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We consider time-ordered (or Feynman) propagators between two different α—states of a linear de Sitter
quantum field in the global de Sitter manifold and in the Poincaré patch. We separately examine α − β, in–in
and in–out propagators and find the imaginary contribution to the effective actions. The in–in propagators
are real in both the Poincaré patch and in the global de Sitter manifold. On the other side the in–out
propagators at coincident points contain finite imaginary contributions in both patches in even dimensions,
but they are not equivalent. In odd dimensions in both patches the imaginary contributions are zero. For
completeness, we also consider the static patch and identify in our construction the state that is equivalent to
the Bunch–Davies one in the Poincaré patch.
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I. INTRODUCTION

To explain the point of our study let us consider a real
massive scalar field in a curved space. Here and below we
denote the mass of the scalar field φ as m, metric as gμν,
and the modulus of the determinant of metric as jgj.
The effective action is defined as:

eiSeff ¼ ei
R

Leffdx ¼
Z

d½φ�eiS½φ�;

where S½φ� ¼
Z

dDx
ffiffiffiffiffi
jgj

p
ð∂μφ∂μφ −m2φ2Þ: ð1:1Þ

It is straightforward to see that

∂
∂m2

log
Z

d½φ�eiS½φ� ¼ −i
R
dx

R
d½φ�φðxÞφðxÞeiS½φ�R
d½φ�eiS½φ�

¼ −i
Z

dxGFðx; xÞ:

and this allows to express the effective Lagrangian via the
Feynman (T-ordered) propagator:

Leff ¼
Z

m2

∞
dm̄2GFðx; xÞ: ð1:2Þ

Since houtjini ¼ expði R LeffdxÞ, when Leff is real the
transition probability from the in- to the out- state is equal
to one.1 But if the effective Lagrangian has an imaginary
part the probability of such a transition is not equal to one:

jhoutjinij2 ≠ 1 ; ð1:3Þ

which is usually interpreted as a signal of particle creation.
The Feynman propagators in de Sitter space having an
imaginary part at coincident points is the object of study of
this note.
The situation in de Sitter space has certain peculiarities

that were pointed out in [1,2]. It is well known that this
space has a maximal isometry group. When quantizing
fields it is natural to try to respect the isometry if possible.
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1Probably it is worth stressing here the following fact. There is
an equality for the amplitudes as follows:

houtjTe−i
R þ∞
−∞

H0ðtÞdtjini ¼ houtjini
only if H0 is time independent and if jini is the true ground state
of the free Hamiltonian. Otherwise the approximate equality
between these two amplitudes holds only for the week back-
ground field. We come back to this point in the main body of the
paper.
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In this case the correlation functions depend only on the
scalar invariants. However, while in Minkowski space there
is a unique Poincaré invariant ground state of positive
energy, in de Sitter space there is a family of states called
the alpha-vacua that respect the isometry at tree-level [3–5].
To calculate the above in-out amplitude one has to specify
which states he wishes to consider. It is possible to calculate
the amplitude using the T–ordered in–in (or even alpha–
alpha) propagator, or to consider the T–ordered in–out (or
even alpha–beta) propagator. Which one should be chosen?
We would like to reconsider this question in this paper.
The paper is organized as follows. In Sec. II we derive

analogs of the α–modes [3–5] in the Poincaré patch and
then consider T-ordered propagators corresponding to the
evolution from one α–state to another. We then compute the
imaginary contributions to the effective actions correspond-
ing to the in–in and in–out propagators.
Section III contains the derivation of the rate of pair

creation in the Poincaré patch. In particular we observe that
the rate is zero in any odd dimensional de Sitter spacetime;
the in-in propagator is real and provides vanishing imagi-
nary contribution to the effective action in anydimension.At
the same time the in–out propagator leads to a non–zero
creation rate in even dimension. We explain which propa-
gator is appropriate to consider in the present circumstances.
In Sec. IV we study the global de Sitter manifold. We

show how to relate the α–modes in global de Sitter to those
previously computed in the Poincaré patch, namely, we
relate those modes which have equivalent tree–level propa-
gators. We observe that in any odd dimensional de Sitter
spacetime the in–and the out–modes do coincide; also we
show that in–modes in global de Sitter do not provide the
same two–point functions as the in–modes in Poincaré
patch in any dimension. The in–modes in Poincaré patch,
which are frequently referred to as Bunch–Davies modes,
correspond to the so called Euclieian modes in global de
Sitter space.
In Sec. V we derive once more the well known result that

the Bunch–Davies state [6] is seen in static patch as a
thermal equilibrium state [7–10], while the ground state of
the free Hamiltonian does not respect the de Sitter isometry.
In the concluding section we present a heuristic explan-

ation why the pair creation rate should be zero in odd
dimensions and explain why there still can be nontrivial
stress-energy flux although the rate is vanishing.

II. FEYNMAN α− β PROPAGATOR
IN THE POINCARÉ PATCH

A. Free modes in the Poincaré patch

Let us consider a massive scalar field theory in the
Poincaré patch of the D-dimensional de Sitter spacetime:

ds2 ¼ −dt2 þ e2tdx⃗2;

where we set the radius of the de Sitter manifold to one. In
these coordinates the de Sitter Klein-Gordon (KG) equation
for a real, massive, minimally coupled scalar field is written
as follows:

½∂2
t þ ðD − 1Þ∂t − e−2t△þm2�φ ¼ 0: ð2:1Þ

By using the conformal time

e−t ¼ η ð2:2Þ

and separating the variables by defining φðη; x⃗Þ ¼
η
D−1
2 hðpηÞeip⃗ x⃗ one obtains that hðpηÞ must solve the

Bessel differential equation:

½η2∂2
η þ η∂η þ ðpηÞ2 þ μ2�hðpηÞ ¼ 0; ð2:3Þ

where

μ2 ¼ m2 −
ðD − 1Þ2

4
:

Below we restrict our attention to the casem > D−1
2

(μ real);
with this restriction modes oscillate at future infinity. The
modes we are going to consider are therefore of the
following form:

uα;p⃗ðx⃗;ηÞ¼
�

η

2π

�D−1
2

eip⃗x⃗½α1Hð1Þ
iμ ðpηÞþα2H

ð2Þ
iμ ðpηÞ� ð2:4Þ

where Hð1;2Þ
iμ denote the first and second type Hankel

functions and α1 and α2 are complex constants. The mode
expansion of the field operator φ is then as usual

φαðx⃗; ηÞ ¼
Z

dD−1pðuα;p⃗ðx⃗; ηÞap þ u�α;p⃗ðx⃗; ηÞa†pÞ: ð2:5Þ

The relevant Wronskians for the Bessel and the Hankel
functions are given by

WfJνðzÞ; J−νðzÞg ¼ −
2 sinðπνÞ

πz
;

WfHð1Þ
ν ðzÞ; Hð2Þ

ν ðzÞg ¼ −
4i
πz

: ð2:6Þ

Taking into account the following relations

Hð1Þ
−ν ðzÞ ¼ eiπνHð1Þ

ν ðzÞ; Hð2Þ
−ν ðzÞ ¼ e−iπνHð2Þ

ν ðzÞ;
Hð1Þ

ν
�ðzÞ ¼ Hð2Þ

ν� ðz�Þ; Hð2Þ
ν

�ðzÞ ¼ Hð1Þ
ν� ðz�Þ ð2:7Þ

one obtains the commutation relations

½φðx; ηÞ; πðy; ηÞ� ¼ −iηD−2 4ðjα2j2e−μπ − jα1j2eμπÞ
π

× δD−1ðx⃗ − y⃗Þ ð2:8Þ
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where π ¼ −∂ηφ [see Eq. (2.2)]. Canonicity gives

jα1j2eμπ − jα2j2e−μπ ¼
π

4
: ð2:9Þ

The in–or Bunch–Davis (BD) modes are proportional to the

Hankel function of the first kind Hð1Þ
iμ , i.e., α2 ¼ 0; they

behave as pure oscillating exponentials at past infinity:

Hð1Þ
iμ ðpηÞ ∼ eipη for pη ≫ μ. The out-modes are propor-

tional to the Bessel functions Jiμ and behave as pure
oscillating exponentials at future infinity: JiμðpηÞ ∼ e−iμη

for pη ≪ μ. While BD–modes do approximately diago-
nalize the Hamiltonian at past infinity of the Poincaré
patch, the out–modes do not diagonalize the Hamiltonian at
any time. None of the modes under consideration diago-
nalize the Hamiltonian for all times.
Suppose now to have a second family of canonical

modes of the same form as in Eq. (2.4):

uβ;p⃗ðx⃗; ηÞ ¼
�

η

2π

�D−1
2

eip⃗ x⃗½β1Hð1Þ
iμ ðpηÞ þ β2H

ð2Þ
iμ ðpηÞ�:

ð2:10Þ
There is a Bogoliubov transformation of a particularly
simple kind:

uβ;p⃗ðx⃗; ηÞ ¼ γuα;p⃗ðx⃗; ηÞ þ δu�α;−p⃗ðx⃗; ηÞ; ð2:11Þ
where

γ¼ 4

π
ðα�1β1eπμ−α�2β2e

−πμÞ; δ¼ 4

π
ðα1β2−α2β1Þ: ð2:12Þ

Correspondingly, the Bogoliubov transformation of the
canonical operators is given by

b†p ¼ γa†p − δa−p ð2:13Þ
and we may expand the field in terms of this second family:

φβðx⃗;ηÞ¼
Z

dD−1pðuβ;p⃗ðx⃗;ηÞbpþu�β;p⃗ðx⃗;ηÞb†pÞ: ð2:14Þ

Obviously, at the algebraic level

φαðx⃗; ηÞ ¼ φβðx⃗; ηÞ: ð2:15Þ
In the following we will call jαi and jβi the vacua2

annihilated by the ap and, respectively, the bp operators.
Of course the above Bogoliubov transformation is not
implementable, the vacua jαi and jβi are not equivalent and
the scalar product hβjαi appearing below is just a formal
expression.

B. Time-ordered α− β propagator

Let us now compute the following time-ordered corre-
lation function:

Gα−βðx; yÞ ¼
hβjTφβðη1; x⃗Þφαðη2; y⃗Þjαi

hβjαi : ð2:16Þ

This expression is formal because jαi and jβi do not belong
to the same Fock space. However, we will obtain a finite
ratio in this equation for generic jαi and jβi. By taking into
account Eq. (2.15) we get

Gα−βðx; yÞ ¼
Z ðη1η2ÞD−1

2 dD−1pdD−1k
ð2πÞD−1

hβjbpa†kjαi
hβjαi

× ½θðη2 − η1Þeip⃗ x⃗−ik⃗ y⃗½β1Hð1Þ
iμ ðpη1Þ þ β2H

ð2Þ
iμ ðpη1Þ�½α1Hð1Þ

iμ ðkη2Þ þ α2H
ð2Þ
iμ ðkη2Þ��

þ θðη1 − η2Þeip⃗ y⃗−ik⃗ x⃗½β1Hð1Þ
iμ ðpη2Þ þ β2H

ð2Þ
iμ ðpη2Þ�½α1Hð1Þ

iμ ðkη1Þ þ α2H
ð2Þ
iμ ðkη1Þ���: ð2:17Þ

Using (2.13) one finds that:
hβjbpa†kjαi

hβjαi ¼ 1

γ
δD−1ðp⃗ − k⃗Þ: ð2:18Þ

To calculate the integral in (2.17) we pass to spherical coordinates3 and take into account the following formula [11]:Z
∞

0

dppνþ1KμðapÞKμðbpÞJνðcpÞ¼
ffiffiffi
π

p
cνΓðνþμþ1ÞΓðν−μþ1Þ

2
3
2ðabÞνþ1

ðu2−1Þ−1
2
ðνþ1

2
ÞP−ν−1

2

−1
2
þμ
ðuÞ: ð2:19Þ

3Recall that for an arbitrary function fðpÞ:
Z

dD−1p
ð2πÞD−1 e

ip⃗ x⃗fðpÞ ¼ 1

ð2πÞD−1
2 jx⃗jD−3

2

Z
∞

0

dpp
D−1
2 JD−3

2
ðpjx⃗jÞfðpÞ:

2None of the jαi—states is a ground state of the Hamiltonian of the theory under consideration. The Hamiltonian depends on time.
The BD state is the ground state of the Hamiltonian only at past infinity.
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Here Kμ is the MacDonald function which is related to the
Hankel functions as follows:

Hð1Þ
iμ ðzÞ ¼ 2

π
ðe−iπ=2Þiμþ1Kiμðe−iπ

2 zÞ;

Hð2Þ
iμ ðzÞ ¼ 2

π
ðeiπ=2Þiμþ1Kiμðeiπ=2zÞ;

P
−ν−1

2

μ−1
2

ðzÞ is the associated Legendre function of the first kind,
defined on the complex z–plane cut along the real axis from
minus infinity to z ¼ 1; the parameters are such that u ¼
a2þb2þc2

2ab and Reðaþ bÞ > jImcj. Let us apply (2.19) to
evaluate for instance the terms at the right-hand side
(RHS) of (2.17) which are proportional to α�1β1:

I1 ¼
α�1β1
γ

Z ðη1η2ÞD−1
2 dD−1p

ð2πÞD−1 ½θðη2 − η1Þeip⃗ðx⃗−y⃗ÞHð1Þ
iμ ðpη1ÞHð1Þ

iμ ðpη2Þ� þ θðη1 − η2Þeip⃗ðy⃗−x⃗ÞHð1Þ
iμ ðpη2ÞHð1Þ

iμ ðpη1Þ��

¼ 4eπμα�1β1ðη1η2Þ
D−1
2

ð2πÞD−1
2 π2γjx⃗ − y⃗jD−3

2

Z
dpp

D−1
2 JD−3

2
ðpjx⃗ − y⃗jÞ

× ½θðη2 − η1ÞKiμðe−iπ
2
−iϵη1pÞKiμðeiπ

2
−iϵη2pÞþθðη1 − η2ÞKiμðe−iπ

2
−iϵη2pÞKiμðeiπ

2
−iϵη1pÞ�

¼ 2ΓðD−1
2

þ iμÞΓðD−1
2

− iμÞ
γπð2πÞD2 eπμα�1β1ðZ2

− − 1Þ−D−2
4 P

−D−2
2

−1
2
þiμ

ð−Z−Þ;

where

Z� ¼ 1þ ðη1 − η2Þ2 − ðx⃗ − y⃗Þ2
2η1η2

� iϵ ð2:20Þ

is the hyperbolic distance. The iϵ shifts are such that the
relation Reðaþ bÞ > jImcj is satisfied. By computing
similarly the other terms we get the following expression
for the time ordered propagator:

Gα−βðx;yÞ¼
ΓðhþÞΓðh−Þ

2ðα�1β1eμπ−α�2β2e
−μπÞð2πÞD2

× ½eπμα�1β1ðZ2
−−1Þ−D−2

4 P
−D−2

2

−1
2
þiμ

ð−Z−Þ

þe−μπα�2β2ðZ2þ−1Þ−D−2
4 P

−ðD−2
2
Þ

−1
2
þiμ

ð−ZþÞ

−α�2β1e
−iπD−1

2 ðZ2
−−1Þ−D−2

4 P
−D−2

2

−1
2
þiμ

ðZ−Þ

−α�1β2e
þiπD−1

2 ðZ2þ−1Þ−D−2
4 P

−ðD−2
2
Þ

−1
2
þiμ

ðZþÞ�; ð2:21Þ

where:

h� ¼ D − 1

2
� iμ: ð2:22Þ

For generic complex α’s and β’s it depends simultaneously
on Z� and is only piecewise analytic. It is invariant only
with respect to the connected part of the isometry group.
Recall also that while in Minkowski space QFT there is a

unique Poincaré invariant state of positive energy, in de
Sitter space there is a family of invariant states parametrized
by solutions of (2.9), because the notion of positivity of
the energy become meaningless. The BD state however
is peculiar: it is the only one to a thermal interpretation.

Wewill come back on this point as we explain in the section
concerning the static patch.

C. Special cases

1. In-in and in-out Feynman (T-ordered) propagators

The in-out propagator corresponds to the choice α1 ¼ α2
and β2 ¼ 0:

Gin-outðZÞ ¼
e−iπðD−2Þ

ð2πÞD2 ðZ2
− − 1Þ−D−2

4 Q
D−2
2

−1
2
þiμ

ðZ−Þ; ð2:23Þ

where Q is the associated Legendre function of the second
kind. The in-in propagator corresponds to the choice
α2 ¼ β2 ¼ 0:

Gin-inðZÞ¼
ΓðhþÞΓðh−Þ

2ð2πÞD2 ðZ2
− −1Þ−D−2

4 P
−D−2

2

−1
2
þiμ

ð−Z−Þ: ð2:24Þ

The propagator (2.24) has maximal analyticity properties.
It is related to the propagator on the Euclidean sphere via
analytical continuation in a suitable time coordinate or
in Z. On the other hand, (2.23) it is also related to the
Feynman propagators on the Euclidean anti de Sitter (resp.
Minkowskian anti de Sitter) via analytical continuation in
the radius of curvature (resp. simultaneously in time and
radius of curvature) [2]. We will use these propagators to
study the imaginary contributions to the corresponding
effective actions.

2. Behavior of the α− β propagator at coincident points

The short distance behavior of the α − β propagator is as
follows:
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Gα−βðZÞ ≈ −
ΓðD−2

2
Þ

4π
D
2δD−2

ðα�1β1eπμ þ α�2β2e
−πμÞ

ðα�1β1eμπ − α�2β2e
−μπÞ ; as δ → 0;

ð2:25Þ

where δ is the Minkowski geodesic distance and Z ≈ 1 − δ2

2

as δ → 0. Although δ → 0 corresponds to light-like sep-
aration, but we call shortly this limit as the coincidence
limit. The limit (2.25) is equal to the flat spacetime
propagator at coincident points multiplied by a certain
constant. The latter is equal to one only for the in-in and the
in-out propagators.
The propagator (2.24) has only the standard singularity

at Z ¼ 1 while all other α − β propagators, including in-out
(2.23), have an extra singularity at Z ¼ −1.
To evaluate explicitly the coincidence limit for the in-in

propagators we may insert the following integral repre-
sentation of the Legendre function of the first kind [12]

P
−D−2

2

−1
2
þiμ

ðzÞ¼ 2
1
2
−iμðz2−1ÞD−2

4

ΓðD−1
2
− iμÞΓð1

2
þ iμÞ

×
Z

∞

0

dtðzþ coshtÞ−D−1
2
−iμðsinh tÞ2iμ ð2:26Þ

into Eq. (2.24) and then set Z− ¼ 1. The integral at the RHS
is then divergent for D ≥ 2 but the divergence can be cured
as usual by analytical continuation in D. We get

Gin-inðZ−¼ 1Þ¼ ð4πÞ−D
2Γ
�
1−

D
2

�
ΓðD−1

2
þ iμÞΓðD−1

2
− iμÞ

Γð1
2
þ iμÞΓð1

2
− iμÞ :

ð2:27Þ

This result agrees with [13,14].
Similar calculations for the coincidence limit in the in-

out case give

Gin-outð1Þ ¼
e−iπ

D−2
2

ð4πÞD2 Γ
�
1 −

D
2

�
Γðiμþ D−1

2
Þ

Γðiμ − D−3
2
Þ : ð2:28Þ

Although both coincidence limits (2.27) are divergent in
D ¼ 4, their ratio is one:

Gin-outð1Þ
Gin-inð1Þ

����
D¼4

¼ 1: ð2:29Þ

Now we are ready to discuss imaginary parts of the
propagators.
The divergent imaginary part of the generic α–β propa-

gator does not vanish in even dimensions ImGα−βð1Þ ≠ 0

while in odd dimension ImGα−βð1Þ ¼ 0 (more details will
be given in Sec. IV). In particular for even D

ImGin-outð1Þ ¼
ð−1ÞD2e−πμjΓðD−1

2
þ iμÞj2

ð4πÞD2ΓðD
2
Þ ; ð2:30Þ

and in odd dimensions:

ImGin-outð1Þ ¼ 0: ð2:31Þ

For the in-in propagator for any D

ImGin-inð1Þ ¼ 0: ð2:32Þ

In Sec. IV we give a formal explanation why in odd
dimensional de Sitter space the Feynman propagators do
not contain imaginary contributions. In the concluding
Section we also provide a heuristic argument why the
effective action in odd dimensional de Sitter space should
be real.
One could ask at this point, which propagator one should

use to investigate particle creation in de Sitter space? We
come back to the discussion of this point in the concluding
section. For now we remark that

Gin-out ≈
e−iπ

D−2
2 ΓðhþÞ

ð2πÞD−1
2 2iμþ1Γðiμþ 1ÞZ

−hþ ∼ eimL; as Z → ∞;

and

Gin-in ≈ −
1

4ð2πÞDþ1
2 iμ

½2−iμΓðhþÞΓð1 − iμÞZ−hþ

− 2iμΓðh−ÞΓð1þ iμÞZ−h− � ∼ AþeimL þ A−e−imL;

as Z → ∞. Here L is the geodesic distance and Z ∼ eL,
when L → ∞. The Feynman propagator Gin-out has the
expected large distance behavior while the Gin-in does
not [1,2].

III. PAIR CREATION IN D= 4
DE SITTER SPACE

As an application of our results on Feynman propagators
in the Poincaré patch, let us discuss pair creation in four-
dimensional de Sitter space. Here we shall assume that
the usual relation holds between the pair creation rate P (in
the limit of low pair creation) and the imaginary part of the
effective Lagrangian,

P ≈ 2 ImL: ð3:1Þ

To get the effective Lagrangian, we will use (1.2) with the
in-out Green’s function at coincident points as given in
(2.28), renormalized in D ¼ 4.
We perform the renormalization using dimensional

regularization and minimal subtraction in the MS scheme.
Using the relation Γðxþ ϵÞ ¼ ΓðxÞð1þ ϵψðxÞÞ þOðϵ2Þ,
where ψ ¼ ðd=dxÞ lnΓðxÞ is the digamma function, leads to
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Gren
in-outð1Þ¼

m2−2

ð4πÞ2
�
−

m2

m2−2
þ2ψ

�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−

9

4

r
þ1

2

�
− iπ

�
:

ð3:2Þ

As expected, this expression has an imaginary part, and
using the identity [12]

Im

�
ψ

�
1

2
þ iy

��
¼ π

2
tanhðπyÞ; ð3:3Þ

we can write it as

ImGren
in-outð1Þ ¼

m2 − 2

ð4πÞ2 π

�
tanh

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

9

4

r �
− 1

�
: ð3:4Þ

Using (1.2) we get the imaginary part of the effective
Lagrangian in the form

ImL ¼ 1

16π

Z
m2

∞
dm̄2ðm̄2 − 2Þ

�
tanh

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 −

9

4

r �
− 1

�
:

ð3:5Þ

Although this integral can be evaluated analytically in
terms of polylogarithms, let us discuss here only the large-
mass/weak-curvature limit. In this approximation, (3.4)
simplifies to

ImGren
in-outð1Þ ≈ −

m2

8π
e−2πm; ð3:6Þ

and integration yields

ImL ≈
1

8π2
m

3
2e−2πm: ð3:7Þ

This is in agreement with the pair production rate predicted
by the Bogoliubov transformation method [4,5,15,16].
This makes it also clear that a previous failure by Das

and Dunne [14] to find the usual relation between the
pair creation rate and the imaginary part of the effective
Lagrangian was due to their inappropriate use of the in-in
Green’s function for the construction of the effective
Lagrangian. The use of the in-out Green’s function pre-
serves the analogy between the de Sitter and the proto-
typical constant electric field case. This extends also to
another aspect of Schwinger pair creation analyzed in [14]
for the de Sitter case, namely the possibility of constructing
the imaginary part of the effective Lagrangian by a Borel
summation of the weak-field expansion of its real part [17].
In QED, this can be seen as a natural extrapolation of the
optical theorem to zero-energy photons, and has been found

particularly useful for multiloop considerations [18,19]. To
see that it works for the case at hand, note once more that
the weak-field expansion is equivalent to the large-mass
expansion, and that the leading terms of this asymptotic
expansion in (3.2) come from the digamma function. The
asymptotic expansion of its real part is [12]

Re

�
ψ

�
1

2
þ iμ

��
∼ ln μþ

X∞
n¼1

ð−1Þn 1 − 21−2n

2n
B2nμ

−2n;

ð3:8Þ

where the B2n are Bernoulli numbers. Approximating these
numbers by their leading asymptotic growth

B2n ∼ ð−1Þnþ12
ð2nÞ
ð2πÞ2n ð3:9Þ

the series turns into a nonalternating divergent one. Its
Borel summation leads to an imaginary part [14]

Im

�X∞
n¼1

ð−1Þn 1 − 21−2n

2n
B2nμ

−2n
�
∼ −πe−2πμ ∼ −πe−2πm

ð3:10Þ

in agreement with (3.6). By integration in m2 one obtains
the same correspondence for L itself.

IV. TIME-ORDERED PROPAGATORS
IN GLOBAL DS SPACE

A. Free modes in global de Sitter space

In global spherical coordinates the de Sitter metric takes
the following form:

ds2 ¼ −dt2 þ cosh2ðtÞdΩ2: ð4:1Þ

dΩ2 is the line element on the unit sphere, and
ffiffiffi
g

p ¼
coshD−1ðtÞ ffiffiffiffiffiffiffiffijgΩj

p
, where jgΩj is the determinant of the

spherical metric. Correspondingly, the KG equation is as
follows:

ð□þm2Þϕ ¼ ∂2
tφþ ðD − 1Þ tanhðtÞ∂t

− cosh−2ðtÞ△Ωφþm2φ ¼ 0:

Here△Ω is the Laplace operator on the unit sphere. To find
the general solution one can expandφ ¼ P

j;m φjðtÞYjmðΩÞ
in hyperspherical harmonics:

△ΩYjm ¼ −jðjþD − 2ÞYjm

and get
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ð∂2
t þðD−1Þ tanhðtÞ∂tþ jðjþD−2Þcosh−2ðtÞþm2ÞφjðtÞ
¼ 0; ð4:2Þ

where j is a non-negative integer and m ¼ ð1; 2;…; Nj;DÞ
(Nj;D is the dimension of the jth space of (D − 1)–
dimensional hyperspherical harmonics). Two linearly inde-
pendent solutions are the Ferrers functions P and Q also
known as the Legendre functions on the cut:

φjðtÞ ¼ C1cosh−
D−1
2 ðtÞP−iμ

jþD−3
2

ðtanh tÞ

þ C2

2

π
cosh−

D−1
2 ðtÞQ−iμ

jþD−3
2

ðtanh tÞ: ð4:3Þ

PðzÞ and QðzÞ are proportional to the Legendre functions
PðzÞ and QðzÞ both in the upper and, separately, in the
lower complex plane with coefficients such that the
Ferrers function are analytic in the cut-complex plane
fCnðð−∞ − 1� ∪ ½1;∞ÞÞg while the Legendre functions
are analytic in the cut-complex plane fCnð−∞; 1�g.
Our goal is again to find in- and out- modes. At future

infinity

P−iμ
ν ðtanh tÞ ≈ e−iμt

Γð1 − iμÞ ; t → þ∞; ð4:4Þ

behaves as a single wave with frequency equal to μ. Modes
(4.3) with C2 ¼ 0 are usually referred to as out-modes in
global dS space.
As regards the in-modes,4 at past infinityP andQ behave

as follows:

P−iμ
ν ðtanh tÞ ≈ sin ðνπÞ

sin ðiμπÞΓð1 − iμÞ e
iμt

−
sin ððν − iμÞπÞΓðν − iμþ 1Þ

Γðνþ iμþ 1Þ sin ðiμπÞΓð1þ iμÞ e
−iμt;

ð4:5Þ

Q−iμ
ν ðtanh tÞ ¼ π cosðνπÞ

2 sinðiμπÞΓð1 − iμÞ e
iμt

−
π cosððν − iμÞπÞΓðν − iμþ 1Þ

2 sinðiμπÞΓðνþ iμþ 1ÞΓð1þ iμÞ e
−iμt:

ð4:6Þ

To set the coefficient of eiμt in (4.3) to zero one should
impose the condition

C1 sin

��
jþD − 3

2

�
π

�
þ C2 cos

��
jþD − 3

2

�
π

�
¼ 0;

ð4:7Þ

the corresponding solution (4.3) behaves as a single wave at
past infinity, usually referred to as in-modes in global dS
space. One sees that in even dimensions C1 ¼ 0 and in odd
dimensions C2 ¼ 0. So, in odd dimensions in and out
modes are identical5 and this implies that there is no
imaginary contribution to the effective action in odd
dimensional de Sitter spacetime. Because of that from
now on we will not consider γ–states in odd dimensions.
The discussion of γ–states below considers only even
dimensional spacetimes. None of the γ–states however
diagonalizes the Hamiltonian. Here the situation is different
from the one seen in Poincaré patch. There every mode
experiences an infinite blue shift toward past infinity such
that the modes are almost “insensitive” to the curvature of
the de Sitter space and behave as if they were in flat space.
This means that at past infinity of the Poincaré patch the
background field is effectively switched off and the
Hamiltonian can be diagonalized there.

B. Commutation relations

Consider the field operator (t̃≡ tanh t):

φðt; x⃗Þ ¼
X
j;m

coshðtÞ−D−1
2

��
γ1P

−iμ
ν ðt̃Þ þ γ2

2

π
Q−iμ

ν ðt̃Þ
�

× Yjmðx⃗Þaj;m
þ
�
γ�1P

iμ
ν ðt̃Þ þ γ�2

2

π
Qiμ

ν ðt̃Þ
�
Y�
jmðx⃗Þa†j;m

�
; ð4:8Þ

where x⃗ is a unit vector on the (D − 1)-dimensional sphere
and ½aj;m; a†j0;m0 � ¼ δj;jδm;m0 . Let us pose fj ¼ ðγ1P−iμ

ν ðt̃Þ þ
γ2

2
πQ

−iμ
ν ðt̃ÞÞ coshðtÞ−D−1

2 . The canonical commutation rela-
tions are

4One may use the following known relations:

sin ððν − iμÞπÞ
Γðνþ iμþ 1Þ P

iμ
ν ðxÞ ¼ sin ðνπÞ

Γðν − iμþ 1ÞP
−iμ
ν ðxÞ

−
sin ðiμπÞ

Γðν − iμþ 1ÞP
−iμ
ν ð−xÞ;

2 sin ðiμπÞ
πΓðν − iμþ 1ÞQ

−iμ
ν ðxÞ ¼ 1

Γðνþ iμþ 1ÞP
iμ
ν ðxÞ

−
cos ðiμπÞ

Γðν − iμþ 1ÞP
−iμ
ν ðxÞ:

5This means that the Eq. (4.2) for odd D has an integrable
(nonscattering) “potential,” if considered as a quantum mechani-
cal equation. Namely single wave on one side of the potential
goes through it without scattering.
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½φðt; x⃗Þ; _φðt; y⃗Þ� ¼ iδðx⃗ − y⃗Þffiffiffi
g

p

¼
X
j;m

ðfj _f�jYj;mðx⃗ÞY�
j;mðy⃗Þ

− f�j _fjY
�
j;mðx⃗ÞYj;mðy⃗ÞÞ: ð4:9Þ

One can change the summation over m in such a way that
Y�
j;mðx⃗ÞYj;mðy⃗Þ → Yj;mðx⃗ÞY�

j;mðy⃗Þ:

½φðt; x⃗Þ; _φðt; y⃗Þ� ¼
X
j;m

Yj;mðx⃗ÞY�
j;mðy⃗Þðfj _f�j − f�j _fjÞ

¼
X
j;m

Yj;mðx⃗ÞY�
j;mðy⃗ÞWtðfj; f�jÞ;

whereWt is the Wronskian of two solutions of (4.2), which
does not depend on j:

Wtðf;f�Þ¼Ce−
R
ðD−1Þ tanhðtÞdt ¼Ccosh−ðD−1ÞðtÞ¼C

ffiffiffiffiffi
gΩ

pffiffiffiffiffijgjp ;

where C is some constant which depends on γ1;2. By using
the completeness of the hyperspherical harmonics one sees
that it should be C ¼ i. Therefore

Wt

�
γ1P

−iμ
ν ðt̃Þ þ γ2

2

π
Q−iμ

ν ðt̃Þ; γ�1Piμ
ν ðt̃Þ þ γ�2

2

π
Qiμ

ν ðt̃Þ
�

¼ ðjγ1j2 þ jγ2j2Þ
2i sinhðμπÞ

π
− ðγ�1γ2 − γ�2γ1Þ

2 coshðμπÞ
π

¼ i: ð4:10Þ

This condition on the coefficients γ1;2 guarantees the
canonical commutation relations. The out-modes corre-
spond to:

γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2 sinhðμπÞ
r

; and γ2 ¼ 0: ð4:11Þ

The in-modes correspond to:

γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2 sinhðμπÞ
r

; γ2 ¼ 0; in odd dimensions;

and γ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2 sinhðμπÞ
r

; γ1 ¼ 0; in even dimensions:

C. Bogoliubov transformation

As before, let us consider a second mode expansion of
the field operator φðt; x⃗Þ of the same form as (4.8) but with
other coefficients χ1 and χ2 and corresponding operators
b†j;m and bj;m. χ1 and χ2 also obey to the relation (4.10).
Using (4.6) and comparing the two expressions of the field
operator we obtain two identities:

γ2YCþaþðγ�1þγ�2C
�
−ÞY�a†¼ χ2YCþbþðχ�1þ χ�2C

�
−ÞY�b†;

γ�2Y
�C�þâ†þðγ1þγ2C−ÞYa¼ χ�2Y

�C�þb†þðχ1þ χ2C−ÞYb;

we denote Yj;m ¼ Y here to simplify these expressions and

Cþ ¼ −i
Γðν − iμþ 1Þ

sinhðμπÞΓðνþ iμþ 1Þ and C− ¼ i cothðμπÞ:

One can write the solution of the above equations in the
following form â† ¼ ubb̂

† þ uaâ. For the discussion below
we need to know only ub:

ub ¼
j χ1 þ χ2C−j2 − jCþj2j χ2j2

γ�2 χ2 þ γ�1 χ1 þ γ�2 χ1C
�
− þ γ�1 χ2C−

: ð4:12Þ

Note that ub does not depend on j.

D. Feynman γ − χ propagator

1. Mode expansion

Here we compute the Feynman propagator between jγi
and j χi states, which are defined6 as aj;mjγi ¼ 0 and
bj;mj χi ¼ 0: Let us denote

f1;jðt1Þ ¼
�
γ1P

−iμ
ν ðt̃1Þ þ γ2

2

π
Q−iμ

ν ðt̃1Þ
�
coshðt1Þ−D−1

2 ;

f2;jðt2Þ ¼
�
χ1P

−iμ
ν ðt̃2Þ þ χ2

2

π
Q−iμ

ν ðt̃2Þ
�
coshðt2Þ−D−1

2 :

ð4:13Þ

For t2 < t1 we get

Gγ− χðt1; x⃗jt2; y⃗Þ ¼
h χjTφðt1; x⃗Þφðt2; y⃗Þjγi

h χjγi
¼

X
j;m

f2;jðt1Þf�1;jðt2ÞubYj;mðx⃗ÞY�
j;mðy⃗Þ;

ð4:14Þ

where ub is defined in Eq. (4.12). WhenD > 2 one can use
the relation:

XNj;D

m¼1

Yj;mðx⃗ÞY�
j;mðy⃗Þ ¼

2jþD − 2

jSD−1jðD − 2ÞC
D−2
2

j ðx⃗ · y⃗Þ;

where C
D−2
2

j ðy⃗ x⃗Þ are the Gegenbauer polynomials and
jSD−1j is the volume of the (D − 1)-dimensional sphere:

6Note that these γ–states are not the same as defined in the
section on the Poincaré patch. We discuss the relation between
these γ–states and those in Poincaré patch at the end of this
section.
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Gγ− χðt1; x⃗jt2; y⃗Þ ¼
ub coshðt2Þ−D−1

2 coshðt1Þ−D−1
2

jSD−1jðD − 2Þ
X
j

ð2jþD − 2Þ
�
χ1P

−iμ
jþD−3

2

ðt̃1Þ þ χ2
2

π
Q−iμ

jþD−3
2

ðt̃1Þ
�

×

�
γ�1P

iμ
jþD−3

2

ðt̃2Þ þ γ�2
2

π
Qiμ

jþD−3
2

ðt̃2Þ
�
C

D−2
2

j ðy⃗ x⃗ Þ ¼ ð4:15Þ

¼ 2ub
π

ðA1Þ½ χ1γ�2 þ i χ1γ�1 coth μπ� − ðA1Þ� 2ub χ2γ�1
π sinh2 μπ

− ðA2Þ 2ub
π sinh μπ

½i χ1γ�1 − χ2γ
�
1 coth μπ�

þ ðA3Þ 4ub
π2

½ χ2γ�2 þ i χ2γ�1 coth μπ� ¼ ð4:16Þ

¼ ð−1ÞD−2
2

2ð2πÞD2
�
S

D−2
2

iμ−1
2

ðZþÞ
�
B1 þ B2eμπ −

iπ
2
B3

�
þ S

D−2
2

iμ−1
2

ðZ−Þ
�
B1 þ B2e−μπ þ

iπ
2
B3

�

þ B4

�
S

D−2
2

−iμ−1
2

ðZþÞ þ S
D−2
2

−iμ−1
2

ðZ−Þ
�
þ B3

iπ2

2 cosh μπ

�
F

D−2
2

iμ−1
2

ðZþÞ − F
D−2
2

iμ−1
2

ðZ−Þ
��

: ð4:17Þ

In the intermediate step (A1), (A2) and (A3) are the
expressions computed in Appendix (recall that D is
assumed to be even);

Z� ≡ Z � iϵ ¼ −t̃1 t̃2 þx⃗ y⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t̃12

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t̃22

p � iϵ: ð4:18Þ

is again the scalar invariant (hyperbolic distance) between
ðt1; x⃗Þ and ðt2; y⃗Þ expressed in global de Sitter coordinates.
We also used the following notations:

Fk
aðxÞ¼ ðx2−1Þ−k

2Pk
aðxÞ; and SkaðxÞ¼ ðx2−1Þ−k

2Qk
að−xÞ;
ð4:19Þ

B1 ¼
2ub
π

½ χ1γ�2 þ iχ1γ�1 cothμπ�; B4 ¼ −
2ub
π

χ2γ
�
1

sinh2μπ
;

B2 ¼ −
2ub

π sinhμπ
½iχ1γ�1 − χ2γ

�
1 cothμπ�;

B3 ¼
4ub
π2

½ χ2γ�2 þ iχ2γ�1 cothμπ�:

E. Behavior of the generic γ − χ propagator
at coincident points

As we did in the Poincaré patch, let us expand Z ≈ 1 − δ2

2
where δ → 0. The coefficient of B3 in (4.17) vanishes. To
find the behavior of the other terms we need the following
formula [20]:

S
D−2
2

iμ−1
2

ðZ�Þ

¼ jΓðhþÞj2
2

D
2ΓðD

2
Þ

�
∓ ið−1ÞD2e∓μπF

�
1þZ�

2

�
þF

�
1−Z�

2

��
;

ð4:20Þ

where h� are defined in (2.22) and FðxÞ≡
2F1ðhþ; h−; D2 ; xÞ. Only the first term in (4.20) is singular
at Z ¼ 1. So in the limit in question one can divide the
propagator into two parts:

Gγ− χ

�
Z ≈ 1 −

δ2

2

�
¼ GsingðδÞ þ GfiniteðδÞ: ð4:21Þ

Since

F

�
1þ Z�

2

�
≈ −

1

4

ΓðD
2
ÞΓðD−2

2
Þ

jΓðhþÞj2
4
D
2

δD−2 ; as δ → 0; ð4:22Þ

one finds that:

GsingðδÞ ≈
ΓðD−2

2
Þ

4π
D
2δD−2

2ub
π

½cosh μπð χ1γ�1 þ χ2γ
�
2Þ

− i sinh μπð χ1γ�2 − χ2γ
�
1Þ�

¼ ΓðD−2
2
Þ

4π
D
2δD−2

T; as δ → 0; ð4:23Þ

which is the same behavior of the flat space propagator at
coincident points multiplied by some constant T which
depends on γ and χ. The finite term in (4.20) is as follows:

Gfinite ≈
2ð−1ÞD−2

2 jΓðhþÞj2ub
πð4πÞD2ΓðD

2
Þ ½ χ1γ�2 þ χ2γ

�
1�; as δ → 0:

ð4:24Þ

Below we study both contributions Gsing and Gfinite for
special values of γ1;2 and χ1;2. As in the case of the
Poincaré patch the generic γ − χ propagator has another
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singularity at Z ¼ −1. Moreover, there can be a divergent
imaginary part.

F. Specially interesting cases

Because in odd dimensions jouti ¼ jini as we explained
above, in such a case Gin-in ¼ Gin-out and the first one is
always real at the coincident points.

1. In-in in even dimensions

According to the definition of the in-modes, the in-in
propagator corresponds to

γ1 ¼ χ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2 sinhðμπÞ
r

; γ2 ¼ χ2 ¼ 0; ub ¼ 1;

as follows from Eq. (4.12). Hence

Gin-inðδÞ ≈
ΓðD−2

2
Þ

4π
D
2δD−2

coth μπ: ð4:25Þ

This propagator has no imaginary part and its finite part
vanishes.

2. In-out in even dimensions

Here

γ2¼ χ1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2sinhðμπÞ
r

; γ1 ¼ χ2¼ 0; ub ¼ i tanhðμπÞ:

The sum of (4.23) and (4.24) has the following form:

Gin-outðδÞ≈
ΓðD−2

2
Þ

4π
D
2δD−2

tanhμπþ i
ð−1ÞD−2

2 jΓðhþÞj2
ð4πÞD2ΓðD

2
Þcoshπμ ; δ→ 0:

ð4:26Þ

This propagator has a finite imaginary part:

ImGin-outðZ ¼ 1Þ ¼ ð−1ÞD−2
2 jΓðhþÞj2

ð4πÞD2ΓðD
2
Þ cosh πμ : ð4:27Þ

This result corresponds to the one obtained for the Poincaré
patch in (2.30). But there is an important difference,
because the in–state in global de Sitter space does not
coincide with the in–(or BD) state in the Poincaré patch. As
a consequence the expression (4.27) differs from (2.30).

3. γ − χ propagator

In this case γ1 ¼ χ1, γ2 ¼ χ2, ub ¼ 1;

Gγ−γ ≈
ΓðD−2

2
Þ

4π
D
2δD−2

2

π
½cosh μπðjγ1j2 þ jγ2j2Þ

þ i sinh μπðγ�1γ2 − γ�2γ1Þ�

¼ ΓðD−2
2
Þ

4π
D
2δD−2

T; as δ → 0; ð4:28Þ

The condition (4.10) implies that: T ≥ 1. The minimum
value of T correspond to

−iγ1 ¼ γ2 ¼
ffiffiffiffiffiffiffiffiffi
π

4eμπ

r
: ð4:29Þ

The value T ¼ 1 cannot be achieved if γ1 and γ2 are
both real.

G. Relation to the α–modes in the Poincaré patch

Let us make the following transformation:

γ1 ¼ α�1 þ α�2; γ2 ¼ iðα�2 − α�1Þ;
χ1 ¼ β�1 þ β�2; χ2 ¼ iðβ�2 − β�1Þ;

then the condition (4.10) for γ1;2 and χ1;2 transform into:

jα1j2eμπ − jα2j2e−μπ ¼
π

4
;

and the same condition for β1;2. In this case ub:

ub ¼
π

4ðα1β�1eμπ − α2β
�
2e

−μπÞ ;

as follows from (4.12). With the new coefficients β1;2 and
α1;2 the finite part of the γ − χ propagator has the following
form:

GfiniteðδÞ≈
ið−1ÞD−2

2 jΓðhþÞj2
ð4πÞD2ΓðD

2
Þ

β�1α2−β�2α1
α1β

�
1e

μπ −α2β
�
2e

−μπ ; as δ→ 0;

and the singular part is:

GsingðδÞ ≈
ΓðD−2

2
Þ

4π
D
2δD−2

β�1α1e
μπ þ β�2α2e

−μπ

α1β
�
1e

μπ − α2β
�
2e

−μπ

¼ ΓðD−2
2
Þ

4π
D
2δD−2

T; as δ → 0:

This is a manifestation of the fact that there is the so called
Euclidean state jEi in global de Sitter [4,16], which
corresponds to the jBDi or jini–state in the Poincaré
patch. Namely BD–BD (or in-in) propagator in Poincaré
patch coincides with the E–E propagator, which is just the
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γ − γ–propagator for a concrete value of γ, in global de
Sitter. Of course this coincidence is no surprise since the
BD vacuum is maximally analytic [9,10].
One can prove that for any coefficients α, β:

0 < jTj < ∞:

Let us consider the following values of the coefficients:

α1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
e−

μπ
2

ffiffiffi
π

4

r
; β1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
e−

μπ
2

ffiffiffi
π

4

r
;

α2 ¼ ixe
μπ
2

ffiffiffi
π

4

r
; β2 ¼ xe

μπ
2

ffiffiffi
π

4

r

for some x. Then the corresponding Feynman α − β
propagator has divergent imaginary part, because:

T ¼ ðx2 þ 1Þ þ ix2

ðx2 þ 1Þ − ix2
: ð4:30Þ

Thus, in the case of generic γ − χ–propagator one can have
complex singular part both in the global de Sitter and in
Poincaré patch. Moreover, as we have mentioned several
times above, the generic γ − χ–propagator has another
singularity at Z ¼ −1.

V. THE STATIC PATCH

In this section we shall discuss the properties of a
massive real scalar field in the static patch of the
de Sitter manifold. The main feature of this patch is the
existence of a timelike Killing vector that allows to
introduce a notion of energy; the free Hamiltonian is the
generator of the above-mentioned time translations.
For notational simplicity here we restrict ourselves to the

two-dimensional spacetime; what follows that can be easily
generalized to the general case. The de Sitter metric now is
written as

ds2¼ð1− r2Þdt2− dr2

1− r2
¼ dt2−dx2

cosh2x
; r¼ tanhx: ð5:1Þ

In these coordinates the scalar invariant is given by

Z ¼ coshðt1 − t2Þ þ sinh x1 sinh x2
cosh x1 cosh x2

: ð5:2Þ

Time translation invariant Green functions now solve the
following equation:�

∂2
t − ∂2

x þ
m2

cosh2x

�
GFðx; yjt − t0Þ

¼ −iδðx − yÞδðt − t0Þ; ð5:3Þ
Let us consider the spatial part of this differential equation.
The eigen–functions of the operator consideration solve the
following equation:

�
−∂2

x þ
m2

cosh2x

�
ψkðxÞ ¼ k2ψkðxÞ ð5:4Þ

Its general solution is a combination of Legendre functions

ψðxÞ ¼ AkPik
−1
2
þiμ

ðtanh xÞ þ BkP−ik
−1
2
þiμ

ðtanh xÞ
ð5:5Þ

This problem is obviously related to the text book quantum
mechanical one-dimensional problem with the potential
VðxÞ ¼ m2=cosh2x. The spectrum of such a problem is
known. At each energy E ¼ k2 > 0, there are two states
that can be characterized by the quantum numbers k, −k. It
means that there exists a full set of functions satisfying the
orthogonalityZ

dxMik
−1
2
þiμ

ðxÞMik0
−1
2
þiμ

ðxÞ ¼ 2 sinh πk
k

δðk − k0Þ;

ð5:6Þ
and the completnessZ

∞

−∞

kdk
2 sinh πk

Mik
−1
2
þiμ

ðtanh xÞM−ik
−1
2
þiμ

ðtanh yÞ ¼ δðx − yÞ;

ð5:7Þ
relations. The exact form of the coefficients Ak and Bk is
not important for us here and will be provided elsewhere.
Using these relations one can obtain the following

integral representation of the Green function:

GFðx; yjtÞ ¼
ZZ

∞

−∞

dω
2π

kdk
2 sinh πk

Aðω; kÞ

×Mik
−1
2
þiμ

ðtanh xÞM−ik
−1
2
þiμ

ðtanh yÞe−iωt: ð5:8Þ

The Feynman prescription gives

Aðω; kÞ ¼ −i
−ω2 þ k2 þ iϵ

; ð5:9Þ

precisely as in flat space-time. After that the integral over ω
in (5.8) can be calculated, which yields

GFðx; yjtÞ ¼
Z

∞

−∞

dk
4 sinh πjkjM

ik
−1
2
þiμ

ðtanh xÞ

×M−ik
−1
2
þiμ

ðtanh yÞe−ijkjjtj: ð5:10Þ

From this one we can rewrite it via the positive defined
harmonics as

GFðx;yjtÞ¼
Z

∞

0

dω
4sinhπω

ðM−iω
−1
2
þiμ

ðtanhxÞMiω
−1
2
þiμ

ðtanhyÞ

þMiω
−1
2
þiμ

ðtanhxÞM−iω
−1
2
þiμ

ðtanhyÞÞe−iωjtj: ð5:11Þ
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This is the Feynman propagator for the ground state of the
free Hamiltonian in the static patch.
We will show now that the last expression cannot be a

function of the invariant Z. In fact, consider the point
x ¼ y ¼ 0. Then,

GFð0; 0jtÞ ¼
Z

∞

−∞

dk
4 sinh πjkj jM

ik
−1
2
þiμ

ð0Þj2 e−ijkjjtj: ð5:12Þ

If this were a function of Z ¼ cosh t, then it would have
been periodic under the change t → tþ 2πi, but if one
analytically continue this function in the complex variable
τ, he finds that:

GFð0; 0j0Þ −GFð0; 0j2πiÞ

¼
Z

∞

−∞

dk
4 sinh πjkj jM

ik
−1
2
þiμ

ð0Þj2½1 − e−2πjkj� > 0: ð5:13Þ

Which means that the ground state of the time independent
free Hamiltonian in the static patch does not respect the
de Sitter isometry, i.e., does not provide two-point func-
tions which depend only on the invariant Z. So then one can
ask which state in static patch does provide de Sitter
invariant propagators?
The well-known answer is that the BD or Euclidean state

correspond to the thermal one in the static patch [7–10] with

inverse temperature equal to β ¼ 2π. We give here a fresh
derivation of this fact. The thermal Wightman propagator in
the real time formalism has the following form

GWðx; yjtÞ ¼
Z

∞

−∞

dω
4 sinh πω

eiωt

eβω − 1

× ½Miω
−1
2
þiμ

ðtanh xÞM−iω
−1
2
þiμ

ðtanh yÞ
þMiω

−1
2
þiμ

ðtanh yÞM−iω
−1
2
þiμ

ðtanh xÞ�;
where β ¼ 2π; ð5:14Þ

which appears as a modification of (5.11) where we
changed the distribution to the thermal one with
nðωÞ ¼ 1

eβω−1. Using the Wightman function one can con-
struct the other propagators, e.g.,:

GRðx;yjtÞ¼ θðtÞImGWðx;yjtÞ;
GFðx;y; jtÞ¼ θðtÞGWðx;yjtÞþθð−tÞGWðy;xj− tÞ: ð5:15Þ
Then using the identity

1

e2πω − 1
¼ −

Xþ∞

n¼−∞

Z
∞

−∞

dτ
2πi

e−iωτ

τ þ 2πin − iϵ
; ð5:16Þ

in the last equation, one obtains that:

GWðx; yjtÞ ¼ −
X
n

Z
∞

−∞

dτ
2πi

Z
∞

−∞

dω
4 sinh πω

eiωðt−τÞ

τ þ 2πin − iϵ
×

× ½Mik
−1
2
þiμ

ðtanh xÞM−ik
−1
2
þiμ

ðtanh yÞ þMik
−1
2
þiμ

ðtanh yÞM−ik
−1
2
þiμ

ðtanh xÞ�

¼ 2
X
n

Z
∞

−∞

dτ
2πi

ImGWðx; yjt − τÞ
τ þ 2πin − iϵ

¼ 2
X
n

Z
∞

−∞

dτ
2πi

ImGWðx; yjτÞ
t − τ þ 2πin − iϵ

; ð5:17Þ

where we shifted the integral over the variable τ in the last line and used the relation

ImGWðx; yjtÞ ¼
1

2
½GWðx; yjtÞ −G�

Wðx; yjtÞ� ¼

¼
Z

∞

−∞

dω
4 sinh πω

sinωt
e2πω − 1

½Miω
−1
2
þiμ

ðtanh xÞM−iω
−1
2
þiμ

ðtanh yÞ þMiω
−1
2
þiμ

ðtanh yÞM−iω
−1
2
þiμ

ðtanh xÞ� ¼

¼ −
Z

∞

−∞

dω
8 sinh πω

eiωt½Miω
−1
2
þiμ

ðtanh xÞM−iω
−1
2
þiμ

ðtanh yÞ þMiω
−1
2
þiμ

ðtanh yÞM−iω
−1
2
þiμ

ðtanh xÞ�:

At the end using ImGW ¼ ImGBD we get

GWðx; yjtÞ ¼ 2
X
n

Z
∞

−∞

dτ
2πi

ImGBDðcoshðτÞþsinh x1 sinh x2
cosh x1 cosh x2

Þ
t − τ þ 2πin − iϵ

: ð5:18Þ

Now we can perform the summation over n in the Eq. (5.18) to get

GWðx; yjtÞ ¼
Z

∞

−∞

dτ
2πi

ImGBD

�
coshðτÞ þ sinh x1 sinh x2

cosh x1 cosh x2

�
coth

�
t − τ − iϵ

2

�
: ð5:19Þ

E. T. AKHMEDOV et al. PHYS. REV. D 100, 105011 (2019)

105011-12



With the change of variables z ¼ eτ and

coth

�
t − τ − iϵ

2

�
¼ e

t−τ
2 þ e−

t−τ
2

e
t−τ−iϵ

2 − e−
t−τ−iϵ

2

¼ zþ et

et − z − iϵ
;

this integral can be rewritten as

GWðx; yjtÞ ¼ −
Z

∞

0

dz
2πiz

ImGBD

�
zþ 1=zþ 2 sinh x1 sinh x2

2 cosh x1 cosh x2

�
zþ et

z − et þ iϵ
: ð5:20Þ

We change the contour of integration to be C ¼ Cþ ∪ C−, C� ¼ αð1� iδÞ, α ∈ Rþ

GWðx; yjtÞ ¼
1

2

Z
C

dz
2πiz

GBD

�
zþ 1=zþ 2 sinh x1 sinh x2

2 cosh x1 cosh x2

�
zþ et

z − et þ iϵ
: ð5:21Þ

This integral can be taken by the Cauchy theorem. In fact,
noticing that as z → ∞ the integrand goes to zero as ∼z−3

2,
which allows to close the contour at infinity. The only
nonzero contribution comes from the z ¼ et and gives

GWðx; yjtÞ ¼ GBDðx; yjtÞ: ð5:22Þ
This observation finishes the proof that the BD state is seen
in the static patch as a thermal state. This is exactly the
same situation as with Minkowski state in Rindler space.
However, please note that even though the distribution

looks like a thermal one, this state cannot be considered as a
real thermal state. In fact, in the proper thermal state there is

a nonzero Debye mass, but as it was shown in [22], this
mass is actually equal to zero due to the properties of the
BD vacua and the de Sitter isometry.
Consider now a generalization of the above equation to a

generic temperature β:

GWβðx; yjtÞ ¼ 2
X
n

Z
dτ

ImGBDðx; yjτÞ
t − τ þ inβ − iϵ

: ð5:23Þ

For the case βq ¼ 2π
q one can split this expression in

two sums

GWβqðx; yjtÞ ¼ 2
X
n

Xq−1
m¼0

Z
dτ

ImGBDðx; yjτÞ
t − τ þ 2πniþ 2πm

q i − iϵ
¼

Xq−1
m¼0

GBD

�
x; yjτ þ 2πm

q
i

�
: ð5:24Þ

Then, there is an interesting case of q ¼ 2, β ¼ π. In this case the propagator is

GWβ2ðx; yjtÞ ¼
π

coshπμ
P−1

2
þiμ

�
−
coshðt1 − t2Þ þ sinhx1 sinhx2

coshx1 coshx2

�
þ π

coshπμ
P−1

2
þiμ

�
−
− coshðt1 − t2Þ þ sinhx1 sinhx2

coshx1 coshx2

�
;

ð5:25Þ

the second term brings additional singularities on the
horizon. It would be interesting to study the possible
consequences or effects of these singularities.

VI. CONCLUDING REMARKS

We give here a heuristic argument to explain why time
ordered propagator does not have an imaginary part at the
coincidence limit in odd dimensions.7

It is possible to convert the effective action considered in
the Introduction into a quantum mechanical path integral:

iSeff ¼ log

�Z
d½φ�ei

R
ddxL

�

¼
Z

∞

0

dT
T

Z
xð0Þ¼xðTÞ

d½x�ei
R

T

0
dtð_x2

4
þm2Þ:

To evaluate the last integral we may invoke the semi-
classical approximation and obtain that

iSeff ¼
Z

∞

0

dT
T

eiSext

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

detðΔÞ

s
;

7E. T. A. would like to thank N. Nekrasov for communicating
this argument, which he has learned from A. Polyakov. At least
that is what E. T. A. remembers from the discussion of this issue
with Nekrasov in 2011.
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where Sext is the extremal action for the particle in the
background under consideration and Δ is the operator
describing fluctuations around the extremum.
Usually one calculates the above integral by a Wick

rotation to the Euclidean signature. The Euclidean manifold
of the complex de Sitter spacetime is a sphere and the
geodesics are the maximal circles. This provides the
required Sext which is an extremum rather than a minimum.
In fact, on the D–dimensional sphere there are (D − 1)
directions along which maximal circles can shrink. Thus,
there are (D − 1) negative eigenvalues and the effective
action contains the contribution

detðΔÞ−1
2 ∼ ð−1ÞD−1

2 :

Consequently in even dimension Im ðSeffÞ ≠ 0; on the
contrary, in odd dimension there is an even number of
negative eigenvalues which results in a real value for the
effective action.
In all, there is no imaginary contribution to the effective

action in odd–dimensional de Sitter space, but this does
not mean that there is no particle production in odd–
dimensional de Sitter space [23]; the Hamiltonian is time
dependent and cannot be diagonalized once and forever.
As a consequence, in general the notion of particle can be
missing, or at best becomes ambiguous.
The main point of this paper is however that the in-out

formalism provides only a hint that there is something
interesting going on. This is well known from the proto-
typical case of a time-dependent electric field in flat space,
where the particle number at intermediate times generally
depends on the choice of a basis of reference states
associated with a particular truncation of the adiabatic
expansion [24] (see also [25,26]). Moreover, as is explained
in [27] the infrared loop divergences do not cancel out
in the background fields, unlike the usual case in flat
space field theory in Feynman technique. In nonstationary

quantum field theory to calculate loop integrals one has
to apply the Schwinger–Keldysh formalism rather than
the Feynman in-out technique (see [28] for a review) and
calculate stress–energy fluxes rather than transition ampli-
tudes. In such a situation one has to set up an initial
state and consider its destiny under the full interacting
Hamiltonian evolution. Although the notion of particle is
missing, still the flux may be nontrivial. In fact, it happens
that loop correction to the correlation functions are growing
with time [23,28–30] and are not suppressed in comparison
with tree-level contributions to the stress-energy flux.
Moreover, in some situations loop corrections violate the
de Sitter isometry and generate nontrivial fluxes [23,30].
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APPENDIX

This calculation is applicable only for even dimensions.
Here and below if we write a product of two Legendre
functions [for example:PðxÞQðyÞ] we assume that this
product is ordered: x > y. To simplify equations below
we use such notations as in (4.19). We need the following
three equations which were used e.g., in [31]:

ðcosh t2 cosh t1Þ−D−1
2

ðD − 2ÞjΩD−1j
X
j

ð2jþD − 2ÞP−iμ
jþD−3

2

ðt̃2ÞQiμ
jþD−3

2

ðt̃1ÞC
D−2
2

j ðx⃗ y⃗Þ

¼ ð−1ÞD−2
2

2ð2πÞD2 ½ðZ
2þ − 1Þ−D−2

4 Q
D−2
2

iμ−1
2

ð−ZþÞ þ ðZ2
− − 1Þ−D−2

4 Q
D−2
2

iμ−1
2

ð−Z−Þ�

¼ ð−1ÞD−2
2

2ð2πÞD2 ½S
D−2
2

iμ−1
2

ðZþÞ þ S
D−2
2

iμ−1
2

ðZ−Þ�; ðA1Þ

ðcosh t2 cosh t1Þ−D−1
2

ðD − 2ÞjΩD−1j
X
j

ð2jþD − 2ÞΓðjþ
D−3
2

þ iμþ 1Þ
Γðjþ D−3

2
− iμþ 1Þ P

−iμ
jþD−3

2

ðt̃2ÞQ−iμ
jþD−3

2

ðt̃1ÞC
D−2
2

j ðx⃗ y⃗Þ

¼ ð−1ÞD−2
2

2ð2πÞD2
h
eπμðZ2þ − 1Þ−D−2

4 Q
D−2
2

iμ−1
2

ð−ZþÞ þ e−πμðZ2
− − 1Þ−D−2

4 Q
D−2
2

iμ−1
2

ð−Z−Þ
i

¼ ð−1ÞD−2
2

2ð2πÞD2
h
eπμS

D−2
2

iμ−1
2

ðZþÞ þ e−πμS
D−2
2

iμ−1
2

ðZ−Þ
i

ðA2Þ
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and

ðcosh t2 cosh t1Þ−D−1
2

ðD − 2ÞjΩD−1j
X
j

ð2jþD − 2ÞQ−iμ
jþD−3

2

ðt̃2ÞQiμ
jþD−3

2

ðt̃1ÞC
D−2
2

j ðx⃗ y⃗Þ

¼ −
iπ
2

ð−1ÞD−2
2

2ð2πÞD2
�
ðZ2þ − 1Þ−D−2

4 Q
D−2
2

iμ−1
2

ð−ZþÞ − ðZ2
− − 1Þ−D−2

4 Q
D−2
2

iμ−1
2

ð−Z−Þ

−
π

cosh πμ

�
ðZ2þ − 1Þ−D−2

4 P
D−2
2

iμ−1
2

ðZþÞ − ðZ2
− − 1Þ−D−2

4 P
D−2
2

iμ−1
2

ðZ−Þ
��

¼ −
iπ
2

ð−1ÞD−2
2

2ð2πÞD2
�
S

D−2
2

iμ−1
2

ðZþÞ − S
D−2
2

iμ−1
2

ðZ−Þ −
π

cosh πμ

�
F

D−2
2

iμ−1
2

ðZþÞ − F
D−2
2

iμ−1
2

ðZ−Þ
��

: ðA3Þ

Where we use Z�, which is defined in (4.18). To compute (4.15) we need to perform four summations over j. According
to [31]:

Piμ
ν ðxÞ ¼ Γðνþ iμþ 1Þ

Γðν − iμþ 1Þ
�
cosh πμP−iμ

ν ðxÞ þ 2i
π
sinh πμQ−iμ

ν

�
; ðA4Þ

Q−iμ
ν ðxÞ ¼ Γðνþ iμþ 1Þ

Γðν − iμþ 1Þ
�
−
πi
2
sinh πμP−iμ

ν ðxÞ þ cosh πμQ−iμ
ν

�
: ðA5Þ

One can transform sums in (4.15) into (A1), (A2) and (A3). We denote sums as follows:

PþQ− ¼ ðcosh t2 cosh t1Þ−D−1
2

ðD − 2ÞjΩD−1j
X
j

ð2jþD − 2ÞP−iμ
jþD−3

2

ðt̃2ÞQiμ
jþD−3

2

ðt̃1ÞC
D−2
2

j ðx⃗ y⃗Þ:

And the results of transformations are as follows:

PþP− ¼ −
2

π

i
sinh μπ

ðA2Þ þ 2i cosh μπ
π sinh μπ

ðA1Þ;

and

QþP− ¼ −
1

sinh2μπ
ðA1Þ� þ cosh μπ

sinh2μπ
ðA2Þ þ 2i cosh μπ

π sinh μπ
ðA3Þ:

Where (A1), (A2) and (A3) mean the expressions from the corresponding equations.
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