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We discuss a new realization of N -extended quantum-mechanical supersymmetry (QM SUSY) with
central charges hidden in the four-dimensional (4D) mass spectrum of higher dimensional Dirac action with
curved extra dimensions. We show that this N -extended QM SUSY results from symmetries in extra
dimensions, and the supermultiplets in this supersymmetry algebra correspond to the Bogomol’nyi–
Prasad–Sommerfield states. Furthermore, we examine the model of the S2-extra dimension with a magnetic
monopole background and confirm that the N -extended QM SUSY explains the degeneracy of the 4D
mass spectrum.
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I. INTRODUCTION

So far, quantum-mechanical supersymmetry (QM
SUSY) has attracted much attention and has been applied
to the various research areas, e.g., exactly solvable quantum
mechanics [1–4], Berry phase [5–7], black holes and AdS/
CFT [8–12], Sachdev–Ye–Kitaev model [13–17], extra
dimensional models [18–23] and so on. Its extensions
are also investigated. The N -extended supersymmetry is
the extension which includes N independent supercharges
in the supersymmetry algebra [24–31]. Each of supercharge
corresponds to a square root of Hamiltonian, and they
explain the degeneracy of the energy spectrum. In addition,
the central extension which introduces central charges
in the algebra is also studied [32–35].1 Central charges
commute with all the operators in the algebra. As is well
known, if there are central charges, the size of super-
multiplets can be small compared with the regular repre-
sentation [40,41]. Such multiplets are called short
multiplets or Bogomol’nyi–Prasad–Sommerfield (BPS)
states.2 Since not so many models which realize arbitrary
large N -extended QM SUSY with central charges are
known, it is worth investigating a new realization of
N -extended one.

Here, we focus on the higher dimensional Dirac action
with extra dimensions. In Refs. [22,23], it has been shown
that the structure of the N ¼ 2 QM SUSY is hidden in the
four-dimensional (4D) mass spectrum of the higher dimen-
sional Dirac action with flat extra dimensions, and the
Kaluza-Klein (KK) mode functions for the 4D right-handed
and left-handed spinors form the supermultiplets. Further-
more, in the previous papers [44,45], we have revealed that
this N ¼ 2 QM SUSY can be extended to the N -extended
QM SUSY from the reflection symmetries in the flat extra
dimensions. Then we have found that the central charges
appear as the result of the reflection symmetries, and the
supermultiplets of this extended QM SUSY corresponds to
the BPS states. These supercharges can explain the degen-
eracy of the 4D mass spectrum.
However, there remain many tasks to be addressed. Here

we focus on the following ones: First, previous works are
only devoted to the case of the flat extra dimensions.
Therefore we should take into account the case of curved
extra dimensions for a general discussion. Second, we
have only considered the N -extended QM SUSY from the
reflection symmetries. If there are more symmetries in extra
dimensions, additional degeneracies would appear in 4D
mass spectra. Then, we can expect that further structures of
N -extended QM SUSY from other symmetries are hidden
in them.
Based on the above, in this paper, we discuss a new

realization of the N -extended QM SUSY with central
charges which are obtained from symmetries in the higher
dimensional Dirac action with curved extra dimensions.
We show that the central charges appear from those
symmetries and this N -extended QM SUSY corresponds
to the generalization of the previous one. Furthermore, the
supermultiplets in this SUSY algebra also become the
BPS states. Then, as an example, we will confirm that this
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1Spontaneous generations of the central charges in field-
theoretic SUSY algebras and associated materials have been
discussed (see e.g. [36–39]).

2See also the original papers of BPS states [42,43].
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N -extended QM SUSY is realized in the S2-extra dimen-
sion with the magnetic monopole background and explain
the degeneracy of the 4D mass spectrum.
This paper is organized as follows: In Sec. II, we sum-

marize the KK decomposition of the (4þ d)-dimensional
Dirac field with the curved extra dimension and show that
the N ¼ 2 QM SUSY is hidden in the 4D mass spectrum.
In Sec. III, we construct the N -extended QM SUSY with
central charges from the symmetries in extra dimensions
and discuss the representation of this SUSY algebra. Then,
in Sec. IV, we confirm that thisN -extended QM SUSY can
be realized in the model of the S2-extra dimension with the
magnetic monopole background, and the KK mode func-
tions correspond to the representation given in Sec. III.
Section V is devoted to summary and discussion.

II. N = 2 QM SUSY IN HIGHER DIMENSIONAL
DIRAC ACTION

In this section, we show that the structure ofN ¼ 2 QM
SUSY is always hidden in the 4D mass spectrum of the
(4þ d)-dimensional Dirac action with curved extra
dimensions.
First, we assume that the (4þ d)-dimensional metric

GMNðM;N ¼ 0; 1; 2; 3; y1;…; ydÞ is of the form

ds2 ¼ GMNdxMdxN ¼ e2ΔðyÞημνdxμdxν þ gyy0 ðyÞdyydyy0 ;
ð2:1Þ

where xM ¼ ðxμ; yyÞ is the (4þ d)-dimensional coordi-
nates, and then xμ (μ ¼ 0, 1, 2, 3) and yyðy ¼ y1 � � � ydÞ
indicate the coordinates of the 4D and the extra dimen-
sional space, respectively. ημν ¼ diagð−1;þ1;þ1;þ1Þ
denotes the 4D Minkowski metric, and ΔðyÞ and gyy0 ðyÞ
depend only on the extra dimensional coordinates.3

Then, for a general discussion, we study the (4þ d)-
dimensional Dirac action with the vector background field
ANðyÞ ¼ ð0; AyðyÞÞ and the scalar background field WðyÞ:

S ¼
Z

d4x
Z
Ω
ddy

ffiffiffiffiffiffiffi
−G

p
Ψ̄ðx; yÞ½iΓN̂eN̂

Nð∇N þ iqANðyÞÞ

−WðyÞ�Ψðx; yÞ; ð2:2Þ
where Ω represents the space of the extra dimensions,
G ¼ detGMN and we define the Dirac conjugate as
Ψ̄ðx; yÞ ¼ Ψ†ðx; yÞΓ0̂. ΓN̂ indicate the gamma matrices
which are defined by

fΓM̂;ΓN̂g ¼ −2ηM̂N̂12bd=2cþ2 ; ðΓM̂Þ† ¼ Γ0̂ΓM̂Γ0̂

ðM̂; N̂ ¼ 0̂; 1̂; 2̂; 3̂; ŷ1;…; ŷdÞ; ð2:3Þ

where M̂; N̂ denote the indices of the local Lorentz frame,
and ηM̂ N̂ ¼ diagð−1;þ1;…;þ1Þ is (4þ d)-dimensional
Minkowski metric. eNN̂ is the vielvein and satisfies

eLM̂eM̂
N ¼ δNL ; eL̂

MeMN̂ ¼ δN̂
L̂
; GMN ¼ eMM̂eNN̂ηM̂N̂ :

ð2:4Þ

In this model, the nonzero components of the vielvein can
be given by eμμ̂ ¼ eΔðyÞδμ̂μðμ ¼ 0; 1; 2; 3; μ̂ ¼ 0̂; 1̂; 2̂; 3̂Þ and
eyŷðy ¼ y1 � � � yd; ŷ ¼ ŷ1;…; ŷdÞ. ∇N represents the covar-
iant derivative whose behavior for the Dirac field Ψðx; yÞ is

∇NΨðx; yÞ ¼
�
∂N þ i

2
ωNK̂L̂ΣK̂L̂

�
Ψðx; yÞ; ð2:5Þ

where ΣK̂ L̂ ¼ i
4
½ΓK̂;ΓL̂� corresponds to the generator of

(4þ d)-dimensional Lorentz transformation, and ωNK̂ L̂
is the spin connection defined from the Christoffel
symbol ΓL

NK

ωN
K̂
L̂ ¼ −eL̂K∂NeKK̂ þ eL̂

KΓL
NKeL

K̂; ð2:6Þ

and whose nonzero components are ωμν̂ŷ ¼ 1
2
ðe−Δ∂ye2ΔÞ×

ημν̂eŷy and ωyŷ0ŷ00 in this model.
For the convenience, we adopt the following represen-

tation of the gamma matrices:

Γμ̂ ¼ 12bd=2c ⊗ γμ̂; Γŷ ¼ γŷ ⊗ γ5: ð2:7Þ

γμ̂ðμ̂ ¼ 0̂; 1̂; 2̂; 3̂Þ are the 4 × 4 4D gamma matrices and
γ5 ¼ iγ0̂γ1̂γ2̂γ3̂ denotes the 4D chiral matrix. γŷðŷ ¼
ŷ1;…; ŷdÞ represent the 2bd=2c × 2bd=2c d-dimensional
internal gamma matrices which satisfy

fγŷ; γŷ0 g ¼ −2δŷŷ0 ; ðγŷÞ† ¼ −γŷ: ð2:8Þ

From this representation, the Dirac operator can be rewrit-
ten into the form4

iΓN̂eN̂
Nð∇N þ iqANÞ−W ¼ 12bd=2c ⊗ e−Δiγμ∂μ

þ iγŷeŷyð∇y þ iqAy þ 2∂yΔÞ
⊗ γ5 −W12bd=2c ⊗ 14; ð2:9Þ

where ∇y in the right-hand side of (2.9) means

∇y ¼ ∂y þ
i
2
ωyŷ0ŷ00σ

ŷ0ŷ00 ; σŷ
0ŷ00 ¼ i

4
½γŷ0 ; γŷ00 �; ð2:10Þ

and this corresponds to the covariant derivative for spinors
defined on the space Ω.3In the case that ΔðyÞ ¼ −kjyj and gyy ¼ 1 with the 1d extra

dimension, this metric corresponds to the Randall-Sundrum
warped metric [46,47]. 4γμ implies γμ ¼ γμ̂δμμ̂, where δμμ̂ appear from the vielvein.
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Next, we consider the KK decomposition of the higher
dimensional Dirac field Ψðx; yÞ to obtain the action with
4D fields:

Ψðx; yÞ ¼
X
n

X
α

fe−2ΔðyÞf ðnÞα ðyÞ ⊗ ψ ðnÞ
R;αðxÞ

þ e−2ΔðyÞgðnÞα ðyÞ ⊗ ψ ðnÞ
L;αðxÞg; ð2:11Þ

where the index n denotes the nth level of the KK
modes and α indicates the additional degeneracy of the

nth KK modes (if exists). The mode functions f ðnÞα ðyÞ
(gðnÞα ðyÞ) have 2bd=2c components and are assumed to form a
complete set with respect to the internal space associated
with the 4D right-handed (left-handed) chiral spinors

ψ ðnÞ
R;αðxÞ (ψ ðnÞ

L;αðxÞ). By substituting (2.11) and (2.9) into
the action, we obtain

S ¼
X
n;m

X
α;β

Z
d4x½hf ðnÞα jf ðmÞ

β iψ̄ ðnÞ
R;αðxÞiγμ∂μψ

ðmÞ
R;β ðxÞ

þ hgðnÞα jgðmÞ
β iψ̄ ðnÞ

L;αðxÞiγμ∂μψ
ðmÞ
L;β ðxÞ

− hf ðnÞα jA†gðmÞ
β iψ̄ ðnÞ

R;αðxÞψ ðmÞ
L;β ðxÞ

− hgðnÞα jAf ðmÞ
β iψ̄ ðnÞ

L;αðxÞψ ðmÞ
R;β ðxÞ�; ð2:12Þ

where we have defined the inner product and the operator
A;A† as

hXjYi ¼
Z
Ω
ddy

ffiffiffi
g

p
e−ΔðyÞX†ðyÞYðyÞ; g ¼ det gyy0 ;

ð2:13Þ

A ¼ eΔ½−iγŷeŷyð∇y þ iqAyÞ þW�; ð2:14Þ

A† ¼ eΔ½þiγŷeŷyð∇y þ iqAyÞ þW�: ð2:15Þ

Then, by requiring that the KK mode functions satisfy the
orthonormal relations

hf ðnÞα jf ðmÞ
β i ¼ hgðnÞα jgðmÞ

β i ¼ δnmδαβ;

hf ðnÞα jA†gðmÞ
β i ¼ hgðnÞα jAf ðmÞ

β i ¼ mnδ
nmδαβ; ð2:16Þ

we can obtain the following action:

S ¼
Z

d4x

�X
α

X
n

ψ̄ ðnÞ
α ðxÞðiγμ∂μ −mnÞψ ðnÞ

α ðxÞ

þ
X
α

ψ̄ ð0Þ
L;αðxÞiγμ∂μψ

ð0Þ
L;αðxÞ

þ
X
α

ψ̄ ð0Þ
R;αðxÞiγμ∂μψ

ð0Þ
R;αðxÞ

�
; ð2:17Þ

where ψ ðnÞ
α ðxÞ ¼ ψ ðnÞ

R;αðxÞ þ ψ ðnÞ
L;αðxÞ indicate 4D Dirac

spinors with mass mn and ψ
ð0Þ
L=R;αðxÞ are massless 4D chiral

spinors. The expression of the above effective 4D action
coincides with the case of flat extra dimensions given in
[45], although the effects of curved spaces and background
fields appear as the mass spectrum through the definition of
A;A† and (2.16).
Since we have assumed that the KK mode functions f ðnÞα

and gðnÞα form the complete set respectively, the orthonormal
relations (2.16) lead to

Af ðnÞα ðyÞ ¼ mng
ðnÞ
α ðyÞ; A†gðnÞα ðyÞ ¼ mnf

ðnÞ
α ðyÞ: ð2:18Þ

From the above relations, we can obtain

Q

�
f ðnÞα ðyÞ

0

�
¼ mn

�
0

gðnÞα ðyÞ

�
; H

�
f ðnÞα ðyÞ

0

�
¼ m2

n

�
f ðnÞα ðyÞ

0

�
; ð−1ÞF

�
f ðnÞα ðyÞ

0

�
¼ þ

�
f ðnÞα ðyÞ

0

�
;

Q

�
0

gðnÞα ðyÞ

�
¼ mn

�
f ðnÞα ðyÞ

0

�
; H

�
0

gðnÞα ðyÞ

�
¼ m2

n

�
0

gðnÞα ðyÞ

�
; ð−1ÞF

�
0

gðnÞα ðyÞ

�
¼ −

�
0

gðnÞα ðyÞ

�
; ð2:19Þ

where the supercharge Q, the Hamiltonian H and the “fermion” number operator ð−1ÞF are defined by

Q ¼
�

0 A†

A 0

�
; ð2:20Þ

H ¼ Q2 ¼ e2Δ
�
−ð∇y þ iqAyÞ2 þ qσŷŷ

0
eŷyeŷ0y

0
Fyy0 þ

1

4
Rþ iγŷeŷyð∂yWÞð−1ÞF þW2

�

þ ie2Δγŷeŷyð∂yΔÞ
�
A 0

0 −A†

�
; ð2:21Þ
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ð−1ÞF ¼
�
12bd=2c 0

0 −12bd=2c

�
: ð2:22Þ

Fyy0 is the field strength for Ay and R is the Ricci scalar
defined on Ω. Then, we can find that the relations (2.19)
realize the N ¼ 2 supersymmetric quantum mechanics
[1,48].5 In this model, the “bosonic” and “fermionic” states
which form anN ¼ 2 supermultiplet correspond to the KK

mode functions ðf ðnÞα ðyÞ; 0ÞT and ð0; gðnÞα ðyÞÞT.
Before closing this section, we comment about the

Hermiticity of the supercharge. From the action principle
δS ¼ 0, we obtain the following condition for the KKmode
functions:Z

∂Ω
dn−1y

ffiffiffi
g

p ðf ðnÞα ðyÞÞ†inyðyÞγŷeŷygðmÞ
β ðyÞ ¼ 0; ð2:23Þ

for all m, n, α, β, where ∂Ω represents the boundary of Ω,
and nyðyÞ is an orthonormal vector on ∂Ω. We can show
that the above condition corresponds to the Hermiticity
condition for the supercharge. Then, the supercharge Q is
Hermitian as long as the action principle is required. Thus,
we can conclude that the N ¼ 2 QM SUSY is always
realized in the 4D mass spectrum of the higher dimensional

Dirac action and the doubly degenerate states ðf ðnÞα ðyÞ; 0ÞT
and ð0; gðnÞα ðyÞÞT are mutually related by the superchargeQ,
except for zero energy states.

III. N -EXTENDED QM SUSY
WITH CENTRAL CHARGES

In the previous section, we have described the N ¼ 2

QM SUSY hidden in the doubly degeneracy of f ðnÞα and

gðnÞα ðyÞ. However, we can expect that further hidden
structures exist in the 4D mass spectrum and this would
lead to the extra degeneracy due to the index α in addition
to the doubly one.
In this section, we show that theN -extended QM SUSY

with central charges can be constructed from symmetries in
the extra dimensions. This QM SUSY can explain the extra
degeneracy in the 4D mass spectrum. Then, we clarify the
representation of this algebra for the nonzero energy states
and it will turn out that the eigenstates become BPS states.
This section is devoted to the general discussion, and a
concrete example will be given in the next section.

A. N -extended SUSY algebra with central charges

Here, we discuss a new realization of N -extended
QM SUSY from symmetries. First, we consider sets of
operators fâiði¼1;2;…;NaÞg;fb̂iði¼1;2;…;NbÞg;…;

fα̂iði¼1;2;…;NαÞg;fβ̂iði¼1;2;…;NβÞg;…, which are
Hermitian and consistent with an imposed boundary con-

dition for the mode functions f ðnÞα ,6 and commute withA†A

½âi;A†A� ¼ ½b̂i;A†A� ¼ � � � ¼ ½α̂i;A†A�
¼ ½β̂i;A†A� ¼ � � � ¼ 0: ð3:1Þ

Therefore, these operators do not change the mass eigen-
values and would be related to the symmetries in the extra
dimensions. Furthermore, we require that these operators
commute with the ones in the same sets

½âi; âj� ¼ ½b̂i; b̂j� ¼ � � � ¼ 0; ½α̂i; α̂j� ¼ ½β̂i; β̂j� ¼ � � � ¼ 0;

ð3:2Þ

and anticommute with the ones in the different sets for
Roman and Greek letters

fâi; b̂jg ¼ fâi; ĉjg ¼ � � � ¼ fb̂i; ĉjg ¼ fb̂i; d̂jg ¼ � � � ¼ 0;

ð3:3Þ

fα̂i; β̂jg ¼ fα̂i; γ̂jg ¼ � � � ¼ fβ̂i; γ̂jg ¼ fβ̂i; δ̂jg ¼ � � � ¼ 0;

ð3:4Þ

and the operators with the Roman letters and the ones with
the Greek letters commute with each other

½âi; α̂j� ¼ ½âi; β̂j� ¼ � � � ¼ ½b̂i; α̂j� ¼ ½b̂i; β̂j� ¼ � � � ¼ 0:

ð3:5Þ

Then, we define the following extended supercharges

QðaÞ
i ¼

�
iâiA†

−iAâi

�
; QðbÞ

i ¼
�

ib̂iA†

−iAb̂i

�
;

…; ð3:6Þ

QðαÞ
i ¼

�
α̂iA†

Aα̂i

�
; QðβÞ

i ¼
�

β̂iA†

Aβ̂i

�
; � � � ;

ð3:7Þ

and obtain N ¼ ðNa þ Nb þ � � � þ Nα þ Nβ þ � � �Þ SUSY
algebra with the central charges7

5The N ¼ 2 SUSY algebra fQi;Qjg ¼ 2Hδij ði; j ¼ 1; 2Þ is
obtained with Q1 ¼ Q and Q2 ¼ ið−1ÞFQ.

6More precisely, we require that the functions âif
ðnÞ
α ði ¼

1; 2;…; NaÞ; b̂if ðnÞα ði ¼ 1; 2;…; NbÞ;… also satisfy the imposed
boundary condition.

7Although we can also define the supercharges with the
replacement of the operators with the Roman and the Greek
letters, those are essentially same as the ones given in the above.
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fQðAÞ
i ; QðBÞ

j g ¼ 2Hδijδ
AB þ 2ZðAÞ

ij δAB; ð3:8Þ

½QðAÞ
i ; ZðBÞ

jk � ¼ ½H;ZðAÞ
jk � ¼ ½ZðAÞ

ij ; ZðBÞ
kl � ¼ ½QðAÞ

i ; H� ¼ 0

ðA; B ¼ a; b;…; α; β; � � �Þ; ð3:9Þ

where H denotes the Hamiltonian given by (2.21) and the

central charges ZðAÞ
ij are defined as

ZðaÞ
ij ¼ −Hδij þ

�
âiâjA†A 0

0 AâiâjA†

�
;

ZðbÞ
ij ¼ −Hδij þ

�
b̂ib̂jA†A 0

0 Ab̂ib̂jA†

�
; …; ð3:10Þ

ZðαÞ
ij ¼ −Hδij þ

�
α̂iα̂jA†A 0

0 Aα̂iα̂jA†

�
;

ZðβÞ
ij ¼ −Hδij þ

�
β̂iβ̂jA†A 0

0 Aβ̂iβ̂jA†

�
; � � � : ð3:11Þ

Therefore, we can consider that the central charges in this
SUSY algebra result from the symmetries in the extra
dimensions. If we take the sets of operators as reflection
operators and gamma matrices, this extended QM SUSY
corresponds the one given in the previous papers [45].
For the existence of the extended SUSY with given sets

of operators, the metric of curved spaces and the back-
ground fields are restricted to satisfy the condition (3.1).
However, it seems difficult to find the constraints without
any assumption for sets of operators.8 Therefore, we will
first prepare the geometry and the background fields, and
then consider the sets of operators consistent with them
when we see an example in Sec. IV.
It should be mentioned that this central extension is

given by direct sums of mutually (anti)commuting N ¼ 2
SUSY algebras as well as the previous paper [45], with
different “Hamiltonians” for each of them. Especially, the

supercharges QðAÞ
i ði ¼ 1;…; NAÞ for each index A com-

mute with each other

½QðAÞ
i ; QðAÞ

j � ¼ 0 ði; j ¼ 1;…; NAÞ: ð3:12Þ

This property is important for the discussion of the BPS
states in the next subsection.

B. Representation of SUSY algebra

Then, let us clarify the representation of this algebra for
the nonzero energy states. Since the Hamiltonian and the
central charges commute with each other, we first look at
the simultaneous eigenstates of them:

HΦðnÞ
s;z ¼ m2

nΦ
ðnÞ
s;z ; ZðAÞ

ij ΦðnÞ
s;z ¼ zðAÞij m2

nΦ
ðnÞ
s;z ; ð3:13Þ

where n and z indicate the labels of their eigenvalues mn

and zðAÞij ,9 and s denotes the extra index to further classify
the eigenstates in the following discussions. For these
states, the algebra (3.8) is rewritten into

fQðAÞ
i ; QðBÞ

j g ¼ 2m2
nδijδ

AB þ 2zðAÞij m2
nδ

AB: ð3:14Þ

Since zðAÞij is the real symmetric matrix, it can be diagon-

alized by the orthogonal matrix UðAÞ
ij . Then, by redefining

the supercharges, we can obtain

fQ0ðAÞ
i ; Q0ðBÞ

j g ¼ 2m2
nδijδ

AB þ 2z0ðAÞi m2
nδijδ

AB; ð3:15Þ

where z0ðAÞi δij ¼
P

k;l U
ðAÞ
ik zðAÞkl ðUðAÞÞTlj is the diagonalized

matrix and Q0ðAÞ
i ¼ P

k U
ðAÞ
ik QðAÞ

k , Q0ðBÞ
j ¼ P

k U
ðBÞ
jk QðBÞ

k

indicate the redefined supercharges. Then we can find that

the square of the supercharge ðQ0ðAÞ
i Þ2 equals to 0 for

eigenstates with z0ðAÞi ¼ −1 (if exist). This relation leads to

Q0ðAÞ
i ¼ 0 for such states since the supercharge Q0ðAÞ

i is

Hermitian. Thus, for states with z0ðAÞi ¼ −1, the number of
nontrivial supercharges effectively reduces and the size of
supermultiplets become small compared with the regular
representation. These states are called BPS states.
It should be noted that, in this algebra, at most one

supercharge among Q0ðAÞ
i ði ¼ 1;…; NAÞ can become non-

trivial and the others must equal to 0 for any eigenstates.
This is because the supercharges satisfy the relation

Q0ðAÞ
i Q0ðAÞ

j ¼ 0 ði ≠ jÞ ð3:16Þ

due to (3.15) and the commutativity of QðAÞ
i and QðAÞ

j .
Therefore, the number of nontrivial supercharges for the
eigenstates are maximally given by the number of the sets
of the operators related to symmetries, and the eigenstates
necessarily become the BPS states if the sets have more
than one operator.

8In the Refs. [49,50], the structure of the extended QM SUSY
without central charges is discussed, which consists of the Dirac
operator in diverse dimensions on curved spaces with background
gauge fields. They have introduced tensor fields to extend the
Dirac operator and constructed the supercharges, and shown the
strict constraints on the geometry and the gauge fields. However,
since the way of our extension is different from them and our QM
SUSYadmits central charges, the constraints on the geometry and
the background fields will be also different from their case.

9In general, zðAÞij depend on the index n although we do not
explicitly label zðAÞij with it.
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Next, to construct the supermultiplets in this SUSY
algebra, we introduce the following operators by means of
the nontrivial redefined supercharges for the eigenstates:

SðABÞij ¼−iQ0ðAÞ
i Q0ðBÞ

j ; SðCDÞ
kl ¼−iQ0ðCÞ

k Q0ðDÞ
l ; �� �; ð3:17Þ

where A, B, C, and D are different with each other
according to the above discussion. These operators

commute with each other, and therefore, we can further
classify the eigenfunctions by these operators. Since these
operators satisfy

ðSðABÞij Þ2 ¼ m4
nð1þ z0i

ðAÞÞð1þ z0j
ðBÞÞ ð3:18Þ

for the eigenstates, we can parametrize their eigen-
values as10

SðABÞij ΦðnÞ
sðABÞij sðCDÞ

kl ���;z ¼ sðABÞij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ z0i

ðAÞÞð1þ z0j
ðBÞÞ

q
m2

nΦ
ðnÞ
sðABÞij sðCDÞ

kl ���;z; ð3:19Þ

where sðABÞij ¼ �. Here, we have described the index s as sðABÞij sðCDÞ
kl � � �.

From the relation

SðABÞij Q0
m
ðEÞ ¼

(
−Q0ðEÞ

m SðABÞij ðE ¼ A;m ¼ i or E ¼ B;m ¼ jÞ;
þQ0ðEÞ

m SðABÞij ðthe othersÞ;
ð3:20Þ

we can see thatQ0
i
ðAÞ andQ0

j
ðBÞ flip the sign of the eigenvalue of SðABÞij but do not change other eigenvalues. Thus, if there are

K nontrivial supercharges, this relation implies that a supermultiplet composes of the 2bK=2c-fold degenerate states

fΦðnÞ
sðABÞij sðCDÞ

kl ���;z with sðABÞij ¼ �; sðCDÞ
kl ¼ �;…g and we can explicitly construct the supermultiplet from ΦðnÞ

þþ���;z as

ΦðnÞ
sðABÞij sðCDÞ

kl ���;z ¼

0
B@ 1

mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0i

ðAÞ
q

1
CA

ð1−sðABÞij Þ=20B@ 1

mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0k

ðCÞ
q

1
CA

ð1−sðCDÞ
kl Þ=2

� � �

× ½ðQ0
i
ðAÞÞð1−sðABÞij Þ=2ðQ0

k
ðCÞÞð1−sðCDÞ

kl Þ=2 � � ��ΦðnÞ
þþ���;z: ð3:21Þ

IV. EXAMPLE

In this section, we will confirm that theN -extended QM
SUSY given in the previous section can be realized in
higher dimnsional Dirac action with curved extra dimen-
sions. As an example, we examine the S2-extra dimension
with the Wu-Yang magnetic monopole background.

A. Spin-weighted spherical harmonics

As is well known, the mode functions on S2-can be
expressed by the spin-weighted spherical harmonics
[51–53]. Thus, we briefly review the Newman-Penrose
ð (eth) formalism and this function.

First, we consider the rotation of the orthogonal basis
eθ; eϕ defined in tangent space on S2

� eθ → e0θ ¼ eθ cos α − eϕ sin α;

eϕ → e0ϕ ¼ eθ sin αþ eϕ cos α:
ð4:1Þ

We call that a quantity η has spin weight s, if η transforms
as follows under the above transformation:

η → eisαη: ð4:2Þ

Furthermore, we introduce the operators ð (eth) and ð̄
(eth bar) which act as follows for η with the spin weight s:

ðη ¼ −
�
∂θ þ

i
sin θ

∂ϕ − s cot θ

�
η ¼ −ðsin θÞs

�
∂θ þ

i
sin θ

∂ϕ

�
ðsin θÞ−sη; ð4:3Þ

ð̄η ¼ −
�
∂θ −

i
sin θ

∂ϕ þ s cot θ

�
η ¼ −ðsin θÞ−s

�
∂θ −

i
sin θ

∂ϕ

�
ðsin θÞsη: ð4:4Þ

10z0i ≥ −1 because ðQðAÞ
i Þ2 ¼ m2

n þ z0ðAÞi m2
n ≥ 0.
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We can show that ðη has spin weight sþ 1 and ð̄η has spin weight s − 1. Therefore, ð and ð̄ correspond to the spin weight
raising and lowering operators, respectively.
From (4.3) and (4.4), we obtain

ð̄ðη ¼
�

1

sin θ
∂θ sin θ∂θ þ

1

sin2θ
∂2
ϕ þ 2is

cos θ
sin2θ

∂ϕ −
s2

sin2θ
þ sðsþ 1Þ

�
η;

ðð̄η ¼
�

1

sin θ
∂θ sin θ∂θ þ

1

sin2θ
∂2
ϕ þ 2is

cos θ
sin2θ

∂ϕ −
s2

sin2θ
þ sðs − 1Þ

�
η: ð4:5Þ

The spin-weighted spherical harmonics sYjm with the spin weight s is given as the eigenfunction of ð̄ð and ðð̄:

ð̄ðsYjm ¼ −fjðjþ 1Þ − sðsþ 1ÞgsYjm; ðð̄sYjm ¼ −fjðjþ 1Þ − sðs − 1ÞgsYjm; ð4:6Þ

or equivalently

�
−

1

sin θ
∂θ sin θ∂θ −

1

sin2θ
∂2
ϕ − 2is

cos θ
sin2θ

∂ϕ þ
s2

sin2θ

�
sYjm ¼ jðjþ 1ÞsYjm; ð4:7Þ

where the spin weight is given by s ¼ 0;�1=2;�1;�3=2 � � �. The index jð¼ jsj; jsj þ 1; jsj þ 2; � � �Þ denotes the main total
angular momentum quantum number and the index mð¼ −j;−jþ 1;…; j − 1; jÞ indicates the secondary total angular
momentum quantum number. Since the spin-weighted spherical harmonics sYjm form a complete set for the fixed spin
weight s, any function on S2 with the spin weight s can be decomposed into sYjm.
The explicit form of the normalized spin-weighted spherical harmonics is written as

sYjmðθ;ϕÞ ¼ eimπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4π
ðjþmÞ!ðj −mÞ!ðjþ sÞ!ðj − sÞ!

r

×
Xminfj−s;j−mg

k¼maxf0;−m−sg

ð−1Þkðsin θ
2
Þmþsþ2kðcos θ

2
Þ2j−m−s−2k

k!ðj −m − kÞ!ðj − s − kÞ!ðmþ sþ kÞ! e
imϕ; ð4:8Þ

which satisfies the orthonormal relationZ
dΩðsYjmðθ;ϕÞÞ�sYj0m0 ðθ;ϕÞ ¼ δjj0δmm0 : ð4:9Þ

Here, we have chosen the phase of this function in such a way that the function satisfies

ðsYjm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ − sðsþ 1Þ

p
sþ1Yjm; ð̄sYjm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ − sðs − 1Þ

p
s−1Yjm: ð4:10Þ

In the case of s ¼ 0, the spin-weighted spherical harmonics corresponds to the spherical harmonic Yjm.
As well as the ordinary spherical harmonics, this function corresponds to the representation of su(2) algebra

L2
sYjm ¼ jðjþ 1ÞsYjm; LzsYjm ¼ msYjm; L�sYjm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj ∓ mÞðjþ 1�mÞ

p
sYjm�1; ð4:11Þ

where L2, Lz and L� are the angular momentum operators for quantities with spin weight s

Lz ¼ −i∂ϕ; ð4:12Þ

L� ¼ e�iϕ

�
�∂θ þ i cot θ∂ϕ −

s
sin θ

�
; ð4:13Þ

L2 ¼ 1

2
ðLþL− þ L−LþÞ þ L2

z ¼ −
1

sin θ
∂θ sin θ∂θ −

1

sin2θ
∂2
ϕ − 2is

cos θ
sin2θ

∂ϕ þ
s2

sin2θ
; ð4:14Þ
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and satisfy

½Lz; L�� ¼ �L�; ½Lþ; L−� ¼ 2Lz;

½L2; Lz� ¼ ½L2; L�� ¼ 0: ð4:15Þ
Furthermore, this function satisfies the following
properties:

sYjmðπ − θ;ϕÞ ¼ ð−1Þj−m−sYjmðθ;ϕÞ; ð4:16Þ

sYjmðθ;−ϕÞ ¼ ð−1Þm−s
−sYj−mðθ;ϕÞ: ð4:17Þ

B. KK mode functions and mass spectrum of S2-extra
dimension with magnetic monopole

Then, we discuss the KK mode functions and the mass
spectrum of S2-extra dimension with a magnetic monopole.
We consider the space M4 × S2 with the radius a

ds2 ¼ ημνdxμdxν þ a2ðdθ2 þ sin θdϕ2Þ; ð4:18Þ

and we choose the basis of the vielbein as

eKK̂ ¼ diagð1; 1; 1; 1; a; a sin θÞ
ðK ¼ 0; 1; 2; 3; θ;ϕ; K̂ ¼ 0̂; 1̂; 2̂; 3̂; θ̂; ϕ̂Þ: ð4:19Þ

Furthermore, we introduce the Wu-Yang magnetic monop-
ole background

AN=S ¼ −
n
2q

ðcos θ ∓ 1Þdϕ ðn ¼ 0;�1;�2; � � �Þ;

ð4:20Þ
where q is the gauge coupling constant.11 The gauge fields
AN and AS are defined on the north patch ð0 ≤ θ < π; 0 ≤
ϕ < 2πÞ and the south patch ð0 < θ ≤ π; 0 ≤ ϕ < 2πÞ on
S2, respectively.
Then, we consider the 6D Dirac action with the monop-

ole background and the bulk mass M:

S ¼
Z

d4x
Z
S2
dθdϕa2 sin θΨ̄ðx; yÞ

× ½iΓK̂eK̂
Kð∇K þ iqAKðyÞÞ −M�Ψðx; yÞ; ð4:21Þ

where we require that the Dirac fields on the north patch
ΨNðx; θ;ϕÞ and on the south patch ΨSðx; θ;ϕÞ are related
by gauge transformation

ΨS ¼ e−inϕΨN: ð4:22Þ

Here, we define the internal chiral matrix γin which satisfies

γin ¼ iγθ̂γϕ̂; ðγinÞ2 ¼ 12bd=2c ;

ðγinÞ† ¼ γin; fγin; γŷg ¼ 0; ð4:23Þ

and we decomposition ΨN=Sðx; θ;ϕÞ as

ΨN=Sðx; θ;ϕÞ ¼
X
k

X
α¼�

½f ðkÞN=S
α ðθ;ϕÞ ⊗ ψ ðkÞ

R;αðxÞ

þ gðkÞN=S
α ðθ;ϕÞ ⊗ ψ ðkÞ

L;αðxÞ�; ð4:24Þ

where the index α ¼ � indicate the eigenvalues of γin ¼ �
for f ðkÞN=S

α and massless gðkÞN=S
α (if exist).12

In this model, the operator A and A† in the supercharge
(2.20) can be written into the form

A ¼ e∓in
2
ϕ

�
iγθ̂

1

a
ððsþPþ þ ð̄s−P−Þ þM

�
e�in

2
ϕ; ð4:25Þ

A† ¼ e∓in
2
ϕ

�
−iγθ̂

1

a
ððsþPþ þ ð̄s−P−Þ þM

�
e�in

2
ϕ; ð4:26Þ

where the upper and lower signs in the exponential denote
the ones for the north and south patches, respectively.
(Here after, we use the same notation for the signs in the
exponential if appear.) The operators ðsþ and ð̄s− represent
the spin weight raising and lowering operators for the
spin weight s� ¼ −ðn� 1Þ=2, and P� ¼ ð1� γinÞ=2 are
the projection matrices for γin. Then, A†A and AA† are
given by

A†A¼AA†

¼e∓in
2
ϕ

�
−
1

a2
ðð̄sþþ1ðsþPþþðs−−1ð̄s−P−ÞþM2

�
e�in

2
ϕ:

ð4:27Þ

Thus, we can find that the mode functions and the mass
eigenvalues are obtained as follows from (2.19) and (4.6):

f ðjmÞN=S
α ðθ;ϕÞ ¼ sαYjmðθ;ϕÞe∓in

2
ϕ

a
eα;

gðjmÞN=S
α ðθ;ϕÞ ¼ 1

mj
Af ðjmÞN=S

α ðθ;ϕÞ; ðα ¼ �Þ; ð4:28Þ

mj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

a2
−
n2 − 1

4a2
þM2

s
; ð4:29Þ

11In the case of n ¼ 0, the Einstein equation leads to a → ∞.
However, in the case of n ≠ 0, the radius a is stabilized and given
by a2 ¼ n2κ2=8q2 where κ is the 6D gravitational coupling
constant [54]. In this paper, we concentrate the structure of the
mass spectrum of this model and we will not take into account the
stability of a.

12The massive mode functions gðkÞN=S
α ∝ Af ðkÞN=S

α are not the
eigenfunction with γin ¼ α because A and γin do not commute
with each other.

INORI UEBA PHYS. REV. D 100, 105001 (2019)

105001-8



where s�, j and m are given by

s� ¼ −
n� 1

2
;

j ¼
� jsþj; jsþj þ 1; jsþj þ 2; � � � ðfor α ¼ þÞ
js−j; js−j þ 1; js−j þ 2; � � � ðfor α ¼ −Þ ;

m ¼ −j;−jþ 1;…; j − 1; j; ð4:30Þ
and we define e� as the 2-component orthonormal vectors
which satisfy

γine� ¼ �e�; γθ̂e� ¼ ie∓; γϕ̂e� ¼∓ e∓: ð4:31Þ

Then, the degeneracy of jth KK level is 2jþ 1 for each
mode function.
We can see that the mode functions f ðjmÞN=S

� and

gðjmÞN=S
� with j ¼ js�j have the lowest mass eigenvalueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=a2 þM2

p
in the case without the monopole (n ¼ 0).

On the other hand, in the case with the monopole (n ≠ 0),
the lowest mass eigenvalue decrease to M and the cor-
responding mode functions are given by f ðjs−jmÞN=S

− and

gðjs−jmÞN=S
− for n > 0 and f ðsþmÞN=S

þ and gðsþmÞN=S
þ for n < 0.

Thus, there are no massless modes unless the bulk mass M
equals to 0 and the magnetic monopole exists. If we
consider the model with M ¼ 0 and n > 0ðn < 0Þ, jnj
massless modes exist for the mode functions f ðjmÞN=S

α and

gðjmÞN=S
α with α ¼ −ðα ¼ þÞ respectively, and jnj massless
4D Dirac fields appear.13

C. N -extended QM SUSY in S2-extra dimension
with magnetic monopole

Let us construct the N -extended QM SUSY in S2-extra
dimension with the magnetic monopole. For this purpose,
we first summarize the well-defined operators for the KK

mode functions f ðjmÞN=S
α and their properties in this model:

(i) properties of γinγŷðin
We write the operator ðin as

ðin ¼ e∓in
2
ϕððsþPþ þ ð̄s−P−Þe�in

2
ϕ; ð4:32Þ

which appears in the A and A†. Then, the operators
iγinγŷðinðŷ ¼ θ̂; ϕ̂Þ satisfy

½iγinγŷðin;A†A� ¼ 0; fiγinγθ̂ðin; iγinγϕ̂ðing ¼ 0: ð4:33Þ

These operators relate f ðjmÞN=S
α with f ðjmÞN=S

−α since the
operator ðin raises the spin weight for the functions with

γin ¼ þ and lowers the spin weight for the functions with

γin ¼ −. Furthermore, these are Hermitian for f ðjmÞN=S
α in

the sence that

hiγinγŷðinf ðj
0m0ÞN=S

α0 jf ðjmÞN=S
α i ¼ hf ðj0m0ÞN=S

α0 jiγinγŷðinf ðjmÞN=S
α i:
ð4:34Þ

We can use these operators to construct the N -extended
QM SUSY.
(ii) properties of angular momentum operator
From the rotational symmetries of S2-extra dimension,

the angular momentum operator Lz given in (4.12) with
gauge transformation

LðnÞ
z ¼ e∓in

2
ϕLze�in

2
ϕ; ð4:35Þ

are Hermitian and well defined for the mode functions.
Furthermore this satisfies

½LðnÞ
z ;A†A� ¼ ½LðnÞ

z ; ðin� ¼ 0: ð4:36Þ

This is also useful for the construction of the N -extended
QM SUSY.
(iii) properties of reflection operators
In the model without the magnetic monopole (n ¼ 0),

we can consider the reflection operators with gamma
matrices γinγθ̂Rθ and γinγϕ̂Rϕ where Rθ and Rϕ represent
the reflections for the coordinates θ and ϕ

Rθ∶ θ → π − θ; Rϕ∶ ϕ → −ϕ: ð4:37Þ
These operators are well-defined for the mode functions

f ðjmÞ
α and commute with A†A because of the reflection
symmetries in S2-extra dimension.
In the case of S2 with monopole (n ≠ 0), the above

operators are ill defined and do not commute with A†A
by the monopole background. However, the operator with
the combination of the above reflections and the gauge
transformation

R ¼ e∓in
2
ϕRθRϕe�in

2
ϕ ð4:38Þ

is Hermitian and well defined for the mode functions and
satisfies

½R;A†A� ¼ fR;ðing ¼ fR;LðnÞ
z g ¼ 0; R2 ¼ 1: ð4:39Þ

We find that this operator connects the mode functions

f ðjmÞN=S
α to f ðj−mÞN=S

α .
Then, we can obtain various kinds of N -extended QM

SUSYs from the above operators. As examples, we con-
sider the following two N -extended QM SUSYs:
(iv) N ¼ 6 extended QM SUSY with central charges

from the angular momentum operator

13If we consider the action with a 6D chiral field with the
eigenvalue Γ7 ¼ −Γ0̂Γ1̂Γ2̂Γ3̂Γθ̂Γϕ̂ ¼ þð−Þ, there appear n 4D
left (right)-handed fields in the case of n > 0 and jnj 4D right
(left)-handed fields in the case of n < 0.
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First, we consider the N ¼ 6 extended QM SUSY with
central charges which consist of the angular momentum

operator LðnÞ
z :

fQk;Qlg ¼ 2Hδkl þ 2Zkl; ð4:40Þ

½Qk0 ; Zkl� ¼ ½H;Zkl� ¼ ½Zkl; Zk0l0 � ¼ ½Qk0 ; H� ¼ 0

ðk; l; k0; l0 ¼ 1;…; 6Þ; ð4:41Þ

where the supercharges Qk and the nonzero components of
central charges Zkl are given by

Q1 ¼
�

0 −γinγθ̂ðinA†

Aγinγθ̂ðin 0

�
;

Q2 ¼
�

0 −γinγϕ̂ðinA†

Aγinγϕ̂ðin 0

�
; ð4:42Þ

Q3 ¼
�

0 iγinLðnÞ
z A†

−iAγinLðnÞ
z 0

�
;

Q4 ¼
�

0 iγinA†

−iAγin 0

�
; ð4:43Þ

Q5 ¼
�

0 LðnÞ
z A†

ALðnÞ
z 0

�
; Q6 ¼ Q; ð4:44Þ

Z11 ¼ Z22 ¼ Hð−1þ a2H − a2M2Þ; ð4:45Þ

Z34 ¼ Z56 ¼
�
LðnÞ
z A†A 0

0 ALðnÞ
z A†

�
;

Z33 ¼ Z55 ¼ −H þ
� ðLðnÞ

z Þ2A†A 0

0 AðLðnÞ
z Þ2A†

�
;

ð4:46Þ

In this QM SUSY,Q3 andQ4 commute with each other and
also Q5 and Q6.
According to the discussion given in the Sec. III B, we

redefine the supercharges for the eigenfunctions with the

eigenvaluesH ¼ m2
j , Z34 ¼ mm2

j and Z33 ¼ ð−1þm2Þm2
j

(where m indicates the angular momentum number):

Q0
1 ¼ Q1; Q0

2 ¼ Q2; ð4:47Þ

Q0
3 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ðmQ3 þQ4Þ;

Q0
4 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ðQ3 −mQ4Þ; ð4:48Þ

Q0
5 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ðmQ5 þQ6Þ;

Q0
6 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ðQ5 −mQ6Þ; ð4:49Þ

The SUSYalgebra (4.40) is written into the following form
for the redefined supercharges

fQ0
k; Q

0
lg ¼ 2m2

jδkl þ 2z0km
2
jδkl; ð4:50Þ

where z0kðk ¼ 1;…; 6Þ is given by

z01 ¼ z02 ¼ ð−1þ a2m2
j − a2M2Þ;

z03 ¼ z05 ¼ m2; z04 ¼ z06 ¼ −1: ð4:51Þ
From this relation, we find that Q0

4 ¼ Q0
6 ¼ 0 for any

eigenstates. Furthermore the supercharges Q0
1 and Q0

2

equal to 0 for the states with mj ¼ M (or equivalently
H ¼ M2), that is the case of j ¼ js−j for n > 0 and j ¼ sþ
for n < 0. Thus, the BPS states appear as discussed in the
Sec. III.
Then we can construct the eigenfunctions ΦðjmÞ

s12s35;z0
ðyÞ

with H ¼ m2
j ≠ M2 as

ΦðjmÞN=S
þþ;z0 ¼

�
f ðjmÞN=S
þ
0

�
; ΦðjmÞN=S

−þ;z0 ¼
�

0

−igðjmÞN=S
−

�
;

ΦðjmÞN=S
þ−;z0 ¼

�
0

−igðjmÞN=S
þ

�
; ΦðjmÞN=S

−−;z0 ¼
�
f ðjmÞN=S
−

0

�
;

ð4:52Þ

and also the eigenfunctions ΦðjmÞ
s35;z0

ðyÞ with H ¼ M2 as

8>>><
>>>:

Φðjs−jmÞN=S
þ;z0 ¼

�
0

−igðjs−jmÞN=S
−

�
;Φðjs−jmÞN=S

−;z0 ¼
�
−f ðjs−jmÞN=S

−

0

�
for n > 0 and j ¼ js−j;

ΦðsþmÞN=S
þ;z0 ¼

�
f ðsþmÞN=S
þ

0

�
;ΦðsþmÞN=S

−;z0 ¼
�

0

−igðsþmÞN=S
þ

�
for n < 0 and j ¼ sþ:

ð4:53Þ

Here z0 indicates fz0iði ¼ 1;…; 6Þg given in (4.51) and
s12 ¼ �, s35 ¼ � denote the signs of the eigenvalues of
S12 ¼ −iQ1Q2, S35 ¼ −iQ3Q5.

Then we can show that the above eigenfunctions form
the supermultiplets and satisfy the same relation as (3.21).
In this extended QM SUSY, the four (two) -fold
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degenerated eigenfunctions with H ≠ M2ðH ¼ M2Þ are
related by the supercharges Q0

k with k ¼ 1, 2, 3, 5
(k ¼ 3, 5). Furthermore, the extra (2jþ 1)-fold degeneracy
exists in the eigenfunctions. The origin of this degeneracy
comes from the angular momentum number m, which
corresponds to the eigenvalues of central charges.
(v) N ¼ 6 extended QM SUSY with central charges

from the angular momentum operator and the reflection
operator
Next, we construct the N ¼ 6 extended QM SUSY with

central charges from the angular momentum operator and
the reflection operator:

fQk;Qlg ¼ 2Hδkl þ 2Zkl;

½Qk0 ; Zkl� ¼ ½H;Zkl� ¼ ½Zkl; Zk0l0 � ¼ ½Qk0 ; H� ¼ 0

ðk; l; k0; l0 ¼ 1;…; 6Þ; ð4:54Þ
where the supercharges Qk and the nonzero components of
the central charges are taken to be the form of

Q1 ¼
�

0 −γinγθ̂ðinA†

Aγinγθ̂ðin 0

�
;

Q2 ¼
�

0 −γinγϕ̂ðinA†

Aγinγϕ̂ðin 0

�
; ð4:55Þ

Q3 ¼
�

0 iγinLðnÞ
z A†

−iAγinLðnÞ
z 0

�
;

Q4 ¼
�

0 −LðnÞ
z RA†

ALðnÞ
z R 0

�
; ð4:56Þ

Q5 ¼
�

0 iRA†

−iAR 0

�
; Q6 ¼ Q; ð4:57Þ

Z11 ¼ Z22 ¼ Hð−1þ a2H − a2M2Þ;

Z33 ¼ Z44 ¼ −H þ
� ðLðnÞ

z Þ2A†A 0

0 AðLðnÞ
z Þ2A†

�
:

ð4:58Þ

As well as the previous extended QM SUSY, the super-
charges Q1 and Q2 equal to 0 for the states with H ¼ M2.

In addition, the eigenstates with Z33 ¼ −m2
jðLðnÞ

z ¼ 0Þ
become BPS states and Q3 and Q4 equal to 0 for them.
Here, we redefine the basis of the KK mode functions to

obtain the representation of this QM SUSY

f ðjmÞN=S
α;r ðθ;ϕÞ ¼ 1ffiffiffi

2
p ðf ðjmÞN=S

α ðθ;ϕÞ

þ rð−1Þjþsαf ðj−mÞN=S
α ðθ;ϕÞÞ;

gðjmÞN=S
α;r ðθ;ϕÞ ¼ 1ffiffiffi

2
p ðgðjmÞN=S

α ðθ;ϕÞ

þ rð−1Þjþsαgðj−mÞN=S
α ðθ;ϕÞÞ; ð4:59Þ

where r ¼ � and m ≥ 0. The mode functions f ðjmÞN=S
α;r with

r ¼ � correspond to the parity even and odd functions for
R, respectively

Rf ðjmÞN=S
α;� ¼ �f ðjmÞN=S

α;� : ð4:60Þ

Then, we can obtain the eigenfunctions ΦðjmÞ
s12s34s56;zðyÞ for

non-BPS states (H ¼ m2
j ≠ M2, Z33 ¼ ð−1þm2Þm2

j ≠
−m2

j ) as follows:

ΦðjmÞ
þþþ;z ¼

�
f ðjmÞN=S
þ;þ
0

�
; ΦðjmÞ

−þþ;z ¼
�

0

−igðjmÞN=S
−;−

�
; ΦðjmÞ

þ−þ;z ¼
�

0

−igðjmÞN=S
þ;−

�
; ΦðjmÞ

þþ−;z ¼
�

0

−igðjmÞN=S
þ;þ

�
;

ΦðjmÞ
−−þ;z ¼

�
f ðjmÞN=S
−;þ
0

�
; ΦðjmÞ

−þ−;z ¼
�
f ðjmÞN=S
−;−

0

�
; ΦðjmÞ

þ−−;z ¼
�
f ðjmÞN=S
þ;−

0

�
; ΦðjmÞ

−−−;z ¼
�

0

−igðjmÞN=S
−;þ

�
; ð4:61Þ

where z indicates zk (k ¼ 1, 2, 3, 5) which are the
coefficient of m2

j in the eigenvalues of Zkk

z1 ¼ z2 ¼ −1þ a2m2
j − a2M2; z3 ¼ z5 ¼ −1þm2;

ð4:62Þ

and the dependence of z in the right-hand side of (4.61) is
described by j and m. s12 ¼ �, s34 ¼ � and s56 ¼ �
denote the signs of the eigenvalues of S12 ¼ −iQ1Q2,
S34 ¼ −iQ3Q4, S56 ¼ −iQ5Q6.

We can show that the above eigenfunctions form the
supermultiplets and satisfy the same relation as (3.21). The
supermultiplets for the BPS states can be constructed
by use of the mode functions f ðjmÞN=S

α;r and gðjmÞN=S
α;r in

the same way.
In this extended QM SUSY, the eight-fold degenerated

non-BPS states is related by the six supercharges
Qkðk ¼ 1;…; 6Þ. Therefore, we see that the additional
two-fold degeneracy can be further explained by the
supercharges compared with the previous extended QM
SUSY (although the total degeneracy including the BPS
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states with m ¼ 0 is not changed). This additional degen-
eracy corresponds to the parity even and odd for the
reflection. Since the eigenfunctions with m ¼ 0 are only
equivalent for the parity even from the definition (4.59),
they should become the BPS states.
Although we considered two examples, there are more

extended QM SUSYs constructed from the symmetries. For
instance, we can obtain them by using the reflection
operators γinγθ̂Rθ and γinγϕ̂Rϕ in the case without the
magnetic monopole, since those operators correspond to
the symmetries in such model.

V. SUMMARY AND DISCUSSION

In this paper, we have constructed the new realization of
the N -extended QM SUSY with central charges hidden in
the higher dimensional Dirac action with curved extra
dimensions. This extended QM SUSY results from sym-
metries in extra dimensions, and the supercharges and the
central charges are obtained by use of them. We have also
investigated the representation of the SUSY algebra and
shown that the supermultiplets would become the BPS
states. In addition, we considered the model of S2-extra
dimension with the magnetic monopole as the concrete
example. Then we have confirmed that the KK mode
functions properly correspond to the representations in the
two types of N -extended QM SUSYs which are obtained
from the rotational and reflection symmetries in the extra
dimensions.
The characteristic property of our extended QM SUSY is

that certain supercharges commutewith each other. Recently,
a new generalization of supersymmetry is proposed, that is

Zn
2-graded supersymmetry whose supercharges have n

degrees [55–57]. For their supercharges with different
degrees, the algebra may not close in anticommutator but
commutator. Therefore, it is interesting to investigate the
relation between this supersymmetry and our QM SUSY.
Our analysis is not perfect. As we have seen in Sec. IV,

there appear various extended QM SUSYs in a model,
according to sets of symmetries. Thus, we should clarify
what kinds of extended QM SUSYs can be obtained from a
model. It is also important to reveal that what symmetries
exist by the choice of boundary conditions, extra dimen-
sional spaces and background fields since they would affect
the structures of extended QM SUSYs. Furthermore, it is
known that central charges are closely related to topological
properties [40,58,59]. Although the central charges given in
Sec. IV might be related to the topology of S2 and the
magnetic monopole, the detailed structures are not unveiled.
Thus, we should more investigate models with nontrivial
topology. We can also expect the possibilities that the further
structures are hidden in the 4D mass spectrum. Since our
discussions are not completely general, other realizations of
extended QM SUSY might be constructed.
Moreover, since we have obtained the new extended QM

SUSY, it is fascinating to study new types of exactly
solvable quantum-mechanical models. The issues men-
tioned in this section will be reported in a future work.
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