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We discuss a new realization of N -extended quantum-mechanical supersymmetry (QM SUSY) with
central charges hidden in the four-dimensional (4D) mass spectrum of higher dimensional Dirac action with
curved extra dimensions. We show that this A/-extended QM SUSY results from symmetries in extra
dimensions, and the supermultiplets in this supersymmetry algebra correspond to the Bogomol’nyi—
Prasad—Sommerfield states. Furthermore, we examine the model of the S?-extra dimension with a magnetic
monopole background and confirm that the A-extended QM SUSY explains the degeneracy of the 4D

mass spectrum.
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I. INTRODUCTION

So far, quantum-mechanical supersymmetry (QM
SUSY) has attracted much attention and has been applied
to the various research areas, e.g., exactly solvable quantum
mechanics [1-4], Berry phase [5-7], black holes and AdS/
CFT [8-12], Sachdev-Ye—Kitacv model [13-17], extra
dimensional models [18-23] and so on. Its extensions
are also investigated. The A -extended supersymmetry is
the extension which includes A independent supercharges
in the supersymmetry algebra [24-31]. Each of supercharge
corresponds to a square root of Hamiltonian, and they
explain the degeneracy of the energy spectrum. In addition,
the central extension which introduces central charges
in the algebra is also studied [32-35]." Central charges
commute with all the operators in the algebra. As is well
known, if there are central charges, the size of super-
multiplets can be small compared with the regular repre-
sentation [40,41]. Such multiplets are called short
multiplets or Bogomol’nyi—Prasad—Sommerfield (BPS)
states.” Since not so many models which realize arbitrary
large N-extended QM SUSY with central charges are
known, it is worth investigating a new realization of
N -extended one.

*i—ueba@stu.kobe—u.ac.jp

lSpontaneous generations of the central charges in field-
theoretic SUSY algebras and associated materials have been
discussed (see e.g. [36-39]).

*See also the original papers of BPS states [42,43].
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Here, we focus on the higher dimensional Dirac action
with extra dimensions. In Refs. [22,23], it has been shown
that the structure of the N/ = 2 QM SUSY is hidden in the
four-dimensional (4D) mass spectrum of the higher dimen-
sional Dirac action with flat extra dimensions, and the
Kaluza-Klein (KK) mode functions for the 4D right-handed
and left-handed spinors form the supermultiplets. Further-
more, in the previous papers [44,45], we have revealed that
this ' = 2 QM SUSY can be extended to the N -extended
QM SUSY from the reflection symmetries in the flat extra
dimensions. Then we have found that the central charges
appear as the result of the reflection symmetries, and the
supermultiplets of this extended QM SUSY corresponds to
the BPS states. These supercharges can explain the degen-
eracy of the 4D mass spectrum.

However, there remain many tasks to be addressed. Here
we focus on the following ones: First, previous works are
only devoted to the case of the flat extra dimensions.
Therefore we should take into account the case of curved
extra dimensions for a general discussion. Second, we
have only considered the N -extended QM SUSY from the
reflection symmetries. If there are more symmetries in extra
dimensions, additional degeneracies would appear in 4D
mass spectra. Then, we can expect that further structures of
N -extended QM SUSY from other symmetries are hidden
in them.

Based on the above, in this paper, we discuss a new
realization of the A -extended QM SUSY with central
charges which are obtained from symmetries in the higher
dimensional Dirac action with curved extra dimensions.
We show that the central charges appear from those
symmetries and this N -extended QM SUSY corresponds
to the generalization of the previous one. Furthermore, the
supermultiplets in this SUSY algebra also become the
BPS states. Then, as an example, we will confirm that this

Published by the American Physical Society
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N-extended QM SUSY is realized in the S*-extra dimen-
sion with the magnetic monopole background and explain
the degeneracy of the 4D mass spectrum.

This paper is organized as follows: In Sec. II, we sum-
marize the KK decomposition of the (4 + d)-dimensional
Dirac field with the curved extra dimension and show that
the A/ = 2 QM SUSY is hidden in the 4D mass spectrum.
In Sec. III, we construct the N -extended QM SUSY with
central charges from the symmetries in extra dimensions
and discuss the representation of this SUSY algebra. Then,
in Sec. IV, we confirm that this NV -extended QM SUSY can
be realized in the model of the S2-extra dimension with the
magnetic monopole background, and the KK mode func-
tions correspond to the representation given in Sec. IIL.
Section V is devoted to summary and discussion.

IL. A =2 QM SUSY IN HIGHER DIMENSIONAL
DIRAC ACTION

In this section, we show that the structure of ' = 2 QM
SUSY is always hidden in the 4D mass spectrum of the
(4 + d)-dimensional Dirac action with curved extra
dimensions.

First, we assume that the (4 + d)-dimensional metric
Gyn(M,N=0,1,2,3,y;,...,y,) is of the form

ds? = GyydxMdxN = 200y, dxtdx’ + g,y (y)dy*dy”',
(2.1)
where xM = (x#,y") is the (4 + d)-dimensional coordi-
nates, and then x* (u =0, 1, 2, 3) and y'(y = y; - yq)
indicate the coordinates of the 4D and the extra dimen-
sional space, respectively. 7, = diag(—1,+1,+1,+1)
denotes the 4D Minkowski metric, and A(y) and g, (y)
depend only on the extra dimensional coordinates.
Then, for a general discussion, we study the (4 + d)-
dimensional Dirac action with the vector background field
Ay(y) = (0,A,(y)) and the scalar background field W(y):

S— / & L Ay V=GB (x, y)[iTex™ (Vy + igAy ()
— W)(x, y), (2.2)

where Q represents the space of the extra dimensions,

G =detGyy and we define the Dirac conjugate as

P(x,y) =¥ (x,y)IY. TV indicate the gamma matrices

which are defined by

(T TV = —2pMNY, e, (D)T = POPMTO
(M’Nzé,f,é,ﬁ,ﬁl,...,)};d), (23)

*In the case that A(y) = —k|y| and gyy = 1 with the 1d extra
dimension, this metric corresponds to the Randall-Sundrum
warped metric [46,47].

where M , N denote the indices of the local Lorentz frame,
and 7y o = diag(—1,+1,...,+1) is (4 + d)-dimensional
Minkowski metric. ey” is the vielvein and satisfies

M, N _ sN _ M, N, .
epey =6;. Guy = ey en Nyy-

(2.4)

M, N _ sN
erVey" =6,

In this model, the nonzero components of the vielvein can
be given by ¢,/ = AV (u=0,1,2,3,4=0,1,2,3) and
e’ (y=y1+va9 =91..... 94). V represents the covar-
iant derivative whose behavior for the Dirac field ¥(x, y) is

Vy¥(x,y) = (f%v +%kaﬁzkﬁ>‘P(x,y), (2.5)

where KL :ﬁ'[l“le ,Fi] corresponds to the generator of
(4 + d)-dimensional Lorentz transformation, and wyz
is the spin connection defined from the Christoffel
symbol T'f

on¥p = —eXoyer™ + e Tige,”,
and whose nonzero components are @,p; = 3 (e720,¢**)x
Nuoey” and @,y in this model.

For the convenience, we adopt the following represen-

tation of the gamma matrices:

I = 1,2 ® 14, Y=y Q7. (2.7)
yﬁ(ﬁ = 6, f, ﬁ, §) are the 4 x4 4D gamma matrices and
v’ = iy%'y?*y® denotes the 4D chiral matrix. y¥(y =
$1s..nPq) represent the 204/2) x 219/2) ddimensional
internal gamma matrices which satisfy

Py == ()'=-/" (28
From this representation, the Dirac operator can be rewrit-
ten into the form*

it e N (Vy +igAy) = W = Lyun ® e™2iy#d,
+irfes? (V, +igA, +20,A)

® }/5 - lew/zj ® 14, (29)
where Vy in the right-hand side of (2.9) means
i S N l o ol
Vy=0,+ Ewyy”y”’a) T o’ = 2 ], (2.10)

and this corresponds to the covariant derivative for spinors
defined on the space Q.

*y# implies y# = 78, where &, appear from the vielvein.
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Next, we consider the KK decomposition of the higher
dimensional Dirac field W(x, y) to obtain the action with
4D fields:

= Z Z{e-mw&") () ® yrigh(x)

( >®WL(1( )}

where the index n denotes the nth level of the KK
modes and « indicates the additional degeneracy of the

nth KK modes (if exists). The mode functions ff,">(y)

(g () have 219/2) components and are assumed to form a
complete set with respect to the internal space associated
with the 4D right-handed (left-handed) chiral spinors

l//R a( ) (wLa( )). By substituting (2.11) and (2.9) into
the action, we obtain

$= 35 [ @l o)

nm af

+ e280)g! (2.11)

<g£,"> g5 2”2,<x>iwa,,w2’f’,3 (%)
— (F A e (X)) (x)
— (g AL Y (e ()], (2.12)

where we have defined the inner product and the operator
A, AT as

(K1) = [ ds G X YG). g =detgyy,
(2.13)

A= et[-iffey (V, + igA,) + W], (2.14)

Q( gn;(y) > — <g&"?<y> > ’
(n)
Q<g£,">0<y>> - ’"< ao(y)>’

" (gé"?(y) >

iz
8a

A = eA+irfe (V, +igA,) + W] (2.15)

Then, by requiring that the KK mode functions satisfy the
orthonormal relations

én)v/(}m)> _ <gl(xn) |g‘(gm)> = 8"y,
<f((1n)|"4[g;jm)> — <g(<1n>|-/4f/(}m>> — mnénmgaﬁ’ (216)
we can obtain the following action:
S = / {ZZ% ) (i, = m, )t (x)
+ZWL X)ir* O (x)
+ Zu/ X)iy"o q/%%(x)}, (2.17)

= wgf()z(x) —I—l,l/i’fl(x) indicate 4D Dirac

(0)
L/Ra

spinors. The expression of the above effective 4D action
coincides with the case of flat extra dimensions given in
[45], although the effects of curved spaces and background
fields appear as the mass spectrum through the definition of
A, A" and (2.16).

Since we have assumed that the KK mode functions f Pt

and g((), " form the complete set respectively, the orthonormal

relations (2.16) lead to

where 1//5,"> (x)

spinors with mass m,, and y, /, (x) are massless 4D chiral

where the supercharge Q, the Hamiltonian H and the “fermion” number operator (—1)7 are defined by

o

H:Q2:€2A

Coa o A 0
+ leZA}/)’e;,y(c’)yA)< 0 —Af )

[—(Vy + igA,)? + g ey ey Fyy +

A () = mgt(y),  Algl’(y) = mfi (v).  (2.18)
From the above relations, we can obtain
FEON _ L () (PO ()
a(" ) =m0 e () = ()
- 0 0
) () =) @
0 A
4 O>’ (2.20)
lR—f—zyer (O,W)(=1)F + W2
(2.21)
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1 0
(=1)F = < 2 > (2.22)
0 —lzu/zj

F,y is the field strength for A, and R is the Ricci scalar
defined on Q. Then, we can find that the relations (2.19)
realize the N =2 supersymmetric quantum mechanics
[1,48].5 In this model, the “bosonic” and “fermionic” states
which form an N/ = 2 supermultiplet correspond to the KK
mode functions (£ (y).0)T and (0,g%" ().

Before closing this section, we comment about the
Hermiticity of the supercharge. From the action principle
0S = 0, we obtain the following condition for the KK mode
functions:

/3 . d" =ty /g () in, (V) ey (v) = 0, (2.23)

for all m, n, a, p, where 0Q represents the boundary of Q,
and n,(y) is an orthonormal vector on 9Q. We can show
that the above condition corresponds to the Hermiticity
condition for the supercharge. Then, the supercharge Q is
Hermitian as long as the action principle is required. Thus,
we can conclude that the N'=2 QM SUSY is always
realized in the 4D mass spectrum of the higher dimensional

Dirac action and the doubly degenerate states (f4" (y),0)T

and (0, g&") (y))" are mutually related by the supercharge Q,
except for zero energy states.

III. A/-EXTENDED QM SUSY
WITH CENTRAL CHARGES

In the previous section, we have described the N' =2
QM SUSY hidden in the doubly degeneracy of fg,") and

gg,") (v). However, we can expect that further hidden
structures exist in the 4D mass spectrum and this would
lead to the extra degeneracy due to the index « in addition
to the doubly one.

In this section, we show that the A/-extended QM SUSY
with central charges can be constructed from symmetries in
the extra dimensions. This QM SUSY can explain the extra
degeneracy in the 4D mass spectrum. Then, we clarify the
representation of this algebra for the nonzero energy states
and it will turn out that the eigenstates become BPS states.
This section is devoted to the general discussion, and a
concrete example will be given in the next section.

A. N -extended SUSY algebra with central charges

Here, we discuss a new realization of AN -extended
QM SUSY from symmetries. First, we consider sets of

operators  {a;(i=1,2,....N,)}.{b;(i=1.2,....N,)}.....

>The N = 2 SUSY algebra {Q;. Q; } =2H6; (i,j=1,2) is
obtained with Q; = Q and Q, = i(-1)F Q.

{a:(i=1,2,...N)}.{p:(i=1,2,....Ny)},..., which are
Hermitian and consistent with an imposed boundary con-

dition for the mode functions f, ((,") % and commute with AT A

[a;, ATA] = [b, ATA] = - = [, AT A

=B, ATA] = =0. (3.1)

Therefore, these operators do not change the mass eigen-
values and would be related to the symmetries in the extra
dimensions. Furthermore, we require that these operators
commute with the ones in the same sets

[bibj]=---=0, [&.a]=[pp)=-=0,

(4,4, =

and anticommute with the ones in the different sets for
Roman and Greek letters

— (b} = =0,
(3.4)

{&t’ﬁj}:{&w}})}: :{ﬁtvf/\j}

and the operators with the Roman letters and the ones with
the Greek letters commute with each other

(b1 B =+ =0.
(3.5)

[&i’&j] =

[&i»ﬁj} == [bi’dj] =

Then, we define the following extended supercharges

0l — ( id,-A*) Q(},)_( ilS,A*)
’ —iAg, CE —iAb, ’

(3.6)
@w:( @m) Qw:< ﬁﬂ» N
l Ad; ’ l Ap; ’ ’
(3.7)

and obtain N' = (N, + N, +--- + N, + Ny +---) SUSY

algebra with the central charges

®More precisely, we require that the functions dif((,")(i =
1.2,....N,). l;if,g,")(i =1,2,...,N,), ... also satisfy the imposed
boundary condition.

Although we can also define the supercharges with the
replacement of the operators with the Roman and the Greek
letters, those are essentially same as the ones given in the above.

105001-4



EXTENDED SUPERSYMMETRY WITH CENTRAL CHARGES IN ...

PHYS. REV. D 100, 105001 (2019)

{0, 0" =2H6,;547 + 22,68, (3.8)
(0N, 2) = (1.2 = 2. 20 = [0 . H] = 0
(A,B=a,b,...,a,p, "), (3.9)

where H denotes the Hamiltonian given by (2.21) and the

(4)

central charges Z;;" are defined as

29 _ _ps 4 (dideTA 0 )
v 0 AaaAT)
®) bib;ATA 0
Zij - H(slj—f— PN 5 ey (310)
0 Ab;b; At
o) &;a;AT A 0
Zl __H(Slj+ ’
/ 0 Ag;a; At
BB ATA 0
z) = Hai,+<ﬁ ! . ) (3.11)
0 Apip; AT

Therefore, we can consider that the central charges in this
SUSY algebra result from the symmetries in the extra
dimensions. If we take the sets of operators as reflection
operators and gamma matrices, this extended QM SUSY
corresponds the one given in the previous papers [45].

For the existence of the extended SUSY with given sets
of operators, the metric of curved spaces and the back-
ground fields are restricted to satisfy the condition (3.1).
However, it seems difficult to find the constraints without
any assumption for sets of operators.8 Therefore, we will
first prepare the geometry and the background fields, and
then consider the sets of operators consistent with them
when we see an example in Sec. IV.

It should be mentioned that this central extension is
given by direct sums of mutually (anti)commuting N = 2
SUSY algebras as well as the previous paper [45], with
different “Hamiltonians” for each of them. Especially, the

supercharges Q(.A)(i =1,...,N,) for each index A com-

1
mute with each other

0. 0W)=0 (i, j=1....Ny. (3.12)

8In the Refs. [49,50], the structure of the extended QM SUSY
without central charges is discussed, which consists of the Dirac
operator in diverse dimensions on curved spaces with background
gauge fields. They have introduced tensor fields to extend the
Dirac operator and constructed the supercharges, and shown the
strict constraints on the geometry and the gauge fields. However,
since the way of our extension is different from them and our QM
SUSY admits central charges, the constraints on the geometry and
the background fields will be also different from their case.

This property is important for the discussion of the BPS
states in the next subsection.

B. Representation of SUSY algebra
Then, let us clarify the representation of this algebra for
the nonzero energy states. Since the Hamiltonian and the
central charges commute with each other, we first look at
the simultaneous eigenstates of them:

HOY = m2al),  ZWol) — Wl (3.13)

where n and z indicate the labels of their eigenvalues m,,

and zl(?),g and s denotes the extra index to further classify

the eigenstates in the following discussions. For these
states, the algebra (3.8) is rewritten into

(0. 0P} = 2m26,;6"% + 22 m254.  (3.14)

(4)

Since Z;j is the real symmetric matrix, it can be diagon-

(4)

alized by the orthogonal matrix U;;". Then, by redefining

the supercharges, we can obtain

(0, 0Py = 2m25,,6"8 + 22/ m25,,6'8,  (3.15)

where Z

Zkl zk Zkz (

matrix and Q’l- =>,U ,-k Q;(CA), Q/E-B) =D Uy
indicate the redefined supercharges. Then we can find that

AN)J. is the diagonalized

the square of the supercharge (Q’ l(.A) )?

eigenstates with 7/ SA) =

equals to O for
—1 (if exist). This relation leads to

o' 5A> =0 for such states since the supercharge Q' EA) is
Hermitian. Thus, for states with 7z’ EA) = —1, the number of
nontrivial supercharges effectively reduces and the size of
supermultiplets become small compared with the regular
representation. These states are called BPS states.

It should be noted that in this algebra, at most one
supercharge among Q’ A) (i=1,...,N,) can become non-
trivial and the others must equal to O for any eigenstates.
This is because the supercharges satisfy the relation

A) (A L,

oMo =0 (i+#)) (3.16)

due to (3.15) and the commutativity of QSA) and Q§A>
Therefore, the number of nontrivial supercharges for the
eigenstates are maximally given by the number of the sets
of the operators related to symmetries, and the eigenstates
necessarily become the BPS states if the sets have more
than one operator.
()

°In general, z;;’ depend on the index n although we do not

explicitly label zi;n with it.
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Next, to construct the supermultiplets in this SUSY
algebra, we introduce the following operators by means of
the nontrivial redefined supercharges for the eigenstates:

commute with each other, and therefore, we can further
classify the eigenfunctions by these operators. Since these
operators satisfy

AB
S =—igM o', =-ig\ 00" ... (3.17) (SUP2 = md(1+ @)1 +2®)  (3.18)
where A, B, C, and D are different with each other for the eigenstates, we can parametrize their eigen-
according to the above discussion. These operators  values as'”
|
AB n AB n
S0 o, = 57 2O+ el (3.19)
i sy
where sff‘B) = =£. Here, we have described the index s as SE;‘B)S,(dcm e
From the relation
§(4B) _ . _ _
B)le<E) _ Qm i (E=Am=ior E=B,m=)), (3.20)
+O° ,;‘B) (the others),

we can see that Q) and Q’

) flip the sign of the eigenvalue of i

() but do not change other eigenvalues. Thus, if there are

K nontrivial supercharges, this relation implies that a supermultlplet composes of the 2LK/2)-fold degenerate states

(AB) (CD)

(n)

{fb(&)ﬂ) (D). w1th sij  =,8, ==+, ...} and we can explicitly construct the supermultiplet from @7 ., as
Sij Sk
(1=s3")/2 (1=s53")/2
, 1 1
@ =
iy Sk 14+ Z:,(A) 1+ Z;((C)

< ()

1

IV. EXAMPLE

In this section, we will confirm that the A/ -extended QM
SUSY given in the previous section can be realized in
higher dimnsional Dirac action with curved extra dimen-
sions. As an example, we examine the S2-extra dimension
with the Wu-Yang magnetic monopole background.

A. Spin-weighted spherical harmonics

As is well known, the mode functions on S2-can be
expressed by the spin-weighted spherical harmonics
[51-53]. Thus, we briefly review the Newman-Penrose
0 (eth) formalism and this function.

|

i
on = —[89+m8¢—scotﬁ]n =

on = —[89 “in 9345 —l—scot&}

1021 > —1 because (Q\M)? = m2 + 2/ Wm2 > 0.

521

A i s
—(sin0) [89 + sin08¢] (sin@)~*n

Y52 Jov . (3.21)

[
First, we consider the rotation of the orthogonal basis
ey, e, defined in tangent space on 52

, .
ey — ey = eycosa —e,sinaq,
(4.1)

e, — e;b =epsina +eycosa.

We call that a quantity # has spin weight s, if  transforms
as follows under the above transformation:
n— e (4.2)

Furthermore, we introduce the operators d (eth) and o
(eth bar) which act as follows for 7 with the spin weight s:

(4.3)

—(sin§)"* {ag = 984 (sin 0)*1. (4.4)

105001-6
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We can show that d has spin weight s + 1 and d7 has spin weight s — 1. Therefore, d and d correspond to the spin weight
raising and lowering operators, respectively.
From (4.3) and (4.4), we obtain

_ 1 . cos 52
ooy = [—sinﬁag sin 00, + 8 +2is —— 262" " sie + s(s + 1)} 1,
5on = |- 0y sin0, + —— 2 +2is<%5, — 54 s(5-1) (45)
= |——0psin — is———0p——5—+ s(s — . .
T= |sing“? 0 sin29 ¢ sin20 7 sin?0 1

The spin-weighted spherical harmonics (Y ;,, with the spin weight s is given as the eigenfunction of 30 and d0:

665Y]m = _{J<J + 1) - S(S + 1)}stm7 aéstm = _{](] + 1) - S(S - 1)}stmv (46)
or equivalently
1 1 cos 52
———0psinh0y — —— 02 = 2is —\Y.,, = 1 , 4.7
sing VM0 T G290 sin26 (/’+s1n 2|t " JG 1) jm (47)

where the spin weight is given by s = 0, +1/2, £1,£3/2 - - . The index j(= |s|, |s| + 1, |s| + 2, - - -) denotes the main total
angular momentum quantum number and the index m(= —j,—j+1,...,j— 1 ,J) indicates the secondary total angular
momentum quantum number. Since the spin-weighted spherical harmonics Y, form a complete set for the fixed spin
weight s, any function on S? with the spin weight s can be decomposed into ,Y; jm-

The explicit form of the normalized spin-weighted spherical harmonics is written as

Fiul0.0) = e 2L G- w1 -

S g s 43
k=max{0,—m—s} k!(J —m-— k)'(J -85 k)‘(m s+ k)‘

which satisfies the orthonormal relation

/ QY (0. 9))" Y ot (0.00) = 5,5 (49)

Here, we have chosen the phase of this function in such a way that the function satisfies

.S jm \/] - S s+ 1)s+1ij’ aijm = _\/](] + 1) - S(S - l)s—Iij‘ (410)

In the case of s = 0, the spin-weighted spherical harmonics corresponds to the spherical harmonic Y ,,.
As well as the ordinary spherical harmonics, this function corresponds to the representation of su(2) algebra

L Yij = J(.] + l)stm’ Lstjm = mstmv Listm = \/(J + m)(] +1+ m).ijm:tl’ (411)

where L?, L, and L, are the angular momentum operators for quantities with spin weight s

L, = —id,, (4.12)
L. = et 48, + icotfd, ——— ), 4.13
+=e ( o + 1 cotbo, snd ( )
1 1 i 1 cos 6 52
L E(L L_ +L L )—’-L%:—wagslngag 208 —2is——— n29 ¢+m, (414)
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and satisfy

[Lz’Li] ==L, [L+’L—] =2L,,
L2, L] =[L* L.]=0. (4.15)

Furthermore, this function satisfies

properties:
stm(ﬂ -0, ¢) = (_l)j_m—stm<9’ ¢)’
s ij (97 _¢) = (_1 )m_s—x Yj—m (9’ ¢)

the following

(4.16)
(4.17)

B. KK mode functions and mass spectrum of S2-extra
dimension with magnetic monopole

Then, we discuss the KK mode functions and the mass
spectrum of S2-extra dimension with a magnetic monopole.
We consider the space M* x §? with the radius a

ds* = n,,dx*dx” + a*(d6* + sin 6d¢p?), (4.18)
and we choose the basis of the vielbein as
exX = diag(1,1,1,1,a,asin6)
(K=0,1,2,3,0,4,K =0,1,2,3.0,¢).  (4.19)

Furthermore, we introduce the Wu-Yang magnetic monop-
ole background

AN/S:_;(COSQ:F 1)de (n=0,%1,+£2,--),
q

(4.20)

where ¢ is the gauge coupling constant.'’ The gauge fields
AV and AS are defined on the north patch (0 <6 < 7,0 <
¢ < 2x) and the south patch (0 <6 < 7,0 <¢ < 2x) on
S?, respectively.

Then, we consider the 6D Dirac action with the monop-
ole background and the bulk mass M:

S = / d*x / dOdpa® sin P (x, y)
SZ

x [iTKegX (Vi +igAg(y)) = M®(x.y). (4.21)

where we require that the Dirac fields on the north patch
WV (x,0,¢) and on the south patch W5 (x, 0, ¢) are related
by gauge transformation

PS = pmind\pN (4.22)

"1 the case of n = 0, the Einstein equation leads to a — 0.
However, in the case of n # 0, the radius « is stabilized and given
by a®> = n’k*/8¢* where k is the 6D gravitational coupling
constant [54]. In this paper, we concentrate the structure of the
mass spectrum of this model and we will not take into account the
stability of a.

Here, we define the internal chiral matrix ™ which satisfies

Yin = i}’éﬁ’, (}’in)z = lztd/zj,
M =" =0 (4.23)
and we decomposition ¥V/5(x,0, ¢) as
WV (x,0,0) = > D [fa5 (0. 4) @ yik(x)
k a=+t
+ 885 (0.¢) @ wil(x)), (4.24)

where the index @ = + indicate the eigenvalues of y" = =+

for fg,k)N/ $ and massless g((,,k)N/ § af exist).12
In this model, the operator A and A" in the supercharge

(2.20) can be written into the form

ool . .
A = eFixd {i;ﬁ; (0, Py +0, P_)+ M} et (4.25)

n 51 H in
A" = eTh [—iyg— (0, P, +0, P_)+ M} et (4.26)
a

where the upper and lower signs in the exponential denote
the ones for the north and south patches, respectively.
(Here after, we use the same notation for the signs in the
exponential if appear.) The operators d; and 3, represent
the spin weight raising and lowering operators for the
spin weight s, = —(n+1)/2, and P, = (1 £y")/2 are
the projection matrices for y™. Then, A’ A and AA" are
given by

ATA=AAT
I - = o
= _;(6s++16s+P+ +as_—16s_P—)+M2 e,
(4.27)

Thus, we can find that the mode functions and the mass
eigenvalues are obtained as follows from (2.19) and (4.6):

_ LY. (0,¢)eTiP
f-(ajm)N/S(g7 ¢) — ﬂem
a
jm 1 jm
g 0.0) = ALVNO0.9). (@=%). (4.28)
j
jU+1) _n?-1
m.,-—\/ ey + M?, (4.29)

">The massive mode functions g,(,k)N/ $ x Af((lkW/ $ are not the

eigenfunction with y™ = a because A and y™ do not commute
with each other.
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where s, j and m are given by

n+1

S+ = — 5
_{IS+|,|s+|+1,s+|+2,--~ (for a = +)
Is_|,|s_| +1,|s_| +2,--+ (fora=-)"

m=—j,—j+1...j-1/J (4.30)
and we define e as the 2-component orthonormal vectors

which satisfy

yhe, = +e,, e, = ie, vhe. =F ex. (4.31)
Then, the degeneracy of jth KK level is 2j 4 1 for each
mode function.

(jm)N/S

We can see that the mode functions f7 and

ggm)zv/ § with j = |s4| have the lowest mass eigenvalue

\/1/a*> + M? in the case without the monopole (n = 0).

On the other hand, in the case with the monopole (n # 0),
the lowest mass eigenvalue decrease to M and the cor-

responding mode functions are given by fUs-"N/S and
gUs-ImN/S for p > 0 and (s m)N/S dgmm)N/S forn < 0.
Thus, there are no massless modes unless the bulk mass M

equals to O and the magnetic monopole exists. If we
consider the model with M =0 and n > O(n <0), |n|

massless modes exist for the mode functions £¢"™"/% and
gé’mW/ $ with a = —(a = +) respectively, and |n| massless

4D Dirac fields appear."

C. NV -extended QM SUSY in S%-extra dimension
with magnetic monopole

Let us construct the A-extended QM SUSY in S%-extra
dimension with the magnetic monopole. For this purpose,
we first summarize the well-defined operators for the KK

mode functions f UmIN/S and their properties in this model:
(i) properties of y"y'd,,
We write the operator 0;, as

Oy = €73 (3; P, + 0, P_)e*s, (4.32)

which appears in the A and A". Then, the operators
iy 8 (9 = 0. ) satisfy

iy 0, ATA] =0, {iy™8,, iy™y?0,} = 0. (4.33)

These operators relate f&™"5 with fU""/5 since the
operator 0;, raises the spin weight for the functions with

BIf we consider the action_with a 6D chiral field with the
eigenvalue T7 = —TT'T°I°TYT? = +(-), there appear n 4D
left (right)-handed fields in the case of n > 0 and |n| 4D right
(left)-handed fields in the case of n < 0.

= + and lowers the spin weight for the functions with

yi" = —. Furthermore, these are Hermitian for f¢""/% i

the sence that

<l}/ 7V61nf]m )N/S (ljm)N/S> _ <f((xj/'/m’)N/S|l.yinyf6inf((1jm)N/S>'
(4.34)

We can use these operators to construct the A-extended
QM SUSY.
(i1) properties of angular momentum operator
From the rotational symmetries of S?-extra dimension,
the angular momentum operator L, given in (4.12) with
gauge transformation
L = o8O ot (4.35)
are Hermitian and well defined for the mode functions.
Furthermore this satisfies
(L, ATA] = L™, 6,,] = 0. (4.36)
This is also useful for the construction of the N -extended
QM SUSY.
(iii) properties of reflection operators
In the model without the magnetic monopole (n = 0),
we can consider the reflection operators with gamma
matrices y"y’Ry and y"y’R, where Ry and R, represent
the reflections for the coordinates 6 and ¢

R¢: ¢—>—¢

These operators are well-defined for the mode functions

Ry: 0> rm—0, (4.37)

Y™ and commute with A" A because of the reflection
symmetries in S?-extra dimension.

In the case of S> with monopole (n # 0), the above
operators are ill defined and do not commute with A"A
by the monopole background. However, the operator with
the combination of the above reflections and the gauge
transformation

R = €:Flg¢R9R¢€ii%¢ (438)
is Hermitian and well defined for the mode functions and
satisfies
[R,ATAl ={R,0;,} = {R, L } 0, R*?=1. (4.39)
We find that this operator connects the mode functions
f((ljm)N/S tofr(xj_m>N/S-

Then, we can obtain various kinds of A/-extended QM
SUSYs from the above operators. As examples, we con-
sider the following two A -extended QM SUSYs:

(iv) N = 6 extended QM SUSY with central charges
from the angular momentum operator

105001-9
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First, we consider the ' = 6 extended QM SUSY with
central charges which consist of the angular momentum

(n)

operator L; ’:

{0k, O/} = 2H6y, + 22y, (4.40)
Qv.Zy| = [H,Zy] = [Zi, Zyy] = [Qv. H] =0
(kLK T =1,....6), (4.41)

where the supercharges Q, and the nonzero components of
central charges Z;,; are given by

< 0 ! 766 AT>
0= . .
Ayl“y”ém 0
_inydxs AT
- ( ke ) (4.42)
Aylny¢6 0
oo 0
—z.AymL 0 ’
in AT
_ ( iy A > (4.43)
—iAy™" 0
0 (n AT
. L 0=0.  (444)
AL
Z” = ZQZ = H(—l + azH - azMz), (445)
(n) g+
LA™ A 0
Zyy = Zso = < ) ) >
0 ALY AT
(L2 AT A 0
Z33 — 255 =-H + (n) .
0 ALY )2 AT
(4.46)

In this QM SUSY, Q5 and Q4 commute with each other and
also Qs and Qs.

According to the discussion given in the Sec. III B, we
redefine the supercharges for the eigenfunctions with the
|

0
(|s_|m)N/S (|s_|m)N/S
cDJr,z/ - < _iggs,\m)N/S > ’ cD—z

s,m)N/S
q)(s+m)N/S _ <f5,- NI ) q)(s+m)N/S _

+.7 -7

0

Here 7' indicates {z(i =1,...,6)} given in (4.51) and
S1» = +, s35 = & denote the signs of the eigenvalues of

Sip = —iQ10», S35 = —i030s.

——"
_igg;um)N/S

eigenvalues H = m3, Z3, = mm and Zs3 = (=1 + m*)m;
(where m indicates the angular momentum number):

Q,l = Ql? Q/2 = Q2’ (447)
1
Q5 = s (mQ3 + Q4),
1
0, = St (O3 —mQy), (4.48)
1
05 = ﬁ(’"Qs + Q¢).
, 1
Oy = T (Qs —mQg). (4.49)

The SUSY algebra (4.40) is written into the following form
for the redefined supercharges

{Q;C, Q;} = 2m?5k1 + ZZ;cm?&kl, (450)
where z(k =1,...,6) is given by
== (-1+ad° m’ P —a’M?),
=2k =m? 7 =z =—1. (4.51)

From this relation, we find that Q) = Q; =0 for any
eigenstates. Furthermore the supercharges Q) and Q)
equal to O for the states with m; = M (or equivalently
H = M?), that is the case of j = |s_| forn > O and j = s,
for n < 0. Thus, the BPS states appear as discussed in the
Sec. III.

Then we can construct the eigenfunctions <I>E insz (y)
with H = m + M? as

jm)N /S
QUMINIS _ ( Grmny ) QUINIS _ ( 0 )
++.7 0 —+7 _ig(_]m)N/S

. 0 f(jm)N/S
(Jm)N/S _ (jm)N/S __ =
P = (—igijmw S)’ Pz ( 0 )

(4.52)

and also the eigenfunctions CD& :nz), (y) with H = M? as

< _fgs_\m)N/S

0 > forn>0and j = |s_|,

forn <Oand j=s,.

Then we can show that the above eigenfunctions form

the supermultiplets and satisfy the same relation as (3.21).
In this extended QM SUSY, the four (two) -fold
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degenerated eigenfunctions with H # M?*(H = M?) are
related by the supercharges Q) with k=1, 2, 3, 5
(k = 3, 5). Furthermore, the extra (2j + 1)-fold degeneracy
exists in the eigenfunctions. The origin of this degeneracy
comes from the angular momentum number m, which
corresponds to the eigenvalues of central charges.

(v) N =6 extended QM SUSY with central charges
from the angular momentum operator and the reflection
operator

Next, we construct the A = 6 extended QM SUSY with
central charges from the angular momentum operator and
the reflection operator:

{Ok. Qi} = 2H6y + 27y,
Qw.Zy| = [H,Zy] = [Z, Zyr] = [Qw»
(kLK I =1,....6),

H|=0
(4.54)

where the supercharges Q, and the nonzero components of
the central charges are taken to be the form of

0 —y"Pa,A"
0, =< oo T )
Ay‘“y"éin 0
__in $6inA1
Q2=< T ) (455)
AJ/‘“}'"' in 0
iny (1) 4t
LA
e 70
—lAy‘“L 0
_7 Mt
( LRA ) (4.56)
A 0
0 iRAT
= , =0, 4.57
0s (_m ) -0 @)

; 0
Gm)
(D—++,z - ( —ng’Z)N/S ) ’

olUm (f(—j,’ﬁ)N/S)
-z 0

where z indicates z; (k=1, 2, 3, 5) which are the
coefficient of m? in the eigenvalues of Z;;

- _1 + m27
(4.62)

71=2=-1+ asz —a*M?, 73 = Zs

and the dependence of z in the right-hand side of (4.61) is
described by j and m. s;, = £, s34 =+ and s56 = +
denote the signs of the eigenvalues of S, = —iQ;0,,

Sy = —iQ304, Ss¢ = —iQ50.

i 0
d)&i_i’z = ( lg(jm)N/S)
JF —_

. f(J _)N/S )
+——z = ( - ’
0

Z\ =Zy = H(=1+ a*H — a*M?),
LAt A 0 )
0 AL AT
(4.58)

Zy3 =2y =—-H+ <(

As well as the previous extended QM SUSY, the super-
charges Q, and Q, equal to O for the states with H = M?.

In addition, the eigenstates with Z33 = —m3(L L =0)

become BPS states and Q3 and Q4 equal to O for them.
Here, we redefine the basis of the KK mode functions to
obtain the representation of this QM SUSY

jm)N /S
&0, 9) =

fcf”" "0, 9)
+ (=15 TN (0,40)).
5 0.0)
+ r(=1)tegd N 0, 4)),

gm0, ¢) =
(4.59)

where r = =+ and m > 0. The mode functions f r mN/S with
r = =+ correspond to the parity even and odd functions for
R, respectively

Rf(zji N/S :l:fajz N/S (460)

Then, we can obtain the elgenfunctlons d>§lf})34556 z(y) for
non-BPS states (H = mj # M?, Zy3 = (=14 m*)m; #
—mj3) as follows:

o 0
¢$+)—,z = ( 'g( )N/S>
+,+

(jm) 0
Q-2 = g(jm)N/S (461)

We can show that the above eigenfunctions form the
supermultiplets and satisfy the same relation as (3.21). The
supermultiplets for the BPS states can be constructed
by use of the mode functions (J'")N/ S and g(]m)N/ 5 in
the same way.

In this extended QM SUSY, the eight-fold degenerated
non-BPS states is related by the six supercharges
Oi(k=1,...,6). Therefore, we see that the additional
two-fold degeneracy can be further explained by the
supercharges compared with the previous extended QM
SUSY (although the total degeneracy including the BPS
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states with m = 0 is not changed). This additional degen-
eracy corresponds to the parity even and odd for the
reflection. Since the eigenfunctions with m = 0 are only
equivalent for the parity even from the definition (4.59),
they should become the BPS states.

Although we considered two examples, there are more
extended QM SUSYs constructed from the symmetries. For
instance, we can obtain them by using the reflection
operators y"y’R, and y™y’R, in the case without the
magnetic monopole, since those operators correspond to
the symmetries in such model.

V. SUMMARY AND DISCUSSION

In this paper, we have constructed the new realization of
the NV -extended QM SUSY with central charges hidden in
the higher dimensional Dirac action with curved extra
dimensions. This extended QM SUSY results from sym-
metries in extra dimensions, and the supercharges and the
central charges are obtained by use of them. We have also
investigated the representation of the SUSY algebra and
shown that the supermultiplets would become the BPS
states. In addition, we considered the model of S2-extra
dimension with the magnetic monopole as the concrete
example. Then we have confirmed that the KK mode
functions properly correspond to the representations in the
two types of N -extended QM SUSYs which are obtained
from the rotational and reflection symmetries in the extra
dimensions.

The characteristic property of our extended QM SUSY is
that certain supercharges commute with each other. Recently,
a new generalization of supersymmetry is proposed, that is

Z5-graded supersymmetry whose supercharges have n
degrees [55-57]. For their supercharges with different
degrees, the algebra may not close in anticommutator but
commutator. Therefore, it is interesting to investigate the
relation between this supersymmetry and our QM SUSY.

Our analysis is not perfect. As we have seen in Sec. IV,
there appear various extended QM SUSYs in a model,
according to sets of symmetries. Thus, we should clarify
what kinds of extended QM SUSYs can be obtained from a
model. It is also important to reveal that what symmetries
exist by the choice of boundary conditions, extra dimen-
sional spaces and background fields since they would affect
the structures of extended QM SUSYs. Furthermore, it is
known that central charges are closely related to topological
properties [40,58,59]. Although the central charges given in
Sec. IV might be related to the topology of S?> and the
magnetic monopole, the detailed structures are not unveiled.
Thus, we should more investigate models with nontrivial
topology. We can also expect the possibilities that the further
structures are hidden in the 4D mass spectrum. Since our
discussions are not completely general, other realizations of
extended QM SUSY might be constructed.

Moreover, since we have obtained the new extended QM
SUSY, it is fascinating to study new types of exactly
solvable quantum-mechanical models. The issues men-
tioned in this section will be reported in a future work.
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