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We study the post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet
gravity theories. To this aim we build static, spherically symmetric black hole solutions at fourth
order in the Gauss-Bonnet coupling α. We then “skeletonize” these solutions by reducing them to point
particles with scalar field-dependent masses, showing that this procedure amounts to fixing the Wald
entropy of the black holes during their slow inspiral. The cosmological value of the scalar field plays a
crucial role in the dynamics of the binary. We compute the two-body Lagrangian at first post-Newtonian
order and show that no regularization procedure is needed to obtain the Gauss-Bonnet contributions to
the fields, which are finite. We illustrate the power of our approach by Padé-resumming the so-called
“sensitivities,” which measure the coupling of the skeletonized body to the scalar field, for some specific
theories of interest.
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I. INTRODUCTION

The quest for a quantum theory of gravity and obser-
vational puzzles in modern cosmology have led to several
proposals for theories of gravity that differ from general
relativity (GR). By Lovelock’s theorem, these modifica-
tions of GR almost inevitably lead to additional degrees of
freedom, and the simplest and best-studied extensions
involve scalar fields (see, e.g., Ref. [1]).
The recent LIGO/Virgo observations of gravitational

waves finally allow us to test the presence of these
additional degrees of freedom and their effect in the
strong-field gravity regime. Binary black holes (BHs) have
several advantages as probes of strong-field gravity. First of
all, observations of binary BH mergers outnumber those of
other compact binaries involving neutron stars, at least so
far. Furthermore, BHs allow us to perform “cleaner” tests of
gravity than systems involving matter, because we do not
need to make assumptions on the poorly known state of
matter at supranuclear densities.
Unfortunately, the simplicity of BHs in GR applies also

to the structure and dynamics of BHs in modified theories
of gravity: stringent no-hair theorems imply that BH
mergers in many of these theories are observationally
indistinguishable from GR (see Ref. [2] for a review of
no-hair theorems). For example, one such no-hair theorem
implies that static, asymptotically flat BH solutions are the

same as in GR for a vast majority of scalar-tensor theories
that lead to second-order equations of motion [3].
This no-hair theorem is violated in Einstein-scalar-

Gauss-Bonnet (EsGB) gravity, a theory where a scalar
degree of freedom φ couples to the Gauss-Bonnet scalar
R2

GB ¼RμνρσRμνρσ −4RμνRμνþR2. EsGB gravity is excep-
tional in many ways: a coupling of the form fðφÞR2

GB
allows for nontrivial effects in the strong-field, large-
curvature regime, even in four-dimensional spacetimes.
In fact, the existence of hairy BH solutions in such

theories has been known for a long time. Early studies
focused on Einstein-dilaton-Gauss-Bonnet (EdGB) gravity
[4,5], the low-energy effective action of the bosonic sector
of heterotic string theory [6]. More recently, BH solutions
have been found for more general coupling functions [7].
Even the simplest (shift-symmetric) Gauss-Bonnet theories
[8–10], where fðφÞ ∝ φ, were shown to evade the no-hair
theorems of Ref. [3].
A no-hair theorem for stationary, asymptotically flat BHs

in scalar-Gauss-Bonnet theories for a massless scalar with
no self-interactions holds under the following conditions:
the function fðφÞ must have an extremum at some constant
φ ¼ φ̄, i.e., f0ðφ̄Þ ¼ 0, and f00ðφ̄ÞG < 0. When only the
latter condition is violated—e.g., when fðφÞ ∝ φ2 [11]—
these theories exhibit spontaneous BH scalarization; i.e.,
they allow for nontrivial scalar field configurations that
reduce to theBHs ofGR in the appropriate limit [11,12]. The
stability of these solutions was studied in various recent
works [13–16].
Whenever BHs are endowed with scalar “hair,” BH

binaries produce dipolar radiation in the early inspiral, and
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their merger dynamics is also different from GR [17–25].
These considerations led to analytical and numerical work
on the dynamics of BH binaries in EsGB gravity at lowest
order in the coupling [18,25]. Reference [18] computed the
dipolar energy flux treating the conservative dynamics at
leading (Newtonian) order, and therefore, assuming that the
scalar charges of the binary component are constant.
We improve on that treatment in two ways: (1) We allow

for the fact that the BH masses and scalar “charges” are not
constant: instead, we consistently skeletonize the BHs
following a well-established procedure first introduced
by Eardley in scalar-tensor gravity [26], and recently
generalized to Einstein-Maxwell dilaton theory by one
of us [27,28]. (2) As a consequence of the skeletonization,
we can self-consistently compute higher-order post-
Newtonian (PN) terms in the Lagrangian.
The plan of the paper is as follows: In Sec. II, we find

analytical solutions for hairy black holes valid up to fourth
order in the GB coupling, and we discuss their thermody-
namical properties. In Sec. III, we use Eardley’s “skeleto-
nization” technique to show that the mass is not constant,
and therefore that it is necessary to go beyond Newtonian
order in the conservative dynamics. We also find the
remarkable result that, in the PN regime, a BH can be
uniquely characterized by its Wald entropy. In Sec. IV, we
present the two-body Lagrangian for a generic EsGB
theory of gravity and, as an example, we discuss BH
sensitivities in EdGB. In Sec. V, we conclude by pointing
out possible directions for future work.
Some lengthy technical material is relegated to the

appendixes. Appendix A presents a simple derivation of
the EsGB field equations in arbitrary dimensions that (as far
as we know) does not appear in the published literature.
Appendix B lists some of the lengthier coefficients in the
analytical expansion of the metric and scalar field for EsGB
BHs at fourth order in the GB coupling. Appendix C gives
analytical expressions for the thermodynamical variables
characterizing these BHs. Appendix D contains the deri-
vation of one of our most important results: the two-body
Lagrangian at first post-Newtonian (1PN) order. Along the
way, we find another remarkable result: the Gauss-Bonnet
contributions to the fields are finite, and no regularization
procedure is necessary at 1PN order. In Appendix E, we
study the BH sensitivities in two special cases of EsGB
gravity that were extensively considered in the literature:
theories where the coupling depends quadratically on the
field and shift-symmetric theories.

II. HAIRY BLACK HOLES AND
THERMODYNAMICS

EsGB theories supplement GR with a massless scalar
field coupled to the Gauss-Bonnet Lagrangian density. In
vacuum and in geometrical units (G≡ c≡ 1), they are
described by the action

I ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π
ðR − 2gμν∂μφ∂νφþ αfðφÞR2

GBÞ; ð2:1Þ

where R is the Ricci scalar, g ¼ det gμν denotes the metric
determinant, and the integral of the Gauss-Bonnet scalar
over spacetime

R
dDx

ffiffiffiffiffiffi−gp
R2

GB is a boundary term in
dimension D ≤ 4 (see, e.g., Refs. [29,30]). The coupling
constant α (which is chosen to be positive without loss of
generality) has dimensions of length squared, and fðφÞ is a
dimensionless function defining the theory.
The vacuum field equations follow from the variation of

the action (2.1):

Rμν ¼ 2∂μφ∂νφ − 4α

�
Pμανβ −

gμν
2

Pαβ

�
∇α∇βf; ð2:2aÞ

□φ ¼ −
1

4
αf0ðφÞR2

GB; ð2:2bÞ

where ∇μ denotes the covariant derivative associated with
gμν, and □≡∇μ∇μ. The divergenceless quantity Pμνρσ ¼
Rμνρσ − 2gμ½ρRσ�ν þ 2gν½ρRσ�μ þ gμ½ρgσ�νR has the sym-
metries of the Riemann tensor (see, e.g., Refs. [31,32]),
and Pμν ≡ Pλ

μλν. Details of the derivation of Eq. (2.2a) are
given in Appendix A (see also Refs. [4,33] for alternative
formulations of the EsGB field equations).

A. Black holes in generic
Einstein-scalar-Gauss-Bonnet theories

There is an extensive body of work on BHs in EsGB
gravity. When the coupling α between the scalar field and
the Gauss-Bonnet invariant is small, the vacuum field
equations (2.2) can be solved analytically and perturba-
tively around GR. This program was carried out in the
string-inspired EdGB theory with coupling fðφÞ ¼ 1

4
e2φ to

find static solutions [34–36] and their slowly spinning
counterparts [37–39] up to orderOðα7Þ. The same approxi-
mation scheme was used in the “shift-symmetric” theory
fðφÞ ¼ 2φ [which is invariant under φ → φþ constant;
see Eq. (2.1) and below], but only for nonspinning BHs and
up to order Oðα2Þ [8,9].
The field equations (2.2) were solved numerically

and nonperturbatively also for rapidly spinning BHs
(see, e.g., Refs. [4,5,40]). Theories where f0ðφÞ ¼ 0 and
f00ðφÞR2

GB > 0 for some φ ¼ φ0—such as the theories

fðφÞ ¼ φ2

2
ð1þ λφ2Þ and fðφÞ ¼ − 1

2λ e
−λφ2

, with λ ∈ IR—
predict instabilities of GR BHs in favor of other branches
of stable solutions with nontrivial scalar “hair” [7,11,12,
14–16,41,42].
Our first goal is to complement and extend these results

by obtaining analytical, asymptotically flat BH solutions
with (secondary) scalar “hair” at high order in the coupling
α and in an arbitrary EsGB theory (see, e.g., Ref. [2] for a
review of no-hair theorems and the classification of hairy
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BH solutions). Let us focus on static, spherically symmetric
solutions in a Just coordinate system:

ds2¼−AðrÞdt2þ dr2

AðrÞþBðrÞr2ðdθ2þ sin2 θdϕ2Þ; ð2:3Þ

with φ ¼ φðrÞ. For a Schwarzschild spacetime with mass
parameter m, we have A ¼ 1–2m=r, B ¼ 1, and φ ¼ φ∞,
where φ∞ is an arbitrary constant.
When the coupling constant α is nonzero, we must solve

Eq. (2.2) as a perturbative expansion in the dimensionless
parameter

ϵ≡ αf0ðφ∞Þ
4m2

≪ 1; ð2:4Þ

such that φ − φ∞ ¼ OðϵÞ, cf. Eq. (2.2b). The leading-order
EsGB correction to GR is straightforward. The right-
hand side of the Einstein equations (2.2a) vanishes at order
OðϵÞ, so the Schwarzschild metric is still the solution,
which sources the scalar field through the Kretschmann
scalar: R2

GB ¼ 48m2=r6 þOðϵ2Þ. At higher orders, the
calculation proceeds as follows: We substitute the ansatz
(2.3), with

A ¼ 1 −
2m
r

þ
X4
i¼1

ϵiAiðrÞ þOðϵ5Þ; ð2:5aÞ

B ¼ 1þ
X4
i¼1

ϵiBiðrÞ þOðϵ5Þ; ð2:5bÞ

φ ¼ φ∞ þ
X4
i¼1

ϵiφiðrÞ þOðϵ5Þ; ð2:5cÞ

together with the Taylor expansion

fðφÞ ¼
X4
n¼0

1

n!
fðnÞðφ∞Þðφ − φ∞Þn þOðϵ5Þ; ð2:6Þ

into the field equations (2.2) and solve order by order,
ignoring branches with singular horizons. The result is

A ¼ 1 − u − ϵ2
�
u3

3
−
11u4

6
þ u5

30
þ 17u7

15

�

þ ϵ3A3 þ ϵ4A4 þOðϵ5Þ; ð2:7aÞ

B ¼ 1 − ϵ2
�
u2 þ 2u3

3
þ 7u4

6
þ 4u5

5
þ 3u6

5

�

þ ϵ3B3 þ ϵ4B4 þOðϵ5Þ; ð2:7bÞ

φ ¼ φ∞ þ ϵ

�
uþ u2

2
þ u3

3

�

þ ϵ2φ2 þ ϵ3φ3 þ ϵ4φ4 þOðϵ4Þ; ð2:7cÞ

with u≡ 2m=r. For convenience, the EsGB corrections to
the coefficients in A which are proportional to 1=r have
been conveniently reabsorbed in the definition of m. The
quantities Ai≥3, Bi≥3, and φi≥2 depend on m and on
the function fðφÞ and its derivatives evaluated at infinity;
i.e., ðdnf=dφnÞðφ∞Þ with n ∈ ½0; 4�. They are rather
lengthy, and their explicit expressions can be found in
Eqs. (B1)–(B3) of Appendix B.
The solution above depends on two integration con-

stants: the Arnowitt-Deser-Misner (ADM) mass m—i.e.,
one-half the Oð1=rÞ coefficient of grr at infinity—and the
asymptotic value φ∞ of the scalar field at spatial infinity.
The results above match previous analytical work in the

respective limits, but they also extend it in several ways:
(i) The solution (2.3) with the expansion coefficients

listed in Eq. (2.7) is valid for arbitrary EsGB
coupling functions.

(ii) The solution is given explicitly at order Oðϵ4Þ in the
Gauss-Bonnet coupling, and in principle it can be
extended to higher orders. As such, it contains
detailed information on the BH’s structure that will
be useful below to characterize the dynamics of BH
binaries (cf. Sec. IV B).

(iii) The solution depends on the asymptotic value φ∞ of
the scalar field at infinity, unlike most previous work
on isolated BHs, where φ∞ was (and could be) set to
zero for simplicity: see, e.g., Refs. [15,36]. For
binary BHs, φ∞ cannot be fixed to zero anymore.
This is one of the key messages of this paper, for
reasons explained in Sec. III below.

B. Black hole thermodynamics

The solution given in Eqs. (2.3) and (2.7) can be checked
to have the properties expected of a BH spacetime. First
of all, in Eq. (B4) of Appendix B we show that the
Kretschmann curvature invariant is finite everywhere out-
side the horizon, where the horizon radius rH is trivially
defined as the outermost zero of AðrÞ in the Just coor-
dinates of Eq. (2.3).
Perhaps more remarkably, the EsGB BH solution sat-

isfies the first law of BH thermodynamics in terms of the
following intensive and extensive parameters.
The BH temperature T is

T ≡ κ

2π
; ð2:8Þ

where the surface gravity κ is defined by κ2≡
−1

2
ð∇μξν∇μξνÞrH , and ξμ¼ð1;0;0;0Þ is the timelike Killing

vector associated with stationarity.
The action (2.1) can be written in terms of a Lagrangian

density L as I ≡ R
d4x

ffiffiffiffiffiffi−gp
L. The BH entropy Sw is then

given by Wald’s formula [43]:

Sw ≡ −8π
Z
rH

dθdϕ
ffiffiffi
σ

p ∂L
∂Rμνρσ

ϵμνϵρσ: ð2:9Þ
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Here σ is the determinant of the induced metric on the
horizon with unit normal vectors nμ ¼ ð1= ffiffiffiffiffiffiffiffi−gtt

p
; 0; 0; 0Þ

and lμ ¼ ð0; 1= ffiffiffiffiffiffi
grr

p
; 0; 0Þ, and ϵμν ¼ n½μlν�. Evaluating the

Wald entropy (2.9) for the action (2.1) yields

Sw ¼ AH

4
þ 4απfðφHÞ; ð2:10Þ

i.e., the total entropy is the sum of the standard Bekenstein
entropy SB ¼ AH=4 and a Gauss-Bonnet contribution [44].
Here φH ≡ φðrHÞ denotes the value of the scalar field on
the horizon.
Finally, it is well known in scalar-tensor theories that the

scalar field contributes to the global mass M as follows:

M ¼ mþ
Z

Ddφ∞; ð2:11Þ

where m is the ADM mass defined earlier; see, e.g.,
Refs. [45–48] and references therein. The quantity D is
defined from an asymptotic expansion of the scalar field as
φ ¼ φ∞ þD=rþOð1=r2Þ, and it is sometimes called the
scalar “charge” of the BH, although φ is not a gauge field in
general.
We can now evaluate the temperature T, entropy Sw, and

“charge” D for our analytical BH solution. Their expres-
sions in terms of the integration constants m and φ∞ are
collected in Appendix C, and they can be used to check that
the variation of Sw and M with respect to both m and φ∞
satisfies the following identity, at least at order Oðϵ4Þ:

TδSw ¼ δM: ð2:12Þ

This first law of BH thermodynamics describes how the
equilibrium configuration of the EsGB BH readjusts when
it interacts with its environment. In particular, in Sec. IV
below, we will investigate the variations of the scalar field
environment φ∞ induced by a far-away binary companion.
To summarize, we have solved the vacuum field equa-

tions (2.2), obtained a BH solution at fourth order in the
coupling α, and verified that this solution satisfies a first
law of BH thermodynamics that accounts for the scalar
field environment φ∞ of the BH, when the BH entropy is
defined à laWald. These results are our starting point for an
analytical investigation of the dynamics of BH binaries in a
generic EsGB theory.

III. SKELETONIZATION: REDUCING AN
EINSTEIN-SCALAR-GAUSS-BONNET BLACK

HOLE TO A POINT PARTICLE

We now want to describe the motion of EsGB BHs in
binary systems. To this aim, it is convenient to “skeleton-
ize” the BH by adding it as a point source A to the vacuum
action (2.1):

Ipp½gμν;φ; xμA� ¼ I −
Z

mAðφÞdsA: ð3:1Þ

Here dsA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdx

μ
Adx

ν
A

q
, and xμA½sA� is the worldline of

particle A. The mass function mAðφÞ, which replaces the
constant GR “mass” mA, is a scalar function that depends
on the value of the scalar field at its location xμAðsAÞ, and it
was first introduced by Eardley to account for the coupling
of a star A to its scalar field environment in scalar-tensor
theories [26]. This approach was generalized to “hairy”
BHs in Einstein-Maxwell-dilaton (EMD) theories in
Refs. [27,28] (see also Ref. [49]).
The ansatz (3.1) does not depend on any field gradients,

e.g., ∂μφ. Neglecting such terms corresponds to neglecting
finite-size effects (e.g., tidal forces) [50]: cf. Ref. [51] for
recent work on this topic in scalar-tensor theories.
The question we address here is the calculation of the

function mAðφÞ for EsGB BHs. Following the techniques
developed in Ref. [27], we impose that the fields generated
by extremizing the action (3.1) match those of the BH built
in the previous section.

A. The matching conditions

The field equations following from the variation of
Eq. (3.1) are

Rμν ¼ 2∂μφ∂νφ − 4α

�
Pμανβ −

1

2
gμνPαβ

�
∇α∇βfðφÞ

þ 8π

�
TA
μν −

1

2
gμνTA

�
; ð3:2aÞ

□φ ¼ −
1

4
αf0ðφÞR2

GB

þ 4π

Z
dsA

dmA

dφ
δð4Þðx − xAðsAÞÞffiffiffiffiffiffi−gp ; ð3:2bÞ

where δð4Þðx − yÞ is the four-dimensional Dirac distribution
and TA

μν is the distributional stress-energy tensor

Tμν
A ¼

Z
dsAmAðφÞ

δð4Þðx − xAðsAÞÞffiffiffiffiffiffi−gp dxμA
dsA

dxνA
dsA

: ð3:3Þ

Let us solve the field equations perturbatively around
a Minkowski metric ημν and a constant scalar back-
ground φ∞. At infinity and at leading order, the Gauss-
Bonnet contributions to the right-hand side of Eq. (3.2)
vanish. In the rest frame of the point source A (i.e., setting
xA ¼ 0) and using harmonic coordinates such that
∂μð

ffiffiffiffiffiffi
−g̃

p
g̃μνÞ ¼ 0, we find

g̃μν ¼ ημν þ δμν

�
2mAðφ∞Þ

r̃

�
þO

�
1

r̃2

�
; ð3:4aÞ
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φ ¼ φ∞ −
1

r̃
dmA

dφ
ðφ∞Þ þO

�
1

r̃2

�
: ð3:4bÞ

At leading order, the large-r̃ expansion of the metric and
of the scalar field depends on the function mAðφ∞Þ, its
derivative m0

Aðφ∞Þ, and the asymptotic scalar field value
φ∞. This should be compared with the asymptotic behavior
of the BH spacetime we derived in Sec. II Awritten in terms
of the same harmonic radial coordinate r̃ through the
relation r ¼ r̃þmþOð1=r̃Þ:

g̃μν ¼ ημν þ δμν

�
2m
r̃

�
þO

�
1

r̃2

�
; ð3:5aÞ

φ ¼ φ∞ þD
r̃
þO

�
1

r̃2

�
: ð3:5bÞ

Therefore, the skeletonized point particle A will match
the fields of an EsGB BH if and only if

mAðφ∞Þ ¼ m; ð3:6aÞ

m0
Aðφ∞Þ ¼ −D: ð3:6bÞ

Indeed, when seen as a boundary condition at infinity,
Eq. (3.5) identifies a unique solution to the vacuum field
equations (2.2). Therefore, a point particle with a scalar-
field-dependent mass mAðφÞ satisfying the matching con-
ditions (3.6) generates fields which reproduce (outside of
the distribution) those of the BH at all orders in a 1=r
expansion. The covariance of Eq. (3.1) ensures that this is
true in any reference frame—that is, independently of the
motion of the BH.
Now, since the scalar hair of EsGB BHs is secondary

(see, e.g., Ref. [2]), D is not an independent integration
constant, and it can be written as a function Dðm;φ∞Þ;
cf. Eq. (C4). We can replace m with mAðφ∞Þ in Dðm;φ∞Þ
because of the matching condition (3.6a), and replace the
resulting expression on the right-hand side of the matching
condition (3.6b). This procedure yields the following
differential equation for the function mAðφÞ:

m0
AðφÞ

mAðφÞ
þ 2ϵAðφÞ þ ϵAðφÞ2

73f00ðφÞ
30f0ðφÞ

þ ϵAðφÞ3
�
73

15
þ 12511f00ðφÞ2

3780f0ðφÞ2 þ 12511f000ðφÞ
7560f0ðφÞ

�

þ ϵAðφÞ4
�
227192473f00ðφÞ3
49896000f0ðφÞ3 þ 31557593f00ðφÞf000ðφÞ

4536000f0ðφÞ2

þ 143467f00ðφÞ
4158f0ðφÞ þ 799607f0000ðφÞ

997920f0ðφÞ
�
þ � � � ¼ 0; ð3:7Þ

where ϵAðφÞ≡ αf0ðφÞ=ð4mAðφÞ2Þ, and where we have
dropped the ∞ subscript for simplicity. We now turn to the

solution of this first-order differential equation, which will
involve a single integration constant μA. As we show below,
this constant is related to the Wald entropy of the BH.

B. A constant-entropy skeletonization

The solution to Eq. (3.7) can be built iteratively and reads

mAðφÞ ¼ μA

�
1 −

αfðφÞ
2μ2A

−
α2F2ðφÞ

μ4A

−
α3F3ðφÞ

μ6A
−
α4F4ðφÞ

μ8A
þ � � �

�
; ð3:8Þ

where μA is a positive integration constant with dimensions
of mass. The theory-dependent functions FiðφÞ depend on
fðφÞ and its derivatives:

F2ðφÞ ¼
fðφÞ2
8

þ 73f0ðφÞ2
960

; ð3:9aÞ

F3ðφÞ¼
fðφÞ3
16

þ73fðφÞf0ðφÞ2
640

þ12511f0ðφÞ2f00ðφÞ
483840

;

ð3:9bÞ

F4ðφÞ ¼
5fðφÞ4
128

þ 73fðφÞ2f0ðφÞ2
512

þ 12534857f0ðφÞ4
425779200

þ 12511fðφÞf0ðφÞ2f00ðφÞ
193536

þ 227192473f0ðφÞ2f00ðφÞ2
25546752000

þ 799607f0ðφÞ3f000ðφÞ
255467520

: ð3:9cÞ

The mass function mAðφÞ of an EsGB BH, Eq. (3.8),
is the main result of this section. The information encoded
in the complicated form of the spacetime metric—
cf. Eqs. (2.7), (B1), and (2.7c)—is now summarized in a
set of four compact body-independent functions FiðφÞ,
which will turn out to play an important role in describing
the interaction of the BH with a companion. More
importantly, the expression of mAðφÞ shows that a skel-
etonized BH is characterized by a single parameter, μA.
The physical interpretation of this parameter can be

found thus: invert Eq. (3.8) order by order in α, and use the
matching condition (3.6a) to write μA as a function of m
and φ∞. The result shows that μA is nothing but the BH’s
irreducible mass [52]:

μA ¼ Mirr ¼
ffiffiffiffiffiffi
Sw
4π

r
; ð3:10Þ

where Sw is the BH’s Wald entropy defined earlier and
computed explicitly in Appendix C [cf. Eq. (C3)].
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The reason why the BH’s (Wald) entropy plays such a
central role in the skeletonization is best revealed by
thermodynamics. The variation of the global mass M
defined in Eq. (2.11),

δM ¼ δmþDδφ∞; ð3:11Þ
vanishes identically because of the matching conditions
(3.6): δM ¼ 0. In other words, when we skeletonize a BH,
representing it by a point particle A, we implicitly assume
that it is isolated—i.e., that it exchanges no massM with its
environment. By the first law (2.12), the BH entropy must
then remain constant: δSw ¼ 0. Therefore, it is a suitable
parameter to characterize the BH.
The physical meaning of the “skeletonization” process

can be interpreted as follows. When replaced by a point
particle, a BH is described by a constant (Wald) entropy Sw
together with a scalar environment φ∞ which cannot be set
to zero; for example, in Sec. IV the value of φ∞ will be
determined by a (faraway) companion B. During the
bodies’ slow inspiral, the variation of φ∞ forces BH A
to readjust its equilibrium configuration adiabatically—
i.e., at constant values of its Wald entropy Sw. On the
contrary, the BH’s ADM mass m and scalar “charge” D are
from now on functions of φ∞: cf., Eq. (3.6).
Previous work [27,48] applied a similar skeletonization

procedure to Einstein-Maxwell-dilaton (EMD) BHs,
characterized by a scalar “hair” along with a Uð1Þ charge.
The EMD mass function mAðφÞ was also found to depend
on a single integration constant (the irreducible mass
μEMD
A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

SB=4π
p

); however, in the EMD case, SB ¼ 1
4
AH

is the Bekenstein entropy. This paper hints at a possible
universality of this result, since it holds for theories
whosemetric sector differs from the Einstein-Hilbert action,
as long as the Bekenstein entropy is replaced byWald’s. We
conjecture that this conclusion might apply to any scalar-
tensor theory of gravity.

IV. BLACK HOLE BINARIES

So far, we found analytic solutions for isolated EsGB
BHs and skeletonized the BHs by describing them as point
particles endowed with a scalar field-dependent mass
mAðφÞ which encodes information on their structure. We
can now describe a binary BH system by an action
depending on two such mass functions mAðφÞ (A ¼ 1, 2):

Ipp½gμν;φ; fxμAg� ¼ I −
X
A

Z
mAðφÞdsA; ð4:1Þ

where we recall that dsA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdx

μ
Adx

ν
A

q
.

Starting from the skeleton action above, in Sec. IVAwe
present the PN two-body Lagrangian for arbitrary compact
binaries in EsGB theories (relegating the details of the
calculation to Appendix D). In Sec. IV B we use the mass
function mAðφÞ of Eq. (3.8) to better understand the

dynamics of binaries composed of two “hairy” BHs in a
specific class of EsGB theories: EdGB gravity.

A. The post-Newtonian Lagrangian

The variation of Eq. (4.1) yields the field equations

Rμν ¼ 2∂μφ∂νφ − 4α

�
Pμανβ − 1

2
gμνPαβ

�
∇α∇βfðφÞ

þ 8π
X
A

�
TA
μν − 1

2
gμνTA

�
; ð4:2aÞ

□φ ¼ − 1

4
αf0ðφÞR2

GB

þ 4π
X
A

Z
dsA

dmA

dφ
δð4Þðx − xAðsAÞÞffiffiffiffiffiffi−gp ; ð4:2bÞ

where TA
μν denotes the distributional stress-energy tensor of

particle A: cf. Eq. (3.3).
In this paper we focus on the conservative dynamics of

compact binaries on bound orbits. When the bodies’
relative orbital velocity v is small and in the weak-field
limit m=r ≪ 1 (where r is the orbital separation radius and
m their mass), the motion can be described in the PN
framework. In Appendix D, we derive the first PN two-
body Lagrangian up to order Oðv2Þ ∼Oðm=rÞ beyond
Newton. We solve the field equations (4.2) perturbatively
around a flat Minkowski metric ημν with a constant back-
ground scalar field value φ0. As we shall illustrate below,
φ0 cannot be set to zero: its value is imposed by the binary’s
cosmological environment.
Adopting the conventions of Damour and Esposito-

Farèse [53,54], the mass functions mAðφÞ and mBðφÞ
can be expanded by defining

αAðφÞ≡ d lnmAðφÞ
dφ

; ð4:3Þ

βAðφÞ≡ dαAðφÞ
dφ

; ð4:4Þ

so that

mAðφÞ ¼ m0
A½1þ α0Aðφ − φ0Þ

þ 1

2
ðα0A2 þ β0AÞðφ − φ0Þ2 þOðφ − φ0Þ3�; ð4:5Þ

where from now on a “0” superscript means that
the corresponding quantity is evaluated at φ ¼ φ0. The
“sensitivity” α0A ¼ ðm0

A=mAÞðφ0Þ measures the (relative)
coupling of the skeletonized body A to the scalar field—
see, e.g., Eq. (3.6)—and it will play a key role below.
With these definitions, and working in a harmonic coor-

dinate system such that ∂μð ffiffiffiffiffiffi−gp
gμνÞ¼0, the PN Lagrangian

reads (reinstating Newton’s constant G for clarity)
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LAB ¼ −m0
A −m0

B þ 1

2
m0

Av
2
A þ 1

2
m0

Bv
2
B þ GABm0

Am
0
B

r
þ 1

8
m0

Av
4
A þ 1

8
m0

Bv
4
B

þ GABm0
Am

0
B

r

�
3

2
ðv2A þ v2BÞ − 7

2
ðvA · vBÞ − 1

2
ðn · vAÞðn · vBÞ þ γ̄ABðvA − vBÞ2

�

−G2
ABm

0
Am

0
B

2r2
½m0

Að1þ 2β̄BÞ þm0
Bð1þ 2β̄AÞ� þ ΔLGB

AB þOðv6Þ; ð4:6Þ

where the Gauss-Bonnet contribution reads

ΔLGB
AB ¼ αf0ðφ0Þ

r2
G2m0

Am
0
B

r2

× ½m0
Aðα0B þ 2α0AÞ þm0

Bðα0A þ 2α0BÞ�: ð4:7Þ

Here xA denotes the position of body A, r≡ jxA − xBj,
n≡ ðxA − xBÞ=r, and vA ≡ dxA=dt. We also introduce the
combinations

GAB ≡Gð1þ α0Aα
0
BÞ; ð4:8aÞ

γ̄AB ≡ −2
α0Aα

0
B

1þ α0Aα
0
B
; ð4:8bÞ

β̄A ≡ 1

2

β0Aα
0
B
2

ð1þ α0Aα
0
BÞ2

; ð4:8cÞ

together with their counterparts that can be obtained by
swapping indices (A ↔ B).
The two-body Lagrangian (4.6), including the Gauss-

Bonnet contribution (4.7), is one of the main results of this
paper. It describes the first relativistic corrections to the
dynamics of an arbitrary binary system in EsGB theories.
The simplicity of the result is quite striking: LAB is the sum
of the ordinary scalar-tensor two-body Lagrangian (see,
e.g., Ref. [53]) plus a term resulting from the complex
coupling to the Gauss-Bonnet scalar, which (as shown in
detail in Appendix D) boils down to adding the simple
correction of Eq. (4.7).
Since ΔLGB

AB depends on an extra dimensionful coupling
α, it should a priori be considered as a 1PN contribution
to the two-body Lagrangian. However, by rewriting
Eq. (4.7) as

ΔLGB
AB ¼ αf0ðφ0Þ

ðGM0Þ2
�
GM0

r

�
2G2m0

Am
0
B

r2

× ½m0
Aðα0B þ 2α0AÞ þm0

Bðα0A þ 2α0BÞ�; ð4:9Þ

with M0 ¼ m0
A þm0

B, we can regard it as a 3PN correction
whenever the “small-α” approximation αf0ðφ0Þ≲ ðGM0Þ2
holds. This perturbative approximation is commonly used
in the literature, and it was used in the derivation of our BH
solutions (Sec. II A).

The two-body Lagrangian was recently calculated at
3PN order for pure scalar-tensor theories in Refs. [55,56].
Our results extend this Lagrangian to EsGB theories: we
just need to add the contribution coming from Eq. (4.9). At
least in the small-α regime, the results of Ref. [56],
supplemented by the Gauss-Bonnet contribution (4.9),
yield the full EsGB Lagrangian at 3PN order.
In previous analytical calculations of the dynamics of

binary systems in EsGB gravity [18], the field equations
were sourced by particles with constant masses and
constant scalar “charges,” denoted by mA and qA; see,
e.g., Eqs. (63) and (64) or Eq. (71) of Ref. [18]. This is
equivalent to truncating the expansion (4.5) at linear order.
The work of Ref. [18] describes the conservative dynamics
at leading (Newtonian) order. By endowing the particles
with scalar-field-dependent masses mAðφÞ, our treatment
differs from theirs in two crucial ways:
(1) We allow for the fact that the masses and

scalar “charges” are not constant, as discussed
below Eq. (3.11).

(2) The skeletonization allows us to deal with higher PN
terms: the β0A-dependent contributions in Eq. (4.6)
cannot be captured by the approach of Ref. [18].

The coupling α to the Gauss-Bonnet scalar affects the
structure of the two-body Lagrangian only through the term
(4.9). However, α also crucially affects the masses mAðφÞ,
and hence the values of the parameters m0

A, α
0
A, β

0
A, which

appear also in the “ordinary” scalar-tensor part of the
Lagrangian (4.6). In the next section, we will study αAðφ0Þ
for several selected EsGB coupling functions, using the
corresponding BH solutions and their skeletonization
(Sec. III).

B. Black hole sensitivities in a binary system:
The Einstein-dilaton-Gauss-Bonnet example

In Sec. IVA, we derived a PN two-body Lagrangian
which generalizes that of GR through the quantities αA and
βA defined in Eqs. (4.3) and (4.4). We now specialize this
Lagrangian to a binary of EsGB BHs. More precisely, our
goal is to compute the “sensitivity parameter” α0A ¼ αAðφ0Þ
associated with the BH A, which is characterized by a
constant irreducible mass μA (cf. Sec. III B). The quantities
α0A play a central role: once we know α0A, we can easily
obtain β0A, and quadratic combinations of α0A [GAB, γ̄AB, and
β̄A; cf. Eq. (4.8)] drive all EsGB corrections to GR.
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Taking the logarithmic derivative of mAðφÞ given in
Eq. (3.8) yields

α0A ¼−
x
2
−x2A2ðφ0Þ−x3A3ðφ0Þ−x4A4ðφ0ÞþOðx5Þ;

ð4:10Þ

where

x≡ αf0ðφ0Þ
μ2A

ð4:11Þ

is the weak GB coupling of a constant-entropy BH. The
functions Aiðφ0Þ depend on the theory only through the
function fðφ0Þ and its derivatives fðnÞðφ0Þ:

A2ðφ0Þ ¼
fðφ0Þ
2f0ðφ0Þ

þ 73f00ðφ0Þ
480f0ðφ0Þ

; ð4:12aÞ

A3ðφ0Þ ¼
73

480
þ fðφ0Þ2
2f0ðφ0Þ2

þ 73fðφ0Þf00ðφ0Þ
240f0ðφ0Þ2

þ 12511f00ðφ0Þ2
241920f0ðφ0Þ2

þ 12511fð3Þðφ0Þ
483840f0ðφ0Þ

; ð4:12bÞ

A4ðφ0Þ ¼
fðφ0Þ3
2f0ðφ0Þ3

þ 73fðφ0Þ2f00ðφ0Þ
160f0ðφ0Þ3

þ 5505779f00ðφ0Þ
26611200f0ðφ0Þ

þ 227192473f00ðφ0Þ3
12773376000f0ðφ0Þ3

þ 31557593f00ðφ0Þfð3Þðφ0Þ
1161216000f0ðφ0Þ2

þ 73fðφ0Þ
160f0ðφ0Þ

þ 12511fðφ0Þf00ðφ0Þ2
80640f0ðφ0Þ3

þ 12511fðφ0Þfð3Þðφ0Þ
161280f0ðφ0Þ2

þ 799607fð4Þðφ0Þ
255467520f0ðφ0Þ

: ð4:12cÞ

Moreover, in the following it will be convenient to resum
the Taylor expansion (4.10) in the variable x by using a
diagonal (2,2) Padé approximant (see, e.g., Refs. [57,58]
for discussions of Padé approximants):

α0A;Padé ¼ P2
2½α0A; x�: ð4:13Þ

The Padé resummation, which replaces polynomials with
rational functions, has two important advantages: it can
improve the convergence of the expansion (4.10), and
(perhaps more importantly) it can capture interesting non-
perturbative phenomena, as we clarify below. Using
Eqs. (4.10) and (4.13), we shall identify regimes where
the BH binary dynamics significantly departs from GR.
In the remainder of this section, we focus on EdGB

gravity as a prototypical, well-motivated special case of
EsGB theories. To improve readability, we relegate two

other important examples (quadratic and shift-symmetric
theories) to Appendix E.

1. Einstein-dilaton-Gauss-Bonnet theories

Using the conventions of Ref. [4], the “string-inspired”
subclass of EdGB theories is characterized by the expo-
nential coupling function

fðφÞ ¼ e2φ

4
; ð4:14Þ

so that the fundamental action (2.1) is invariant under the
simultaneous redefinitions φ → φþ Δφ and α → αe−2Δφ,
with Δφ an arbitrary constant. Recall that here the
parameter α (with no subscripts) denotes the fundamental
coupling to the GB invariant in the action (2.1).
The scalar coupling function for BH A of Eq. (4.10)

then becomes

α0A ¼ −
x
2
−
133

240
x2 −

35947

40320
x3 −

474404471

266112000
x4 þOðx5Þ;

ð4:15Þ

with

x ¼ αe2φ0

2μ2A
: ð4:16Þ

This sensitivity preserves the symmetry of the fundamental
action, in the sense that it is symmetric under the trans-
formation φ0 → φ0 þ Δφ, α → αe−2Δφ.
The left panel of Fig. 1 shows various approximants of

the series (4.15) truncated at order OðxnÞ as a function of
φ0, setting α=μ2A ¼ 0.1. The expansion coefficients in
Eq. (4.15) are all negative, so the series diverges at large
φ0, with a slope which increases with the truncation order n.
To accelerate the convergence of our expansion, we

Padé-resum it as in Eq. (4.13). This operation reveals a
remarkable feature: the resummed sensitivity α0A;Padé, also
shown in the left panel of Fig. 1, has a pole at

xpole ¼
αe2φ

pole
0

2μ2A
¼ 0.445: ð4:17Þ

The presence of a pole in the full, nonperturbative
coupling α0A is at first sight surprising. Upon further
consideration, however, this feature is particularly appeal-
ing. While no exact analytical BH solutions are known in
EsGB theories, it is well known that the area AH of a static
BH and the value φH of the scalar field at the horizon must
satisfy the following nonperturbative constraint (see, e.g.,
Ref. [12]):

24α2f0ðφHÞ2 <
�
AH

4π

�
2

: ð4:18Þ
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When the constraint is violated, the scalar field diverges at
the horizon and the BH becomes a “naked singularity”
(cf. Refs. [4,12], or Ref. [59] for further numerical evi-
dence). In the EdGB subclass of theories studied here, and
for a skeletonizedBHcharacterized by a constant irreducible
mass μA, we can use Eqs. (2.10) and (3.10) to write AH in
terms of μA and φH, so the constraint above becomes

αe2φH

2μ2A
<

2

1þ ffiffiffi
6

p : ð4:19Þ

This nonperturbative bound confirms the conclusion that an
EdGBBHsolutionwith fixedWald entropyμAmust become
singular when the scalar field at the horizon φH reaches a
critical value.
Unfortunately, the prediction (4.17) for the numerical

value of the pole cannot be directly compared with the non-
perturbative condition (4.19). Such a comparison would
require us to relate the value φH of the scalar field on the
horizon to the value φ0 of the field at infinity.1 It is still
significant that thePadé resummationpredicts the existence of
a critical value for φ0 at which the BH sensitivity α0A diverges.
Figure 1 highlights the crucial role of the (cosmological)

background scalar field φ0 on the dynamics of an EdGB

BH binary. As φ0 increases, the BH transitions progres-
sively between two “universal” regimes:

(i) A decoupled regime, where the BH is indistinguish-
able from a Schwarzschild BH in GR, since both α0A
and β0A ¼ dαA=dφðφ0Þ (as well as higher-order
derivatives of α0A) vanish.

(ii) A regime with α0A → −∞ (and β0A → −∞), where
the BH is strongly coupled to the scalar field,
inducing large deviations to the GR two-body
Lagrangian through γ̄AB and β̄A=B [cf. Eq. (4.8)].

This “transition” is universal, because the Wald entropy
μA only affects the location of the pole, as shown in the right
panel of Fig. 1; by Eq. (4.17), φpole

A ¼ 1
2
ln ð2xpoleμ2A=αÞ.

Qualitatively similar conclusions apply to EsGB theories
with different coupling functions. Two interesting cases
(quadratic and shift-symmetric theories) are discussed in
Appendix E.

V. CONCLUSIONS

The result we presented at the end of the previous section
suggests that EdGB (and more generally, EsGB) theories
must be treated with great care: when φ0 is too large, the
response of the BH to the scalar field diverges and the two-
body problem is not even well defined. Numerical work
and/or higher-order expansions in the coupling seem
necessary to verify this conclusion and to assess the
convergence properties of the Padé resummation.
However, the result seems compatible with hints from

recent numerical work in various quadratic gravity theories.
Simulations of stellar collapse and binary mergers have
been successful in the decoupling limit [25,60–63], but the
extension to the “full” theory presents notable conceptual
and practical difficulties [33,64–68]: for example, there are
open sets of initial data for which the character of the
system of equations changes from hyperbolic to elliptic in a

FIG. 1. Sensitivity α0A ¼ αAðφ0Þ of EdGB BHs as a function of the cosmological scalar field φ0. The left panel shows various
truncations of the Taylor series (4.15) for a BH with α=μ2A ¼ 0.1. The right panel shows the (2,2) Padé resummation α0A;Padé of Eq. (4.13)
for three different BHs with α=μ2A ¼ f1; 0.1; 0.01g. The Padé resummation improves the convergence of α0A, and it predicts the existence
of a pole at xpole ¼ 0.445 (dashed vertical lines).

1An approximate relation between φH and φ0 can be found
from the solution (2.7c) for the scalar field and the horizon
location (C1), which are both known in the perturbative limit (i.e.,
for small couplings). Using Eq. (3.8), we can writemA in terms of
μA. Inserting the resulting φHðφ0Þ in Eq. (4.19) then yields
xpole ¼ 0.331. Considering that the results of Sec. II A break
down in the nonperturbative regime, this value is at least in
qualitative agreement with Eq. (4.17). As another indication of
convergence, we checked that the diagonal, (2,2) Padé approx-
imant performs “better” than off-diagonal Padé approximants, in
the sense that the pole location (4.17) predicted by the diagonal
approximant is the closest to the value xpole ¼ 0.331 that results
from the procedure described here.
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compact region of the spacetime. Our work supports the
expectation that quadratic theories should only be studied
and trusted (in an effective field theory sense) in the weak-
coupling regime.
An important limitation of our study is that the analytic

expansion of our BH solutions (and hence their skeletoni-
zation) was performed around a Schwarzschild background.
This rules out, by construction, the scalarized solutions
discussed in the Introduction. An extension of our work
to scalarized solutions is necessary and important for
gravitational-wave phenomenology. Note, however, that
the PN Lagrangian (4.6) is valid for any compact binary
system, including scalarizedBHs. Indeed, the bodies’ nature
only affects the values of the coefficients α0A and β0A
[Eqs. (4.3) and (4.4)] entering the PN Lagrangian.
Therefore, our next step will be to generate numerical
scalarized BH solutions (with nonvanishing φ∞; see
Sec. II A) and to skeletonize them via the matching con-
ditions [Eq. (3.6)].
At least in the small-α regime, the results of Ref. [56],

supplemented by the Gauss-Bonnet contribution computed
here [Eq. (4.9)], yield the full EsGB Lagrangian at 3PN
order. It will be interesting to extend the effective one-body
program to this more general class of theories; see
Refs. [69,70] for similar work in “ordinary” scalar-tensor
gravity, and Refs. [28,49] for related work in EMD theory.
Our work should find application in analytical studies of

dynamical scalarization (see Ref. [71]) and in future studies
of binary dynamics, using either the effective one-body
formalism or numerical relativity.
We wish to conclude by highlighting two technical

results that we consider conceptually important:
(1) At least during the inspiral, the mass function of

skeletonized BHs [Eq. (3.8)] is uniquely character-
ized by their Wald entropy. We conjecture that this
might be true in all theories where the gravity sector
differs from the Einstein-Hilbert Lagrangian. It will
be interesting to test the validity of this conjecture
and formally prove it.

(2) The Gauss-Bonnet contributions to the fields are
finite [Eq. (D14)], and no regularization procedure is
necessary, at least at 1PN order. While further work
is necessary to determine whether this conclusion
extends to higher PN orders, this intriguing result is
yet another hint of the very special nature of EsGB
gravity.
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APPENDIX A: THE EINSTEIN-SCALAR-
GAUSS-BONNET FIELD EQUATIONS IN

ARBITRARY DIMENSION

Let us generalize our vacuum action (2.1) to arbitrary
dimensions:

ID ¼
Z

dDx
ffiffiffiffiffiffi−gp

16π
ðR − 2gμν∂μφ∂νφþ αfðφÞR2

GBÞ: ðA1Þ

In order to derive the associated Einstein field equations, it
is useful to rewrite the Gauss-Bonnet scalar as [29,30]

R2
GB ¼ RμνρσPμνρσ; ðA2Þ

with

Pμν
ρσ ¼ Rμν

ρσ − 2δμ½ρR
ν
σ� þ 2δν½ρR

μ
σ� þ δμ½ρδ

ν
σ�R

¼ 1

4
δμνα1α2ρσβ1β2

Rβ1β2
α1α2 ; ðA3Þ

where δα1���αNβ1���βN denotes the generalized Kronecker symbol,
which is the determinant of the N × N matrixM built from
ordinary Kronecker symbols as Mi

j ¼ δαiβj . The quantity

Pμνρσ has the symmetries of the Riemann tensor and is
divergenceless: it can be easily shown using the Bianchi
identities that ∇μPμ

νρσ ¼ 0.
The variation of the last term of Eq. (A1) with respect to

gμν can therefore be written as

δðgÞ

Z
dDx

ffiffiffiffiffiffi
−g

p
fðφÞR2

GB

¼
Z

dDx
ffiffiffiffiffiffi
−g

p
fðφÞðHμνδgμν þ 2Pμ

νρσδRμ
νρσÞ; ðA4Þ

where

Hμ
ν ¼ 2Rμ

αβγPν
αβγ −

1

2
δμνR2

GB

¼ −
1

8
δμν

α1α2α3α4
β1β2β3β4

Rβ1β2
α1α2R

β3β4
α3α4

is the Gauss-Bonnet tensor. Now, using successively
δRμ

νρσ ¼ 2∇½ρδΓ
μ
σ�ν with δΓμ

νρ¼ 1
2
gμλð∇νδgλρþ∇ρδgλν−

∇λδgνρÞ, integration by parts, and the properties of Pμνρσ,
one finds
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δðgÞ

Z
dDx

ffiffiffiffiffiffi
−g

p
fðφÞR2

GB

¼
Z

dDx
ffiffiffiffiffiffi
−g

p ðfðφÞHμνþ4Pμανβ∇α∇βfðφÞÞδgμν; ðA5Þ

modulo boundary terms ignored here.
The variation of the first two terms in Eq. (A1) is

elementary, and the full Einstein field equations are thus, in
any dimension D,

Rμν −
1

2
gμνR ¼ 2∂μφ∂νφ − gμνð∂φÞ2

− αðfðφÞHμν þ 4Pμανβ∇α∇βfðφÞÞ: ðA6Þ

When D ≤ 4, the Gauss-Bonnet tensor Hμν vanishes
identically, as is obvious from its expression above in terms
of the rank-five generalized Kronecker symbol. Taking the
trace of Eq. (A6) finally yields Eq. (2.2a).

APPENDIX B: EINSTEIN-SCALAR-GAUSS-
BONNET BLACK HOLES AT ORDER O(ϵ4)

Using the notation fðnÞ∞ ≡ ðdnf=dφnÞðφ∞Þ and recalling
that u ¼ 2m=r, the remaining contributions to the static,
spherically symmetric BH solutions (2.3)–(2.7) to the
vacuum field equations (2.2) are

A3 ¼
fð2Þ∞

fð1Þ∞

�
−
73u3

90
þ 73u4

36
þ 647u5

450
þ 557u6

900
þ 1189u7

3150
−
243u8

140
−
667u9

945
−
43u10

108

�
; ðB1aÞ

A4¼
�
−
73

45
−
362129fð2Þ∞

2

226800fð1Þ∞
2
−
12511fð3Þ∞

22680fð1Þ∞

�
u3þ

�
73

18
þ1139191fð2Þ∞

2

453600fð1Þ∞
2
þ12511fð3Þ∞

9072fð1Þ∞

�
u4

þ
�
−
298

225
þ7993913fð2Þ∞

2

2268000fð1Þ∞
2
−

12511fð3Þ∞

113400fð1Þ∞

�
u5þ

�
439

150
þ1694561fð2Þ∞

2

1134000fð1Þ∞
2
þ138689fð3Þ∞

226800fð1Þ∞

�
u6

þ
�
−
2231

450
þ1425247fð2Þ∞

2

1587600fð1Þ∞
2
þ218069fð3Þ∞

396900fð1Þ∞

�
u7þ

�
9979

2520
−
11507039fð2Þ∞

2

6350400fð1Þ∞
2
þ288377fð3Þ∞

635040fð1Þ∞

�
u8

þ
�
−
443

280
−
27378403fð2Þ∞

2

19051200fð1Þ∞
2
−
132829fð3Þ∞

238140fð1Þ∞

�
u9þ

�
8203

450
−
169633fð2Þ∞

2

170100fð1Þ∞
2
−
150041fð3Þ∞

272160fð1Þ∞

�
u10

þ
�
−
779

330
−
13558757fð2Þ∞

2

18711000fð1Þ∞
2
−
354643fð3Þ∞

748440fð1Þ∞

�
u11þ

�
−
7

5
−
16763fð2Þ∞

2

81000fð1Þ∞
2
−

493fð3Þ∞

3240fð1Þ∞

�
u12þ

�
−
9908

825
−

5fð2Þ∞
2

88fð1Þ∞
2
−

fð3Þ∞

22fð1Þ∞

�
u13;

ðB1bÞ

B3 ¼ −
fð2Þ∞

fð1Þ∞

�
73u2

30
þ 73u3

45
þ 73u4

36
þ 103u5

50
þ 413u6

225
þ 57u7

35
þ 253u8

420
þ 11u9

54

�
; ðB2aÞ

B4¼−
�
73

15
þ362129fð2Þ∞

2

75600fð1Þ∞
2
þ12511fð3Þ∞

7560fð1Þ∞

�
u2−

�
146

45
þ362129fð2Þ∞

2

113400fð1Þ∞
2
þ12511fð3Þ∞

11340fð1Þ∞

�
u3

−
�
73

18
þ1586827fð2Þ∞

2

453600fð1Þ∞
2
þ12511fð3Þ∞

9072fð1Þ∞

�
u4−

�
169

75
þ254393fð2Þ∞

2

63000fð1Þ∞
2
þ12511fð3Þ∞

12600fð1Þ∞

�
u5−

�
847

450
þ121219fð2Þ∞

2

32400fð1Þ∞
2
þ16831fð3Þ∞

16200fð1Þ∞

�
u6

−
�
1

45
þ2691779fð2Þ∞

2

793800fð1Þ∞
2
þ21394fð3Þ∞

19845fð1Þ∞

�
u7−

�
2549

2520
þ479659fð2Þ∞

2

235200fð1Þ∞
2
þ25783fð3Þ∞

23520fð1Þ∞

�
u8−

�
11

45
þ94471fð2Þ∞

2

85050fð1Þ∞
2
þ18829fð3Þ∞

27216fð1Þ∞

�
u9

−
�
583

90
þ35633fð2Þ∞

2

68040fð1Þ∞
2
þ 6079fð3Þ∞

17010fð1Þ∞

�
u10−

�
4504

825
þ 5089fð2Þ∞

2

37125fð1Þ∞
2
þ 611fð3Þ∞

5940fð1Þ∞

�
u11−

�
1329

275
þ205fð2Þ∞

2

7128
ð1Þ
∞

2
þ 41fð3Þ∞

1782fð1Þ∞

�
u12;

ðB2bÞ
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and finally

φ2 ¼
fð2Þ∞

fð1Þ∞

�
73

60

�
uþ u2

2
þ u3

3
þ u4

4

�
þ 7u5

75
þ u6

36

�
; ðB3aÞ

φ3 ¼
�
73

30
þ 12511fð2Þ∞

2

7560fð1Þ∞
2
þ 12511fð3Þ∞

15120fð1Þ∞

�
uþ

�
73

60
þ 12511fð2Þ∞

2

15120fð1Þ∞
2
þ 12511fð3Þ∞

30240fð1Þ∞

�
u2 þ

�
103

90
þ 12511fð2Þ∞

2

22680fð1Þ∞
2
þ 12511fð3Þ∞

45360fð1Þ∞

�
u3

þ
�
133

120
þ 12511fð2Þ∞

2

30240fð1Þ∞
2
þ 12511fð3Þ∞

60480fð1Þ∞

�
u4 þ

�
51

50
þ 449fð2Þ∞

2

3024fð1Þ∞
2
þ 12511fð3Þ∞

75600fð1Þ∞

�
u5 þ

�
73

180
þ 28531fð2Þ∞

2

453600fð1Þ∞
2
þ 1595fð3Þ∞

18144fð1Þ∞

�
u6

þ
�
17

10
þ 13201fð2Þ∞

2

529200fð1Þ∞
2
þ 839fð3Þ∞

21168fð1Þ∞

�
u7 þ

�
57

40
þ 239fð2Þ∞

2

43200fð1Þ∞
2
þ 35fð3Þ∞

3456fð1Þ∞

�
u8 þ

�
173

135
þ fð2Þ∞

2

972fð1Þ∞
2
þ fð3Þ∞

486fð1Þ∞

�
u9;

ðB3bÞ

φ4 ¼
fð2Þ∞

fð1Þ∞

��
143467

8316
þ 227192473fð2Þ∞

2

99792000fð1Þ∞
2
þ 31557593fð3Þ∞

9072000fð1Þ∞
þ 799607fð4Þ∞

1995840fð2Þ∞

�
u

þ
�
143467

16632
þ 227192473fð2Þ∞

2

199584000fð1Þ∞
2
þ 31557593fð3Þ∞

18144000fð1Þ∞
þ 799607fð4Þ∞

3991680fð2Þ∞

�
u2

þ
�
434551

62370
þ 227192473fð2Þ∞

2

299376000fð1Þ∞
2
þ 31557593fð3Þ∞

27216000fð1Þ∞
þ 799607fð4Þ∞

5987520fð2Þ∞

�
u3

þ
�
1020869

166320
þ 227192473fð2Þ∞

2

399168000fð1Þ∞
2
þ 31557593fð3Þ∞

36288000fð1Þ∞
þ 799607fð4Þ∞

7983360fð2Þ∞

�
u4

þ
�
2126053

415800
þ 14761939fð2Þ∞

2

71280000fð1Þ∞
2
þ 3703949fð3Þ∞

6480000fð1Þ∞
þ 799607fð4Þ∞

9979200fð2Þ∞

�
u5

þ
�
8051381

2494800
þ 53790013fð2Þ∞

2

598752000fð1Þ∞
2
þ 17053103fð3Þ∞

54432000fð1Þ∞
þ 799607fð4Þ∞

11975040fð2Þ∞

�
u6

þ
�
2128363

582120
þ 178679fð2Þ∞

2

4752000fð1Þ∞
2
þ 1469029fð3Þ∞

9072000fð1Þ∞
þ 633287fð4Þ∞

13970880fð2Þ∞

�
u7

þ
�
85573

16632
þ 20000597fð2Þ∞

2

1862784000fð1Þ∞
2
þ 35999071fð3Þ∞

508032000fð1Þ∞
þ 59921fð4Þ∞

2280960fð2Þ∞

�
u8

þ
�
4017613

748440
þ 3517861fð2Þ∞

2

1047816000fð1Þ∞
2
þ 15156781fð3Þ∞

571536000fð1Þ∞
þ 449fð4Þ∞

40095fð2Þ∞

�
u9

þ
�
22617977

4158000
þ 9691879fð2Þ∞

2

10478160000fð1Þ∞
2
þ 15718103fð3Þ∞

1905120000fð1Þ∞
þ 2729fð4Þ∞

712800fð2Þ∞

�
u10

þ
�
9714977

4573800
þ 7553fð2Þ∞

2

47044800fð1Þ∞
2
þ 13891fð3Þ∞

8553600fð1Þ∞
þ 65fð4Þ∞

78408fð2Þ∞

�
u11

þ
�
2447

3240
þ fð2Þ∞

2

46656fð1Þ∞
2
þ 11fð3Þ∞

46656fð1Þ∞
þ fð4Þ∞

7776fð2Þ∞

�
u12

�
: ðB3cÞ
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It is then simple to compute the Kretschmann scalar of the spacetime, with the result (recall that ϵ ¼ αfð1Þ∞ =4m2)

RμνρσRμνρσ ¼
1

m4

�
3u6

4
þ ϵ2

�
−u7 þ 2u8 −

33u9

2
þ 7u10

4
þ u11 þ 138u12

5

�

þ ϵ3
�
−
73fð2Þ∞

30fð1Þ∞
u7 þ 73fð2Þ∞

15fð1Þ∞
u8 −

73fð2Þ∞

4fð1Þ∞
u9 −

347fð2Þ∞

20fð1Þ∞
u10 −

1799fð2Þ∞

200fð1Þ∞
u11 −

1013fð2Þ∞

150fð1Þ∞
u12 þ 5687fð2Þ∞

105fð1Þ∞
u13

þ 1133fð2Þ∞

42fð1Þ∞
u14 þ 1309fð2Þ∞

72fð1Þ∞
u15

�
þ ϵ4

��
−
73

15
−
362129fð2Þ∞

2

75600fð1Þ∞
2
−
12511fð3Þ∞

7560fð1Þ∞

�
u7

þ
�
629

60
þ 362129fð2Þ∞

2

37800fð1Þ∞
2
þ 12511fð3Þ∞

3780fð1Þ∞

�
u8 þ

�
−39 −

1139191fð2Þ∞
2

50400fð1Þ∞
2

−
12511fð3Þ∞

1008fð1Þ∞

�
u9

þ
�
2023

60
−
59519fð2Þ∞

2

1344fð1Þ∞
2
þ 12511fð3Þ∞

5040fð1Þ∞

�
u10 þ

�
−
23057

300
−
276017fð2Þ∞

2

12000fð1Þ∞
2
−
73889fð3Þ∞

7200fð1Þ∞

�
u11

þ
�
5769

25
−
1288367fð2Þ∞

2

75600fð1Þ∞
2

−
56587fð3Þ∞

4725fð1Þ∞

�
u12 þ

�
−
16417

105
þ 6878401fð2Þ∞

2

117600fð1Þ∞
2
−
146081fð3Þ∞

11760fð1Þ∞

�
u13

þ
�
77503

840
þ 78844487fð2Þ∞

2

1411200fð1Þ∞
2
þ 77767fð3Þ∞

3528fð1Þ∞

�
u14 þ

�
−
14417

12
þ 655748fð2Þ∞

2

14175fð1Þ∞
2
þ 931387fð3Þ∞

36288fð1Þ∞

�
u15

þ
�
9733

60
þ 7468747fð2Þ∞

2

189000fð1Þ∞
2
þ 24436fð3Þ∞

945fð1Þ∞

�
u16 þ

�
1051

10
þ 356657fð2Þ∞

2

27000fð1Þ∞
2
þ 2623fð3Þ∞

270fð1Þ∞

�
u17

þ
�
4028179

3300
þ 19915fð2Þ∞

2

4752fð1Þ∞
2
þ 3983fð3Þ∞

1188fð1Þ∞

�
u18

��
: ðB4Þ

This expression diverges only at the origin r ¼ 0, showing that our BH solution is regular everywhere outside the
horizon, since rH > 0 when ϵ ≪ 1; cf. Eq. (C1).

APPENDIX C: THE THERMODYNAMICAL VARIABLES OF
EINSTEIN-SCALAR-GAUSS-BONNET BLACK HOLES

The solution presented in Sec. II A and Appendix B can be characterized by the thermodynamic quantities defined in
Sec. II B. Here, we give their expressions in terms of the integration constants m and φ∞, denoting ϵ≡ αfð1Þ∞ =4m2.
The location of the horizon uH ¼ 2m=rH, the temperature T [Eq. (2.8)], the Wald entropy Sw [as defined in Eqs. (2.9)

and (2.10)], and the scalar “charge” D defined below Eq. (2.11) are given by

uH ¼ 1þ ϵ2

3
þ ϵ3

73fð2Þ∞

90fð1Þ∞
þ ϵ4

�
1646

495
þ 362129fð2Þ∞

2

226800fð1Þ∞
2
þ 12511fð3Þ∞

22680fð1Þ∞

�
þOðϵ5Þ; ðC1Þ

T ¼ 8πm

�
1þ ϵ2

73

30
þ ϵ3

12511fð2Þ∞

1890fð1Þ∞
þ ϵ4

�
4010597

138600
þ 227192473fð2Þ∞

2

16632000fð1Þ∞
2
þ 799607fð3Þ∞

166320fð1Þ∞

�
þOðϵ5Þ

�
; ðC2Þ

Sw ¼ 4πm2

�
1þ ϵ

4f∞

fð1Þ∞
þ ϵ2

73

30
þ ϵ3

12511fð2Þ∞

3780fð1Þ∞
þϵ4

�
3189931

415800
þ 227192473fð2Þ∞

2

49896000fð1Þ∞
2
þ 799607fð3Þ∞

498960fð1Þ∞

�
þOðϵ5Þ

�
; ðC3Þ

D ¼ 2m

�
ϵþ ϵ2

73fð2Þ∞

60fð1Þ∞
þ ϵ3

�
73

30
þ 12511fð2Þ∞

2

7560fð1Þ∞
2
þ 12511fð3Þ∞

15120fð1Þ∞

�

þ ϵ4
�
143467

8316
þ 227192473fð2Þ∞

2

99792000fð1Þ∞
2
þ 31557593fð3Þ∞

9072000fð1Þ∞
þ 799607fð4Þ∞

1995840fð2Þ∞

�
fð2Þ∞

fð1Þ∞
þOðϵ5Þ

�
: ðC4Þ
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APPENDIX D: THE TWO-BODY LAGRANGIAN
AT FIRST POST-NEWTONIAN ORDER

In this appendix, we derive the PN two-body Lagrangian
of EsGB theories [Eq. (4.6)]. For a bound binary system,
we compute the relativistic corrections in the weak-field,
slow-velocity approximation at order Oðm=rÞ ∼Oðv2Þ,
where r is the distance separating the bodies and v is their
relative velocity.
Our first goal is to solve the EsGB field equations (4.2)

sourced by two point particles:

Rμν ¼ 2∂μφ∂νφ − 4α

�
Pμανβ −

1

2
gμνPαβ

�
∇α∇βfðφÞ

þ 8π
X
A

�
TA
μν −

1

2
gμνTA

�
; ðD1aÞ

□φ ¼ −
1

4
αf0ðφÞR2

GB þ 4π
X
A

dsA
dt

dmA

dφ
δð3Þðx − xAðtÞÞffiffiffiffiffiffi−gp ;

ðD1bÞ

where we recall that Tμν
A is the distributional stress-energy

tensor of the skeletonized body A located at xμA ¼ ðt;xAÞ:

Tμν
A ¼ mAðφÞ

δð3Þðx − xAðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ggαβ

dxαA
dt

dxβA
dt

q dxμA
dt

dxνA
dt

: ðD2Þ

At 1PN order and in Cartesian coordinates, it is con-
venient to expand the metric around Minkowski as [72]

g00 ¼ −e−2U þOðv6Þ; ðD3aÞ

g0i ¼ −4gi þOðv5Þ; ðD3bÞ

gij ¼ δije2U þOðv4Þ; ðD3cÞ

where, as we show below, U ¼ Oðv2Þ and gi ¼ Oðv3Þ. We
can also expand the scalar field φ as

φ ¼ φ0 þ δφþOðv6Þ; ðD4Þ

with δφ ¼ Oðv2Þ. The masses mAðφÞ are expanded around
the value φ0 of the scalar field at infinity, using the
quantities defined in Eqs. (4.3) and (4.4):

mAðφÞ ¼ m0
A

�
1þ α0Aδφþ 1

2
ðα0A2 þ β0AÞδφ2 þOðv6Þ

�
:

ðD5Þ

Here a “0” subscript indicates that the quantity is
evaluated at φ ¼ φ0. In a harmonic coordinate system
and at 1PN order, we have ∂μð ffiffiffiffiffiffi−gp

gμνÞ¼∂tUþ∂igi¼0,
R00¼−□ηUþOðv6Þ, and R0i ¼ −2Δgi þOðv5Þ. The

Gauss-Bonnet term contributes to the field equations
through P0i0j þ 1

2
Pij ¼ −ð∂ijUÞ þ δijΔU þOðv4Þ and

R2
GB ¼ 8½ð∂ijUÞð∂ijUÞ − ΔUΔU� þOðv6Þ, so the field

equations read

□ηU¼−4π
X
A

m0
A

�
1þ3

2
v2A−Uþα0Aδφ

�
δð3Þðx−xAðtÞÞ

þ4αf0ðφ0Þ½ΔφΔU−ð∂ijφÞð∂ijUÞ�þOðv6Þ;
ðD6aÞ

Δgi ¼ −4π
X
A

m0
Av

i
Aδ

ð3Þðx − xAðtÞÞ þOðv5Þ; ðD6bÞ

□ηφ¼ 4π
X
A

m0
Aα

0
A

�
1−

1

2
v2A−Uþ

�
α0Aþ

β0A
α0A

�
δφ

�

×δð3Þðx−xAðtÞÞþ2αf0ðφ0Þ½ðΔUÞ2− ð∂ijUÞð∂ijUÞ�
þOðv6Þ; ðD6cÞ

where □η ¼ ημν∂μ∂ν is the flat D’Alembertian and Δ ¼
δij∂i∂j is the flat Laplacian.
When the Gauss-Bonnet coupling is switched off, i.e.,

α ¼ 0, the system above reduces to the standard scalar-
tensor field equations at 1PN. We can now solve these
equations using standard methods (see, e.g., Refs. [53,54]
or Ref. [27]) through the relativistic Green’s function

□ηGðx; x0Þ≡ −4πδð3Þðx − x0Þδðt − t0Þ; ðD7Þ

which, as we focus here on the conservative sector, is half-
retarded, half-advanced:

Gðx; x0Þ ¼ 1

2

�
δðt − t0 − jx − x0j

jx − x0j þ δðt − t0 þ jx − x0j
jx − x0j

�

¼ δðt − t0Þ
jx − x0j þ

jx − x0j
2

∂2
t δðt − t0Þ þ � � � : ðD8Þ

All derivatives are understood in a distributional sense.
The new α-driven sources of Eqs. (D6a) and (D6c) enter

(formally) at the 1PN level. To evaluate them, we must
replace U and φ with their leading (0PN) expressions,
yielding equations of the form

Δh12 ¼ Δ
1

jx − y1j
Δ

1

jx − y2j
− ∂ij

1

jx − y1j
∂ij

1

jx − y2j
:

ðD9Þ

The solution h12ðxÞ can be found as follows. When
y1 ≠ y2, we can replace the gradients ∂i with derivatives
with respect to the source locations y1 and y2:
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Δh12¼
� ∂2

∂yi1∂yi1
∂2

∂yj2∂yj2
−

∂2

∂yi1∂yi2
∂2

∂yj1∂yj2

�
1

jx−y1jjx−y2j
:

ðD10Þ
Now, note that Δ−1 commutes with the yi derivatives, and
recall the well-known result first established by Fock (see,
e.g., Ref. [73]):

Δ−1
�

1

jx−y1jjx−y2j
�
¼ lnðjx−y1jþ jx−y2jþ jy1−y2jÞ:

ðD11Þ

A rather lengthy but straightforward calculation then
yields

h12ðxÞ ¼
1

4jx − y1j3jx − y2j3
�
jx − y1j2 þ jx − y2j2 − jy1 − y2j2 þ

jx − y1j3 þ jx − y2j3
jy1 − y2j

þ jx − y1j3jx − y2j2 þ jx − y1j2jx − y2j3 − jx − y1j5 − jx − y1j5
jy1 − y2j3

�
: ðD12Þ

It can be checked that the contribution from the first set
of derivatives in Eq. (D10) vanishes identically: the first
“Dirac squared” term in Eq. (D9) can be ignored.
The case y1 ¼ y2 can be inferred from Eq. (D12).

Denoting n1 ≡ x−y1
jx−y1j and n12 ≡ y2−y1

jy2−y1j, and taking the limit

ϵ≡ jy1 − y2j → 0, we find

h12ðxÞ¼
1−3ðn12 ·n1Þ2
2jx−y1j3ϵ

þ2−9ðn12 ·n1Þþ15ðn12 ·n1Þ3
4jx−y1j4

þOðϵÞ: ðD13Þ

We can finally average out n12 over spatial directions using
hni12i ¼ 0, hni12nj12i ¼ δij=3, and hni12nj12nk12i ¼ 0:

h11ðxÞ ¼
1

2jx − y1j4
: ðD14Þ

The simplicity of Eq. (D14) is striking: the Gauss-
Bonnet contributions to the fields are finite, and no
regularization procedure (see, e.g., Ref. [74]) is necessary
to solve Eq. (D6) at 1PN order. The generalization of this
remarkable fact to higher PN orders is left to future work.
We can now solve Eq. (D6) to find

UðxÞ¼
X
A

m0
A

ρA

�
1þ3

2
v2A−

X
B≠A

m0
B

r
ð1þα0Aα

0
BÞ
�

−4αf0ðφ0Þ
X
A;B

m0
Am

0
Bα

0
AhABðxÞþOðv6Þ; ðD15aÞ

giðxÞ ¼
X
A

m0
Av

i
A

jx − xAðtÞj
þOðv5Þ; ðD15bÞ

φðxÞ ¼ φ0 −
X
A

m0
Aα

0
A

ρA

×

�
1 −

1

2
v2A −

X
B≠A

m0
B

r

�
1þ α0Aα

0
B −

β0Aα
0
B

α0A

��

þ 2αf0ðφ0Þ
X
A;B

m0
Am

0
BhABðxÞ þOðv6Þ; ðD15cÞ

where xμ ¼ ðt;xÞ and

1

ρA
¼ 1

jx − xAðtÞj
þ 1

2
∂2
t jx − xAðtÞj

¼ 1

jx − xAðtÞj
�
1þ 1

2
v2A −

1

2
ðnA · vAÞ2

�
þ 1

2
ðnA · aAÞ;

ðD16Þ

with nA ¼ ðxA − xÞ=jxA − xj and aA ¼ dvA=dt.
The two-body Lagrangian can now be straightforwardly

obtained à la Droste-Fichtenholz, a technique which, at this
order, is equivalent to computing, e.g., a Fokker Lagrangian
[75]. First, one writes the Lagrangian of, say, body A
considered as a test particle in the fields of B:

LA ¼ −mAðφÞ
dsA
dt

¼ −mAðφÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2U þ 8giviA − e2Uv2A

q
þOðv6Þ; ðD17Þ

where U, gi, and φ are given by Eq. (D15), setting formally
m0

A ¼ 0 and x ¼ xA. In particular, Eq. (D16) can be
rewritten as

1

ρA
¼ 1

R

�
1þ 1

2
ðvA · vBÞ −

1

2
ðn · vAÞðn · vBÞ

�

þ 1

2

d
dt

ðn · vAÞ; ðD18Þ

with r ¼ jxA − xBj and n ¼ ðxA − xBÞ=r. Note that the last
term is a total time derivative that can be ignored in the
Lagrangian (D17).
The final two-body Lagrangian LAB is easily inferred

from LA. Indeed, the only Lagrangian that is symmetric
under exchange of the bodies (A ↔ B), and whose result-
ing equations of motion reduce to those of LA in the test-
mass limit m0

A ≪ m0
B, is
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LAB ¼ −m0
A −m0

B þ 1

2
m0

Av
2
A þ 1

2
m0

Bv
2
B þm0

Am
0
B

r
ð1þ α0Aα

0
BÞ þ

1

8
m0

Av
4
A þ 1

8
m0

Bv
4
B

þm0
Am

0
B

r

��
vA · vB

2
ð−7þ α0Aα

0
BÞ
�
þ
�
v2A þ v2B

2
ð3 − α0Aα

0
BÞ
�
−
�ðn · vAÞðn · vBÞ

2
ð1þ α0Aα

0
BÞ
��

−
m0

Am
0
B

2r2
½m0

Aðð1þ α0Aα
0
BÞ2 þ β0Bα

0
A
2Þ þm0

Bðð1þ α0Aα
0
BÞ2 þ β0Aα

0
B
2Þ�

þ αf0ðφ0Þ
r2

m0
Am

0
B

r2
½m0

Aðα0B þ 2α0AÞ þm0
Bðα0A þ 2α0BÞ� þOðv6Þ; ðD19Þ

which is straightforwardly rewritten as Eq. (4.6).
This completes our derivation.

APPENDIX E: SENSITIVITIES FOR QUADRATIC COUPLING AND SHIFT-SYMMETRIC THEORIES

In Sec. IV B, we studied BH sensitivities in one of the best motivated subclasses of EsGB theory, namely EdGB gravity.
Here we generalize the analysis to quadratic and shift-symmetric EsGB theories.

1. Quadratic coupling

Let us consider EsGB theories where the coupling function depends only on φ2—i.e., is of the form [12]

fðφÞ ¼ −
e−λφ

2

2λ
; ðE1Þ

with λ > 0. The EsGB action (2.1) is symmetric under φ → −φ. The coefficients appearing in the scalar coupling function
α0A [cf. Eqs. (4.10) and (4.12)] now read

Aquad
2 ðφ0Þ ¼

−120þ 73λ

480λφ0

−
73λφ0

240
; ðE2aÞ

Aquad
3 ðφ0Þ ¼

110376λ2 − 87577λ3

241920λ2
þ 30240 − 36792λþ 12511λ2

241920λ2φ2
0

þ 12511λ2φ2
0

40320
; ðE2bÞ

Aquad
4 ðφ0Þ ¼

−798336000þ 1456963200λ − 990871200λ2 þ 227192473λ3

12773376000λ3φ3
0

þ −5827852800λ2 þ 9578872320λ3 − 3685838076λ4

12773376000λ3φ0

þ ð−11230775040λ4 þ 9239974444λ5Þφ0

12773376000λ3

−
102384391λ3φ3

0

266112000
: ðE2cÞ

In the special case λ ¼ 1, we find

α0A ¼ −
x
2
þ
�

47

480φ0

þ 73φ0

240

�
x2 þ

�
3257

34560
þ 5959

241920φ2
0

þ 12511φ2
0

40320

�
x3

þ
�

15007361

1824768000φ3
0

−
5431787

1064448000φ0

þ 497700149φ0

3193344000
þ 102384391φ3

0

266112000

�
x4 þOðx5Þ; ðE3Þ

with

x ¼ αðφ0e−φ
2
0Þ

μ2A
:

As expected, under a sign inversion φ0 → −φ0 we have α0A → −α0A and β0A ¼ ðdαA=dφÞðφ0Þ → β0A, so that the two-body
Lagrangian [Eqs. (4.6) and (4.8)] is invariant.
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For EsGB theories with quadratic couplings of the form
(E1), a BH with irreducible mass μA is regular outside the
horizon if the condition (4.18) is satisfied—i.e., if

αe−λφ
2
H

2μ2A

� ffiffiffi
6

p
jφHj −

1

λ

�
< 1: ðE4Þ

For λ ¼ 1, this condition is satisfied for all φH whenever
α=μ2A < ðα=μ2AÞcrit ¼ 3.715, and then BH A can never reach
the singular configuration, whatever the value of the
background scalar field φ0.
Note that the condition above is not very restrictive,

as the coupling constant α=μ2A is expected to be small. The
same conclusions apply to the case λ ≠ 1, as illustrated in
the left panel of Fig. 2. In the white region of the fα=μ2A; λg
plane, the inequality (E4) is satisfied for any value φH
of the scalar field at the horizon. In the shaded area, the

inequality (E4) is violated within two symmetric φH
intervals. At the boundary between these two regions,
these intervals reduce to two points.
The right panel focuses on the special case λ ¼ 1. When

α=μ2A > ðα=μ2AÞcrit, the inequality (E4) is violated when φH

takes values in two intervals which are symmetric with
respect to the origin. In the limit α=μ2A → þ∞, these
intervals tend to � −∞;− 1

λ
ffiffi
6

p � and ½ 1

λ
ffiffi
6

p ;þ∞½, respectively.
Figure 3, which is completely analogous to Fig. 1, shows

α0Aðφ0Þ for λ ¼ 1. The left panel (where we set α=μ2A ¼ 1

for simplicity) shows that the Taylor series converges much
faster than in the dilatonic case and that, unlike the dilatonic
case, the sensitivity [Eq. (E3)] is finite ∀φ0. The right
panel shows the Padé-resummed coupling αPadéA when
λ ¼ 1. The Padé approximation suggests that two poles
in αPadéA ðφ0Þ appear at some critical coupling ðα=μ2AÞPadécrit

FIG. 3. Scalar coupling αAðφ0Þ of BHs in theories with quadratic coupling of the form (E1) with λ ¼ 1. Left panel: Taylor series
[Eq. (E3)] truncated at order OðxnÞ and its (2,2) Padé resummation α0A;Padé, for the special case α=μ

2
A ¼ 1. Right panel: αA;Padéðφ0Þ for

three different BHs with α=μ2A ¼ f0.5; 1; 2.17g. When α=μ2A becomes larger than the critical value corresponding to ðα=μ2AÞPadécrit ¼ 2.17,
two singularities appear at φcrit

0 ¼ �0.42.

FIG. 2. Left panel: Parameter space fα=μ2A; λg in quadratic EsGB theory. The white area represents the parameter space for which the
bound in Eq. (E4) is satisfied ∀φH. At the boundary with the shaded area, (E4) has two symmetric roots in the φH variable. In the shaded
area, (E4) is violated within two symmetric φH intervals. Right panel: The example λ ¼ 1. The bound (E4) is violated in two symmetric
φH intervals when α=μ2A > 3.715.

POST-NEWTONIAN DYNAMICS AND BLACK HOLE … PHYS. REV. D 100, 104061 (2019)

104061-17



such that ðα=μ2AÞPadécrit ¼ 2.17. This value is qualitatively
comparable to the nonperturbative prediction given below
Eq. (E4). A more accurate estimate of ðα=μ2AÞPadécrit using
higher-order expansions in α is an interesting topic for
future work.
Once again, the scalar field value φ0 at infinity plays a

major role. As jφ0j increases, the sensitivity jα0Aj also does,
until it reaches an extremum at

φextr
0 ¼ � 1ffiffiffiffiffi

2λ
p þOðxÞ; ðE5Þ

where

αAðφextr
0 Þ ¼ ∓ α

2μ2A

1ffiffiffiffiffiffiffi
2eλ

p þOðx2Þ ðE6Þ

and βAðφextr
0 Þ ¼ 0. Here e is Euler’s number. In the limit

jφ0j≫ jφextr
0 j, instead, α0A→0 and β0A ¼ðdαA=dφÞðφ0Þ→ 0,

so the BH is indistinguishable from the Schwarzschild
solution. Finally, the sensitivity “turns off” when φ0 ¼ 0:
αAð0Þ ¼ 0. This is because α0A is associated with the BH
solutions of Sec. II A, which were derived in the weak
Gauss-Bonnet coupling limit: see Eq. (2.3). When φ0 ¼ 0,
f0ðφ∞Þ ¼ 0, and the solution reduces to the Schwarzschild
metric. Note that the branch of “spontaneously scalarized”
BH solutions with nonperturbative scalar hair and φ∞ ¼ 0
[11,12,42] is not included in our analysis. A numerical calcu-
lation of their sensitivities α0A and β0A is left for future work.

2. Shift-symmetric theories

As a third and last example, let us consider shift-
symmetric theories [8,9] with

fðφÞ ¼ 2φ: ðE7Þ
The action (2.1) is symmetric under the shift symmetry
φ → φþ Δφ, where Δφ is a constant. The sensitivity
(4.10) reads

α0A ¼ −
x
2
−
φ0

2
x2 −

�
73

480
þ φ0

2

2

�
x3

−
�
73φ0

160
þ φ0

3

2

�
x4 þOðx5Þ; ðE8Þ

with

x ¼ 2α

μ2A
; ðE9Þ

and it is also invariant under φ0 → φ0 þ Δφ, since then
μ2A ¼ Sw=4π → μ2A þ 2αΔφ: cf. Eq. (2.10).
In Fig. 4, we plot α0A as a function of φ0. The left panel

(where we set α=μ2A ¼ 0.1 for concreteness) shows that the
series (E8) converges on a narrow interval. When φ0 is
large and positive, α0A diverges with a slope which increases
with the truncation order OðxnÞ; when φ0 is large and
negative, α0A diverges, but signðα0AÞ ¼ ð−1Þn depends on
the truncation order. To improve the convergence properties
of the expansion (E8), we try a diagonal (2,2) Padé
resummation, also shown in the left panel of Fig. 4. The
features of the Padé resummation resemble the dilatonic
case of Sec. IV B:

(i) When φ0 → −∞, the BH decouples from the scalar
field; i.e., α0A → 0 and β0A ¼ ðdα0A=dφÞðφ0Þ → 0.

(ii) As φ0 increases, the BH becomes strongly coupled
to the scalar field: α0A → −∞ and β0A → −∞ as φ0

approaches a pole located at

φpole
0 ¼ 1

2

�
μ2A
α
−

ffiffiffiffiffiffiffiffiffiffi
1095

p

30

�
: ðE10Þ

Once again, φ0 plays a crucial role. The BH’s irreducible
mass μA only affects the location of the pole through
Eq. (E10), as shown in the right panel of Fig. 4. The features

FIG. 4. Scalar coupling αAðφ0Þ of BHs in the shift-symmetric theory [Eq. (E7)]. Left panel: Taylor series [Eq. (E8)] truncated at order
OðxnÞ and its (2,2) Padé resummation α0A;Padé, for the special case α=μ2A ¼ 0.1. Right panel: α0A;Padé for three different BHs with
α=μ2A ¼ f1; 0.1; 0.05g.
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highlighted above are again valid within the nonpertur-
bative bound (4.18), which now reads

φH <
1

2

�
μ2A
α
−

ffiffiffi
6

p �
: ðE11Þ

This equation predicts the existence of a maximum value
for φH, which depends linearly on α=μ2A. A numerical
study and higher-order expansions in α, possibly com-
bined with Padé resummation techniques, would be
useful to confirm these predictions.

[1] E. Berti et al., Classical Quantum Gravity 32, 243001
(2015).

[2] C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24,
1542014 (2015).

[3] L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013).
[4] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.

Winstanley, Phys. Rev. D 54, 5049 (1996).
[5] P. Pani and V. Cardoso, Phys. Rev. D 79, 084031 (2009).
[6] D. J. Gross and J. H. Sloan, Nucl. Phys. B291, 41 (1987).
[7] G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett.

120, 131102 (2018).
[8] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102

(2014).
[9] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. D 90, 124063

(2014).
[10] A. Maselli, H. O. Silva, M. Minamitsuji, and E. Berti, Phys.

Rev. D 92, 104049 (2015).
[11] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E.

Berti, Phys. Rev. Lett. 120, 131104 (2018).
[12] D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120,

131103 (2018).
[13] J. L. Blázquez-Salcedo, D. D. Doneva, J. Kunz, and S. S.

Yazadjiev, Phys. Rev. D 98, 084011 (2018).
[14] M. Minamitsuji and T. Ikeda, Phys. Rev. D 99, 044017

(2019).
[15] H. O. Silva, C. F. B. Macedo, T. P. Sotiriou, L. Gualtieri, J.

Sakstein, and E. Berti, Phys. Rev. D 99, 064011 (2019).
[16] C. F. B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O.

Silva, and T. P. Sotiriou, Phys. Rev. D 99, 104041 (2019).
[17] M.W. Horbatsch and C. P. Burgess, J. Cosmol. Astropart.

Phys. 05 (2012) 010.
[18] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys. Rev. D

85, 064022 (2012); 93, 029902(E) (2016).
[19] J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna, D.

Shoemaker, and N. Yunes, Classical Quantum Gravity
29, 232002 (2012).

[20] L. C. Stein and K. Yagi, Phys. Rev. D 89, 044026 (2014).
[21] E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch, and U.

Sperhake, Phys. Rev. D 87, 124020 (2013).
[22] E. Barausse, N. Yunes, and K. Chamberlain, Phys. Rev.

Lett. 116, 241104 (2016).
[23] K. Prabhu and L. C. Stein, Phys. Rev. D 98, 021503 (2018).
[24] E. Berti, K. Yagi, and N. Yunes, Gen. Relativ. Gravit. 50, 46

(2018).
[25] H. Witek, L. Gualtieri, P. Pani, and T. P. Sotiriou, Phys. Rev.

D 99, 064035 (2019).
[26] D. M. Eardley, Astrophys. J. Lett. 196, L59 (1975).
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