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We show that there is a manifestly covariant version of the Pauli Hamiltonian with equations of motion
quadratic on spin and field strength. Relativistic covariance inevitably leads to noncommutative positions:
classical brackets of the position variables are proportional to the spin. It is the spin-induced non-
commutativity that is responsible for transforming the covariant Hamiltonian into the Pauli Hamiltonian,
without any appeal to the Thomas precession formula. The Pauli theory can be thought to be 1=c2

approximation of the covariant theory written in special variables. These observations clarify the long
standing question on the discrepancy between the covariant and Pauli Hamiltonians. We also discuss the
transformational properties of the spin axis in the passage from the laboratory to comoving and
instantaneous frames, and reveal the role of the Thomas spin vector in the covariant scheme.
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I. INTRODUCTION: RELATIVISTIC SPINNING
ELECTRON AND THE PROBLEM OF

COVARIANT FORMALISM

Classical models of relativistic spin represent a working
tool used to describe the behavior of elementary particles
and rotating bodies in electromagnetic and gravitational
fields. One obscure point of this approach, which has been
raised for discussion already in the pioneer works [1–4] and
remains under debate to this day, is the so-called problem of
covariant formalism. Clarification of this issue could be of
interest in various areas, including muon and electron g − 2
experiments [5–7], the influence of spin on the trajectory of a
rotating body in general relativity [8–13], and black hole
physics near horizon [8,14–16]. In the textbooks and
reviews, it has become almost a tradition to discuss the
problem without formulating it in an exact form.1 Let us try
to break this tradition.
Historically, the notion of a classical spinning electron

[1–4] has been developed in attempts to explain the energy
levels of atomic spectra. Following the ideas of Uhlenbeck
and Goudsmit [1], Thomas accepted that a spinning particle
can be described using its position vector xðtÞ, and the
vector of the spin axis STðtÞ attached to the particle. The
position vector obeys the Lorentz-force equation

mẍ ¼ eEþ e
c
½ _x;B�; ð1Þ

while the rate of variation of spin was initially assumed
to be

dST

dt
¼ −

e
mc

�
½B;ST � −

1

2mc
½½p;E�;ST �

�
: ð2Þ

We use the notation [A;B] and (A;B) for the vector and
scalar products of three-dimensional vectors. The quantity
ST will be called the Thomas spin vector. Here E ¼
αx=jxj3 is Coulomb electric field and B is a constant
magnetic field. Thomas showed [2] that these equations,
together with the Bohr quantization rule of angular
momentum, give a satisfactory description of atomic
energy levels. A more systematic calculation of the energies
was achieved in quantum mechanics constructed on the
base of these equations. Pauli noticed [20] that Eqs. (1) and
(2) follow from the Hamiltonian

H ¼ 1

2m

�
p −

e
c
A

�
2

þ eA0

−
e
mc

�
ðST;BÞ þ

1

2mc
ðST; ½E;p�Þ

�
; ð3Þ

with use of canonical brackets (we show the nonvanishing
brackets)

fxi; pjg ¼ δij; fSiT; SjTg ¼ ϵijkSkT: ð4Þ

So, in the Pauli formalism it is assumed that (2) repre-
sents the equation of motion of spin in the laboratory
system. Having at hand the Hamiltonian formulation, Pauli
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constructed the quantum mechanics of the spinning elec-
tron by replacing the classical variables zA ≡ ðxi; pk; SjTÞ
by operators that, according to the Dirac quantization rule,
must obey the commutators resembling the classical
brackets

½ẑA; ẑB� ¼ iℏfzA; zBgjz→ẑ: ð5Þ

The operators are p̂i ¼ −iℏ∂i; x̂i ¼ xi; Ŝi ¼ ℏ
2
σi, where σi

are 2 × 2 matrices of Pauli. The operators act on the space
of two-component wave functions Ψaðt;xÞ, a ¼ 1, 2.
Replacing classical variables in Eq. (3) by the operators,
he obtained the quantum Hamiltonian and showed that the
resulting quantum mechanics reproduces the atomic energy
levels [20]. The Hamiltonian (3) can also be obtained from
the Dirac equation [21,22].
Difficulties arose when trying to develop the manifestly

covariant relativistic generalization of the classical theory
(1)–(3). Numerous attempts (see the pioneer works
[2–4,23,24] and the reviews [8,25]) lead to equations of
spin and to Hamiltonians that in 1=c2 approximation differ
from those of Pauli theory. For instance, assuming that
three-dimensional spin is a spatial part of a manifestly
covariant four-dimensional spin tensor of Frenkel [3,4], the
covariant theory implies the following expressions (for the
details, see below):

dS
dt

¼ −
e
mc

�
½B;S� þ 1

mc
½E; ½p;S��

�
; ð6Þ

Hph ¼
1

2m

�
p −

e
c
A

�
2

þ eA0

−
e
mc

�
ðS;BÞ þ 1

mc
ðS; ½E;p�Þ

�
: ð7Þ

We call the quantity S the Frenkel spin vector. The
Hamiltonians (3) and (7) differ by the famous 1=2 factor
in front of the last term, whereas the last terms in the
equations of spin differ in a structure. The question, why a
covariant formalism does not lead directly to the expected
result, was raised already [2–4] and remain under dis-
cussion to date; see the review [8].
In attempts to explain the discrepancy, Thomas com-

pared the variation rates of the spin axis in comoving and
instantaneous frames. The resulting relation is the famous
formula of Thomas precession. It should be noted that the
Thomas formula itself is the object of numerous debates.
A detailed analysis of controversial works on the subject
can be found in [26–28]. In particular, it is widely believed
[5,17–19,27] that Thomas precession is relevant to the
problem of covariant formalism. In this regard, we note that
the Thomas formula relates quantities of different coor-
dinate systems, while Eqs. (1)–(3), (6), (7) are taken in the
same (laboratory) system.

The aim of this work is to clarify these issues. We present
a manifestly covariant formulation of a spinning particle,
that in 1=c2 approximation implies the quantum mechanics
of Pauli without any appeal to the Thomas precession
formula. Then we make a detailed comparison of Thomas
and Frenkel spin vectors.
The work is organized as follows. In Sec. II we start from

the covariant formalism of a spinless particle and, assuming
that spin in a relativistic theory can be described by the
Frenkel spin tensor, we write the expected expressions for
manifestly covariant and physical Hamiltonians of a spin-
ning particle. In Sec. III we fix the brackets that guarantee
the consistency of Hamiltonian equations with the supple-
mentary condition on the Frenkel spin tensor. In particular,
we show that the position variables turn out to be non-
commuting in the covariant scheme. In Sec. IV we show
how this spin-induced noncommutativity of positions
solves the problem of covariant formalism. The calcula-
tions in these sections are valid in 1=c2 approximation. In
Sec. V we construct the fully covariant brackets and show
that there exists the manifestly covariant version of Pauli
theory with the equations of motion no more than quadratic
on spin and field strength. In Sec. VI we return back to the
discussion of covariant theory in 1=c2 approximation and
reveal the meaning of the Thomas spin in the covariant
scheme.

II. MANIFESTLY COVARIANT AND
PHYSICAL-TIME HAMILTONIANS

Here we review the known formalism of a spinless
particle [29] and then discuss the most natural way to
include spin in the covariant scheme. To work with
manifestly covariant expressions, we describe the trajectory
of the particle in a parametric form: xðtÞ → xμðτÞ ¼
ðctðτÞ;xðτÞ≡ xðtðτÞÞ. As the parameter τ we take the
proper time

τðtÞ ¼
Z

t

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

q
; then

dx0ðτÞ
dτ

				
τðtÞ

¼ cγ;

dxðτÞ
dτ

				
τðtÞ

¼ γ
dxðtÞ
dt

; ð8Þ

where vðtÞ ¼ dx
dt , γ ¼ ð1 − v2=c2Þ−1

2, and by construction of
the proper time, tangent vector uμ ≡ dxμðτÞ=dτ to the curve
xμðτÞ has a fixed length at any instant, ðuμÞ2 ¼ −c2. In
accordance with Eq. (8), the four- and three-dimensional
vectors of velocity are related as follows: ðu0;uÞjτðtÞ ¼
ðcγ; γvÞ. This is a covariant expression, so the last equation
from (8) can be used to restore vðtÞ from uðτÞ in any
inertial frame.
In the Hamiltonian formulation, to each variable xμðτÞ

of configuration space we associate the function pμðτÞ
called the conjugated momentum. The manifestly covariant
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Hamiltonian of a spinless particle in the electromagnetic
field with four-potential Aμ is

H ¼ 1

2m

�
ðpμ −

e
c
AμÞ2 þ ðmcÞ2

�
: ð9Þ

It is accompanied with the covariant Poisson brackets
fxμ; pνg ¼ δμν, fxμ; xνg ¼ fpμ; pνg ¼ 0. For the canoni-
cal momentum Pμ ≡ pμ − e

c A
μ, the brackets imply

fPμ;Pνg ¼ e
c F

μν. From the requirement of gauge invari-
ance of the Hamiltonian it follows that the conjugated
momentum pμ is not invariant under the Uð1Þ-gauge
transformations

Aμ ¼ A0
μ þ ∂μλ; implies; pμ ¼ p0

μ þ
e
c
∂μλ: ð10Þ

In contrast, Pμ is an invariant object, and we expect that
the Hamiltonian equations can be presented in terms of
this quantity. Computing _xμ ¼ fxμ; Hg, _pμ ¼ fpμ; Hg, the
equations can be written in the form

m
dxμ

dτ
¼ Pμ;

dPμ

dτ
¼ e

mc
FμνPν: ð11Þ

Computing the square of the first equation from (11), we
obtain the mass-shell relation P2 þ ðmcÞ2 ¼ 0, or

cp0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmcÞ2 þP2

q
þ eA0: ð12Þ

Since xμðτÞ and pμðτÞ represent the physical dynamical
variables xðtÞ and pðtÞ in a parametric form, we can write
dx
dt ¼ c dx=dτ

dx0=dτ,
dP
dt ¼ c dP=dτ

dx0=dτ, and with use of (11) and (12)

we obtain dx
dt ¼ cP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmcÞ2 þP2

p
, dP

dt ¼ eEþ e½P;B�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmcÞ2 þP2

p
. Expanding them in series over 1=c and

keeping only the terms of order 1=c, we obtain the well-
known equations2

m
dx
dt

¼ P;
dP
dt

¼ eEþ e
mc

½p;B�: ð13Þ

The first equation shows that canonical momentum P
represents the velocity of the particle in the Hamiltonian
formulation. Excluding the conjugated momentum p from
these equations, we arrive at the Lorentz-force equation (1).
Equation (13) can also be obtained from the Hamiltonian

(9), presented in terms of the physical variables xðtÞ and
pðtÞ. While, in general, the reparametrization-invariant
theory with Dirac constraints requires some caution
[30–36], the final result is very simple [37]: the physical

Hamiltonian coincides with the right-hand side of Eq. (12).
Its expansion in series up to order 1=c2 gives the physical
Hamiltonian

Hph ¼ cp0 ≈mc2 þ 1

2m

�
p −

e
c
A

�
2

þ eA0: ð14Þ

As it should be, this coincides with the spinless part of the
Pauli Hamiltonian (3).
Concerning the spin, we introduce the vector function

SðtÞ and take it in the proper-time parametrization, defining
SðτÞ≡ SðtðτÞÞ. Following Frenkel [3], we identify the
components SiðτÞ of three-dimensional spin with the spatial
part of the four-dimensional antisymmetric spin-tensor
Sμν ¼ −Sνμ

Si ¼ 1

4
ϵijkSjk; then Sij ¼ 2ϵijkSk: ð15Þ

We assume that the Frenkel spin Si can be identified with
the spin axis in the laboratory frame. We assume that at
each instant of motion, Sμν obeys the covariant condition3

SμνPν ¼ 0; then S0i ¼ 1

P0

SijPj≈−
2

mc
½p;S�iþOð1=c2Þ:

ð16Þ

As a consequence, the number of independent components
of spin in relativistic and Pauli theories is the same. In the
rest frame of the particle, where P ¼ 0, the extra compo-
nents just vanish, S0i ¼ 0. Our basic variables zA ≡
ðxμ; pν; SμνÞ transform linearly under the Lorentz trans-
formations: xμ ¼ Λμ

νxν, pμ ¼ Λμ
νpν, Sμν ¼ Λμ

αΛν
βSαβ.

In trying to include spin into the covariant Hamiltonian,
we note that the only scalar function containing the
desired spin-field interaction is − e

2cFμνSμν ¼ − 2e
c ½ðS;BÞ þ

1
mc ðS; ½E;P�Þ�. Adding this term to Eq. (9), we obtain

H ¼ 1

2m

��
pμ −

e
c
Aμ

�
2

−
eμ
2c

FμνSμν þ ðmcÞ2
�
: ð17Þ

We added the interaction of spin with the electromagnetic
field through the magnetic moment μ that corresponds to
the gyromagnetic ratio g ¼ 2μ. In Secs. III, IV, and VI we
will put the classical value of μ: μ ¼ 1. Comparing (17)
with Eqs. (9) and (14), the expected expression for the
physical Hamiltonian in 1=c2 approximation is

2For the electromagnetic field we use the notation: Fμν ¼∂μAν − ∂νAμ ¼ ðF0i ¼ −Ei;Fij ¼ ϵijkBkÞ, Ei ¼ − 1
c ∂tAi þ ∂iA0,

Bi ¼ 1
2
ϵijkFjk ¼ ϵijk∂jAk.

3We could equally use Sμνpν ¼ 0 with the conjugated mo-
mentum pν instead of Pν. The difference between them is of
order 1=c, and does not contribute into subsequent expressions in
the 1=c2 approximation.
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Hph ¼ mc2 þ 1

2m

�
p −

e
c
A

�
2

þ eA0

−
e
mc

�
ðS;BÞ þ 1

mc
ðS; ½E;p�Þ

�
: ð18Þ

We confirm the validity of this expression in Sec. V.

III. NONCANONICAL BRACKETS

To obtain equations of motion, the Hamiltonian (17)
should be accompanied with some brackets. The spin
supplementary condition (16) should be consistent with
the resulting equations of motion. This leads us to the
observation that will be crucial for our explanation of the
1=2 factor: manifestly covariant formalism inevitably leads
to relativistic corrections of order 1=c2 to the canonical
brackets (4).
The condition (16) implies d

dτ ðSμνPνÞ ¼ 0. In the
Hamiltonian formalism, the variation rate of a phase-space
function is equal to the bracket of this function with the
Hamiltonian, so we can write d

dτ ðSμνPνÞ ¼ fSμνPν; Hg ¼
fSμνPν; zAg ∂H

∂zA ¼ 0. The latter equality certainly holds if4

fzA; SμνPνg ¼ 0: ð19Þ

It is this equation that requires a modification of canonical
brackets. For zA ¼ xα, Eq. (19) implies fxα; SμνPνg ¼
Sμνfxα;Pνg þ fxα; SμνgPν ¼ 0. This equality holds, if
we take

fxα; Sμνg ¼ PμSνβ − PνSμβ

P2
fxα;Pβg: ð20Þ

In turn, if the bracket fxα;Pβg¼fxα;pβg− e
cfxα;xγg∂γAβ

remains unmodified at the order 1=c2, that is fxα;Pβg ¼
δαβ þOð1=c3Þ, Eq. (20) implies the following modifica-
tion of the canonical bracket fxi; Sjg:

fxi; Sjg ¼ piSj − δijðp;SÞ
ðmcÞ2 ; ð21Þ

at 1=c2 order. For the spin tensor we impose

fSαβ; Sμνg ¼ 2NðαμSβνÞ

≡ 2ðNαμSβν − NανSβμ − NβμSαν þ NβνSαμÞ;
ð22Þ

where N is the projector on the plane orthogonal to Pμ:
Nμν ¼ ημν − PμPν

P2 , then NμνPν ¼ 0. The bracket ensures the

validity of Eq. (19) for zA ¼ Sαβ. For the spatial compo-
nents, Eq. (22) gives

fSi; Sjg ¼ ϵijk
�
Sk þ pkðp;SÞ

ðmcÞ2
�
; ð23Þ

instead of canonical bracket (4). The Jacobi identity
fxi;fxj; Skggþfxj;fSk; xiggþfSk;fxi; xjgg¼0þOð1=c4Þ
with use of (21) requires the following modification
of the position-position bracket: fxi; xjg ¼ 1

ðmcÞ2 ϵ
ijkSk.

The examination of Eq. (19) for zA ¼ pμ does not imply
1=c2 corrections to the canonical brackets of pi with xj and
Sk. So, in 1=c2 approximation, the expected nonvanishing
brackets of the covariant formalism are

fxi; xjg ¼ 1

ðmcÞ2 ϵ
ijkSk; ð24Þ

fxi; pjg ¼ δij; ð25Þ

fxi; Sjg ¼ piSj − δijðp;SÞ
ðmcÞ2 ; ð26Þ

fSi; Sjg ¼ ϵijk
�
Sk þ pkðp;SÞ

ðmcÞ2
�
: ð27Þ

We point out that they coincide with 1=c2 approximation of
Dirac brackets arising in the vector model of spin [37,38].
Together with the Hamiltonian (18), the brackets (24)–(27)
imply the Frenkel equations (6) and (13).

IV. THE COVARIANT AND PAULI
FORMULATIONS DETERMINE

THE SAME CLASSICAL
AND QUANTUM THEORY

Both Hph written in Eq. (18) and the brackets (24)–(27)
of the covariant theory differ from those of Pauli
theory. Nevertheless, they lead to the same quantum
mechanics. Indeed, we can realize our variables by
Hermitian operators

p̂i ¼ −iℏ∂i; x̂i ¼ xi −
ℏ

4ðmcÞ2 ϵ
ijkp̂jσk;

Si ¼ ℏ
2

�
σi −

p̂iðp̂; σÞ
2ðmcÞ2 þ p̂2σi

2ðmcÞ2
�

≡ ℏ
2

�
σi þ 1

2ðmcÞ2 ½p̂; ½σ; p̂�
i

�
: ð28Þ

Their commutators are in correspondence with the classical
brackets (24)–(27), as it should be in accordance with
Eq. (5). We substitute the operators into the Hamiltonian
(18), and expand the resulting expression in a series over

4When this equality is satisfied, we can make the substitution
(16) before computing the brackets: fKðzÞ; NðzÞgjS0i¼ 1

P0
SijPj

¼
fKðzÞj; NðzÞjg.
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1=c up to 1=c2 order. In this approximation we have
− e

cAðx̂iÞ ¼ − e
cAðxiÞ þOð1=c3Þ, while5

eA0ðx̂iÞ ¼ eA0ðxiÞ þ e
2ðmcÞ2 ðŜ; ½E; p̂�Þ: ð29Þ

The last term in this expression has the same structure as the
fourth term in (18), so their sum acquires the desired 1=2
factor. In the result, the quantum Hamiltonian of the
covariant formulation coincides with the Pauli Hamiltonian

Ĥph ¼ mc2 þ 1

2m

�
p̂ −

e
c
AðxiÞ

�
2

þ eA0ðxiÞ

−
e
mc

�
ðŜ;BÞ þ 1

2mc
ðŜ; ½E; p̂�Þ

�
: ð30Þ

This solves the problem of covariant formalism.
We also can ask on the relation between covariant and

Pauli formulations considered as the classical theories.
Starting from the covariant formulation (18), (24)–(27), we
look for the phase-space variables that obey the canonical
brackets. They are

pi
c ¼ pi; xic ¼ xi þ 1

2ðmcÞ2 ϵ
ijkpjSk; ð31Þ

SiT ¼ Si þ piðp;SÞ
2ðmcÞ2 −

p2Si

2ðmcÞ2 ≡ Si þ 1

2ðmcÞ2 ½p; ½p;S��
i:

ð32Þ

The Hamiltonian (18), in terms of these variables, turns
into the Hamiltonian of the Pauli theory. So, at the classical
level, the covariant and Pauli formulations are related by
the (noncanonical) transformation (31), (32) of the phase
space, and hence describe the same theory.6 In particular,
the vector ST defined by (32) should obey the Thomas
equation (2). It is instructive to show this by direct
computation. Using dp

dt ¼ eEþOð1=cÞ, the Frenkel equa-
tion (6) can be rewritten as follows:

d
dτ

�
Si þ 1

2ðmcÞ2 ½p; ½p;S��
i

�

¼ −
e
mc

�
½B;S� − 1

2mc
½½p;E; �S�

�
: ð33Þ

Using the definition (32) on the lhs, and replacing S ¼
ST þOð1=c2Þ on the rhs, we obtain the Thomas equation.
A similar situation arises for a rotating body in general

relativity. Here equations of motion for spin can be deduced
either from the analysis of Einstein equations in multipole
formalism [39], or in a geometric setting, assuming the
Fermi-Walker transport of the spin vector [40]. The two
spins turn out to be different, and related by the gravita-
tional analogy of Eq. (32); compare Eq. (193) in [41] with
our (33).

V. MANIFESTLY COVARIANT VERSION
OF THE PAULI THEORY

As we saw above, in 1=c2 approximation the expression
(17) leads to the Pauli theory and hence may be taken
as the Hamiltonian of its manifestly covariant version.
The Hamiltonian should be accompanied by the Poincare-
covariant generalization of the brackets (24)–(27). Besides,
the brackets should lead to Uð1Þ-invariant equations of
motion, so they must be invariant under the gauge trans-
formation (10). The canonical brackets fxμ; pνg ¼ δμν,
fpμ; pνg ¼ fpμ; Sαβg ¼ 0 are not invariant, and should
be properly modified. For instance, if we substitute (10)
into the bracket fxμ; pνg ¼ δμν, we obtain fxμ; p0

νg ¼
δμν þ e

2cP2 Sμα∂α∂νλ, instead of fxμ; p0
νg ¼ δμν, where the

extra contribution is due to the relativistic generalization
(34) of Eq. (24).
We propose the following set of Poincare-covariant and

Uð1Þ-invariant brackets

fxμ; xνg ¼ −
1

2P2
Sμν; ð34Þ

fxμ; pνg ¼ δμν −
e

2cP2
Sμα∂αAν; ð35Þ

fxα; Sμνg ¼ 1

P2
P½μSν�α; ð36Þ

fpα; Sμνg ¼ e
cP2

P½μSν�β∂αAβ; ð37Þ

fpμ; pνg ¼ −
e2

2c2P2
Sαβ∂αAμ∂βAν; ð38Þ

fSαβ; Sμνg ¼ 2NðαμSβνÞ þ e
cðP2Þ2 P

½αðSFSÞβ�½μPν�: ð39Þ

For the canonical momenta Pμ ¼ pμ − e
c Aμ they imply

fxμ;Pνg ¼ δμν; fPμ;Pνg ¼ e
c
Fμν;

fSμν;Pαg ¼ e
cP2

P½μSν�βFβα: ð40Þ

Computing _zA ¼ fzA;Hg, we obtain the Hamiltonian
equations

5Assuming the symmetric ordering of operators, we obtain the
Hermitian operator eA0ðxiÞþ e

2ðmcÞ2 ðŜ; ½E;p̂�Þ− iℏe
4ðmcÞ2 ðŜ; rotEÞ.

For the central field rotE ¼ 0, and the last term vanishes.
6Note that ST does not coincide with the spatial part of the

Pauli-Lubanski four-vector SμPL ¼ 1

4
ffiffiffiffiffiffiffi
−P2

p ϵμναβPνSαβ. Its spatial

components SiPL ¼ Si þ 1
ðmcÞ2 p

iðp;SÞ − 1
2ðmcÞ2 p

2Si are different
from (32).
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_xμ ¼ 1

m
Pμ −

eμ
2mcP2

ðSFPÞμ þ eμ
8mcP2

Sμα∂αðFSÞ; ð41Þ

_Pμ¼ e
mc

FμνPν−
e2μ

2mc2P2
ðFSFPÞμþ eμ

4mc
∂μðFSÞ; ð42Þ

_Sμν ¼ eμ
mc

Fμ
αSαν þ

eð1 − μÞ
mcP2

PμðSFPÞν þ eμ
4mcP2

PμSνα∂αðFSÞ −
e2μ

2mc2ðP2Þ2 P
μðSFSFPÞν − ðμ ↔ νÞ

≡ eμ
mc

Fμ
αSαν þ 2Pμ

�
_xν þ e

2mcP2
ðSFPÞν − e2μ

4mc2ðP2Þ2 ðSFSFPÞ
ν

�
− ðμ ↔ νÞ: ð43Þ

Together with the algebraic equations SμνPν ¼ 0, H ¼ 0,
they give a manifestly Poincare-covariant version of
the Pauli theory for an arbitrary value of the magnetic
moment μ. The brackets (34)–(39) obey the condition (19),
so the spin supplementary condition SμνPν ¼ 0 is consis-
tent with the dynamical equations (41)–(43). The mass-
shell condition H ¼ 0 is consistent by construction:
_H ¼ fH;Hg ¼ 0.
The Hamiltonian (17), being a linear function of spin and

electromagnetic field strength, nevertheless gives the non-
linear equations of motion. This is due to the fact that an
essential part of interaction turns out to be encoded in
noncommutative brackets (34)–(40).
In 1=c2 approximation our equations imply Eqs. (6) and

(13). As we saw above, they also represent the equations of
motion of the Hamiltonian theory (18). This proves that
(18) is the physical-time Hamiltonian of the covariant
theory (17) in 1=c2 approximation.
Equation (41) in 1=c3 approximation implies the follow-

ing expression for canonical momentum: Pμ ¼ m_xμ −
eμ

2mc3 ðSF _xÞμ þ eμ
8m2c3 S

μα∂αðFSÞ. This can be used to exclude
Pμ from Eqs. (42) and (43), again in 1=c3 approximation.
Keeping only the linear function on Fμν-terms (the approxi-
mation studied by Frenkel [3]), the resulting equations
coincide with those of Frenkel

d
dτ

��
m −

e
4mc3

ðSFÞ
�
_xμ þ e

8m2c3
Sμα∂αðFSÞ

�

¼ e
c
ðF _xÞμ þ e

4mc
∂μðFSÞ; ð44Þ

_Sμν ¼ e
mc

�
F½μ

αSαν� −
1

4mc2
_x½μSν�α∂αðFSÞ

�
; Sμν _xν ¼ 0:

ð45Þ

By the way, we showed that the approximately covariant
Frenkel equations can be made covariant by adding the
terms that are no more than quadratic in spin and field
strength.

VI. THE ROLE OF THOMAS SPIN VECTOR IN
THE COVARIANT SCHEME

In this section we return back to the analysis of covariant
theory in 1=c2 approximation. We assume that the vector
Si ¼ 1

4
ϵijkSjk describes the spin axis in the laboratory

system. Equations (41)–(43) at 1=c2 order reduce to the
Frenkel equations (6) and (13). As we saw in Sec. IV, they
give the Pauli quantum mechanics without any appeal to
the Thomas vector or to the Thomas precession formula. To
understand the role of the Thomas vector in the covariant
formalism, we examine the transformational properties of
the Frenkel spin in the passage from the laboratory to the
comoving and instantaneous frames.
The comoving observer is a noninertial system in which

the particle is always in its center. For the four-dimensional
vector and tensor fields given along the particle trajectory,
the transformation from laboratory to comoving frame is
determined [17,42] by the matrix

Λμ
νðvðτÞÞ ¼

�
Λ0

0 ¼ γ;Λ0
i ¼ Λi

0 ¼ −
γ

c
vi;

Λi
j ¼ δij þ

γ − 1

v2
vivj

�
; ð46Þ

where the functions viðτÞ ¼ dxiðtÞ
dt jtðτÞ represent the velocity

of the particle. Using Eq. (11), it is convenient to write the

velocity through the momenta, vðτÞ¼c P
P0¼ pðτÞ

m þOð1=cÞ.
Using the transformation law of the Frenkel spin tensor
S00μνðτÞ ¼ Λμ

αΛν
βSαβðτÞ and Eq. (16), we obtain for spatial

components

S0ij ¼ 2ϵijk
�
Sk þ

�
γ

ðP0Þ2 −
γ − 1

ðPÞ2
�
½P; ½P;S��k

�
: ð47Þ

We assume that the functions S0icomov ¼ 1
4
ϵijkS0jk describe

the position of the spin axis in the comoving frame.
At the order 1=c2, Eq. (47) implies the following trans-
formation law:
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S0
comov ¼ Sþ 1

2ðmcÞ2 ½p; ½p;S��: ð48Þ

Comparing this with the definition of the Thomas spin (32),
we see that accidentally, the Thomas vector represents the
spin axis in the comoving frame

ST ¼ S0
comov: ð49Þ

This clarifies the meaning of the Thomas vector in the
covariant theory: using the laboratory values S and p, the
laboratory observer can compute the vector ST according to
Eq. (32), thus obtaining the magnitude and direction of the
spin axis as it measured in the comoving frame. From the
equality (49) we expect that the Thomas equation (2)
describes the evolution of the spin axis in the comoving
frame. This can be confirmed by direct calculations.
A derivative of Eq. (48) gives us the variation rate of
the spin axis in the comoving frame through the laboratory
quantities as follows7:

dS0
comov

dτ
¼ dS

dτ
−

1

2ðmcÞ2
��

p;
dp
dt

�
;S

�

þ 1

ðmcÞ2
�
p;

�
dp
dt

;S

��
: ð50Þ

Using Eqs. (6) and (11), we obtain the equality

dS0
comov

dτ
¼ −

e
mc

�
½B;S� − 1

2mc
½½p;E�;S�

�
: ð51Þ

If the dynamics of laboratory quantities pðτÞ and SðτÞ is
known, Eq. (51) acquires the form dS0

comov=dτ ¼ fðτÞ, with
known function fðτÞ. Solving this equation, the laboratory
observer will obtain the dynamics of the spin axis as it seen
by the comoving observer. On the rhs we can replace S on
S0
comov þOð1=c2Þ, thus obtaining the equation

dS0
comov

dτ
¼ −

e
mc

�
½B;S0

comov� −
1

2mc
½½p;E�;S0

comov�
�
:

ð52Þ

If the laboratory quantities B, E, and pðτÞ are known, the
laboratory observer can solve it for S0

comovðτÞ.
Equation (52) just coincides with the Thomas equa-

tion (2). This explains the meaning of the Thomas equa-
tion in the covariant theory: solving Eq. (2) with use of
laboratory quantities, the laboratory observer will obtain
the functions SiTðτÞ that describe the evolution of the spin

axis as seen by the comoving observer. We stress, once
again, that this interpretation is valid only in 1=c2

approximation.
For an electromagnetic field in the comoving system we

can write [17]

E ¼ E0 −
1

mc
½p;B0� þOð1=c2Þ;

B ¼ B0 þ 1

mc
½p;E0� þOð1=c2Þ: ð53Þ

Using Eqs. (53) and (11) in (51), we obtain the expression
that can be thought as an equation of motion of the spin axis
in the comoving frame

dS0
comov

dτ
¼ −

e
mc

½B0;S0
comov� þ ½ωT;S0

comov�; ð54Þ

where

ωT ¼ −
1

2ðmcÞ2
�
p;

dp
dt

�
; ð55Þ

is the angular velocity vector of the Thomas precession.
The comoving observer will detect the torque of the spin
exerted by magnetic field B0, and an extra torque around
the vector ωT due to a noninertial character of the
comoving frame.
If E ¼ 0 in the laboratory frame, Eq. (11) implies

dp=dt ¼ Oð1=cÞ, and (54) reduces to the equation for
the precession of spin in a magnetic field

dS0
comov

dτ
¼ −

e
mc

½B0;S0
comov�: ð56Þ

To complete the analysis, we discuss the Frenkel vector
in the instantaneous frame. The inertial system obtained by
the Lorentz boost (46) is instantaneous at the instant τ0 rest
frame (instantaneous frame for short), where the numbers
vi are equal to the velocity of a particle at fixed instant τ0.
Using the transformation law of Frenkel spin-tensor
S00μνðτÞ ¼ Λμ

αΛν
βSαβðτÞ and Eq. (16), we obtain for spatial

components

S00ij ¼ 2ϵijk
�
Sk −

γ

cP0

½v; ½P;S��k − γ − 1

v2
½v; ½v;S��k

�
: ð57Þ

At the order 1=c2, this implies the following transformation
law of the Frenkel and Thomas spin vectors:

S00
inst ¼ Sþ 1

mc2

�
v; ½p;S�� − 1

2c2
½v; ½v;S�

�
: ð58Þ

S00
T;inst ¼ ST þ 1

2mc2
½½v;p�;ST �: ð59Þ

7Using the conversion factor d=dτ¼ γd=dt¼d=dtþOð1=c2Þ,
we could obtain the variation rate with respect to the laboratory
time. As we work in 1=c2 approximation, almost all equations of
this section remain valid if we just replace d

dτ on
d
dt.
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Here v is the velocity of the particle at τ0, while p is its
momentum at the instant of observation. Both Thomas (2)
and Frenkel (6) equations preserve their form under these
transformations, and thus can be used as the equations of
motion for these quantities by any inertial observer.
Computing the derivative of these expressions, we obtain
the variation rates in the instantaneous frame through the
laboratory quantities

dS00
inst

dτ
¼ dS

dτ
þ 1

mc2

�
v;

�
dp
dt

;S

��
: ð60Þ

dS00
T;inst

dτ
¼ dST

dτ
þ 1

2mc2

��
v;
dp
dt

�
;ST

�
: ð61Þ

At the instant τ0 the particle is instantaneously at rest, so
p ¼ v, and Eq. (58) coincides with (48), as it is expected.
Equation (59) at this instant gives S00

T;instðτ0Þ ¼ STðτ0Þ.
Taking the difference of Eqs. (50) and (60) at the instant

τ0, and replacing in the resulting expression S ¼ S00
inst þ

Oð1=c2Þ, we relate the variation rates of the spin axis in
comoving and instantaneous frames, thus obtaining the
Thomas precession of the Frenkel spin

dS0
comov

dτ
−
dS00

inst

dτ
¼ ½ωT;S00

inst�: ð62Þ

The difference at the instant τ0 is a rotation of spin axis S00
inst

around the vector (55), with the angular velocity equal to its
length. So the noninertial comoving frame looks rotating
in the system of the instantaneous observer. Thomas
explained this kinematic effect analyzing the product of
Lorentz boosts [2].
We emphasize that formally similar equations (32), (48),

and (58) (the latter taken at τ0) represent 1=c2 approxima-
tion of different equations, and so they have a completely
different meaning. The inaccuracies (including inaccura-
cies in notation) made by different authors in the derivation
and analysis of equations like (32), (48) and (58), represent
the source of numerous confusion in the literature. A
detailed analysis of the controversial works on the sub-
ject was undertaken in [26–28]. Here we clarified the
meaning of these equations in the framework of the
covariant theory (41)–(43).

VII. CONCLUSION

In this work, we presented the manifestly covariant
version of Pauli theory for the description of a spinning
electron in Hamiltonian formalism. The covariant
Hamiltonian (17) is a linear function of Frenkel spin and
of field strength. Covariant brackets of the theory have
been obtained from the requirement of the consistency of
Hamiltonian equations with the spin supplementary con-
dition SμνPν ¼ 0. This implies rather nontrivial deforma-
tion (34)–(39) of the canonical brackets (4). In particular,

the bracket fxμ; xνg ¼ − 1
2P2 Sμν states that position varia-

bles are noncommutative, and the spin-induced noncom-
mutativity survives even in the noninteracting theory of a
spinning electron. The nonrelativistic spinning particle has
the commuting position variables; see Sec. 5 C in [38]. This
also follows from the above mentioned bracket, since
1=P2∼1=ðmcÞ2→0 as c → ∞. In other words, the spin-
induced noncommutativity is a relativistic effect. Hence,
the manifestly covariant description of spin inevitably leads
to the theory endowed with position-position noncommu-
tative geometry. As we have shown, it is this bracket that is
responsible for transforming the covariant Hamiltonian into
the Hamiltonian of the Pauli theory. In this regard, we point
out that spinning particles represent an exceptional example
of intrinsically noncommutative and relativistic-invariant
theory, with the spin-induced noncommutativity that man-
ifests itself already at the Compton scale. The effects due to
noncommutative geometry are of considerable interest in
the current literature [43–51], and certainly deserve a
detailed study in the relativistic-invariant context of spin-
induced noncommutativity.
The brackets (34)–(39) encode an essential part of the

spin-field interaction, and lead to the equations of motion
(41)–(43) quadratic on spin and field strength. Hamiltonian
equations consistent with a set of algebraic constraints
could be obtained in a more systematic way by constructing
a proper variational problem. The search for a variational
problem for the spinning particle has an almost centenary
history; see, for example, [38,52,53] and references therein.
One possibility is to consider the spin tensor as a composite
object constructed from the non-Grassmann vector and
its conjugated momentum, Sμν ¼ 2ðωμπν − ωνπμÞ. The
Lagrangian that, besides the dynamical equation, implies
all the necessary constraints, has been recently proposed in
[54,55]. The spin supplementary condition SμνPν ¼ 0
arises here as a consequence of two second-class con-
straints imposed on the basic vector and its momentum.
The constraints can be taken into account with help of the
Dirac bracket. The point here is that this leads to higher
complicated (nonpolynomial on S and F) equations of
motion [54,55]. So, the existence of equations (41)–(43),
that are quadratic on S and F, and are consistent with the
spin supplementary condition, seem to be rather nontrivial
facts that deserve further investigation.
In 1=c2 approximation, both the Hamiltonian (18) and

brackets (24)–(27) of the covariant theory differ from that
of Pauli theory (3), (4). Nevertheless, they lead to the same
quantum mechanics without any appeal to the Thomas
precession formula (62). The second equation from (28)
shows that the position of the particle in quantum mechan-
ics is given by the Pryce (d) operator [56]. At the classical
level, Pauli theory can be thought as 1=c2 approximation of
the covariant theory written in special variables (31) and
(32). This observation explains the discrepancy between
the covariant (18) and Pauli (3) Hamiltonians.
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Accidentally, the relation (32) between the Thomas and
Frenkel spin vectors in the laboratory frame coincides with
the transformation law of the Frenkel spin vector in the
passage from the laboratory to the comoving frame; see (48).
This clarifies the meaning of the Thomas spin and of the
Thomasequation in thecovariant scheme: solvingEq. (2)with
the use of the laboratory quantities, the laboratory observer
will obtain the functions SiTðτÞ that describe the evolution of
the spin axis as it seen by the comoving observer.
It would be interesting to apply the developed formalism,

considering the three-dimensional spin as a spatial part of
the four-dimensional spin vector Sμ instead of the Frenkel

spin tensor Sμν. This could give a Hamiltonian formulation
for the Bargmann-Michel-Telegdi equations [24].
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