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In this paper we explore the effect of the generalized uncertainty principle and modified dispersion
relation to compute Hawking radiation from a rotating acoustic black hole in the tunneling formalism by
using the Wentzel-Kramers-Brillouin approximation applied to the Hamilton-Jacobi method. The starting
point is to consider the planar acoustic black hole metric found in a Lorentz-violating Abelian Higgs model.
In our analyzes we investigate quantum corrections for the Hawking temperature and entropy.
A logarithmic correction and an extra term that depends on a conserved charge were obtained. We also
have found that the changing in the Hawking temperature 7 5 for a dispersive medium due to a Lorentz-
violating background accounts for supersonic velocities in the general form (v, — v,)/v, = AT /Ty ~

1073 in Bose-Einstein-Condensate systems.
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I. INTRODUCTION

In modern physics the attempt to construct a consistent
theory of quantum gravity arising when combining gen-
eral relativity and quantum mechanics has been exten-
sively explored in the literature. This theory would be
important for a better understanding of the final stage of a
black hole. Several theories have been put forward for this
purpose among which we highlight the loop quantum
gravity and string theory which include expected features
for a consistent theory. These theories present some points
in common such as the existence of a minimum length
[1-3]; as a consequence we have the modification of the
principle of uncertainty of Heisenberg, the so-called
generalized Heisenberg uncertainty principle (GUP)
[4-9]. The interest in the study of Hawking radiation in
models considering the GUP has increased a lot in the last
years [10-36]. In particular the analysis of Hawking
radiation in analog models has been explored extensively
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in the literature mainly due to the possibility of being
tested in a laboratory [37].

The fact of the Hawking radiation depending only on the
kinematic properties of the space-time background led
Unruh in 1981 to propose a theoretical method of analogous
gravity [38] with the aim of producing kinematic conditions
similar to those of a black hole. Since then, several works in
analog models have been explored [39-47]. One such
application has been the study of quasinormal modes in
which it has been shown recently [48] that by considering an
extra structure (core structure of the vortex) in the study of a
rotating acoustic black hole, the spectrum of quasinormal
modes is changed, and also a possible experimental setup
was suggested by the authors in order to test the results
obtained. In addition, starting from relativistic models the
metric of acoustic black holes has been determined [49-56].
In [57-61] these effective metrics were applied to the study
of the phenomena of superresonance, absorption, and the
analogous Aharonov-Bohm effect.

In studies proposed by Steinhauer [62,63] through the use
of analog models one has shown great progress in the
possibility of detecting the Hawking radiation in a labo-
ratory. An effective way of determining Hawking radiation
is to apply the Hamilton-Jacobi method which is based
on the tunneling process of elementary particles across
the black hole event horizon [64,65]. In this method
the Wentzel-Kramers-Brillouin (WKB) approximation is
applied in order to determine the imaginary contribution of
the action. In [66] by applying this approach the Hawking
radiation of an acoustic black hole was investigated. Also,
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the authors in [67,68] analyzed the Hawking radiation of a
rotating acoustic black hole in the tunneling formalism with
GUP. In [69-71] by investigating the Hawking radiation of a
rotating acoustic black hole, the authors also explored the
effect of the GUP by applying the brick wall method.

The purpose of the present work is to apply the
Hamilton-Jacobi method and the WKB approximation
within the tunneling formalism to examine the Hawking
radiation and the entropy of a rotating acoustic black hole
metric obtained from an Abelian Higgs model in a Lorentz-
violating background. For this purpose we will consider
two approaches to calculate quantum corrections for the
Hawking temperature and entropy. First we will apply the
GUP in order to determine a modified dispersion relation.
In the second case we will focus on a dispersion relation
that is modified but the uncertainty principle preserves the
standard Heisenberg form.

Unlike Hawking radiation, which is a purely kinematic
effect, an analogous form for the Bekenstein-Hawking
entropy has been little known until recently. However, in
[72] it was argued that such an analogy arises in a Bose-
Einstein condensate system such that the Bekenstein-
Hawking entropy can be understood as an entanglement
entropy. In a Bose-Einstein condensate system entangle-
ment entropy is related to the phonons that are created by the
Hawking mechanism. In this case the entropy of the acoustic
black hole depends on the area of the event horizon. In
addition, this issue has been addressed by Steinhauer [63].
He has observed the entanglement of Hawking radiation
from an acoustic black hole due to quantum vacuum
fluctuations in a Bose-Einstein condensate. It has also been
found that there is a correlation between the particles outside
and the partner particles within the black hole. Such
entanglement is reduced as energy decreases. Also in [73]
the entanglement entropy of an acoustic black hole was
investigated in 1D degenerate ideal fermi fluids, which
entropy flows from the sonic horizon to subsonic and
supersonic regions. These examples in ultracold quantum
gases certainly lead us to look for other similar systems that
can present entropy entanglement. Despite the difficulty of
finding Hawking radiation from astrophysical black holes,
such radiation can be found experimentally in analog black
holes [62]. Thus, for the same reason, it is interesting to
propose similar investigations of analog Bekenstein-
Hawking entropy in a laboratory. For a comprehensive
study on entaglement entropy and black holes see [74]; see
also [71] for a more recent discussion on related issues.

The paper is organized as follows. In Sec. II we make a
short revision on the computation of the acoustic metric
from the Abelian Higgs model. In Sec. III we apply the
Hamilton-Jacobi method to calculate the Hawking temper-
ature for a rotating acoustic black hole. In Sec. IV we
consider the generalized uncertainty principle and modified
dispersion relation to compute quantum corrections to
Hawking temperature and entropy. Finally in Sec. V we
present our final considerations.

II. THE LORENTZ-VIOLATING ACOUSTIC
BLACK HOLE

In this section, we shall focus on the planar acoustic
black hole metrics to investigate the corrections of the
Hawking temperature and the entropy. The starting point is
to consider the following Lagrangian of the Lorentz-
violating Abelian Higgs model

1
L= _ZFﬂDFMD+ |Dﬂ¢|2 +m2|¢|2_b|¢|4+kﬂyDy¢*Dy¢a
(1)
where F,, =09,A, - 0,A,, D, = 0,¢ —ieA,¢p and k**

is a constant tensor introducing the Lorentz symmetry
breaking given by

) (/,{,IJZO,I,Q,,:;), (2)

uv

ROR R ™™
R |/ ™ R
R ™™ R R
== R K& R

with @ and S being real parameters.
Next we will briefly show some steps to obtain the
acoustic metric from the Lagrangian (1). The first step is to

represent the scalar field as ¢ = /p(x, 1) exp (iS(x, 1)),
and so the Lagrangian is put into the form

1
L= =3 FuP" +p0,S0"S = 2epA,0"S + e*pA, A
+m*p — bp?* + k*p(9,50,S — 2eA,0,S

+eAA,) + ip (0,0% + kD,0,)\/p. (3)

7

In the second step we linearize the equations of motion
around the background (p, S;), with p = py + p; and
S = Sy + v and finally we obtain the equation of motion
for a linear acoustic disturbance y given by a Klein-Gordon
equation in a curved space

o maem e,y — 4
=00 =0, 4)
where g,, is precisely the effective acoustic metric. In this
work we will restrict our analyzes only to the case where
f = 0and a # 0. The case where # # 0 and @ = 0 has been
investigated in [67].

In this case the line element of the acoustic metric in

2 4 1 dimensions in the nonrelativistic limit, and keeping
terms up to first order in a is given by [54,55]
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2
ds® = —a <c§ - @) i —2(7 - dX)dt
a

+ [1 +2a(v, + v,)]dx?, (5)

where ¢, = /dh/dp is the sound velocity in the fluid and
v is the fluid velocity. The metric above can be rewritten in
polar coordinates as follows:

2 2\ -1
ds® = —a(l - 2) df + & <1 —”—2> dr
acy acy
2

— 2 vdgpdr + 1+ 2a(v, + vy)|dr?dg?. (6

N

In polar coordinates the velocity profile of the fluid is

. A B -
v=_tr—g, (7)

r

where A and B are constants related to circulation and
draining respectively. Thus, the metric of the rotating
acoustic black hole takes the following form [54]:

=2 ~2
dsZ:—a<1—’_;>dt2+a (1--) dr
r r

[1 + 2a(a'e,r), + B)}
r

2B
——d¢dt +

s

rrdg?.  (8)

where @ =1+ a, 7, is the radius of the ergosphere

given by
2
~ Te , B
7, = , r, =1 +—, 9
e \/a e h Cg ( )
and 7, is the horizon, that is
~ ry ‘A|
7, = , r, =—. 10
h \/(:Z h c, ( )

III. HAMILTON-JACOBI METHOD
AND WKB APPROXIMATION

In this section we consider the WKB approximation in
the tunneling formalism and apply the Hamilton-Jacobi
method to calculate the Hawking temperature for an
acoustic black hole.

A. Acoustic metric with B=0

We now consider the case B = 0 (no rotation), so we can
display the metric in stationary form as follows:

ds* = —f(r)dr’ +%dr2 + (1 +§> ridg?, (1)

7 .
where f(r) = a(1 —%) and = 2a(a'/?#,), with ¢, = 1.
Thus, we can determine the Hawking temperature in terms
of 7, as follows:

(7 0 1
4r 277y, 277y,
We can also express the result in terms of r,
Th — &3/2Th’ (13)

where T), = (2zr;,)~! is the Hawking temperature of the
acoustic black hole for @ = 0.

In order to find the Hawking temperature by the
Hamilton-Jacobi method, we start with the Klein-Gordon
equation for a scalar field ® in the curved space given by

1 m?
Lot e —o a9

where m is the mass of a scalar particle. Then using the
WKB approximation

@ = exp {h (t,r, qﬁ)} (15)
we find
0,70, + m* = 0. (16)

Hence, we can rewrite Eq. (16) in the metric (11) in the
form

I+ f(r)(0,2)*+ 5(8,2)* +m*=0.

1 1
f(r) (1+n/r)r

(17)

Taking into account the symmetry of the metric we will
assume a solution to the equation above that reads

I =—-Et+W(r) +Jy0, (18)
where

o1 —-£.  o1-"0)
dr

8(/):[:.]{,, (19)

and J P 1s a constant. Thus, for the classical action we have

1+i1/r )

E*—f(r)(m
I:—EH—/dV\/

G +Jyp. (20)

In the near horizon regime, r — 7,, we will apply the
following approximation f(r) = 2«(r —7,), where k =
f'(74)/2 is the surface gravity of acoustic black hole. In
this case the spatial part of the action function becomes
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Y N Lo s
W(r)=— [ dr - = .
2K (r—"7p) 2k

(21)

Therefore, we can calculate the probability of tunneling by
applying the following equation:
27E
I ~ exp[-2ImT] = exp {— ”] . (22)
K

On the other hand, comparing the above result with the
Boltzmann factor I'~exp(—E/T,), we determine the
Hawking temperature of the acoustic black hole

~ K a

T,=—= .
"o 277,

(23)

Moreover, Eq. (23) can be expressed in terms of r;, as being
T, =aT,. (24)

Note that this result for the temperature coincides with that
obtained earlier in (13).

B. Acoustic metric with B # (0

Let us now consider the case with rotation (B # 0). Thus
the metric (8) can be written as follows:

vB? 1 4
ds®> = — — | d* + —dr? 1 +% ) r2dg?,
s [f(r) r3] +f(r) r +< —l—r)r 17
(25)
where, y = 2a(@'/?#, + B) and
Bdt
dp =dp — —F— 26
RN (E7Er 20

is the coordinate transformation used to leave the metric in
the diagonal form. Then, following the same steps as
described above to find the Hawking temperature, the
probability of tunneling near the event horizon is

I' ~exp [-47E/K], (27)

where

F=\JIF/ () + 3BY/H)S (7)) (28)

is the surface gravity and finally comparing I'" with the
Boltzmann factor exp(—E/7,), we have the Hawking
temperature given by

7 R _VIG)+3B/FIf(F)_ @ 3yB?
h 4 4z 277y, 2&;2’
& 3yB?
2rFy  8xF) +0(@’)
a 3avaB® 3aB?
277, 4nF,  4AnF +0(a?) (29)

where for B = 0 we recover the result obtained in (23). We

can also write the temperature in terms of area A = 277, as

6r’av/aB? 12n’aB?
A3 A4

Th==+ +O(a?).  (30)

o Qe

IV. QUANTUM-CORRECTIONS
TO THE ENTROPY

In this section we consider the GUP [4-8], which is
defined as

i, RB
AxAp > h 1—7Ap+?(Ap) , (31)

where / is a dimensionless positive parameter and /,, is the
Planck length.
Now the equation (31) can be recast in the form

n(Ax + Al
APZM —/1=
2/1213,

2p
Lpz. (32)
(Ax+Al,)

In the following computations, without loss of generality,
we shall adopt the units G = ¢ = kg =h =1, = 1. Now
we perform a power series in A to obtain

aprtfio A~
P=2ax | T 28x " 2(Ax)?

+} (33)

For the case without GUP, that is, when 4 = 0 we have the
Heisenberg uncertainty principle

AxAp > 1. (34)

From the above equation we can obtain a bound for
massless particles given by the relation

EAx > 1. (35)
In this case, the equation (33) can be written as follows:

<S'>E1——/1 +—,12 + - (36)
- 2(Ax)  2(Ax)? '
In order to obtain a dispersion relation in terms of the
momentum we start from the GUP (31) considering only
the quadratic contribution (which is dominant in the case of
large moment). In this case we find the following dispersion
relation:
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£>E[1+2<f)2+ } (37)

In this way the relation (37) can still be written in terms of
the moment assuming that p ~ Ap > 1/Ax and thus we
obtain the following dispersion relation for the supersonic
case

/12p2
5—E<1+T>, E=E(1+2p?). (38)

It is important to note that the second term corresponds in
our case to a dispersion due to viscosity of the fluid, so the
contribution of the GUP introduces a viscosity effect.
Further discussions on this subject can be found in
[75,76]; see also [37]. It should be mentioned here that
a “superluminal” dispersion relation of type (38) is obeyed
in excitations of a Bose-Einstein condensate [37,77]. On
the other hand starting from a Lagrangian density with
terms of high derivatives we can obtain the following
dispersion relation [37,56,75,78]:

k2
£ = (1 + A2> E2, (39)

where the upper signal corresponds to the superluminal
(supersonic for an acoustic black hole) case, the lower
signal for the subluminal (subsonic for an acoustic black
hole) case, and A is a dispersive momentum scale. Hence,
at the limit of A — oo we obtain £2 = E> = k? which is the
dispersion relation for a nondispersive medium. In [78] the
authors Corley and Jacobson have examined examples of
dispersion relation with different types of behavior. From
Eqg. (38) we can obtain the phase (v,) and group (v,)
velocities given respectively by

& /12]72
Up:;:1+7, (40)
and
d€ 322p?
=~ =1 ) 41
Ug dp + 2 ( )

Applying the Rayleigh’s formula that relates the phase and
group velocities

v, =1, + p(‘Zf) (42)

gives

& (43)

This result shows that vy > v,
supersonic case.

, which corresponds to the

A. Acoustic black hole (B =0)

As in the previous section, the probability of tunneling
for a particle with energy & is determined by means of the
following relation:

T = exp[-2ImT] = exp [2”5] (44)

Next we compare with the Boltzmann factor to find the
corrected Hawking temperature

+l—2)2+~-]_1. (45)

T=T
" 2(Ax

! A
2(Ax)
Since the minimum uncertainty in our model is of the order

of the radius of the horizon, from the equation above the
Hawking temperature corrected by the GUP reads

a y) 22 -1
T = l—— =4 . 46
277, [ 7, +8?§,+ ] (46)

In order to obtain the entropy of the acoustic black hole
corrected by the GUP, we apply the first law of thermo-
dynamics, so we have [68]

- /d_E - /KdA
N T ) 8T SﬂrhT

—a—l/df‘{l_’%’f”ﬂ }
N 4 24 2A2 '

(47)

This result for the entropy can also be presented in terms of
the horizon radius as

(227, mA 2xF, AP .
S=a! -= SR R
¢ [ 5 g gt

] . (48)

Here A = 277, = A/\/& and A = 2z, is the horizon area
of the acoustic black hole. By analyzing, the result for the
entropy we find that the second term is a correction of
logarithmic type and the third term shows a correction for
the entropy of area that is proportional to the Hawking
temperature. Next we display the expression for the entropy
in terms of r; given by

~ . 2mr, mwk, 2ar,
= S pr— —
“ 4v/a 8 Ty
2/12 3 7
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ForA=0and & = 1 (@ = 0) we have, S = A/4 = 2zr, /4.
It should be noted that the last term in the above equation
presents a logarithmic correction term that does not depend
on the radius of the horizon and shows a dependence on the
conserved charge ¢ = e(1 + 2a). This charge can be read
off from the equation of motion for the gauge field of the
Lagrangian (1) [55], i.e.,

(V-E) = 2ep(1 + 2a)w. (50)

B. Rotating acoustic black hole (B # 0)

1. Result with GUP

Here we will explore the case with rotation and deter-
mine the corrections for the temperature and entropy that
arise due to the GUP. In that sense, following all the steps as
described above, we find the respective results for temper-
ature and entropy keeping terms up to first order in a:

a 1
T houp = 20 [1 =T, _1(47;, - T3>

1 T -1
2 -3 1
e (87% 27h> i ] ’ G1)
5!
for(in)
n*  #T, -1
j. E_T A Py (52)

where

3aB? B 2aB?
Tz:L[ﬁ+T]:%[6 7

~2
2rh ry

271'3}

3aB? B] 3naB? B
Ty = {\/E—h—] — ”;3’ [x/EJrZ—A]. (54)

87, 7
For entropy we have

1A
SGUP:a 1|:z+51—ﬁ(81n4+52>

2
_ R (32A it S3> } (55)
where
7*aB? _ 2zB
5 i e

3r3aB? [Va nB
At Y
3r3aB? [Va B
3T (A8 [ 32A/4] (58)

Thus, taking B = 0 reduces to the result of Eq. (47). Note
that the contributions obtained for the terms, S, and S5 due
to the GUP have corrections that are only powers of 1/A.
However, logarithmic corrections of type ABInA are not
generated.

2. Result with modified dispersion relation

At this point, we shall consider the wave equation in the
curved space, i.e., in the background of the metric (5), to
obtain in terms of momentum and energy the following
Eq. [57]
[1+2a(v, +v,)|E* +2(7- K)E = (ac? = v*)k> =0. (59)
Thus solving the above equation and keeping terms up to
first order in @ we find the dispersion relation in the

nonrelativistic limit to the velocity profile (7) in the vicinity
of the event horizon, r — 7, in the form

g= E<1 —2avE- 228

2rh> +0@@).  (60)

where we have considered ¢, =1 and E =k is the
dispersion relation for @ = 0. Next, in order to compare
the relationship above with Eq. (39) we can write the
dispersion relation (60) as

22 _ (1 —2avE 2E2 naB :
&= 2\/_)E<1+(1_2a\/5)7h> (61)

:(1—4a)E2<1+'7“ )+O( 2), (62)
T

And then using k~ Ak > 1/Ax =1/7, and redefining

E? = £2/(1 — 4a) we rewrite the above equation as

E? = (1 + n2aBk)E* + O(a?), (63)

which can also be written in terms of the energy
difference as

AE E-E

5 naBk. (64)
Here n = +1 are the polarizations. By comparing with
Eq. (39) we identify 2aBk = k* /A%, and so we note that the
term containing the rotation parameter B plays the role of a
dispersion source associated with the viscosity of the fluid
at a momentum scale k* = 2aBA2.
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In order to emphasize the effect of B we again consider
the Rayleigh’s formula (42) and for the dispersion relation
(63) we find the following velocity difference:

”gv_ % _ paBk. (65)
P

For n = +1 we have the supersonic (v, > v,) case and
n = —1 the subsonic (v, < v,) case.

Again, applying the Hamilton-Jacobi method as done
previously we have

- -1
Th = Th <1 - 2&\/: - 2aB>

27,

_T, (1 —2av/a - 27;?3) N (66)

We can also write this equation in the form
Th = Th(l —+ (ZBk) + 0(02), (67)

where we have redefined 7, = 7,/(1 + 2a). The above
equation can be rewritten in terms of the Hawking temper-
ature variation with respect to changing the medium due to
rotation as follows:

ATh Th — Th aB
_—_— e = — = Bk_
T, T, PR (68)

So, we can write the following formula:

g—Vp AE

e

(69)

The formula above may conduct to the study of the
Hawking temperature variance in terms of the parameters
of the model. For instance in Bose-Einstein-Condensate
(BEC) physics [79,80] the deviation of an analogous
Lorentz-violating parameter f ~ aBk* ~107>; see also
[81] for related issues in quantum gravity. This leads to
an interesting deviation of temperature

AT, s
T, ~ 107, (70)
which is analogous to the celebrated small temperature
fluctuations in the anisotropy of the cosmic microwave
background (CMB).

Let us now return to corrected entropy issues. Through
the use of the dispersion relation discussed above we obtain
the entropy

Al =2av/a) 2zaB. A
S ( a\/&)_ T n2
4 4 4
3n?aB?> 6n’aB?
b4 oc~ 7T~0f2 }’ (71)
VaA 4aA

that can also be presented in terms of the horizon radius as

S— g 2a7,(1 = 2av/&)  2zaB 10 25T
4 4 4
N 3naB? N 6raB? }
2ar, 16472 ‘
Moreover, the above equation can be displayed in terms of
ry, in the form

(72)

27ry, (1 — 200/ @) _ 2naB In 2zry
a 4 4

3raB? 6raB® 2maB
2 1672 T8

S=38a=

In(l1+2a)+---. (73)

Therefore, we show that using the dispersion relation
derived from the model itself we have obtained a loga-
rithmic correction term for entropy as well as a term that
depends on a conserved charge. Note also that the loga-
rithmic corrections arise only when the parameter B
associated with the circulation is nonzero. On the other
hand if B = 0 these logarithmic corrections are not gen-
erated even if @ # 0. Here we highlight that in obtaining the
entropy results in Egs. (49) and (55) we have applied the
GUP approach to obtain a modified dispersion relation to
compute the quantum corrections for the Hawking temper-
ature and entropy. On the other hand, in another approach
we have focused on a dispersion relation that is modified
but the uncertainty principle preserves the standard
Heisenberg form, that is, to obtain the entropy given by
Eq. (73) we have considered the standard uncertainty
principle. Such a modified dispersion relation arises due
to the effect of Lorentz symmetry breaking terms that were
introduced in the Lagrangian (1) that consequently reflects
in the modification of the acoustic metric (5).

V. CONCLUSIONS

In summary, by considering the GUP and the tunneling
formalism via the Hamilton-Jacobi method, using the WKB
approximation, we computed the Hawking temperature and
the entropy associated with the rotating acoustic black hole.
We found corrections for temperature and entropy. In
particular for entropy we have obtained terms of logarithmic
type corrections that appear in the leading order and a
contribution related to conserved charge. Furthermore
applying a dispersion relation obtained from the model
itself, terms of logarithmic corrections were also generated.
Thus for rotating acoustic black holes the modified
dispersion relation obtained from a Lorentz-violating
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background seems to be more effective for finding loga-
rithmic corrections than the GUP which are usually obtained
to account for the Heisenberg uncertainty principle in black
holes and string theory. Such rotating acoustic black holes
also provide us with an interesting formula for deviation of
temperature, which for BEC systems reveals the interesting

result: AT—Thh ~ 1073, This clearly reminds us of the celebrated

temperature deviation in the CMB temperature and inves-
tigations in this direction should be further addressed.
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