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The false vacua of some potentials do not decay via Euclidean bounces. This typically happens for
tunneling actions with a flat direction (in field configuration space) that is lifted by a perturbation into a
sloping valley, pushing the bounce off to infinity. Using three different approaches we find a consistent
picture for such decays. In the Euclidean approach the bottom of the action valley consists of a family of
pseudobounces (field configurations with some key good properties of bounces except extremizing the
action). The pseudobounce result is validated by minimizing a Wentzel–Kramers–Brillouin action in
Minkowski space along appropriate paths in configuration space. Finally, the most natural approach uses
the tunneling action method proposed recently with a simple modification of boundary conditions.
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I. INTRODUCTION

Metastable (false) vacua appear often in models of
particle physics, from beyond the Standard Model quantum
field theories to the landscape of string theory. Perhaps even
our Standard Model vacuum is metastable [1–3]. Such
vacua are also quite relevant in cosmology as our Universe
might have spent time in them between different cosmo-
logical phase transitions.
Such false vacua can decay via quantum tunneling (by the

nucleation of bubbles of a more stable phase that expand and
transform the false vacuum into a deeper one). When the
false vacuum is sufficiently long-lived, its decay rate (per
unit volume) is exponentially suppressed and given by

Γ=V ¼ Ae−S=ℏ½1þOðℏÞ�; ð1Þ

where the exponential prefactor A has dimensions of
½energy�4 and the crucial quantity is the tunneling
action S. We assume S=ℏ ≫ 1 so that the semiclassical
approximation applies.
There is a well-known and elegant procedure, due to

Coleman [4], to calculate S. It goes as follows. Take for
simplicity a single real scalar field ϕ in four dimensions,
with a potential VðϕÞ that features a metastable local
minimum at ϕþ and a deeper minimum at ϕ−; see
Fig. 1, left plot. Without loss of generality (and in the
absence of gravity) fix ϕþ ¼ 0 and VðϕþÞ ¼ 0.

The tunneling action S for the decay of the false vacuum
at ϕþ is calculated by finding an Oð4Þ-symmetric bounce
ϕBðrÞ (or Euclidean bounce) that interpolates between
the false vacuum ϕþ and (the basin of) the true vacuum
at ϕ− and back to ϕþ. Such a bounce extremizes [5]
the Euclidean action for the scalar field, which for
Oð4Þ-symmetric configurations reads

SE½ϕ� ¼ 2π2
Z

∞

0

�
1

2
_ϕ2 þ VðϕÞ − VðϕþÞ

�
r3dr: ð2Þ

Therefore, the bounce is a solution of the corresponding
Euler-Lagrange equation:

ϕ̈þ 3

r
_ϕ ¼ V 0; ð3Þ

where a dot (prime) represents a derivative with respect
to r (ϕ). The bounce boundary conditions are

_ϕBð0Þ ¼ 0; ϕBð∞Þ ¼ ϕþ: ð4Þ

If we identify r with time, Eq. (3) describes the classical
motion of a point particle in the inverted potential −VðϕÞ
subject to a velocity-dependent and time-decreasing fric-
tion force. The bounce solution can be found by changing
the value of the field at the center of the bounce,
ϕBðr ¼ 0Þ≡ ϕ0, until the boundary condition at r → ∞
is satisfied. The tunneling action for the decay of the ϕþ
vacuum is then given as S ¼ SE½ϕB�.
If the potential does have a true vacuum then it is

generally guaranteed, by the so-called undershooting and
overshooting method, that the bounce solution exists. If one
solves the differential equation (3) starting with a ϕ0 lower
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than ϕx [for which VðϕxÞ ¼ 0; see Fig. 1, left plot], friction
ensures that the solution does not reach ϕþ (this is an
undershot). On the other hand, starting with ϕ0 arbitrarily
close to the minimum ϕ−, the field will spend much time
rolling very slowly at the beginning, friction will become
more and more irrelevant and (Euclidean) energy conser-
vation will ensure that the field reaches ϕþ with nonzero
velocity: an overshot. By continuity between such extreme
cases there must exist a ϕ0 that lands the field at ϕþ with
zero velocity, corresponding precisely to the bounce
solution, which can then be found by interval bisection.
Nevertheless, for some potentials this is not the whole

story. One special, and well-known, example is the simple
unstable quartic potential V ¼ −λϕ4=4 (of relevance for
the study of the stability of the Standard Model Higgs
potential). This potential has the property that solutions
of (3) with arbitrary starting point ϕ0 are all bounces, as
they reach ϕþ at r → ∞. These are the so-called Fubini
bounces [6,7] and can be obtained analytically as

ϕBðrÞ ¼
ϕ0

1þ r2=R2
; with

1

R2
¼ 1

8
λϕ2

0; ð5Þ

and lead to the tunneling action

SE½ϕB� ¼
8π2

3λ
: ð6Þ

The fact that the potential is scale invariant explains why no
particular ϕ0 is singled out for the bounce and leads to a
degenerate family of instantons with arbitrary ϕ0 (and size
R ∼ 1=ϕ0) and why the tunneling action does not depend
on ϕ0 [8].

1 In other words, the action functional SE½ϕ� has a

flat direction in field configuration space, consisting of the
family of Fubini bounces, where it takes the value (6).
There are other potentials with a false vacuum for

which no Euclidean bounce describes its decay. It is easy
to come up with examples of such potentials. Consider as
an example the class of potentials with a false vacuum at
ϕþ ¼ 0, with some kind of barrier that reaches its maxi-
mum at ϕT > 0, beyond which the potential is simply
Vðϕ > ϕTÞ ¼ −λðϕ − ϕTÞ4=4 [9]; see Fig. 1, right plot.
Due to the special properties of the quartic potential
mentioned above, it is clear that any solution of Eq. (3)
starting at r ¼ 0 with some ϕð0Þ ¼ ϕ0 > ϕT and _ϕð0Þ ¼ 0
ends at ϕð∞Þ ¼ ϕT , never reaching ϕþ: thus this class of
potentials indeed has no Euclidean bounce.
Another simple example of potential without bounce is

VðϕÞ ¼ 1

2
m2ϕ2 −

λ

4
ϕ4; ð7Þ

for either sign of m2. This is most clearly seen [10] as
follows. Assume there is a bounce ϕBðrÞ and consider the
rescaled field profile ϕaðrÞ≡ aϕBðarÞ. The Euclidean
action for the rescaled field, after changing the integration
variable, reads

SE½ϕa� ¼ 2π2
Z

∞

0

�
1

2

�
dϕB

dr

�
2

−
1

4
λϕ4

B

�
r3dr

þ 2π2

a2

Z
∞

0

�
1

2
m2ϕ2

B

�
r3dr: ð8Þ

As ϕBðrÞ is by assumption a bounce, it extremizes the
Euclidean action and, therefore, one should have
dSE½ϕa�=da ¼ 0 at a ¼ 1, which translates, for m2 ≠ 0,
into the condition

Z
∞

0

ϕ2
Br

3dr ¼ 0; ð9Þ

FIG. 1. Potentials VðϕÞ with a false vacuum at ϕþ and its tunneling potentials, VtðϕÞ. Left: Generic case. Right: Case without bounce.

1In more detail, scale invariance implies that, if ϕBðrÞ is a
bounce solution, then the rescaled aϕBðarÞ (with a > 0) is also a
bounce solution. As seen explicitly from (5), the rescaling
amounts to a rescaling of ϕ0 → aϕ0 (or, equivalently, a rescaling
of the bounce radius R → R=a).
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which can only be satisfied for ϕBðrÞ≡ 0. This contradicts
the initial assumption about the existence of a nontrivial
bounce.
Such potentials without bounce are the main focus of this

paper. There is nothing mysterious or subtle about them:
quantum fluctuations on the false vacuum still nucleate
bubbles that probe the unstable part of the potential, with
decay rates that depend on the shape of the bubble.
Nevertheless, these potentials have caused some confusion
in previous literature (see [9] for a recent example) and we
believe there is room for improvement over the methods
developed todealwith themin thepast, likeusing theso-called
constrained instantons [10,11] or valley equations [12–15].
This paper revisits this problem relying first on the

standard Euclidean approach to find pseudobounce field
profiles with finite action that can mediate vacuum decay.
This generic type of profile is illustrated with full analytical
control in the simple scale-invariant potential V ¼ −λϕ4=4
in Sec. II. Resorting to the Minkowskian Wentzel–
Kramers–Brillouin (WKB) approach we show in Sec. III
that such field configurations can indeed mediate vacuum
decay and that the decay rate is correctly given by their
Euclidean action.
Alternatively, tunneling actions can be calculated without

using Euclidean bounces, as done in the formulation of [16].
This new approach introduces a tunneling potential Vt to
describe the decay process and formulates the action
calculation as a simple variational problem in field space.
It is then natural to explore how this new approach deals with
the class of potentials that admit no bounce. Section IV
shows how the new approach can be directly applied without
modification to this class of potentials to obtain what we call
“restricted” Vt’s (with fixed end-point ϕ0) and the tunneling
action calculated by the same expression used for generic
potentials that admit a bounce. The results of this new
approach agree with those obtained for Euclidean pseudo-
bounces. Moreover, these findings compare favorably with
the results obtained using the constrained instanton approach
or valley methods, as is shown in Sec. V. In particular,
pseudobounces inherit some of the good properties of proper
bounces, not shared in general by previous approaches.
Sections VI and VII extend the previous analyses to the

simple potentials V ¼ −m2ϕ2=2 (for which pseudobounces
coexist with a proper bounce) and V ¼ m2ϕ2=2 − λϕ4=4,
respectively. We find that pseudobounces might be relevant
even for vacua whose decay is dominated by a proper
bounce. In Sec. VIII we show how to construct potentials
for which an analytical treatment of the restricted tunneling
potentials can be performed. Section IX presents a sum-
mary and outlook.

II. THE POTENTIAL VðϕÞ= − λϕ4=4:
EUCLIDEAN APPROACH

Instead of studying a no-bounce potential like the one in
Fig. 1, right plot, with an arbitrary barrier from ϕþ to ϕT , it

proves convenient to just take V ¼ −λϕ4=4. We modify
this V so that there is a false minimum at some ϕþ < 0 and
a deeper “true” vacuum at ϕ− > −ϕþ (without changing
the potential between ϕþ and ϕ−); see Fig. 2. We then
consider the decay ϕþ → ϕ−. This gives the simplest no-
bounce potential and the idea is to calculate SEðϕþ → ϕ−Þ
and see how this varies with growing ϕ− for a fixed ϕþ.
Due to the simple form of the no-scale potential chosen

we can readily guess some of the key properties of
SEðϕþ → ϕ−Þ. The only mass scales in the problem are
ϕþ and ϕ− and therefore, the dimensionless tunneling
action (setting ℏ ¼ 1) must be a function of their ratio:

SEðϕþ → ϕ−Þ ¼ fð−ϕþ=ϕ−Þ: ð10Þ

The ratio −ϕþ=ϕ− ∈ ð0; 1Þ and the two boundary values
of this interval are particularly simple. For ϕ− → −ϕþ the
two vacua become degenerate and the decay rate should
vanish. This implies

fð1Þ ¼ ∞: ð11Þ

The approach to this limiting value should be well
described by the thin-wall approximation:

SE;tw ¼ 27π2σ4

2δV3
; ð12Þ

with the wall tension

FIG. 2. Potential VðϕÞ ¼ −λϕ4=4 (blue line) for λ ¼ 0.1.
Tunneling from ϕþ to ϕ− can be studied by modifying the
potential as shown by the dashed lines (that create minima at ϕ�).
The corresponding restricted tunneling potential, Vt, for such
decay is also plotted. The dashed line corresponds to the standard
Vt that fails to reach ϕþ, as in Fig. 1.

TUNNELING WITHOUT BOUNCE PHYS. REV. D 100, 105002 (2019)

105002-3



σ ¼
Z

ϕ−

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðϕÞ − Vðϕ−Þ�

p
≃
4

3

ffiffiffi
λ

2

r
Kð−1Þϕ3

−; ð13Þ

where Kð−k2Þ is the complete elliptic integral of the first
kind

Kð−k2Þ ¼
Z

π=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 sin2 θ

p dθ; ð14Þ

and where

δV ≡ VðϕþÞ − Vðϕ−Þ ¼
λ

4
ðϕ4

− − ϕ4þÞ; ð15Þ

is the energy difference between the vacua.2

On the other hand, for ϕþ ¼ 0 and arbitrary ϕ− we
recover the case of Fubini bounces and therefore

fð0Þ ¼ 8π2

3λ
: ð16Þ

The same limit should be reached asymptotically for
ϕþ ≠ 0 and ϕ− → ∞. The absence of a bounce for V
indicates also that this limit will be reached from above,
with f decreasing monotonically with −ϕþ=ϕ− → 0.
We can confirm explicitly the expectations above by

solving for the bounce when we enforce minima at ϕ�.
Such minima now allow ϕðrÞ to wait at ϕ− and start rolling
only after some r−. This reduces the friction and makes it
possible to reach ϕþ with zero velocity at some finite rþ.
An example of this field profile is given in the left plot of
Fig. 3. The field takes a constant value ϕ− inside an inner
radius r− and reaches the false vacuum value ϕþ at a finite
outer radius rþ, with a nontrivial transition in a wall region
between both radii. The analytical solution is

ΦðrÞ ¼

8>>>>>><
>>>>>>:

ϕ−; r < r−

rϕ
r k

1=2sn
h
sn−1½k−1=2;−k2� þ logðr=r−Þffiffiffiffiffiffiffiffi

k2−1
p ;−k2

i
; r− < r < rþ

ϕþ; r > rþ

; ð17Þ

where snðz;−k2Þ is the Jacobi elliptic sine function, with

k2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2r4ϕ

q
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2r4ϕ
q

− 1
; ð18Þ

and

FIG. 3. Left: Profile of the Euclidean pseudobounce for the potential of Fig. 2 as given by Eq. (17), with ϕþ ¼ −1 and rþ ¼ 10.
Right: The ratio r−=rþ as a function of rϕ ¼ −rþϕþ ¼ r−ϕ− as given by Eq. (19). For the case of the left plot, this gives ϕ− ¼ 3.313
and r− ¼ 3.02.

2This thin-wall approximation can be refined further if the wall tension is defined as σ ¼ R ϕ−
ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðϕÞ − VlðϕÞ�

p
, where VlðϕÞ is a

constant slope potential connecting VðϕþÞ and Vðϕ−Þ.
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rϕ ≡ r−ϕ− ¼ −rþϕþ: ð19Þ

Note that the last equality is nontrivial and leads to the
simple relation r−=rþ ¼ −ϕþ=ϕ−. (As a consistency
check, the standard Fubini case with ϕþ ¼ 0;ϕ− ≠ 0
has r− ¼ 0 and rþ ¼ ∞, while the thin-wall limit has
r− ≃ rþ.)
To make the solution complete we should find a relation

between r−=rþ and rϕ, which is obtained by requiring
ΦðrþÞ ¼ ϕþ. Using the periodicity properties of sn [in
particular, snðxþ 2Kð−k2Þ;−k2Þ ¼ −snðx;−k2Þ] we get

r−
rþ

¼ exp
h
−2Kð−k2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p i
: ð20Þ

This relation is shown in the right plot of Fig. 3. We see
that the thin-wall limit, r−=rþ → 1, corresponds to rϕ ≫ 1

while the Fubini case (ϕþ ¼ 0) corresponds to rϕ → 0.
The field profile of (17) would be a proper bounce if the

potential did have a true minimum in ϕ−, so we will call it
“pseudobounce.” This fact is at the basis of many good
properties of such pseudobounces, as we show later on.
It is intuitively clear that vacuum fluctuations are able to
produce such a configuration whether there is a true
vacuum at ϕ− or not, so we argue that this field configu-
ration can still mediate vacuum decay when the potential is
unbounded. Assuming this is the case (and we will put this
on solid ground in the next section) the rate would be given
as usual by the Euclidean action integral, that can be
performed analytically, and reads

SEðϕþ → ϕ−Þ ¼
4π2

3λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
�
2Eð−k2Þ − k2 − 2

k2 − 1
Kð−k2Þ

�
;

ð21Þ

where Eð−k2Þ is the complete elliptic integral of the second
kind,

Eð−k2Þ ¼
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 sin2 θ

p
dθ; ð22Þ

and Kð−k2Þ has already appeared in (14).
This action (21) is shown in Fig. 4 [in units of

SE;0 ¼ 8π2=ð3λÞ] as a function of the ratio −ϕ−=ϕþ,
showing the anticipated behavior. For comparison, the
red dashed lines also show the thin-wall approximation
of Eq. (12) [with the wall tension calculated as in (13)
(curve labeled tw) or as explained in footnote 2 (curve
labeled twl)]. The violet dashed line corresponds instead to
the expansion of (20) for small rϕ:

SE ≃
8π2

3λ
þ 1

2
π2λr4ϕ þOðr8ϕÞ: ð23Þ

It can also be shown that the profile (17) reproduces the
Fubini instanton in the limit rϕ → 0 (with r− → 0). For this
purpose it is convenient to rewrite (17) in the alternative
form (for r− < r < rþ)

ΦðrÞ ¼
rϕ
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − s2
p

− s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κs2

p �
r½1 − s2ðκ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − κÞκp Þ� ; ð24Þ

where

s≡ snðlogðr−=rÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ − 1

p
; κÞ; κ ≡ k2

k2 þ 1
: ð25Þ

The limit rϕ → 0 corresponds to κ → 1, in which case we
can use the expansion

snðu;κÞ¼ tanhðuÞþ1

4
ð1− κÞ½sinhðuÞcoshðuÞ−u�sechðuÞ2

þOð1− κÞ2; ð26Þ

to arrive at

lim
rϕ→0

1

ΦðrÞ ¼
1

ϕ−
þ 1

8
λϕ2

−r2; ð27Þ

which reproduces the Fubini instanton (5) with ϕ0 ¼ ϕ−.
What is special then about this class of potentials is

that the tunneling action SEðϕþ → ϕ−Þ is a monotonically
decreasing function of ϕ− with the smallest value reached

FIG. 4. Solid blue line: Euclidean action for the tunneling
ϕþ → ϕ− in the potential of Fig. 2 as a function of the ratio
−ϕ−=ϕþ as given by Eq. (20) and normalized with respect to the
Fubini action SE;0 ¼ 8π2=ð3λÞ. Dashed curves show approxima-
tions for −ϕþ=ϕ− → 0 (or equivalently rϕ → 0, violet) and for
−ϕ−=ϕþ → 1 (thin-wall limit, red).
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only asymptotically at ϕ− → ∞. This explains why there is
no bounce solution: the minimum of the action is pushed
away to infinity. In other words, ϕþ ≠ 0 breaks explicitly
the scale invariance and lifts the flat direction of Fubini
bounces into a valley in configuration space. We can still
use ϕ− as a parameter along the bottom of this valley.
The action along it decreases towards the scale-invariant
value, achieved only asymptotically, when the scale break-
ing parameter −ϕþ=ϕ− → 0. This shows that the decay of
the ϕþ vacuum is dominated by small size instantons and is
therefore sensitive to ultraviolet effects that might modify
the potential at large field values. Renormalization effects
can also play an important role in modifying the shape of
the valley bottom. For the final calculation of the decay rate
one has to integrate the differential decay rate along this
valley using the collective coordinate method and deal with
possible divergences [3,13,15].

III. MINKOWSKI APPROACH

The Euclidean bounce approach to calculating tunneling
actions is ultimately justified by the WKB approach in
Minkowski space [17,18]. In this section we use this
approach to show that pseudobounce field configurations
like (17) can indeed mediate vacuum decay even though
they are not proper bounces. Before proving this, we first
show that these configurations share one of the key
properties of the bounce: the slice of the bounce at zero
Euclidean time (τ ¼ 0) gives a bubble configuration of zero
energy in three-dimensional real space. This critical bubble
is the (most likely) end product of the tunneling process out
of the false vacuum. These are the bubbles that expand after
being nucleated and eat away the false vacuum.
Let us check that the τ ¼ 0 slice of the Euclidean

pseudobounce solution has indeed zero energy. The total
energy is given by the integral

EB ≡ 4π

Z
∞

0

drr2
�
1

2

�
dΦ
dr

�
2

þ VðΦÞ − Vþ

�
; ð28Þ

where now r ¼
ffiffiffiffiffi
x⃗2

p
and V� ≡ Vðϕ�Þ. We can split the

integral into three pieces: the bulk (r < r−), the wall
(r− < r < rþ), and the outside (r > rþ). The bulk piece
is trivial and gives the negative contribution

EB;B ¼ −4πδV
r3

3

				r−
0

¼ −4πδV
r3−
3
; ð29Þ

where δV ≡ Vþ − V−. The wall contribution can be calcu-
lated most easily by using integration by parts and the
equation of motion of ΦðrÞ, Eq. (3), as follows:

Z
rþ

r−

drr2ðV − VþÞ

¼ r3

3
½VðΦðrÞÞ − Vþ�

			rþ
r−

−
Z

rþ

r−

r3

3
V 0 _Φdr

¼ r3−
3
δV −

Z
rþ

r−

r3

3

�
Φ̈þ 3

r
_Φ
�
_Φdr

¼ r3−
3
δV −

1

6
r3 _Φ2

			rþ
r−

−
1

2

Z
rþ

r−

_Φ2r2dr; ð30Þ

where V 0 ¼ dV=dΦ and _Φ ¼ dΦ=dr. Using _Φðr�Þ ¼ 0
we then obtain that the wall contributes to the bubble
energy the positive amount

EB;W ¼ 4π

Z
rþ

r−

drr2
�
1

2

�
dΦ
dr

�
2

þ VðΦÞ − VðϕþÞ
�

¼ 4π
r3−
3
δV: ð31Þ

The energy contribution from the outside piece trivially
vanishes, EB;O ¼ 0, so adding all the pieces together we get

EB ¼ EB;B þ EB;W þ EB;O ¼ 0: ð32Þ

This nice property ultimately follows from the fact that
the pseudobounce configuration is in fact a proper bounce
of the modified potential with a true minimum at ϕ−, so it
inherits some good properties of proper bounces.
The connection between the Euclidean approach of

Coleman and the WKB Minkowskian formulation to
describe false vacuum decay in field theory is very clearly
explained in [18], which we follow closely below. The
vacuum decay is a process of quantum tunneling between
the initial vacuum configuration ϕþ ¼ ϕðx⃗; αðt1ÞÞ (with
Vþ ¼ 0) and a zero-energy field configuration ϕðx⃗; αðt2ÞÞ
containing a bubble inside which the field probes the
regions where the potential is negative. These two con-
figurations are separated by an energy barrier whose shape
depends on the particular path in configuration space,
parametrized by αðtÞ, that connects them. The original
Minkowskian action for the scalar field

S ¼
Z

d3x⃗dt
��

dϕ
dt

�
2

−
1

2
ð∇⃗ϕÞ2 − VðϕÞ þ Vþ

�
; ð33Þ

restricted to a tunneling path ϕα ≡ ϕðx⃗; αðtÞÞ, leads to

S ¼
Z

t2

t1

dt

�
1

2
mðαÞ

�
dα
dt

�
2

− VðαÞ
�
; ð34Þ

with
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mðαÞ≡
Z

d3x⃗

�
dϕα

dα

�
2

;

VðαÞ≡
Z

d3x⃗

�
1

2
ð∇⃗ϕαÞ2 þ VðϕαÞ − Vþ

�
; ð35Þ

thus reducing the problem to a one-dimensional quantum
mechanical one. The tunneling exponent for decay along
this path is then given by the usual WKB expression

SWKB ¼ 2

Z
α2

α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðαÞVðαÞ

p
; ð36Þ

with αi ¼ αðtiÞ. Decay proceeds most likely along the path
that minimizes this tunneling action (dubbed the “most
probable escape route”). It can be shown [18] that SWKB
agrees with the Euclidean action result taking Euclidean
time to satisfy

dτ
dα

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mðαÞ
2VðαÞ

s
; ð37Þ

and it is minimized precisely for a path related to the
Euclidean bounce solution ϕBðrÞ by

ϕα ¼ ϕðx⃗; αðtÞÞ ¼ ϕB

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x⃗2 þ τ2

p �
; ð38Þ

making Oð4Þ invariance manifest.
To illustrate this approach consider the simple case [19]

with VðϕÞ ¼ −λϕ4=4 and take the trajectory in field space
to be defined by

ϕαðr; αÞ ¼
ϕ0

1þ ðr2 þ α2Þ=R2
; with

1

R2
¼ λϕ2

0

8
; ð39Þ

with r ¼
ffiffiffiffiffi
x⃗2

p
. For α ¼ ∞ we get the false vacuum,

ϕα → ϕþ ¼ 0, while α ¼ 0 gives the τ ¼ 0 slice of the
Fubini instanton profile. It is straightforward to get

mðαÞ ¼ 2VðαÞ ¼ 4π2α2R2

λðR2 þ α2Þ5=2 ; ð40Þ

so that α ¼ τ, and then

SWKB¼4

Z
∞

0

VðαÞdα¼ 8π2α3

3λðR2þα2Þ3=2
				∞
0

¼8π2

3λ
; ð41Þ

precisely the value obtained via the Euclidean approach.
Figure 5 shows 4VðαÞ for different values of R (or ϕ0). This
is the true ener gy barrier under which vacuum decay
tunneling takes place. Although the height of the barrier
changes with R, the area below the barrier, that determines
the tunneling exponent as in (41), remains constant, as
obtained explicitly above.
Let us then consider a pseudobounce profile like Eq. (17)

(which we will use for the numerical examples) and define
a path in Minkowski space simply via the replacement
r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ α2

p
:

Φαðr; αÞ≡Φ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ α2
p �

: ð42Þ

Different α snapshots of this path for the numerical
example are shown in Fig. 6, left plot. In this case,
α ¼ 0 corresponds to the pseudobounce configuration
and α ¼ rþ corresponds to the false vacuum ϕþ (taken
at ϕþ ¼ −1, with rϕ ¼ 10, in this example). Using Oð3Þ
rotational invariance and the fact that inner and outer radii
for general α are rα;� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2� − α2
p

we can write

mðαÞ ¼ 4πα2
Z

rα;þ

rα;−

_Φ2
αdr;

VðαÞ ¼ −
4

3
πδVr3α;− þ 4π

Z
rα;þ

rα;−

�
1

2
_Φ2
α þ VðϕαÞ − Vþ

�
;

ð43Þ

where _Φα ¼ dΦα=dr. The differential equation satisfied by
ΦαðrÞ in the interval ðrα;−; rα;þÞ can be derived directly
from Eq. (3) and is

�
1þ α2

r2

�
Φ̈α þ

1

r

�
3 −

α2

r2

�
_Φα ¼ V 0ðΦαÞ: ð44Þ

Using this equation and integration by parts in the VðαÞ
integral above shows that mðαÞ ¼ 2VðαÞ. Therefore

SWKB ¼
Z

rþ

0

4VðαÞdα: ð45Þ

FIG. 5. Energy barrier in configuration space [spanned by the
parameters α and R of the path in (39)] for tunneling out of
ϕþ ¼ 0 with VðϕÞ ¼ −λϕ4=4. (For this plot λ ¼ 0.1.)
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Figure 6, right plot, shows the integrand above in our
numerical example as a function of rϕ (which ultimately
determines ϕ0 and the size of the pseudobounce). As is
clear from the figure, tunneling at lower values of rϕ is
preferred, as was found in Sec. II. In fact, it can be checked
numerically that (45) agrees with the analytical result for
the Euclidean action given in Eq. (21).
The previous discussion confirms (and illustrates

numerically) that the Euclidean calculation of Sec. II gives
indeed the correct action corresponding to a vacuum decay
by tunneling. Moreover, SWKB minimizes the action for
tunneling from ϕþ towards a fixed value ϕ− ¼ ϕ0 (as is
clear by thinking about the modified potential with a true
minimum at ϕ−).

IV. TUNNELING POTENTIAL APPROACH

The new approach proposed in [16] reformulates the
calculation of tunneling actions as a simple variational
problem in field space, without reference to Euclidean
space or bounces. This tunneling potential formulation
has a number of advantages and appealing features that
have been studied in detail elsewhere: it allows for a
fast and precise numerical determination of the action;
it can be modified to study decays by thermal fluctua-
tions; it can be used to construct potentials that allow a
fully analytical solution to the tunneling problem [16];
it can be generalized to include in a simple and
compact way gravitational corrections [20]; and it
can be very useful to study efficiently vacuum decays
in multifield potentials [21] as one is searching for a
minimum of the action (rather than a saddle point, as in
the Euclidean case).
For a potential VðϕÞ with a false vacuum at ϕþ,

the tunneling action is obtained as the minimum of the
functional

S½Vt�≡ 54π2
Z

ϕ0

ϕþ

ðV − VtÞ2
−ðV 0

tÞ3
dϕ; ð46Þ

where V 0
t ¼ dVt=dϕ ≤ 0. The Euler-Lagrange equation

corresponding to minimizing this action reads [16]

ð4V 0
t − 3V 0ÞV 0

t ¼ 6ðVt − VÞV 00
t : ð47Þ

The tunneling potential VtðϕÞ to be found has to satisfy the
boundary conditions

VtðϕþÞ ¼ VðϕþÞ; Vtðϕ0Þ ¼ Vðϕ0Þ: ð48Þ

The correspondence between this formulation and the
Euclidean one is based on the relation Vt ¼ V − _ϕ2

B=2,
where ϕB is the Euclidean bounce. The field value ϕ0

corresponds precisely to ϕBð0Þ; see [16] for details.
An example of the shape of the tunneling potential is

given in Fig. 1, left plot. The agreement between the actions
calculated in both formalisms, proven in [16] for proper
bounces, is straightforward after writing the Euclidean
action in terms of the gradient contribution only. More
precisely, one has

SE ≡ 2π2
Z

∞

0

drr3
�
1

2

�
dΦ
dr

�
2

þ VðΦÞ − Vþ

�
¼ SK þ SV;

ð49Þ

where we have split the action in a gradient contribution SK
and a potential contribution, SV . Derrick’s theorem [22]
gives the relation SV ¼ −SK=2 so that SE ¼ SK=2.
In this section we examine how this new approach can be

applied to potentials with false vacua that admit no bounce.
It is in fact most natural in this approach to consider what is
the minimal value of the action S½Vt� for a fixed value of ϕ0

FIG. 6. Left: Snapshots of the tunneling path (42) for the indicated values of α. For α ¼ 0 we get the tunneling bubble configuration
while α ¼ 10 gives the false vacuum ϕþ ¼ −1. Right: Energy barrier in configuration space [spanned by the parameters α and rϕ of the
path (42)] for tunneling out of ϕþ ¼ −1 with VðϕÞ ¼ −λϕ4=4. We use λ ¼ 0.1, rþ ¼ rϕ ¼ 10.
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first (we call such Vt “restricted” tunneling potential) and
then vary ϕ0 to find the absolute minimum of the action.
From the discussion in previous sections it is clear what
outcome to expect at least for the V ¼ −λϕ4=4 potential
of Sec. II: S will have a runaway minimum at ϕ0 → ∞.
Before showing that, we first check that S½Vt� does
reproduce the correct value that we found via the
Euclidean or Minkowskian approaches.
The agreement of S½Vt� and the Euclidean action SE is

based on the relations Vt ¼ V − _ϕ2
B=2 and SE ¼ SK=2, as

we have mentioned above. Let us check this last relation
for the pseudobounce field configuration. We again split
the action integral in bulk (r < r−), wall (r− < r < rþ),
and outside (r > rþ) contributions. The bulk piece gives

SE;B ¼ −π2δV
r4

2

				r−
0

¼ −π2δV
r4−
2
: ð50Þ

For the wall contribution we use again integration by parts
and the equation of motion to get

Z
rþ

r−

drr3ðV − VþÞ ¼
r4−
4
δV −

1

4

Z
rþ

r−

_Φ2r3dr ð51Þ

and then obtain for the wall contribution to the Euclidean
action

SE;W ¼ 2π2
Z

rþ

r−

drr3
�
1

2
_Φ2 þ VðΦÞ − Vþ

�

¼ π2
r4−
4
δV þ π2

2

Z
rþ

r−

drr3 _Φ2: ð52Þ

The action contribution from the outside piece trivially
vanishes, SE;O ¼ 0, so adding all the pieces together we get

SE ¼ SE;B þ SE;W þ SE;O ¼ 1

2
SK; ð53Þ

precisely as in the bounce case. We see once again that the
pseudobounce has some of the good properties of a proper
bounce, which is due to the fact that the pseudobounce
would be a true bounce for a modified potential.
While a true Euclidean bounce corresponds, in the

formulation of the tunneling potential, to a Vt that gives
the absolute minimum for S½Vt�, a pseudobounce corre-
sponds to a Vt that minimizes S½Vt� restricted to those Vt’s
that end at a fixed ϕ0. It is interesting that the boundary
conditions on V 0

tðϕ0Þ are different in both cases. While
the Vt that gives the absolute action minimum satisfies
V 0
tðϕ0Þ ¼ 3V0ðϕ0Þ=4 [16], the “restricted” Vt satisfies

instead V 0
tðϕ0Þ ¼ 0. Both cases are consistent with

Eq. (47). In Sec. VIII we will present some potentials
with restricted Vt’s that can be studied with full analytical
control.

The boundary condition V 0
tðϕ0Þ ¼ 0 for restricted tun-

neling potentials can be understood by resorting again to
the modified potential with a sharp minimum at ϕ− ¼ ϕ0,
so that V 0ðϕ0Þ ¼ 0 for the modified potential. Alternatively,
we can see the consistency of V 0

tðϕ0Þ ¼ 0 with the
pseudobounce profile using the relation between the
Euclidean radial coordinate and Vt [16]:

r ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ
ðV 0

tÞ2
s

: ð54Þ

In the proper bounce case, generically V 0
tðϕ0Þ ≠ 0 so that

r → 0 for ϕ → ϕ0 [as Vtðϕ0Þ ¼ Vðϕ0Þ]. For a pseudo-
bounce, instead, r takes a finite value r− ≠ 0 when ϕ → ϕ0

so that (54) requires V 0
tðϕ0Þ → 0, with

V − Vt

ðV 0
tÞ2

				
ϕ0

¼ r2−
18

: ð55Þ

There is a direct link between the fact that r− ≠ 0
for pseudobounces and the fact that they do not minimize
the tunneling action. From (46) we get, using integration
by parts,

dS
dϕ0

¼ 54π2

ðV − VtÞ2

−ðV 0
tÞ3

				
ϕ0

þ 3
ðV − VtÞ2
ðV 0

tÞ4
dVt

dϕ0

				ϕ0

ϕþ

þ 2

Z
ϕ0

ϕþ

ðV − VtÞ
ðV 0

tÞ5
½ð4V 0

t − 3V 0ÞV 0
t

þ 6ðV − VtÞV 00
t �
dVt

dϕ0

dϕ

�
: ð56Þ

The first term in the right-hand side vanishes as it is
proportional to r2−V 0

tðϕ0Þ ¼ 0. The third term vanishes
because the integrand is zero due to the Euler-Lagrange
equation (47). The only term surviving is the second
(boundary) term, that can be rewritten as

dS
dϕ0

¼ π2

2
r4−
dVt

dϕ0

				ϕ0

ϕþ

¼ π2

2
r4−V 0ðϕ0Þ; ð57Þ

where we have used dVt=dϕ0jϕþ ¼ 0 and dVt=dϕ0jϕ0
¼

V 0ðϕ0Þ, which follow from the boundary conditions on Vt,
Eq. (48). This simple relationship holds for general
pseudobounces and can be checked explicitly, e.g., for
the action obtained in (21) for the potential studied
in Sec. II.
By the same kinds of arguments used in [16], it can be

shown that restricted tunneling potentials minimize the
tunneling action for fixed end-point ϕ0, although the action
can be lowered if ϕ0 is allowed to vary. This is precisely the
behavior expected for the bottom of the valley in configu-
ration space after scale invariance is broken. The valley
bottom is defined by the property of being a minimum for
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deviations along all directions except for one that traces the
valley, for which the action has a nonzero derivative.
Restricted Vt’s (or pseudobounces) correspond therefore
to this valley bottom and ϕ0 can be used to parametrize it.
Equation (57) is similar to the streamline equation used in
[13] to parametrize the valley but does not involve dΦ=dϕ0,
which simplifies the equation significantly.

V. CONSTRAINED INSTANTONS
AND VALLEY METHODS

In previous sections we have found tunneling profiles in
three different formulations of the tunneling problem
(Euclidean, Minkowskian, and tunneling potential) for
false vacua decaying without a proper bounce. Now we
compare this approach with alternative solutions that were
discussed in previous literature.
The constrained instanton approach [10] manages to

recover a bounce by imposing a constraint on the field
profile. A typical constraint is of the formZ

d4xϕn ¼ Cϕn−4
0 : ð58Þ

By using a Lagrange multiplier, one then extremizes the
new action

Sn ¼
Z

d4x

�
1

2
ð∂μϕÞ2 þ VðϕÞ − Vþ þ λnϕ

n

�
− λnCϕn−4

0 :

ð59Þ

The new term added to the action modifies the potential and
this allows a bounce: for a given value of ϕ0, the constant λn
is tuned to make ϕð∞Þ ¼ ϕþ. However, such constrained
bounces do not have in general the nice properties expected
of a bounce (and shared by our pseudobounces). In
particular, their τ ¼ 0 slice produces a three-dimensional
profile that has nonzero energy and cannot be the end
product of a tunneling event. In this respect, pseudoboun-
ces or restricted tunneling potentials are better suited to
describe the tunneling problem.
Nevertheless, one can make contact between the two

approaches. For a given value of ϕ0, taking n ≫ 1, one
can arrange for the modified potential to have a sharp
minimum at ϕ0 with the potential being arbitrarily close
to the original potential for ϕ < ϕ0. This is shown in
Fig. 7, upper left plot, where the modified potential is
VðϕÞ ¼ −λϕ4=4þ λnϕ

n. This is basically the same trick
we used to arrive at the pseudobounce in previous sections
and we expect that the constrained instanton will approach
the pseudobounce profile at large n. This expectation is
realized as illustrated in Fig. 7, upper right plot. The
n ¼ 100 profile (red) is almost on top of the pseudobounce
(blue). We can also check that as n grows, the constrained
instanton action tends towards the pseudobounce action

and has a τ ¼ 0 slice configuration of zero energy. This is
shown in the lower plot of Fig. 7, which shows, as a
function of the exponent n, the ratio of the constrained
instanton action Sn over the pseudobounce action SE
(tending to 1 for large n) and, for the τ ¼ 0 slice of the
constrained bounce, the ratio of its total energy over the
potential energy (tending to zero for large n). We conclude
that we can think of the pseudobounces as constrained
instantons for which the constraint is basically ϕðrÞ ≤ ϕ0

(constraint that is most naturally implemented in the
tunneling potential approach).
The so-called new valley method [15] (see [12–14] for

previous related work) sets up two differential equations to
trace the bottom of the valley along the flat direction lifted
by the breaking of scale invariance. The idea of the method
is to define that valley as the most gentle direction of
variation of the Euclidean action (for slices of fixed action)
introducing an auxiliary field that measures by how much
the Euler-Lagrange equation for the bounce is not satisfied.
Without entering into the details, the resulting Euclidean
profiles suffer the same shortcoming of constrained instan-
tons of finite n: their τ ¼ 0 slice is not guaranteed to have
zero energy. Presumably, the presence of the negative
eigenvalue of the Euclidean action interferes with the
successful implementation of this idea. If one implements
the same idea using the new action S½Vt� for the tunneling
potential given in (46) (instead of the Euclidean action),
the result is trivially the same as the one that we presented
in the previous section. The reason is that the restricted
tunneling potential satisfies the Euler-Lagrange equa-
tion (47), so that the corresponding auxiliary field trivially
vanishes.

VI. POTENTIAL VðϕÞ= − 1
2m

2ϕ2

In Sec. II we analyzed tunneling in the scale-invariant
potential V ¼ −λϕ4=4, breaking scale invariance by fixing
vacua at ϕ� ≠ 0. In that case, all solutions of the Euler-
Lagrange equation (3) are undershots and there is no
bounce. In this section we analyze another very simple
potential:

VðϕÞ ¼ −
1

2
m2ϕ2 ð60Þ

(with m > 0), which is standard in the sense that it has
under- and overshots and therefore a bounce. Still one
can consider the possible tunnelings not mediated by the
bounce. Like we did in Sec. II, we locate a false minimum
at ϕþ < 0 and examine decays to some assumed deeper
minimum at ϕ− > −ϕþ.
The true bounce profile can be obtained analytically as

ΦBðrÞ ¼
2ϕB

−

mr
J1ðmrÞ; ð61Þ
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where JαðxÞ is the Bessel function of the first kind. The
bounce starts at ϕB

− for r ¼ rB− ¼ 0 and reaches the false
vacuum ϕþ at a finite radius rBþ, where _ΦBðrBþÞ ¼ 0. As
_ΦB ∝ J2ðmrÞ, rþ is determined by the first zero of J2ðxÞ to
be mrBþ ≃ 5.13562. From the bounce expression (61) it
follows that

−
ϕþ
ϕB
−
¼ −2J1ðmrBþÞ

mrBþ
≃ 0.132279; ð62Þ

which fixes ϕB
− for a given ϕþ. The corresponding bounce

action is

SB ¼ π2

4
ϕ2þm2ðrBþÞ4 ≃

�
41.4292

ϕþ
m

�
2

: ð63Þ

If one considers ϕ− < ϕB
−, there are pseudobounces with

profile

ΦðrÞ ¼

8>><
>>:

ϕ−; r < r−
πmϕ−r2−

2r ½J2−Y1ðmrÞ− Y2−J1ðmrÞ�; r− < r < rþ
ϕþ; r > rþ

;

ð64Þ

where YαðxÞ is the Bessel function of the second kind
and we use the short-hand notation J2� ≡ J2ðmr�Þ,
Y2� ≡ Y2ðmr�Þ. Here, the inner and outer radii r� of a
pseudobounce satisfy the relations

r2−ϕ−J2− ¼ r2þϕþJ2þ; r2−ϕ−Y2− ¼ r2þϕþY2þ; ð65Þ

which enforce [using J2ðxÞY1ðxÞ − Y2ðxÞJ1ðxÞ ¼ 2=ðπxÞ]

Φðr�Þ ¼ ϕ�; _Φðr�Þ ¼ 0: ð66Þ

It is understood that, for a given r−, the outer radius
rþð>r−Þ is the smallest possible solution of _ΦðrþÞ ¼ 0, so

FIG. 7. Upper left: Potential VðϕÞ ¼ −λϕ4=4 (blue) with ϕþ ¼ −1 and λ ¼ 0.01, and two constrained potentials VnðϕÞ ¼ −λϕ4=4þ
λnϕ

n for n ¼ 6, 100 (dashed lines), with λn fixed to get ϕ0 ¼ 10 (marked by black dots). Upper right: Profiles of pseudobounce (blue)
and constrained bounces for n ¼ 6, 100 corresponding to the potentials in the left plot. Lower: As a function of the exponent n for the
potentials VnðϕÞ, action Sn of the constrained bounces normalized to the Euclidean action of the pseudobounce SE (upper curve). Total
energy over potential energy for the slice of zero Euclidean time of the constrained bounces (lower curve).
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that ΦðrÞ is monotonic in ðr−; rþÞ. Formr− ≫ 1 (thin-wall
pseudobounces) one has mr− ≃mrþ þ π. The quantity
mrþ is plotted as a function of mr− in Fig. 8, upper left
plot. The same figure shows different pseudobounce

profiles and the true bounce, in blue (upper right plot)
and the corresponding tunneling potentials, using the same
color coding (lower left plot).
The Euclidean action in this case is

SE ¼ π2

4
m2r4þϕ2þ



1þ π2

2
J2þY2þ½m2r2þðJ2þY2þ þ J1þY1þÞ − 2mrþðJ1þY2þ þ J2þY1þÞ�

−
π3=2

2
J2þY2þG

2;2
3;5

�
m2r2þ

				 0; 1=2;−1=2
0; 2;−2;−1;−1=2

��
−


rþ → r−
ϕþ → ϕ−

�
; ð67Þ

where G is the Meijer function. It can be checked that this
has the right limit for the proper bounce case (63). Figure 8,
lower right plot, shows the tunneling action (67) as a
function of −ϕ−=ϕþ, normalized to the bounce action (the
colored dotted points correspond to the profiles shown in
the same figure). The plot also shows the thin-wall
approximation, with

σ ¼
Z

ϕ−

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðϕÞ − VlðϕÞ�

p
≃
1

8
mπðϕ− − ϕþÞ2; ð68Þ

where we used the linear interpolation VlðϕÞ ¼
m2½ϕþϕ− − ðϕþ þ ϕ−Þϕ�=2 to define σ.

0

–5

–10

–15

–20

–25

–30

0 2 4 6 8

FIG. 8. For VðϕÞ ¼ −m2ϕ2=2 with a false vacuum at ϕþ ¼ −1. Upper left: The solid curve shows the outer wall radius rþ as a
function of the inner wall radius r− (both in units of 1=m); the dashed curve shows the approximation mr− ≃mrþ þ π. Upper right:
Profiles of the (pseudo)bounces for different ϕ−. Black dots mark r� and the blue curve is the true bounce. Lower left: Potential (black)
and tunneling potentials for the previous (pseudo)bounces (same color coding). Lower right: Tunneling action for pseudobounces as ϕ−
is varied. Colored dots mark the previous (pseudo)bounces. The red dashed line gives the improved thin-wall approximation of (68).
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We can compare the behavior of the action with the one
for the negative-quartic potential of Sec. II, shown in
Fig. 4. We see that now the action reaches its minimum at
a finite ϕ−, corresponding to the bounce solution (blue
dot in the figure). If we set the minimum at ϕ− > ϕB

−,
tunneling will nevertheless proceed via the proper bounce
towards ϕB

−. From the discussion in Sec. III it should also
be clear that tunneling configurations with ϕ− > ϕB

− can
be realized, but their action cost is higher than the bounce
minimal one.
We will use this example to illustrate one further point.

The Euclidean action has a negative mode so that the
bounce is not a minimum of SE but a saddle point and the
same negative mode appears for pseudobounces. We can
see this most easily by considering rescaled configurations
ϕaðrÞ≡ ϕPBðarÞ, where ϕPBðrÞ is a pseudobounce (or a
proper bounce), that keep ϕPBð0Þ fixed. By rescaling the
Euclidean coordinates and using Derrick’s theorem we get
the scaling

SE½ϕa� ¼
1

a2

�
2 −

1

a2

�
SE½ϕPB�: ð69Þ

We plot in Fig. 9 the same action as in Fig. 8 but opening up
configuration space along the rescaling parameter a. This
shows that the pseudobounce trajectory can be considered
as the bottom of a valley for the Euclidean action only if
one removes the negative mode. Including that mode one
sees that the trajectory follows the top of a ridge. This is the
root of some of the difficulties with constrained instantons
or the new valley methods that we discussed at the end of
the last section. One significant advantage of the tunneling
potential approach is that the action has no such nega-
tive mode.

VII. POTENTIAL VðϕÞ= 1
2m

2ϕ2 − 1
4 λϕ

4

Finally, we consider a potential that combines those of
previous sections:

VðϕÞ ¼ 1

2
m2ϕ2 −

1

4
λϕ4: ð70Þ

We fix the false vacuum at ϕþ ¼ 0, study tunneling towards
ϕ− > 0, and consider m2 (of either sign) as the sole
parameter breaking scale invariance. By the scaling argu-
ment used in the Introduction we know this potential does
not have a bounce solution describing the decay of the ϕþ
false vacuum. In particular, for m2 > 0 all trial solutions of
the Euler-Lagrange equation (3) are undershots, while for
m2 < 0 all are overshots.
By the same reasoning that we used in Sec. II, we deduce

that the tunneling action must be a function of the ratio
ϕ2
−=m2:

S ¼ Sðϕ2
−=m2Þ; ð71Þ

with

Sð∞Þ ¼ 8π2

3λ
; Sð2=λÞ ¼ ∞: ð72Þ

The last case corresponds to the thin-wall limit with ϕ2
− ¼

2m2=λ (withm2 > 0) that gives degenerate vacua at ϕ�. We
expect, at least for m2 > 0, a behavior similar to the one
found in Sec. II: pseudobounce solutions with nonzero r−
and a tunneling action monotonically decreasing towards
the no-scale value 8π2=ð3λÞ when ϕ2

−=m2 → ∞. An ana-
lytical solution does not seem feasible, although one could
try a perturbative approach treating m2 as a small pertur-
bation of the no-scale case, in analogy to the analyses in
[3,15,23], that used constrained instantons or the new
valley method. Alternatively one could simply use, at least
for m2 > 0, numerical solutions to solve the Euler-
Lagrange equation (3), implementing the need for nonzero
r− to find the pseudobounces.
Whatever we do, the results for m2 > 0 are qualitatively

similar to the ones obtained in Sec. II, so we will instead
resort to a much simpler analysis based on the
Minkowskian approach, as this will also serve to clarify
the case with m2 < 0. Following the discussion in Sec. III,
we consider two paths in configuration space that connect
the ϕþ false vacuum and a configuration that contains a
zero-energy tunneling bubble. (For a related discussion
see Sec. 7 of [3].)
The first path has a Fubini profile,

ΦαðrÞ ¼
ϕ−

1þ ðr2 þ α2Þ=R2
;

1

R2
¼ λϕ2

−

8
− 2m2; ð73Þ

FIG. 9. Euclidean tunneling action for the potential VðϕÞ ¼
−m2ϕ2=2 with ϕþ ¼ −1 normalized to the bounce action in a
slice of configuration space spanned by the pseudobounces
ΦPBðrÞ (parametrized by ϕ−) and an orthogonal direction
parametrized by the rescaling parameter a, for configurations
ΦaðrÞ ¼ ΦPBðarÞ. The black line follows the trajectory of
pseudobounces, which ends at the bounce, marked by the
blue dot.

TUNNELING WITHOUT BOUNCE PHYS. REV. D 100, 105002 (2019)

105002-13



while for the second path we take a Gaussian profile:

ΦαðrÞ ¼ ϕ−e−ðr
2þα2Þ=R2

;
1

R2
¼ λϕ2

−

12
ffiffiffi
2

p þm2

3
: ð74Þ

As usual, α ¼ ∞ corresponds in both cases to the ϕþ ¼ 0
vacuum, while for α ¼ 0 we have the tunneling bubble
configuration. The radius R has been chosen to ensure the
bubble has zero energy. When the sign of m2 can lead to
R2 < 0 we assume jm2j is small enough so that R is real.
For these two paths we can then calculate the WKB

tunneling action as explained in Sec. III in the under-
standing that the action will be even lower for the true
tunneling path. For the Gaussian path one can perform the
WKB integrals numerically. For the Fubini path we can
calculate the WKB action analytically, getting

S� ¼ 8π2

3λ
f�

�
λϕ2

−

16jm2j
�
; ð75Þ

where the subindexþð−Þ corresponds tom2 > 0 (m2 < 0).
For m2 > 0, one gets [with x ¼ λϕ2

−=ð16m2Þ > 1]

fþðxÞ ¼
½ðx − 1ÞEð−xÞ þ ðxþ 1ÞKð−xÞ�

ðx − 1Þ3=2 ; ð76Þ

where K and E are the complete elliptic integrals of the
first and second kinds, respectively. This function has the
asymptotic values fþð∞Þ ¼ 1 (whenm2 is not relevant and

one recovers the Fubini action) and fþð1Þ ¼ ∞ [for this
type of profile, the lower limit ϕ− > 4m=

ffiffiffi
λ

p
for tunneling

to be allowed is stronger than for the thin-wall
case (ϕ− > m

ffiffiffiffiffiffiffi
2=λ

p
)].

For m2 < 0, instead, one gets

f−ðxÞ ¼
ffiffiffi
x

p ½ðxþ 1ÞEð1 − 1=xÞ − 2Kð1 − 1=xÞ�
ðxþ 1Þ3=2 ; ð77Þ

with x ¼ −λϕ2
−=ð16m2Þ > 1. Now f−ð1Þ ¼ 0 and

f−ð∞Þ ¼ 1.
We show the results for both types of paths in Fig. 10.

Solid (dashed) lines correspond to the Fubini (Gaussian)
path, for a number of values of m2 as indicated. Consider
first the case m2 > 0 (curves with negative slope). We see
that Gaussian profiles asymptote for ϕ− → ∞ to a value
higher than the Fubini ones, for which one recovers the
expected no-scale result S0 ¼ 8π2=ð3λÞ. For the depend-
ence of the tunneling action on m2, we find that higher
values of m2 increase the action as the potential barrier
grows. The action for the pseudobounce path will lie below
the curves shown but with a similar behavior, asymptoting
to S0 too.
The case m2 < 0 (curves with positive slope) is quali-

tatively different. For both types of path we see that the
action can be made arbitrarily small for small enough ϕ−.
This means that the tunneling rate is not suppressed at all
and the vacuum is completely unstable.

VIII. EXAMPLES OF ANALYTICAL Vt

In the tunneling potential approach, for a given potential
VðϕÞ one should find the corresponding tunneling potential
VtðϕÞ. In [16] it was shown how to solve the inverse
problem of finding V corresponding to a postulated Vt,
which is easier to do as the differential equation (47) is
linear and first order in V. Solving this inverse problem was
useful to construct special potentials for which the tunnel-
ing problem could be solved entirely analytically.
While that was done for the tunneling potentials

corresponding to true Euclidean bounces, in this section
we consider this inverse problem for “restricted” tunneling
potentials, those corresponding to Euclidean pseudoboun-
ces. The general formula for VðϕÞ in terms of VtðϕÞ used
in [16] involves inverse powers of V 0

tðϕ0Þ. As this
derivative vanishes for pseudobounces, the formula
needs to be modified. It is straightforward to do so and
get instead

VðϕÞ ¼ ½V 0
tðϕÞ�2



Vc

½V 0
tðϕcÞ�2

þ
Z

ϕ

ϕc

4½V 0
tðϕ̄Þ�2 − 6Vtðϕ̄ÞV 00

t ðϕ̄Þ
3½V 0

tðϕ̄Þ�3
dϕ̄

�
; ð78Þ

FIG. 10. WKB tunneling actions for the potential VðϕÞ ¼
−λϕ4=4þm2ϕ2=2, with λ ¼ 0.1 and different masses, along two
different tunneling paths in configuration space as a function
of the tunneling end-point ϕ−. Dashed lines: Gaussian paths as
in (74). Solid lines: Fubini paths as in (73). We take m2=μ2 ¼
f10−3; 10−4; 0;−10−4;−10−2;−4 × 10−2g, where μ is some ar-
bitrary reference scale. The curves deviate from the flat m2 ¼ 0
ones in proportion to the size of m2, upwards for m2 > 0 and
downwards for m2 < 0.

J. R. ESPINOSA PHYS. REV. D 100, 105002 (2019)

105002-14



where ϕc ≠ ϕ− is some field value in the interval ðϕþ;ϕ−Þ
and Vc is some arbitrary constant that fixes the value of
VðϕcÞ ¼ Vc. The formula in [16] is recovered for ϕc ¼ ϕ0

and Vc ¼ Vðϕ0Þ.
In [16] the strategy was to postulate a simple (mono-

tonically decreasing) VtðϕÞ, hoping to get a simple enough
VðϕÞ. For restricted Vt’s we rather postulate a simple form
for V 0

t as we know this has to be a negative function that
vanishes at ϕ�. The point ϕ− is now a regular singular point
of the differential equation (47), as

V 00
t ¼

ðV 0 − 4V 0
t=3ÞV 0

t

2ðV − VtÞ
; ð79Þ

and ðV 0 − 4V 0
t=3Þ does not vanish at ϕ− for pseudobounces.

Therefore, the tunneling potential VtðϕÞ cannot be
expanded in a Taylor series around ϕ− as V 00

t diverges there.
Taking the previous property into account we consider as

our first example the simple choice

V 0
t1ðϕÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕð1 − ϕÞ

p
; ð80Þ

defined for the interval ðϕþ;ϕ−Þ ¼ ð0; 1Þ (dimensionful
constants can be introduced easily if needed). This leads by
direct integration to

Vt1ðϕÞ ¼
1

4

h
ð1 − 2ϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕð1 − ϕÞ

p
− arcsin

ffiffiffiffi
ϕ

p i
; ð81Þ

with an arbitrary integration constant chosen so that
Vt1ð0Þ ¼ 0. From the formula (78) one then gets

V1ðϕÞ ¼ ϕð1 − ϕÞ
�
F1ðxÞjϕϕc

þ Vc

ϕcð1 − ϕcÞ
�
; ð82Þ

where

F1ðxÞ ¼
1

4xð1 − xÞ


ð1 − 2xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p

þ
�
1þ 8

3
xð1 − xÞ

�
arccos

ffiffiffi
x

p
−
π

2

�
: ð83Þ

Figure 11, left plot, shows different potentials V1ðϕÞ for
different choices of Vc ¼ Vð1=2Þ. The profile ϕðrÞ of the
corresponding pseudobounces can be recovered from V1

and Vt1 [as the inverse function rðϕÞ is determined by
Eq. (54)] and is shown, using the same color coding, in the
right plot. The black dots mark the radii r�. The lowest
potential (and profile) correspond in fact to a proper
bounce: the intersection between V and Vt takes place at
ϕ− < 1, where V 0

t ≠ 0. So we see that the analytical
formula can interpolate smoothly between pseudobounce
and bounce solutions. Notice that rþ is finite for all cases;
this is due to the potential having a nonzero derivative
arbitrarily close to the false minimum at the origin. This
can be easily modified, as we do in the next example, by
choosing a V 0

t that can be expanded in a Taylor series
around ϕþ ¼ 0.
Consider then

V 0
t2ðϕÞ ¼ −ϕ

ffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ

p
; ð84Þ

which leads by integration to

Vt2ðϕÞ ¼
2

15
½ð2þ 3ϕÞð1 − ϕÞ3=2 − 2�: ð85Þ

From the formula (78) one then gets

V2ðϕÞ ¼ ϕ2ð1 − ϕÞ
�
F2ðxÞ

			ϕ
ϕc

þ Vc

ϕ2
cð1 − ϕcÞ

�
; ð86Þ

FIG. 11. Left: Different potentials V1ðϕÞ of (82) for the tunneling potential Vt1ðϕÞ of (81) with different values of Vð1=2Þ. Right:
Pseudobounce profiles corresponding to the potentials on the left, with the same color coding. The radii r� are marked by black dots.
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where

F2ðxÞ ¼
2

3



1

5x2

�
ð2þ 3xÞ

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
−

2

1 − x

�

þ arctanh
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p �
: ð87Þ

The V2ðϕÞ potentials and corresponding (pseudo)boun-
ces are shown in Fig. 12, for different choices of
Vc ¼ Vð1=2Þ. The black dots mark the corresponding r−
while rþ → ∞ (the false vacuum does have zero derivative
now). As in the previous example, the lowest potential (and
profile) correspond to a proper bounce with ϕ− < 1.

IX. SUMMARY AND OUTLOOK

By using a combination of methods we have shown
that false vacua that cannot decay via proper bounces
would still decay, and we have described in detail how
they do it. In the Euclidean approach, the decay is
mediated by Euclidean configurations that we call pseu-
dobounces, which have a homogeneous core where the
field sits at a given field value ϕ−, that probes the deeper
parts of the potential, up to a radial distance r−. Beyond
that inner radius, the field transitions smoothly to the
false vacuum ϕþ. In that wall region, the Euclidean Euler-
Lagrange equation (3) is satisfied (while it is not in the
core). Nevertheless the pseudobounce inherits some of
the good properties of proper bounces (except extremiz-
ing the Euclidean action). In particular, (1) the pseudo-
bounce Euclidean action can be expressed as half the
action coming from the field gradient in the wall region,
and (2) the slice of the pseudobounce at zero Euclidean
time is a three-dimensional bubble configuration of zero
energy. We gave concrete examples of these pseudo-
bounce configurations in the text but the properties above
hold in general when there is no bounce.

The Euclidean analysis is ultimately justified by the
Minkowski approach. We construct paths in configuration
space that join the false vacuum with a zero-energy
tunneling bubble configuration (corresponding to the
Euclidean zero-time slices). For those paths we then
calculate the minimal WKB tunneling exponent, finding
agreement with the previous Euclidean result.
Finally, the most natural approach uses the tunneling

potential method of [16]. For a fixed value of ϕ0 in the
deeper regions of the potential, one finds the tunneling
potential VtðϕÞ that minimizes the simple new action (46).
Such “restricted” Vt gives the minimal action for fixed ϕ0

(while the true Vt would minimize the action when ϕ0 is
free to vary). Such restricted Vt is also a solution of the
corresponding Euler-Lagrange equation (47). The only
difference with respect to a proper Vt is the boundary
condition V 0

tðϕ0Þ ¼ 0 [instead of V 0
tðϕ0Þ ¼ 3V 0ðϕ0Þ=4].

The action obtained in this way agrees with the previous
ones and the field profile derived from Vt reproduces the
pseudobounce profile. This method also allows us to find
easily a simple expression for the variation of the action
when ϕ0 is varied, as given by (57).
Whichever method is used, the picture one gets for

the decay of false vacua without bounce is of a nearly flat
direction of the action functional in field configuration
space. That flat direction (or valley bottom) is parametrized
naturally and faithfully by the value of ϕ0 and consists of a
family of pseudobounce configurations with the lowest
values of the tunneling action (at fixed ϕ0).
To finally calculate the decay rate one should integrate

along the valley bottom using the collective coordinate
method (see, e.g., [3,13,15]). In particular cases of physical
interest, renormalization effects or UV physics can play a
very important role in changing the shape of the valley and
therefore in getting the final rate. In this paper we have
focused on the prerequisite need of tracing accurately that
valley bottom in general. Model-dependent effects can be
added on top, case by case.

FIG. 12. Left: Different potentials V2ðϕÞ of (86) for the tunneling potential Vt2ðϕÞ of (85) with different values of Vð1=2Þ. Right:
Pseudobounce profiles corresponding to the potentials on the left, with the same color coding. The radii r� are marked by black dots.
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