =

1
2

sinwt .
/ ] smh ] [M’_“;Hﬂ (tanh x)M_”" (tanh y)+ M"” (tanh y)M (tanh x)] =

— d—w twt [Mim
1
— 8 sinh 7w —rtipn

At the end using ImGy, = ImGpp we get

dr ImGgp (

w(x yl1) _22/ 27i

_ (tanh x)M:;’;’iﬂ (tanhy) + Ml_";+

,(tanh y) M:gm (tanh x)].

cosh(r) +sinh x; sinh x, )
cosh x| cosh x,

(5.18)

t—1+2rxin —ic

Now we can perform the summation over n in the Eq. (5.18) to get

0 d h inh x; sinh t—7—1
G (x.311) :/ —T,ImGBD <cos (7) + sinhx; sin x2> coth< 72 16)‘

cosh x; cosh x,

27l

(5.19)
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With the change of variables 7z = ¢’ and

t—1—ic €T+ e T z+e
COth = t—1—ie t—1—ie = .0
2 5 — o5 el —z—ie
this integral can be rewritten as
dz z+ 1/z + 2 sinh x; sinh x, 7+ e

Gy(x,y|t) = — —ImG . 5.20
wlw ) A 2xiz BD( 2 cosh x; cosh x, z—e' +ie (5:20)

We change the contour of integration to be C =C, UC_, C. = a(l1£is), a e R,

1 dz 7+ 1/z + 2sinh x; sinh x, z+é

Gy(x,y|t) == G . 5.21
w (1) 2/CZm'z BD( 2 cosh x; cosh x, z—e +ie (5:21)

This integral can be taken by the Cauchy theorem. In fact,
noticing that as z — oo the integrand goes to zero as ~Z73,
which allows to close the contour at infinity. The only
nonzero contribution comes from the z = e’ and gives

Gw(x,y[t) = Gpp(x, y|t). (5.22)

This observation finishes the proof that the BD state is seen
in the static patch as a thermal state. This is exactly the
same situation as with Minkowski state in Rindler space.

However, please note that even though the distribution
looks like a thermal one, this state cannot be considered as a
real thermal state. In fact, in the proper thermal state there is
|

ImGBD(X y|T

I
a nonzero Debye mass, but as it was shown in [22], this
mass is actually equal to zero due to the properties of the
BD vacua and the de Sitter isometry.

Consider now a generalization of the above equation to a
generic temperature f:

ImGpgp(x, y|7)
t — 74 inf —

_22/

(5.23)

For the case f, = 27” one can split this expression in

two sums

q—1
Gup, (x011) =253 /

n m=0

t—1—|—27m1—|—2”m

(5.24)

2zm
—ZGBD<x y|T+ﬂ71>

Then, there is an interesting case of ¢ = 2, # = z. In this case the propagator is

1) =

cosh(7; —t,) + sinh x| sinh x,

GWﬂz ( i

P—%Jriﬂ (_

coshzu cosh x; cosh x,

the second term brings additional singularities on the
horizon. It would be interesting to study the possible
consequences or effects of these singularities.

VI. CONCLUDING REMARKS

We give here a heuristic argument to explain why time
ordered propagator does not have an imaginary part at the
coincidence limit in odd dimensions.’

E.T. A. would like to thank N. Nekrasov for communicating
this argument, which he has learned from A. Polyakov. At least
that is what E. T. A. remembers from the discussion of this issue
with Nekrasov in 2011.

r
P
) i coshzy ~

1+in (‘

—cosh(#; — t,) + sinh x; sinh x,
cosh x; cosh x, ’
(5.25)

It is possible to convert the effective action considered in
the Introduction into a quantum mechanical path integral:

iSeff = log </ d }6ifddx£>
o T Jxo)=x1)

To evaluate the last integral we may invoke the semi-
classical approximation and obtain that

©dl 1
'S — JE— lSexl s
oeff A 7 ¢ "\ det(a)
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where S, is the extremal action for the particle in the
background under consideration and A is the operator
describing fluctuations around the extremum.

Usually one calculates the above integral by a Wick
rotation to the Euclidean signature. The Euclidean manifold
of the complex de Sitter spacetime is a sphere and the
geodesics are the maximal circles. This provides the
required S, which is an extremum rather than a minimum.
In fact, on the D—dimensional sphere there are (D — 1)
directions along which maximal circles can shrink. Thus,
there are (D — 1) negative eigenvalues and the effective
action contains the contribution

det(A)2

Consequently in even dimension Im (S.) # 0; on the
contrary, in odd dimension there is an even number of
negative eigenvalues which results in a real value for the
effective action.

In all, there is no imaginary contribution to the effective
action in odd—dimensional de Sitter space, but this does
not mean that there is no particle production in odd—
dimensional de Sitter space [23]; the Hamiltonian is time
dependent and cannot be diagonalized once and forever.
As a consequence, in general the notion of particle can be
missing, or at best becomes ambiguous.

The main point of this paper is however that the in-out
formalism provides only a hint that there is something
interesting going on. This is well known from the proto-
typical case of a time-dependent electric field in flat space,
where the particle number at intermediate times generally
depends on the choice of a basis of reference states
associated with a particular truncation of the adiabatic
expansion [24] (see also [25,26]). Moreover, as is explained
in [27] the infrared loop divergences do not cancel out
in the background fields, unlike the usual case in flat
space field theory in Feynman technique. In nonstationary

(cosh #, cosh ;)™

quantum field theory to calculate loop integrals one has
to apply the Schwinger—Keldysh formalism rather than
the Feynman in-out technique (see [28] for a review) and
calculate stress—energy fluxes rather than transition ampli-
tudes. In such a situation one has to set up an initial
state and consider its destiny under the full interacting
Hamiltonian evolution. Although the notion of particle is
missing, still the flux may be nontrivial. In fact, it happens
that loop correction to the correlation functions are growing
with time [23,28-30] and are not suppressed in comparison
with tree-level contributions to the stress-energy flux.
Moreover, in some situations loop corrections violate the
de Sitter isometry and generate nontrivial fluxes [23,30].
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APPENDIX

This calculation is applicable only for even dimensions.
Here and below if we write a product of two Legendre
functions [for example:P(x)Q(y)] we assume that this
product is ordered: x > y. To simplify equations below
we use such notations as in (4.19). We need the following
three equations which were used e.g., in [31]:

DS 2+ DD ()€ F5)

- ;;}r (22 = )20 (2. + (22 = )P Q7 (2]

- ;2)— S22+ S0 (a1

<C<Z;1 " ;())lsgs)l_'_ ;@ j+D-2) i((j i ZT - Z:I 11; P (12)Q s () CF (75)
;z;iiwza PR O )
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and

(cosh 7, cosh #,)~%"

D=2, 2
_ix(= D P —b22 P52 2 —b22 P52
e @ - RO ) - 2 - e -2
__” 2 _)-2Rp T _ (72 _\-22pE
o (@ -z - @ - 2|
in <_ 1 )% D2 D=2 T ) D=2
=—— S (Z,)-S2,(Z.)- F? (Z)—-F? (Z_ A3
ey S - SR - i (R - e )| (43)
Where we use Z.., which is defined in (4.18). To compute (4.15) we need to perform four summations over j. According
to [31]:
; r ] 1 _ 2i _
P/ (x) = FEZi—;Zi_ 13 {coshﬂ,u P, (x) +;lsinh7zyle”], (A4)
. r i -+ 1 i . :
S(x) = F((Z - I’ZI 1)) [-’;’sinh auP;* (x) + cosh zu Q;"‘] : (AS5)

One can transform sums in (4.15) into (Al), (A2) and (A3). We denote sums as follows:

(cosht, cosht;)~
(D —2)|Qp]

PrQ- =

And the results of transformations are as follows:

Z(Z] +D - 2)P s %(tZ)Q 253 ‘<t1)cj

-2

S (F5).

P*P‘:—% . i 2ic'0sh,u7z(A1)’
7 sinh umw 7 sinh pum
and
1 cosh urx 2icosh uzx
QP = - Al)* A2) + ——— (A3).
sinhz,mr( )+ sinhz;m( msinh px (43)

Where (Al), (A2) and (A3) mean the expressions from the corresponding equations.
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