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In this paper we discuss the Casimir effect in a small cavity, freely falling from spatial infinity in
spacetime geometry outside of a Schwarzschild black hole. Our main goal is to search for possible changes
in the vacuum energy, as well as particle creation inside the falling cavity, with respect to a comoving
observer. Working in the Lemaître chart and assuming a cavity size Lmuch smaller than the Schwarzschild
radius (L=rg ≪ 1), we solve the Klein-Gordon equation for a massless scalar field confined within the
cavity in the reference frame of the comoving observer. We follow Schwinger’s proper time approach,
evaluating the one-loop effective action for the field in the falling cavity hence evaluating the corrections to
the vacuum energy. We find a small reduction in the absolute value of Casimir energy as the cavity
approaches the black hole horizon due to the changing spacetime geometry. Since the spacetime geometry
for the cavity changes dynamically, we further find the energy density of the created particles due to the
dynamical Casimir effect. These dynamical contributions exactly match the deficit to the static Casimir
energy. Combined, the observer measures a net increase in energy within the cavity as she falls.
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I. INTRODUCTION

The Casimir effect [1,2] is one of the most intriguing
aspects of quantum field theory (QFT) where the energy of
the vacuum gives rise to a measurable [3] force between
macroscopic objects. Roughly speaking, it originates from
a distortion in the modes of a quantum field constrained in a
finite region of space by some boundaries. This distortion
can arise from material properties [4] as well as from the
background spacetime’s geometry [5]. In the latter case, the
Casimir effect becomes an exciting arena in which general
relativity (GR) and quantum field theory (QFT) face each
other. Indeed, the Casimir effect in presence of gravitoi-
nertial fields has been considered in detail by many authors
through the years, giving rise to a rich literature concerning
the issue [6–16].
When the background spacetime geometry is time-

varying, we are faced with further dynamical effects,
typically related to particle creation out of the quantum field
vacuum [17–23]. So a Casimir cavity becomes an interesting
laboratory, where both vacuum polarization and vacuum
persistence can be explored in detail. QFT generally relies
upon a partitioning of space-time in timelike surface (Cauchy
surfaces) upon which to build a Hamiltonian. However,
general relativity has a frame independence built into it, and

the tension between these two theories leads to many
interesting effects including Hawking radiation [24]. This
tension becomes most relevant when strong gravitoinertial
regimes aremet. Because of the intrinsicweakness of gravity,
the most favorable conditions are those involving highly
collapsed massive bodies, as black holes.
The influence of a gravitoinertial environment on a

Casimir cavity can give rise to several changes in the
vacuum energy. According to their origin, we may consider

(i) tidal effects: due to the spatial extension of the
Casimir apparatus, these are expected to cause
anisotropies in the distribution of the vacuum energy
density inside the cavity. Such effects have been
discussed in [25], where a detailed analysis of
1þ 1D model of Casimir cavity falling into a
Schwarzschild black hole has been extensively
performed.

(ii) pure geometric effects: also when tidal effects are
neglected, we can still face possible corrections to
Casimir energy due to the change in spacetime
geometry. In particular, the quantum fields probe
a finite extent of spacetime and can therefore be
sensitive to the geometry’s variation in time [as
captured by the modified Klein-Gordon equation we
derive later in Eq. (20)]. The stress-tensor is sensitive
to this as well, and therefore local measurements
performed by an observer could witness such
changes.
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In this paper we will focus on the pure geometric effects.
Both the above cited effects are part of the same overall
effect and could even apply at the same order in perturba-
tion theory, but we suspect they contribute additively and
can thus be separated [26]. Indeed, even the latter effect
appears similar to a tidal effect insofar as a local observer
can use it as a probe for if she is in a gravitational field—
much akin to the use of the classical tidal effect to
determine such. We leave the analysis of the 3þ 1D tidal
effects to future work.
Our starting point is a small Casimir cavity freely

falling (from spatial infinity) in the gravitational field of
a Schwarzschild black hole see, Fig. 1. We assume that the
typical cavity size is much smaller than the black hole
gravitational radius, rg ¼ 2M. In particular, this means that
L ≪ rg, where L is the proper plate separation.
We are interested in possible changes in the vacuum

energy density detected by an observer comoving with the
cavity. We could anticipate that such changes—if any—
will be likely to appear near the black hole horizon where
the Schwarzschild metric has a coordinate singularity. To
avoid such an obstacle, we will employ the Lemaître chart
[27,28] which has the advantage of being regular at the
horizon; further, it will be especially useful in describing
freely falling observers, as we will see below.
Here are the basic steps. First, we solve (in the observer’s

local frame) the Klein-Gordon equation for a massless,
minimal coupled, scalar field inside the cavity. Sub-
sequently we use Schwinger’s proper time approach in
deriving the one-loop effective action for the quantum field.
A pleasant feature of the chosen approach is that it could
allow, in priniciple, also for a nonperturbative analysis.
From the effective action we finally deduce the Casimir
effect as well as the small (static as well dynamical)
corrections to the energy density due to the cavity fall.
The results, although very small as expected, show a tiny

change in the Casimir energy. Namely, we find a quite
small reduction (in absolute value) of its flat spacetime
static value, hϵCasi0 ¼ − π2

1440L4. We also obtain a small
contribution due to particle creation inside the Casimir
cavity that happens to match the contribution to the
static value.
The paper is organized as follows. In Sec. II, we review

the coordinate transformation yielding the generalized
Lemaître form of the Schwarzschild spacetime. We then
specialize to the case of a test body freely falling from the
spatial infinity with zero initial velocity. In Sec. III, we
introduce the Casimir cavity while also stating the basic
assumptions of the model. Subsequently, we derive the
tetrad frame adapted to a physical observer comoving with
the cavity. In Sec. IV, we solve the Klein-Gordon equation
for a massless scalar field inside the falling cavity (assum-
ing minimal coupling). In Sec. V, we follow Schwinger’s
proper-time method [29–31] in order to deduce the one-
loop effective action W for the quantum field. We dis-

cuss the real and the imaginary part of W, related to the

vacuum polarization and vacuum persistence, respectively.
In Sec. VI we consider the vacuum polarization, from
which we deduce the static Casimir effect as well as the
corrections due to the cavity fall. In Sec. VII we discuss
the dynamical aspects, namely particle creation inside the
cavity, analyzing the vacuum persistence contribution. By
means of the Bogolubov approach, we evaluate the energy
density in terms of created field quanta inside the falling
cavity. We discuss the results in Sec. VIII while Sec. IX is
devoted to some final remarks.
Throughout the paper, unless otherwise specified, use

has been made of natural geometrized units. Greek indices
take values from 0 to 3; latin ones take values from 1 to 3.
The metric signature is ðþ;−;−;−Þ, with determinant g.

II. LEMAÎTRE COORDINATES: AN OVERVIEW

The Schwarzschild metric for a black hole of mass M in
the standard Schwarzschild coordinates ft; r; θ;ϕg reads

ds2 ¼
�
1 −

rg
r

�
dt2 −

�
1 −

rg
r

�
−1
dr2 − r2dΩ2; ð1Þ

where rg ¼ 2M is the gravitational (Schwarzschild) radius
of the black hole and dΩ2 ¼ dθ2 þ sin2θdϕ2. In such
coordinates, there is a coordinate singularity at the horizon.
Being interested in the behavior of a Casimir cavity falling
into a black hole, we need a chart which is regular at the
horizon, so the form (1) of the metric is not suitable.
Among the various coordinate systems that are well-
behaved at the horizon, we will adopt the Lemaître chart,
which will prove useful when describing the free-fall of the
Casimir cavity near the horizon.
Curiously, only little work can be found in the literature

about Lemaître coordinates [28], concerning both their
deduction and their practical applications. Therefore, let us
briefly recall how the Lemaître chart can be obtained from
the Schwarzschild coordinates. Consider a massive test
body, radially falling with four-velocity u in the gravita-
tional field of the black hole.
Since Eq. (1) admits a timelike Killing vector, X⃗ ¼ ∂t,

we have a conserved quantity along a timelike geodesic,
namely X⃗ · u ¼ γ ¼ const, with γ ¼ E=m being the total
specific energy of the test body (if the test body starts
falling from rest at the spatial infinity then γ ¼ 1). Since for
a radial infall motion dθ ¼ dϕ ¼ 0, we get from the
constraint gμνuμuν ¼ 1

dr
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1þ rg

r

r
; ð2Þ

where the sign refers to the radial in fall and τ is the proper
time of the falling test body. Notice that Eq. (2) implies
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γ2 − 1þ rg
r
> 0; ð3Þ

otherwise we have no radial motion. Such a constraint
defines the allowed radial region as a function of the
Schwarzschild radius as well as the total specific energy of
the falling body.

From Eq. (2) we formally have

−τ þ c ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1þ rg

r

q ¼ Fðr; rg; γÞ; ð4Þ

where Fðr; rg; γÞ is a rather cumbersome function,
defined as

Fðr; rg; γÞ ¼

8>><
>>:

jγ2 − 1j−1=2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
�

rg
γ2−1 þ r

�r
− rg

γ2−1 ln

� ffiffiffi
r

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg

γ2−1 þ r
q ��

; γ ≠ 1

2
3
r3=2ffiffiffi
rg

p ; γ ¼ 1:
ð5Þ

In Eq. (4) c is an arbitrary integration constant. Notice that,
for any value of c, Eq. (4) describes (although implicitly) a
physically admissible timelike geodesic for an infalling test
body (recall that γ ¼ 1 means free fall from spatial infinity
with zero initial velocity). This suggests defining a new
radial coordinate ρ by letting just ρ ¼ c. In so doing, a
freely falling body is defined by a constant value of the
coordinate ρ, hence we write

−τ þ ρ ¼ Fðr; rg; γÞ; ð6Þ

In other words, we are defining a comoving coordinate,
adapted to timelike geodesics: a body moving along such a
geodesic has a proper time τ and a constant value of the
coordinate ρ.
From Eq. (6), we also get the following relationship

between the coordinate differentials

dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1þ rg

r

r
ðdρ − dτÞ: ð7Þ

We now search for a similar relation involving the
Schwarzschild time t. We guess

dt ¼ Adρþ Bdτ; ð8Þ

with A and B unknowns to be determined requiring
that the Schwarzschild metric in the new coordinates
fτ; ρ; θ;ϕg is adapted to the falling body, namely gττ¼1
(synchronous coordinate system) and gτρ ¼ 0 (diagonal
metric). Substituting (7) and (8) in (1) we have

gττ ¼
�
1 −

rg
r

�
B2 −

γ2 − 1þ rg
r

1 − rg
r

¼ 1

gτρ ¼
�
1 −

rg
r

�
ABþ γ2 − 1þ rg

r

1 − rg
r

¼ 0; ð9Þ

from which we obtain A ¼ 1
γ −

γr
r−rg

and B ¼ γr
r−rg

. Thus, the

full required coordinate transformation reads

8>><
>>:

dt ¼ γr
r−rg

dτ þ
�
1
γ −

γr
r−rg

�
dρ

dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1þ rg

r

q
ð−dτ þ dρÞ;

ð10Þ

or, in matrix form

dx⃗S ¼ QðγÞdx⃗L; ð11Þ

where QðγÞ is the matrix defined from Eq. (10) and dx⃗S ¼
ðdt; drÞT , dx⃗L ¼ ðdτ; dρÞT are the coordinate 1-forms in
the Schwarzschild and Lemaître coordinates respectively.
Inverting QðγÞ, we obtain

8<
:

dτ ¼ γdtþ γ2
�
1 − rg

r

�
−1
�
γ2 − 1þ rg

r

�
−1=2 rg

r dr;

dρ ¼ γdtþ γ2
�
1 − rg

r

�
−1
�
γ2 − 1þ rg

r

�
−1=2

dr:
ð12Þ

Using Eq. (10) in Eq. (1) yields the Schwarzschild metric in
the so-called generalized Lemaître coordinates fτ; ρ; θ;ϕg
(see, e.g., [28])

ds2 ¼ dτ2 −
1

γ2

�
γ2 − 1þ rg

rðτ; ρÞ
�
dρ2 − r2ðτ; ρÞdΩ2;

ð13Þ
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where rðτ; ρÞ is implicitly given by Eq. (6). The
existence of the inverse function rðτ; ρÞ is assured,
since the Jacobian J of the transformation Eq. (10) is

J ¼ detQðγÞ ¼ 1
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1þ rg

r

q
> 0 [recall the constraint

Eq. (3)].
Let us briefly comment about the spacetime sym-

metries. Inspection of Eq. (1) immediately tell us that
X⃗ ¼ ∂t is a Killing vector for the Schwarzschild space-
time (in the Schwarzschild coordinates) as the metric is
independent of t. This timelike Killing vector field
implies an energy conservation in the Schwarzschild
spacetime. Although not explicitly visible, such sym-
metry exists in the Lemaître coordinates as well. The
corresponding form of the Killing vector can be obtained
from the transformation Eq. (10), by means of the
relationship between the canonical basis vectors ∂S ¼
ð∂t; ∂rÞT and ∂L ¼ ð∂τ; ∂ρÞT

∂S ¼ ½QðγÞ−1�T∂L: ð14Þ

From Eq. (14) we immediately get ∂t ¼ ∂τ þ ∂ρ. So, in
the Lemaître coordinates energy conservation is related to
the Killing vector X⃗ ¼ ∂τ þ ∂ρ.
Consider now a freely falling test body, with total

specific energy γ. Adjust the test body’s clock so that
the proper time τ ¼ 0 occurs when it is at a given radial
Schwarzschild coordinate r0. Putting r ¼ r0 and τ ¼ 0
into Eq. (6) we get the corresponding value of the
comoving radial Lemaître coordinate ρ0 ¼ ρð0; r0Þ at the
initial proper time τ ¼ 0. Replacing again the constant
value ρ ¼ ρ0 ¼ ρð0; r0Þ in Eq. (6) we implicitly get the
radial coordinate r as a function of the proper time τ,
namely r ¼ rðτ; ρ0Þ.
The above procedure is easy to carry out when the test

body has γ ¼ 1. In this case, the Schwarzschild metric in
the Lemaître coordinates reduces to

ds2 ¼ dτ2 −
rg

rðτ; ρÞ dρ
2 − r2ðτ; ρÞdΩ2: ð15Þ

From Eqs. (5) and (6), we immediately get

rðτ; ρÞ ¼ r1=3g

�
3

2
ðρ − τÞ

�
2=3

: ð16Þ

As discussed above, for any admissible fixed value of the
radial coordinate ρ, Eq. (16) describes the radial motion of a
test body freely falling from spatial infinity with zero initial
velocity (γ ¼ 1). Being interested in the behavior near the
black hole horizon (where the Lemaître coordinates are
regular), we choose the trajectory that is at the horizon
r ¼ rg at proper time τ ¼ 0. From Eq. (16) we get the
constant value of the radial coordinate ρ along the
corresponding geodesic

ρ0 ¼
2

3
rg ðτ ¼ 0Þ: ð17Þ

From Eq. (16) we obtain

rðτ; ρ0Þ ¼ rg

�
1 −

3τ

2rg

�
2=3

; ð18Þ

representing a freely falling particle (in our case the
Casimir cavity) whose trajectory intersects the horizon at
τ ¼ 0. Notice, in passing, that the travel from the infinity to
the horizon is described by negative values of the proper
time: −∞ < τ ≤ 0. Also, reaching the singularity from the
horizon takes a finite proper time τs ¼ 2

3
rg.

III. THE CASIMIR CAVITY AND
THE COMOVING FRAME

The measurement of Casimir energy inside the falling
cavity is performed by a comoving observer. Before
proceeding we need some assumptions about the cavity
and the reference frame with respect to which the observer
makes her measurements. Concerning the cavity, we take
its geometry so that the plates (of area A and separated by a
distance L, such that L ≪

ffiffiffiffi
A

p
) are orthogonal to the radial

falling direction [32]. We further require that:
(i) the cavity is taken to fall from spatial infinity with

zero initial velocity (γ ¼ 1) and zero angular mo-
mentum;

(ii) the typical cavity size is much smaller than the
gravitational radius of the black hole, so that, in
particular, L ≪ rg, with L being the plate separation;

(iii) the cavity is rigid; its dimensions and shape do not
suffer any distortion, in spite of external tidal forces
(imagine a rigid rod, invisible to the scalar field, that
holds the plates about its center of mass);

(iv) the center of mass of the cavity follows a true
geodesic motion; hence we neglect other nongravita-
tional external effects, including those possibly
related to backreaction;

(v) the change in the gravitational field across the
apparatus at a given proper time is negligible.

We stress that the last assumption is rather subtle and is
controlled but at the same level of perturbation theory as the
following analysis. However, corrections due to the last
assumption we expect to enter in linearly at the same order
in perturbation theory and could thus be isolated, and
furthermore, such an effect comes from a qualitatively
different source than what we are considering herein (the
proper time variation of the spacetime geometry across the
entire apparatus, not its spatial variations). A deeper
analysis of tidal effects on Casimir energy in a 1þ 1D
falling cavity has been extensively performed in [25], and
we leave the analysis of the 3þ 1D case for future work.
As a next step we choose a reference frame, defining a

tetrad adapted to the comoving observer. We will work in
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the Lemaître coordinates. The metric in Eq. (15) is diagonal
and thus, the required tetrad feμâg can be readily obtained.
From Eq. (15) we have (using a; b; c;… to label tetrad
indices)

eτ ¼ ∂τ

ex ¼
ffiffiffiffi
r
rg

r
∂ρ

ey ¼
1

r
∂θ

ez ¼
1

r sin θ
∂ϕ: ð19Þ

So, the observer performs her measurements in the (locally
Minkowskian) rectangular coordinates fτ; x; y; zg. In the
following, exploiting spherical symmetry, we will put

θ ¼ π=2. We also have e ¼ ffiffiffiffiffiffi−gp ¼ r2
ffiffiffi
rg
r

q
. It is understood

that in Eq. (19) r ¼ rðτ; ρ0Þ is given by Eq. (18). This is

precisely our last assumption in the above list: that the geo-
metry does not change across the apparatus. Technically,
we ought to have r ¼ rðτ; ρÞ where ρ varies between
the two curves the plates follow ρ ¼ ρ1;2ðτÞ which are
technically not geodesics. With our assumption that
rðτ; ρÞ ≈ rðτ; ρ0Þ, the small variation is neglected and the
corrections of the plates motion to geodesic motion can be
safely neglected.

IV. THE SCALAR FIELD

For the sake of simplicity we will consider a massless
scalar field ψðxαÞ inside the cavity. We also assume the
cavity walls to be perfectly reflecting, so that the field
obeys Dirichlet boundary conditions at the plates. The
generally covariant Klein-Gordon equation is [23]

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νψðxαÞ� þ κRðxβÞψðxαÞ ¼ 0; ð20Þ

where κ is a numerical parameter describing the coupling
between the matter field and the background gravitational
field and RðxβÞ is the scalar curvature. In what follows we
will suppose minimal coupling, so that κ ¼ 0.

A. Tetrad form of the field equation

The Klein-Gordon equation in the tetrad frame (19) reads
[33,34]

ð□þ V̂Þψ ¼ 0; ð21Þ

where □ ¼ ηbc∂b∂c is the flat d’Alembertian in the
observer’s Minkowski local frame and

V̂ ¼ 1

e
∂μðeeμâÞ∂ â ¼ −

ξ

1 − ξτ
∂τ ¼ bðτÞ∂τ; ð22Þ

along with

ξ ¼ 3

2rg
; bðτÞ ¼ −

ξ

1 − ξτ
: ð23Þ

In the local framewe search for a solution obeying Dirichlet
boundary conditions at the plates

ψðτ; x; x⃗⊥Þjx¼0 ¼ ψðτ; x; x⃗⊥Þjx¼L ¼ 0: ð24Þ

Let us introduce, for convenience, the auxiliary field

φ ¼ e
1
2

R
dτbðτÞψ , whose dynamics is the same as that of

ψ . Notice that φ obeys the same boundary conditions
Eq. (24). From Eq. (21) we get

�
□þ 1

4

ξ2

ð1 − ξτÞ2
�
φ ¼ 0: ð25Þ

FIG. 1. Schematic picture of a Casimir cavity falling onto a
Schwarzschild black hole. We assume the cavity is small with
respect to the black hole gravitational radius, (L=rg ≪ 1), falls
from spatial infinity with zero initial velocity (γ ¼ 1) and zero
angular momentum, and is rigid, namely the plate separation L is
constant according to a comoving observer. Lastly, we neglect
variations in the gravitational field across the apparatus (see text
for details).
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We guess the following solution, obeying Eq. (24)

φðxaÞ ∼ eik⃗⊥·x⃗⊥ sin

�
nπ
L

x

�
χðτÞ; n ∈ N ð26Þ

where k⃗⊥ ≡ ðky; kzÞ, x⃗⊥ ≡ ðy; zÞ, and χðτÞ is a function of
the proper (local) time, to be evaluated below. Plugging
Eq. (26) into Eq. (25) we get the following equation
for χðτÞ

�
∂2
τ þ ω2

k þ
1

4

ξ2

ð1 − ξτÞ2
�
χ ¼ 0; ð27Þ

where k⃗≡ ðnπ=L; k⃗⊥Þ and

ω2
k ¼ k2⊥ þ

�
nπ
L

�
2

: ð28Þ

The dimensionless quantity 1
1−ξτ can be used to get an

estimate of the typical rate of change of the space-time
geometry surrounding the falling cavity. If we define a
timescale

Δτ ¼
�
∂τ

�
1

1 − ξτ

��
−1
; ð29Þ

then the field modes can be considered almost stationary by
the observer if the following condition holds true

Δτ ≫
1

minfωng
≃ L: ð30Þ

On the other hand, if Δτ ≤ L, the rate of change of the
surrounding geometry is too high to assume a steady state
for the field modes, and a rather different approach must be
taken into account to handle a scenario in which the
dynamical effects (particle creation out of the quantum
vacuum) are expected to play a dominant role.
It is straightforward to check that Eq. (30) is satisfied in

the whole time range −∞ < τ < 0, describing the free-fall
from infinity to the black hole horizon. Actually, in that
range we have Δτ ≥ 1

ξ ≃ rg ≫ L by assumption.
Equation (27) can be formally solved in terms of Bessel

functions over the whole time domain −∞ < τ < 1
ξ (from

spatial infinity up to the singularity; see below). However,
beyond the horizon, the solution would become mean-
ingless as the cavity approaches the singularity: eventually
the cavity size (L) would become comparable with the
spacetime curvature and the construction of a local frame
would fail as well as the assumptions listed in Sec. III. To
avoid such complications we will confine our analysis to
the black hole exterior.

B. Field mode solutions in a falling
Casimir cavity

We now need to evaluate χðτÞ. Define η ¼ 1 − ξτ. Then
Eq. (27) becomes

∂2χ

∂η2 þ
�
ω2
k

ξ2
þ 1

4η2

�
χ ¼ 0; ð31Þ

whose general solution, in terms of Bessel functions
J0 and Y0, is

χkðηÞ ¼ A
ffiffiffi
η

p
J0ðωkη=ξÞ þ B

ffiffiffi
η

p
Y0ðωkη=ξÞ: ð32Þ

The choice

A ¼ 1

2

ffiffiffi
π

ξ

r
; B ¼ i

2

ffiffiffi
π

ξ

r
; ð33Þ

yields, in terms of Hankel functions of second kind,

χkðτÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ξ
ð1 − ξτÞ

r
Hð1Þ

0

�
ωk

ξ
ð1 − ξτÞ

�
; ð34Þ

which has the required Minkowskian (plane wave) behav-
ior at τ → −∞; when the cavity is at the spatial infinity with
respect to the black hole

χkðτÞ ∼
1ffiffiffiffiffiffiffiffi
2ωk

p e−iωτ; τ → −∞: ð35Þ

The above normalized field modes Eq. (34) will be used in
Sec. VII B when discussing particle creation inside the
cavity.

V. PROPER-TIME SCHWINGER’S
APPROACH

In this section we will follow Schwinger’s proper time
approach [29–31] in order to derive an expression of the
(one-loop) effective action W for the scalar field inside the
Casimir cavity. In the presence of a nonstationary gravi-
tational background, the effective action may become
complex. In such case the real part of W describes
phenomena related to the vacuum polarization, such as
the (static) Casimir effect, and the imaginary part indicates
particle production. Actually, in the so-called in-out for-
malism the imaginary part of the effective action is related
to the vacuum persistence amplitude

h0 outj0 ini ¼ eiW; ð36Þ

which in turn can be used to evaluate the number density
hni of the created field quanta. In what follows we will
evaluate both the real and the imaginary parts of the
effective action.
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A. Computing the effective action

From Eq. (25) the proper-time Hamiltonian Ĥ reads

Ĥ ¼ Ĥ0 þ V̂; ð37Þ

where

Ĥ0 ¼ ∂2
τ − ∇⃗2 ≡ −p̂2

0 þ ˆp⃗2: ð38Þ

As usual, we write the effective action W

W ¼ lim
ν→0

WðνÞ; ð39Þ

where

WðνÞ ¼ −
i
2

Z
∞

0

ds sν−1Tre−isĤ; ð40Þ

and the limit ν → 0 has to be taken at the end of
calculations. In Eq. (40) the trace

Tre−isĤ ¼
XZ

d4xhxje−isĤjxi; ð41Þ

has to be evaluated all over the continuous as well the
discrete degrees of freedom, including those of spacetime.
We write

Tre−isĤ ¼
Z

d4x
XZ

dαhτ; x⊥; xjp0; p⊥; ni

× hp0; p⊥; nje−isðĤ0þV̂Þjp0
0; p

0⊥; n0i
× hp0

0; p
0⊥; n0jτ; x⊥; xi; ð42Þ

where

XZ
dα≡X

n;n0

Z
dp0dp0

0dp⊥dp0⊥: ð43Þ

Since ½ ˆp⃗; V̂� ¼ 0, Eq. (42) can be factorized as

Tre−isĤ ¼
Z

d4x
XZ

dαhx⊥; xjp⊥; ni

× hp⊥; njeis∇⃗
2 jp0⊥; n0ihp0⊥; n0jx⊥; xi

× hτjp0ihp0je−isð∂
2
τþ1

4
ξ2

ð1−ξτÞ2Þjp0
0ihp0

0jτi; ð44Þ

where

Xðx⃗Þ ¼ hx⊥; xjp⊥; ni ð45Þ

TðτÞ ¼ hτjp0i; ð46Þ

are, respectively, the eigenfunctions of −∇⃗2 and ð∂2
τ þ

1
4

ξ2

ð1−ξτÞ2Þ, namely [see Eq. (34)]

Xðx⃗Þ ¼ 1

2π

ffiffiffiffi
2

L

r
eip⃗⊥·x⃗⊥ sin

�
nπ
L

x

�
;

TðτÞ ¼ 1ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πp0

2ξ
ð1 − ξτÞ

r
Hð1Þ

0

�
p0

ξ
ð1 − ξτÞ

�
: ð47Þ

(Notice that in what follows the states jαi are normalized
according to the standard Dirac prescription: hαjα0i ¼
δðα; α0Þ, where δðα; α0Þ is the Kronecker symbol δα;α0
if fjαig is a discrete set, and the Dirac delta function
δðα − α0Þ if it is continuous).
Using Eq. (47) in Eq. (44) and performing the

x-integration we have

Tre−isĤ ¼ 1

16π2

Z
d2x⊥dτ

Z
d2p⊥dp0

×
X
n

e−isðp2⊥þðnπ=LÞ2Þeisp2
0
p0

ξ
ð1 − ξτÞjHð1Þ

0 j2;

ð48Þ

where jHð1Þ
0 j2 ¼ Hð1Þ�

0 Hð1Þ
0 . After a

R
d2x⊥d2p⊥-integration

we get

Tre−isĤ¼ A
8πisξ

Z
T

−∞
dτ

Z
∞

0

dp0

X
n

ð1−ξτÞ

×p0eisp
2
0

				Hð1Þ
0

�
p0

ξ
ð1−ξτÞ

�				
2

e−isðnπ=LÞ2 : ð49Þ

At any fixed τ, define q ¼ p0ð1 − ξτÞ=ξ. Then

Tre−isĤ ¼ Aξ
8πis

Z
T

−∞

dτ
1 − ξτ

X
n

Z
∞

0

dq qjHð1Þ
0 ðqÞj2

× e−isðnπ=LÞ2eisξ2q2=ð1−ξτÞ2 : ð50Þ

Rewriting jHð1Þ
0 ðqÞj2 ¼ Hð1Þ

0 ðqÞHð2Þ
0 ðqÞ ¼ J20ðqÞ þ Y2

0ðqÞ
and using the integral representation involving the
Bessel functions J0, Y0 and K0 [35,36]

J0ðaÞJ0ðbÞ þ Y0ðaÞY0ðbÞ

¼ 8

π2

Z
∞

0

dy
cos½ða − bÞðy2 þ 1Þ1=2�

ðy2 þ 1Þ1=2 K0½2yðabÞ1=2�;

ð51Þ

we obtain

Tre−isĤ ¼ Aξ
π3is

Z
T

−∞

dτ
1 − ξτ

X
n

Z
∞

0

dq q

×
Z

∞

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p K0½2yq�e−isðnπ=LÞ2eisξ2q2=ð1−ξτÞ2 :

ð52Þ
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Performing the q-integration we get

Tre−isĤ ¼ Aξ
π3is

Z
T

−∞

dτ
1 − ξτ

X
n

Z
∞

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p

×
1

4β
eiy

2=β½π − iEið−iy2=βÞ�e−isðnπ=LÞ2 ; ð53Þ

where EiðzÞ is the exponential integral function and

β ¼ sξ2

ð1 − ξτÞ2 : ð54Þ

Performing the y-integration and substituting in Eq. (40)
finally yields

WðνÞ ¼ −
iA

32π5=2

Z
∞

0

ds
Z

T

−∞
dτ
X
n

sν−3=2−1

β1=2
e−isðnπ=LÞ2

×
�
π3=2e−i=ð2βÞHð1Þ

0 ð1=ð2βÞÞ

þ 2G31
23

�
−
i
β

				 0 1=2

0 0 0

��
; ð55Þ

with G31
23 being a Meijer G-function. We see that Eq. (55) is

made of two contributions, due to the two terms in the
square brackets. Let us consider each of them separately.

B. Vacuum polarization

The first term in Eq. (55) reads

WHðνÞ¼def −
iA

32π5=2

Z
∞

0

ds
Z

T

−∞
dτ
X
n

sν−3=2−1

β1=2

× e−isðnπ=LÞ2 ½π3=2e−i=ð2βÞHð1Þ
0 ð1=ð2βÞÞ�: ð56Þ

After expanding Hð1Þ
0 in powers of the dimensionless

parameter β, performing some algebra, and using the
Euler gamma function ΓðzÞ ¼ R∞

0 tz−1e−tdt and the
Riemann zeta function ζðzÞ ¼ P∞

n¼1
1
nz, we obtain

WHðνÞ ¼
ð−iÞνAπ3=2

16L3

X
k

ξ2k2kak

�
L
π

�
2ðνþkÞ

×
Z

T

−∞

dτ
ð1 − ξτÞ2k Γðν − 3=2þ kÞζð2ν − 3þ 2kÞ;

ð57Þ

where [37]

a0 ¼ 1;

ak ¼
1

k!8k
½ð−12Þð−32Þ � � � ð−ð2k − 1Þ2Þ�; k ≥ 1: ð58Þ

Taking the limit ν → 0 in (57) we get a real quantity.

C. Vacuum persistence amplitude

Consider now the contribution toWðνÞ due to the second
term in the square brackets of Eq. (55). Let us define

iWGðνÞ¼def −
iA

16π5=2

Z
∞

0

ds
Z

T

−∞
dτ
X
n

sν−3=2−1

β1=2

× e−isðnπ=LÞ2G31
23

�
−
i
β

				 0 1=2

0 0 0

�
: ð59Þ

Putting γ ¼ sn2π2

βL2 ¼ ðnπξLÞ2ð1 − ξτÞ2, and appealing to some

well-known properties of the Mejier G-functions, we
rewrite iWGðνÞ as

iWGðνÞ ¼ −
Að−iÞν−3
16π5=2ξ

Z
T

−∞
dτð1 − ξτÞ

X
n

�
L
nπ

�
2ν−4

×G41
24

�
γ

				 0 1=2

−2þ ν 0 0 0

��
: ð60Þ

Inspection of Eq. (60) shows that iWG ¼ limν→0iWGðνÞ is
an imaginary quantity. Hence, as anticipated, we obtained a
complex effective action W. The real part

ℜeW ¼ lim
ν→0

WHðνÞ: ð61Þ

is responsible for vacuum polarization and related phe-
nomena, such as the static Casimir effect, as we will see in
the next section.
The imaginary part reads

ℑmW ¼ lim
ν→0

WGðνÞ; ð62Þ

implying dynamical effects, such as field quanta creation
inside the cavity. We will discuss particle creation in
Sec. VII.

VI. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir effect,
deriving it from the real part of the effective action W.
Following Schwinger, we have from Eq. (57)

hϵCasi¼−lim
ν→0

1

AL
∂
∂τℜeWðνÞ

¼−
π3=2

16L4

X∞
k¼0

2kξ2kak
ð1−ξτÞ2k

�
L
π

�
2k
Γ
�
−
3

2
þk

�
ζð−3þ2kÞ:

ð63Þ
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Consider now the leading term (k ¼ 0) in Eq. (63). We find

hϵCasið0Þ ¼ −
π3=2

16L4
a0Γð−3=2Þζð−3Þ ¼ −

π2

1440L4
; ð64Þ

namely the usual flat result for the Casimir energy density.
We now move to the first order correction (k ¼ 1) to the
Casimir energy, thus obtaining

hϵCasið1Þ ¼ −
π3=2ξ2

8L2
ð−1=8Þ 1

ð1 − ξτÞ2 Γð−1=2Þζð−1Þ

¼ ξ2

384L2

1

ð1 − ξτÞ2 : ð65Þ

The Casimir energy density is then

hϵCasi ¼ −
π2

1440L4
þ 1

384L2

ξ2

ð1 − ξτÞ2 þOðξ4Þ: ð66Þ

At the horizon crossing (τ → 0−), we have [recall that
ξ ¼ 3=ð2rgÞ]

hϵCasihor ¼ −
π2

1440L4

�
1 −

135

ð4πÞ2
�
L
rg

�
2
�
: ð67Þ

Equation (66) tells us how the corrections to the Casimir
energy density change with the proper time as the cavity
approaches the black hole horizon, and it holds true as long
as we are in the adiabatic regime. Namely, provided that
the condition Eq. (30) is fulfilled.
The above result shows that the comoving observer

measures a small reduction in the (absolute) value of the
(negative) Casimir energy near the black hole horizon. At a
first glance, this may seem rather puzzling, as one would
expect no change with respect to the usual flat spacetime
result hϵCasistat ¼ − π2

1440L4 for a freely falling Casimir cavity,
due to the equivalence principle.
The resolution to this is related to other issues regarding

the equivalence principle [38]. We have implicitly assume
that the cavity is prepared in the vacuum state at asymptotic
infinity τ → −∞, and we indeed see that our solution
exactly recovers the flat space solution in this limit. This
state is defined on a (spacelike) Cauchy surface defined
by the vector field ∂t inside that cavity, but as the observer
falls into the black hole, the surface with which they are
observing is normal to the vector field ∂τ ≠ ∂t (a natural
consequence of the gravitational field changing with res-
pect to proper time for the cavity while ∂t is a timelike
Killing vector field). In this sense, this pure geometric
effect we have described is an effect with memory of its
(physically reasonable) initial conditions and the change of
the metric along its trajectory. This is captured by the func-
tion TðτÞ in Eq. (47) which differs from the pure exponential
usually associated with a stationary cavity. The result is that a

local measurement of Tμν is directly related to the full
unitary evolution of the initially stationary vacuum state. The
extended nature of this state allows for local observations
to distinguish changing gravitational fields despite a naive
application of the equivalence principle.

VII. DYNAMICAL EFFECTS:
PARTICLE CREATION

We have now directly alluded to the fact that we are
evolving the initial vacuum state j0 iniwith a (proper-)time
varying gravitational field. As such, we can explore the
counterpart of the static Casimir effect: the dynamical
effects induced by this time-variation (including particle
creation). The effects of looking at this in the nearly
adiabatic limit will aid us by allowing us to use the same
formalism as in previous sections.

A. Persistence amplitude and particle creation

Particle creation is related to the vacuum persistence
amplitude, i.e., the imaginary part of the effective actionW.
In the in-out formalism we have

jh0 outj0 inij2 ¼ e2iℑmW; ð68Þ

where if j0 ini and j0 ini where unitarily related, we would
have ℑmW ¼ 0, so ℑmW ≠ 0 indicates that the evolution
of j0 ini has overlap with excited states. In fact, the (usually
small) number density of created particles inside the falling
cavity is

hni ≃ 2ℑmW
AL

: ð69Þ

Consider the imaginary part Eq. (60) of W and define
σ ¼ ð1 − ξτÞ2. We get

WGðνÞ ¼
Að−iÞν
32π5=2ξ2

Z
∞

σ
dσ

X
n

�
L
nπ

�
2ν−4

×G41
24

�
σ

μ

				 0 1=2

−2þ ν 0 0 0

��
; ð70Þ

where μ ¼ ðξLnπÞ2 is a small dimensionless parameter. Upon
integration we get

WGðνÞ ¼
Að−iÞν
32π5=2ξ2

X
n

�
L
nπ

�
2ν−4

× μG41
24

�
σ

μ

				 0 3=2

0 1 1 ν − 1

��
: ð71Þ

The above expression is ill defined, as the Meijer
G-function Eq. (71) does not exist. However we may
render it definite introducing a small quantity ϵ > 0, hence
writing
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WGðν; ϵÞ ¼
Að−iÞν
32π5=2ξ2

X
n

�
L
nπ

�
2ν−4

μG41
24

�
σ

μ

				 0 3=2

0þ ϵ 1 1 ν − 1

��
: ð72Þ

Expanding Eq. (72) in powers of the small parameter μ ¼ ðξLnπÞ2 we obtain

WGðν; ϵÞ ¼
Að−iÞν
16π3

X
n

�
L
nπ

�
2ν−2

ΓðϵÞ
�
Γðν − 1Þ − 2ϵðν − 1ÞΓðν − 1Þ

3σ

�
ξL
nπ

�
2

þ 8ϵð1þ ϵÞνðν − 1ÞΓðν − 1Þ
15σ2

�
ξL
nπ

�
4

þ � � �
�

ð73Þ

We know that in the limit ðξLÞ → 0 we have to recover the flat spacetime result, implying an effective action without the
imaginary part, responsible for particle creation, henceWGðνÞ ¼ 0. This allows us to renormalize Eq. (73), subtracting the
divergent contribution

lim
ðξLÞ→0

WGðν; ϵÞ ¼
Að−iÞν
16π3

X
n

�
L
nπ

�
2ν−2

ΓðϵÞΓðν − 1Þ: ð74Þ

Thus, the renormalized part reads

WGðνÞ ¼ lim
ϵ→0

½WGðν; ϵÞ − lim
ðξLÞ→0

WGðν; ϵÞ�: ð75Þ

Recalling the relation zΓðzÞ ¼ Γðzþ 1Þ we have

WGðνÞ ¼
Að−iÞν
24π3

X
n

�
L
nπ

�
2ν−2

�
−
ΓðνÞ
σ

�
ξL
nπ

�
2

þ 4Γðνþ 1Þ
5σ2

�
ξL
nπ

�
4

þ � � �
�
: ð76Þ

Introducing the Riemann Zeta function ζðzÞ we recast Eq. (76) as

WGðνÞ ¼
Að−iÞν

24π2νþ1L2−2ν

�
−
ξ2L2

π2σ
ΓðνÞζð2νÞ þ 4ξ4L4

5π4σ2
Γðνþ 1Þζð2νþ 2Þ þ � � �

�
: ð77Þ

Using the reflection property

Γ
�
z
2

�
ζðzÞπ−z=2 ¼ Γ

�
1 − z
2

�
ζð1 − zÞπðz−1Þ=2; ð78Þ

we write

WGðνÞ ¼
Að−iÞν

24π7=2L2−2ν

�
−
ξ2L2

σ
Γð1=2 − νÞζð1 − 2νÞ þ 4ξ4L4

5σ2
Γð−1=2 − νÞζð−1 − 2νÞ þ � � �

�
: ð79Þ

Taking the limit ν → 0 and restoring σ ¼ ð1 − ξτÞ2 finally
yields the imaginary part of the effective action W

ℑmW ¼ A
24π3L2

�
−

ξ2L2

ð1 − ξτÞ2 ζð1Þ þ
2ξ4L4

15ð1 − ξτÞ4 þ � � �
�
:

ð80Þ

Inspection of Eq. (80) reveals that the first term in the
square brackets is still divergent.
In spite of the divergent term, when the small dimen-

sionless quantity ξL ¼ 3L
2rg

is vanishing ℑmW → 0, hence

implying no particle creation inside the falling cavity,
as expected. Actually, when the gravitational radius of
the black hole is much greater than the plate separation, the
cavity does not experience any relevant effect due to the
free fall. The persistent presence of divergences in (69)
precludes a direct evaluation of the number of created
particles from the imaginary part of the effective action,
unless some specific assumptions are made about the above
cited infinities. We will avoid the difficulties stemming
from the appearance of infinities in the imaginary part of
the effective action exploiting the relationship between the
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Schwinger theory and the in-out formalism, based upon the
Bogolyubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes Eq. (34) we found in Sec. IV

χkðηÞ ¼
1

2

ffiffiffiffiffiffi
π

ξ
η

r
Hð1Þ

0

�
ωk

ξ
η

�
; η ¼ 1 − ξτ; ð81Þ

which have the required Minkowskian (plane wave) behav-
ior at η → ∞ (i.e., τ → −∞) when the cavity is at spatial
infinity with respect to the black hole. The above modes
satisfy the Bunch-Davies vacuum requirements, namely

χkðηÞ → 1ffiffiffiffiffiffi
2ωk

p ei
ωk
ξ η ∼ 1ffiffiffiffiffiffi

2ωk

p e−iωkτ

_χkðηÞ
χkðηÞ → i ωk

ξ

9=
; η → ∞:

Also, we see that as far as

η ≫
ξ

2ωk
; ð82Þ

Eq. (31) reduces to

∂2χ

∂η2 þ
�
ω2
k

ξ2

�
χ ¼ 0; ð83Þ

so, in the far past Eq. (83) admits a plane wave solution

χkðτÞ ¼
αffiffiffiffiffiffiffiffi
2ωk

p e−iωkτ þ βffiffiffiffiffiffiffiffi
2ωk

p eiωkτ: ð84Þ

From Eq. (82) we get

η ≫
ξ

2ωk
¼ 3

4ωkrg
: ð85Þ

Since ω2
k ¼ k2⊥ þ ðnπ=LÞ2, we have minðωkÞ ¼ π=L. So, if

η ≫ ξL
2π, then Eq. (82) is undoubtedly fulfilled. Obviously, at

the horizon crossing η ¼ 1 ≫ ξL
2π, so any point near the

horizon, characterized by η ≥ 1, can be used to match the
solutions Eq. (34) and Eq. (84) by demanding that both χk
and ∂χk=∂τ are continuous at the chosen boundary η ≥ 1,
namely

αffiffiffiffiffiffiffiffi
2ωk

p e−iωkτ þ βffiffiffiffiffiffiffiffi
2ωk

p eiωkτ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ξ
ð1 − ξτÞ

r
Hð1Þ

0

�
ωk

ξ
ð1 − ξτÞ

�
;

−iωkαffiffiffiffiffiffiffiffi
2ωk

p e−iωkτ þ iωkβffiffiffiffiffiffiffiffi
2ωk

p eiωkτ ¼ 1

2

ffiffiffi
π

ξ

r �
−ξ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ξτÞp Hð1Þ

0

�
ωk

ξ
ð1 − ξτÞ

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξτ

p
ωkH

ð1Þ
1

�
ωk

ξ
ð1 − ξτÞ

��
: ð86Þ

After some algebra, we get the Bogolyubov coefficients [39]

jαkj2 ¼ 1þ ξ2

16ω2
kð1 − ξτÞ2 ; ð87Þ

jβkj2 ¼
ξ2

16ω2
kð1 − ξτÞ2 ; ð88Þ

satisfying jαkj2 − jβkj2 ¼ 1. The β coefficient is related to
particle creation. Note that, as τ → −∞, jαkj2 ∼ 1 and
jβkj2 ∼ 0, i.e., we have no particle creation in the far past,
as expected, meanwhile at the horizon crossing (τ ¼ 0)

we have jβkj2 ¼ ξ2

16ω2
k
. We evaluate the density of created

quanta as

hni ¼ 1

AL

�
A

ð2πÞ2
X
n

Z
d2k⊥

ξ2

16ω2
kη

2

�

¼ ξ2

64π2Lη2
X
n

Z
d2k⊥

k2⊥ þ ðnπ=LÞ2 : ð89Þ

Using

Z
d2k⊥

ðk2⊥ þ σÞα ¼ π
Γðα − 1Þ
ΓðαÞ

1

σα−1
; ð90Þ

we obtain

hni ¼ ξ2Γð3=2 − αÞζð3 − 2αÞ
64π3=2L3−2αη2ΓðαÞ ⟶

α¼1 ξ2

64πLη2
ζð1Þ ð91Þ

namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
effective action.We see that the divergence occurs in the UV
for the transversemodes of the quantum field. Furthermore, it
evades regularization.
In spite of the above divergent result, we can get a finite

result for the energy density hϵdyni of the created quanta,
writing
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hϵdyni ¼
1

AL

�
A

ð2πÞ2
X
n

Z
d2k⊥

ξ2

16ω2
kη

2
ωk

�

¼ ξ2

64π2Lη2
X
n

Z
d2k⊥

ðk2⊥ þ ðnπ=LÞ2Þ1=2 : ð92Þ

Using again Eq. (90) we obtain

hϵdyni ¼ −
ξ2

32L2η2
ζð−1Þ ¼ ξ2

384L2ð1 − ξτÞ2 : ð93Þ

If we compare the above result with Eq. (66), describing the
vacuum energy density pertaining to the Casimir effect

hϵCasi ¼ −
π2

1440L4
þ 1

384L2

ξ2

ð1 − ξτÞ2 : ð94Þ

we see, quite interestingly, that the small reduction
observed in the static Casimir energy value exactly corre-
sponds to the amount of energy of created field particles.
This could suggest a relationship between the two consid-
ered effects. Nevertheless, some care is required when
speculating about such coincidence, as both results have
been obtained as first-order approximations.

VIII. DISCUSSION

We are now in a position to draw some conclusions about
Casimir effect inside a small cavity, freely falling into a
Schwarzschild black hole, with particular concern in the
late stages of the fall.
Comparison of Eq. (93) and Eq. (94) shows that the

overall energy density (as measured by the comoving
observer) can be considered as made of two contributions

(i) The first one, related to the vacuum polarization, is
the static Casimir effect contribution, hϵCasi, whose
Minkowskian value hϵCasi0 ¼ − π2

1440L4 has been
modified by a small (positive) term, due to the
cavity fall.

(ii) The second one, hϵdyni ¼ 1
384L2

ξ2

ð1−ξτÞ2, is related to
the vacuum persistence. It represents a dynamical
contribution, due to the time dependent background
experienced by the quantum field, leading to particle
creation inside the Casimir cavity.

At a first glance, one could wonder whether corrections
to the static Casimir effect as well as particle creation are
detected by an observer in a freely falling inertial frame.
However, as anticipated at the end of Sec. VI, this is not so
surprising. The equivalence principle (EP), deeply rooted in
the theory of general relativity (GR), applies well in the
context of a local theory, just as GR is. On the other hand,
when quantum fields are taken into account, the state
requires definition on an entire spacelike Cauchy surface
which can lead to effects seemingly in conflict with the EP,
causing the latter to be not straightforwardly applicable.

In the present scenario, the quantum field stress-energy
tensor Tμν probes the history and extent of the full quantum
field, thus probing the full spacetime structure between the
plates as it evolves, through the long wavelength field
modes (to be clear, causality is never violated by measuring
this object). The adopted renormalization procedure (what-
ever it may be) helps to establish the full quantum evolution
and as such transfers the spacetime details into the
renormalized Tren

μν , which is the locally measured object
in this work. In such a way, information contained in the
changing spacetime geometry surrounding the cavity can
be probed despite EP (in a manner similar to how classical
fluids can seemingly violate EP by the observation of tidal
forces). These corrects appear both in the form of a small
correction to the expected static Casimir energy and a tiny
flux of created field quanta.

IX. CONCLUDING REMARKS

In this paper we have considered the Casimir energy
density corrections in a small cavity freely falling from the
spatial infinity into a Schwarzschild black hole. The main
results of the present work are Eqs. (94) and (93) repre-
senting, respectively, the (static) Casimir energy density
and the energy density due to creation of field quanta inside
the cavity.
As discussed above, particle creation in an inertial (freely

falling) physical system could be justified recalling that the
geometry seen by the cavity changes dynamically through-
out its fall, and this is imprinted on Tμν whose renormalized
part is ultimately the object which is measured by the
comoving observer.
In deriving the above results several assumptions have

been made (see Sec. III). In particular, we have neglected
other possible contributions deriving from the cavity
extension. Tidal effects, for example, are expected to give
rise to anisotropies in the energy density distribution inside
the cavity; such aspect has been considered in detail in
paper [25], working out a 1þ 1D model.
Also, the finiteness of the Casimir plates has not been

taken into account, assuming L ≪
ffiffiffiffi
A

p
≪ rg. Such

assumption is obviously fulfilled in any realistic scenario
where the gravitational radius of a black hole is
undoubtedly many order of magnitude greater than the
cavity size. One could think as well of a microblack hole,
having a gravitational radius rg ∼ L. But, in such a case the
above equations would become meaningless (the condition
L=rg ≪ 1 is violated), as in that limit the local frame
couldn’t be considered almost Minkowskian (the tidal
effects will dominate).
Another drawback stemming from the directions trans-

verse to the Casimir plates appears in the divergences we
met in evaluating the number density of the created quanta
(both working with the effective action and the in-out
formalism). We have seen that the appearance of this
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divergence is related to the UV scale of the trans-
verse modes.
We wish to point out that, exploiting the Lemaître

coordinates (well-behaved up to the singularity), it could
be interesting (although not so straightforward), to explore
the dynamics of the Casimir energy (according to the
comoving observer) in the region 0 < τ < 2rg

3
, correspond-

ing to the proper time lapse required to reach the central
singularity.
In that respect, the adopted Schwinger approach seems

of particular interest, as it might represent a starting point
for a deeper nonperturbative analysis.
An obvious improvement of the present research would

be to extend the analysis of [25] to the 3þ 1D case, also

including both tidal and 3D-finite-size effects in evaluating
the corrections to the Casimir effect. We leave these
extensions to future work.
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