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We present new results on the analytic eccentricity dependence of several sequences of gravitational
wave flux terms at high post-Newtonian (PN) order for extreme-mass-ratio inspirals. These sequences are
the leading logarithms, which appear at PN orders x3klogkðxÞ and x3kþ3=2logkðxÞ for integers k ≥ 0 (x is a
PN compactness parameter), and the subleading logarithms, which appear at orders x3klogk−1ðxÞ and
x3kþ3=2logk−1ðxÞ (k ≥ 1), in both the energy and angular momentum radiated to infinity. For the energy flux
leading logarithms, we show that to arbitrarily high PN order, their eccentricity dependence is determined
by particular sums over the function gðn; etÞ, derived from the Newtonian mass quadrupole moment, that
normally gives the spectral content of the Peters-Mathews flux as a function of radial harmonic n. An
analogous power spectrum g̃ðn; etÞ determines the leading logarithms of the angular momentum flux.
For subleading logs, the quadrupole power spectra are again shown to play a role, providing a
distinguishable part of the eccentricity dependence of these flux terms to high PN order. With the
quadrupole contribution understood, the remaining analytic eccentricity dependence of the subleading logs
can, in principle, be determined more easily using black hole perturbation theory. We show this procedure
in action, deriving the complete analytic structure of the x6 logðxÞ subleading-log term and an analytic
expansion of the x9=2 subleading log to high order in a power series in eccentricity. We discuss how these
methods might be extended to other sequences of terms in the PN expansion involving logarithms.
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I. INTRODUCTION

With gravitational wave observations of merging com-
pact binaries by LIGO and Virgo [1,2] now routine,
researchers look forward to the LISA mission [3,4] and
eventual detection of new classes of events, such as
extreme-mass-ratio inspirals (EMRIs) that involve a stellar
mass black hole (μ ∼ 10 M⊙) spiraling toward a super-
massive black hole (M ∼ 106 M⊙). For EMRIs the small
mass ratio ε ≔ μ=M ≪ 1 serves as a perturbation param-
eter, allowing the Einstein equations to be solved in an
expansion in powers of ε. In this black hole perturbation
theory (BHPT) approach, the backreaction on the small
body’s motion requires calculation of the regularized
gravitational self-force (GSF) [5]. Recent progress in this
area has included first-order long-term inspiral calculations
[6,7] of EMRIs with a nonspinning primary and calculation
of the first-order GSF for generic orbits about a spinning
(Kerr) primary [8].
Post-Newtonian (PN) theory, alternatively, is best

suited for wide orbits and slow orbital motions v=c ≪ 1,
or equivalently for small (dimensionless) orbital frequen-
cies, where x ≔ ððm1 þm2ÞΩφÞ2=3 ≪ 1) is a compactness
parameter [9]. Peters and Mathews [10,11] were the first to

calculate eccentric binary evolution subject to gravitational
radiation at lowest PN order (i.e., quadrupole radiation).
Modeling general orbits is important, as EMRIs are expected
to have moderate to high eccentricities [12–14]. For non-
spinning compact binaries, the gravitational wave phase has
now been calculated to 3PN order [15–17] for eccentric
orbits and 3.5PN order [18] for quasicircular orbits. The
equations of motion have been extended to 4PN order
(see [2] for a review).
These two approaches to the two-body problem overlap

for EMRIs that are early in an inspiral, and considerable
research has proceeded in recent years cross-checking
results from the two techniques (thus far almost exclusively
at first order in the mass ratio) and uncovering the PN
expansion of BHPT/GSF quantities. Initially, analytic
terms in the PN expansions were determined through
inspection of accurate BHPT/GSF numerical results. The
earliest example of this procedure was the recognition that
4π matched the numerical coefficient seen in BHPT
calculations [19] of the 1.5PN tail in the energy flux for
circular orbits, with the result being separately confirmed
theoretically [20,21]. Later, starting with Detweiler [22],
efforts were made [23–34] to identify analytic terms in
the PN expansion for gauge-invariant quantities in the
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conservative GSF sector, such as the redshift invariant ut.
Similar progress has been made in finding analytic coef-
ficients at high PN order for the fluxes from circular orbits
[35–37] and eccentric orbits [38,39].
Part of these efforts involved development of extreme

high-accuracy (e.g., hundreds of decimals of accuracy)
BHPT and GSF MATHEMATICA calculations [27,29,37,39]
centered around use of the MST (Mano-Suzuki-Tagasuki)
analytic function expansion formalism [40–42]. Numerical
results from different orbital radii (as well as eccentricity
[39]) are fitted to the form of an expected PN expansion to
determine coefficients numerically. Then, the high accuracy
of the floating point numbers allows an integer relation
algorithm (PSLQ) [43] to ferret out the underlying rational
and transcendental numbers that make up these coefficients.
It was subsequently realized that MATHEMATICA codes
might directly calculate [31,44–48] the PN expansion of
the MST solutions and store and output massively long
expressions for BHPT/GSF quantities for arbitrary orbital
parameters, rather than evaluate numerical values for
specific orbits. The results in this paper were in some cases
checked and in other cases derived by using both a high-
precision numerical MST code and a new all-analytic code.
The present paper and one being written contempora-

neously [49] concern the analytic form of the PN expansion
for gravitational wave fluxes to infinity from eccentric
nonspinning EMRIs. Drawing upon an earlier effort [39],
the companion paper [49] significantly extends the analytic
understanding of energy flux between 3.5PN and 9PN
order, as a simultaneous expansion in PN order and powers
of the eccentricity e, and presents the equivalent explication
of angular momentum flux. This paper focuses on two
subsets of PN terms called leading logarithms [50] and
subleading logarithms and uses a mix of PN analysis and
examination of BHPT results to provide a theoretical
understanding of the eccentricity functional dependence
of these logarithmic terms.
Leading logarithms are a sequence that appear at PN

orders x3klogkðxÞ and x3kþ3=2logkðxÞ for integers k ≥ 0.
(Here and henceforth in this paper PN order in the fluxes
refers to order relative to lowest order quadrupole radiation.)
Leading logs are defined as those terms in which a new
power of logðxÞ first appears at either an integer or half-
integer PN order. (Note that this expands on the usage
in [50], which referred only to the integral sequence in their
renormalization group construction since those terms cap-
ture a set of UV divergences.) To be specific, new powers of
logðxÞ appear at integer PN orders f0; 3; 6; 9;…g, with the
Peters-Mathews flux formally leading off this sequence.
At half-integer PN orders, leading logarithms occur at
orders f3=2; 9=2; 15=2;…g, which begins formally with
the 1.5PN tail.
As we show in this paper, the theoretical understanding

of the whole sequence of these terms is entirely bound
up in the Fourier spectrum of the trace-free (Newtonian)

mass quadrupole moment tensor, IijðtÞ. Let the Fourier

amplitudes of this tensor be IðnÞij , where n denotes harmon-
ics of the Newtonian orbital frequency. The leading (Peters-
Mathews) quadrupole flux is proportional to the sum over n

of n6jIðnÞij j2. From these terms we can remove factors of the
reduced mass and semimajor axis to form a dimensionless

function gðn; etÞ ≔ n6jIðnÞij j2=ð16μ2a4Þ that serves as a
power spectrum for the quadrupole radiation. [The function
gðn; etÞ is defined more completely in Sec. II, along with
differences in definitions of eccentricities like et.] The sum
over n of the spectrum gðn; etÞ yields the well-known
Peters-Mathews enhancement function, originally called
fðetÞ but here called R0ðetÞ,

R0ðetÞ ¼
X∞
n¼1

gðn; etÞ

¼ 1

ð1 − e2t Þ7=2
�
1þ 73

24
e2t þ

37

96
e4t

�
: ð1:1Þ

It turns out that a different sum over the power spectrum
gðn; etÞ gives rise to the eccentricity enhancement function
φðetÞ for the 1.5PN tail [51] and its relative energy flux
R3=2ðetÞ,

R3=2ðetÞ ¼ 4πφðetÞ ¼ 4π
X∞
n¼1

n
2
gðn; etÞ: ð1:2Þ

The next sum of this type, over ðn=2Þ2gðn; etÞ, produces
another well-known eccentricity enhancement function,
FðetÞ, that is proportional to the 3PN log energy flux term
R3LðetÞ [15]. Note that these three terms are the first three
elements in the leading-logarithm sequence. Furthermore,
in the full PN analysis [9], each of these fluxes only occurs
at lowest order in the mass ratio.
A new result in this paper is to show that the eccentricity

dependence of the entire leading-logarithm sequence,
which is lowest order in the mass ratio, can be understood
in terms of the following sums over powers of n=2 that
weight the Newtonian mass quadrupole power spectrum
gðn; etÞ:

TkðetÞ ¼
X∞
n¼1

�
n
2

�
2k
gðn; etÞ; ð1:3Þ

ΘkðetÞ ¼
X∞
n¼1

�
n
2

�
2kþ1

gðn; etÞ: ð1:4Þ

These sums give the eccentricity enhancement functions for
integer and half-integer leading-log terms, respectively. We
have then used BHPT calculations to verify all or part of the
eccentricity dependence of the first 15 elements in the
leading-logarithm sequence.
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However, the role of the power spectrum gðn; etÞ is
not confined to merely the leading-logarithm sequence.
We show further that the spectrum contributes two
essential parts of the eccentricity dependence of each
subleading logarithm, which are the fluxes that appear at
integer PN orders x3k logk−1ðxÞ and half-integer PN orders
x3kþ3=2logk−1ðxÞ for k ≥ 1. For a given k, part of the
integer-order subleading logarithm can be demonstrated
to depend upon the associated leading-log enhancement
function TkðetÞ and the corresponding (k) sum from the
added sequence

ΛkðetÞ ¼
X∞
n¼1

�
n
2

�
2k
log

�
n
2

�
gðn; etÞ: ð1:5Þ

Similarly, for a given k, part of the half-integer-order
subleading log is proportional to the leading-log enhance-
ment function ΘkðetÞ and part is proportional to the
corresponding sum in the sequence

ΞkðetÞ ¼
X∞
n¼1

�
n
2

�
2kþ1

log

�
n
2

�
gðn; etÞ: ð1:6Þ

The remaining behavior of the subleading-logarithm terms
can (in principle) be determined by BHPT calculations. As
far as we can determine, the coefficients on TkðetÞ and
ΛkðetÞ [or ΘkðetÞ and ΞkðetÞ] within the subleading logs
soak up the appearance of transcendental numbers. The
remaining eccentricity dependence in the subleading logs
appears to only involve rational number coefficients.
Finally, we note that everything said here about energy
fluxes has a mirror behavior in angular momentum fluxes.
The layout of this paper is as follows. We first discuss in

Sec. II the general form of the PN expansion for the energy
and angular momentum fluxes radiated to infinity. We then
go on in that section to review how the Newtonian mass
quadrupole moment Iij gives rise to the quadrupole
radiation power spectrum gðn; etÞ and how it determines
not only the leading Peters-Mathews flux but also the
1.5PN tail contribution and the 3PN log term (the first
appearance of a logarithm in the PN expansion of the flux).
In Sec. III we use gðn; etÞ to derive the sums that express
the eccentricity dependence of the entire class of leading
logarithms, giving specific examples for ð9=2ÞL, 6L2, 9L3,
and 12L4PN orders. Section IV discusses the subleading
logarithms, presenting the conjectured appearance of the
Newtonian quadrupole spectrum in these fluxes. We then

show specific subleading-log examples at 9=2 and 6L PN
orders, where BHPT results [49] can be combined with the
PN analysis to determine the eccentricity dependence of the
entire 6L PN term and of a lengthy power series expansion
for the 9=2 PN term.
Throughout this paper we use units in which c ¼ G ¼ 1.

In discussing energy and angular momentum fluxes, there
arise various pairs of directly comparable functions. To
distinguish a function in the angular momentum sector, we
use a tilde, e.g., g̃ðn; etÞ, while leaving the base symbol
bare, e.g., gðn; etÞ, for the energy counterpart. This notation
is in keeping with that of [15–17].

II. RECURRING APPEARANCE OF THE MASS
QUADRUPOLE IN MULTIPLE PN

CONTRIBUTIONS TO GRAVITATIONAL
RADIATION AT INFINITY

A. Post-Newtonian expansion of fluxes:
General form for eccentric orbits

We consider the post-Newtonian series for gravitational
radiation at infinity. Take two nonspinning bodies, a pri-
mary of mass m1 and a secondary of mass m2, in a bound
eccentric orbit. In the extreme-mass-ratio limit we have
m2 ≪ m1. We utilize a PN representation with three
(dimensionless) parameters: the previously mentioned
compactness parameter x ≔ ððm1 þm2ÞΩφÞ2=3, the sym-
metric mass ratio ν ¼ m1m2=ðm1 þm2Þ2, and (in modified
harmonic gauge) the quasi-Keplerian time eccentricity
et [9]. Here, Ωφ is the mean azimuthal orbital frequency.
In general, the parameters x and et can only be known in

terms of other quantities, such as the energy E and angular
momentum J of the orbit (or vice versa), as precisely as the
(current) PN expansion of the equations of motion. In 2004
[52], the quasi-Keplerian representation for the orbit was
extended to 3PN order. More recently, progress on the self-
consistent center-of-mass equations has allowed explicit
calculation of the conservative motion, and given definition
to x, for example, to 4PN for circular orbits [53]. For
eccentric orbits the fluxes in the dissipative sector are
known as expansions in x to 3PN relative order, with half-
integer terms appearing in the series starting at x3=2 [51].

1. Energy flux

In terms of these parameters, the (orbit-averaged) energy
flux is expected to have a PN expansion of the following
form [9,35,36,50]:

�
dE
dt

�
∞
¼ 32

5
ν2x5½R0 þ xR1 þ x3=2R3=2 þ x2R2 þ x5=2R5=2 þ x3ðR3 þR3L logðxÞÞ þ x7=2R7=2

þ x4ðR4 þR4L logðxÞÞ þ x9=2ðR9=2 þ logðxÞR9=2LÞ þ x5ðR5 þ logðxÞR5LÞ þ x11=2ðR11=2 þ logðxÞR11=2LÞ
þ x6ðR6 þ logðxÞR6L þ log2ðxÞR6L2Þ þ x13=2ðR13=2 þ logðxÞR13=2LÞ þ � � ��; ð2:1Þ
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where each Ri is (in general) a function of et and ν. Since
we are principally interested in the overlap between PN
theory and BHPT, at first order in the mass ratio each Ri
can be evaluated at ν ¼ 0. In this paper, these functions
will thus simply be taken as depending on et alone:
Ri ¼ RiðetÞ. Each such function is known to diverge as
et → 1. Because the Peters-Mathews function [10] R0ðetÞ
has the limit R0 ¼ 1 as et → 0, the prefactor in the above
expansion is simply the Newtonian (quadrupole) circular-
orbit energy flux, which can be further reduced to
ð32=5Þν2ðm1 þm2Þ5=a5 in terms of the semimajor axis
a in the Newtonian limit.
In PN derivations, a distinction is often made between

instantaneous and hereditary contributions to the flux that
alternately or simultaneously appears at different PN
orders. The hereditary terms depend on the entire history
of the system (see, for instance, [9]). However, when BHPT
is applied to wide orbits, the flux terms (at lowest order in
the mass ratio) that emerge in a subsequent PN expansion
are a sum of instantaneous and hereditary parts, as the
method does not generally distinguish between the two
(though see Sec. IV E for more discussion and for cases
where some distinction is possible). With this in mind, in
this paper we simply use RiðetÞ at each order in x to
represent the sum of both instantaneous and hereditary
contributions.
One route often taken in BHPT calculations is to work in

the frequency domain and evaluate the self-force, at lowest
order in the mass ratio, using a geodesic in the background
spacetime. For a nonspinning primary, geodesics are

computed in Schwarzschild spacetime using (typically)
Schwarzschild coordinates. Bound eccentric orbits are
frequently described by the relativistic Darwin [54,55]
eccentricity e and (dimensionless) semilatus rectum p.
When this approach is applied to wide orbits, a PN
expansion can be derived, typically using the alternate
compactness parameter y ≔ ðm1ΩφÞ2=3. Expansions in this
form were made in an earlier paper [39] in this series (and
used [49] in a companion paper). When y and e are used,
the PN expansion of the energy flux is similar in form to
(2.1) except now the flux functions LiðeÞ depend on
Darwin e. While the parameters (y; e) can be expressed
in terms of ðx; etÞ through expansions that begin with y ¼
xð1 − 2ν=3þOðν2ÞÞ and e ¼ etð1þ 3xþOðν; et; x2ÞÞ, it
is clear that, in general, LiðeÞ ≠ RiðetÞ. Exceptions are
when order i terms emerge purely from Newtonian quan-
tities. For most of the present paper, we opt to use ðx; etÞ
and the standard PN expansion in the form (2.1). However,
the LiðeÞ notation will reappear in Sec. IV, when our PN
derivations are combined with BHPT numerical results to
extract the full L6L term.
As mentioned in the Introduction, a leading-logarithm

term is defined as one in which a new higher power of
logðxÞ first appears, at both integer and half-integer
PN orders. New powers of logðxÞ appear at integer PN
orders f0; 3; 6; 9;…g, which includes the Peters-Mathews
term that has log0ðxÞ. New powers of log appear at half-
integer PN orders f3=2; 9=2; 15=2;…g. Thus, the leading-
logarithm portion of the series (2.1) has the form

�
dE
dt

�
LL

∞
¼ 32

5
ν2x5½R0 þ x3=2R3=2 þ x3 logðxÞR3L þ x9=2 logðxÞR9=2L þ x6log2ðxÞR6L2

þ x15=2log2ðxÞR15=2L2 þ x9log3ðxÞR9L3 þ � � ��: ð2:2Þ

One of the principal results of this paper, as we will show in
Sec. III, is that the analytic eccentricity dependence of this
entire infinite sequence can be determined in a straightfor-
ward fashion using the Newtonian mass quadrupole.
Integer-order terms will in fact yield closed-form expres-
sions, while half-integer-order terms will yield infinite
convergent expansions in et that can be rapidly generated

to arbitrary order. Because of the origin of these terms, a
side effect is that we haveRLL

i ðetÞ ¼ LLL
i ðeÞ for every term

in (2.2).

2. Angular momentum flux

The angular momentum flux has a similar expected PN
expansion

�
dL
dt

�
∞
¼ 32

5
ν2ðm1 þm2Þx7=2½Z0 þ xZ1 þ x3=2Z3=2 þ x2Z2 þ x5=2Z5=2 þ x3ðZ3 þ Z3L logðxÞÞ þ x7=2Z7=2

þ x4ðZ4 þ Z4L logðxÞÞ þ x9=2ðZ9=2 þ logðxÞZ9=2LÞ þ x5ðZ5 þ logðxÞZ5LÞ þ x11=2ðZ11=2 þ logðxÞZ11=2LÞ
þ x6ðZ6 þ logðxÞZ6L þ log2ðxÞZ6L2Þ þ x13=2ðZ13=2 þ logðxÞZ13=2LÞ þ � � ��; ð2:3Þ

CHRISTOPHER MUNNA and CHARLES R. EVANS PHYS. REV. D 100, 104060 (2019)

104060-4



where again each Zi is generally a function of both et and
ν. At first order in the mass ratio we will simply take
Zi ¼ ZiðetÞ, and these terms are meant to combine both
instantaneous and hereditary contributions. The leading-
logarithm series in this case has the same form as (2.2) but
with the substitutions ð32=5Þν2x5→ð32=5Þν2ðm1þm2Þx7=2
and R → Z.
In both fluxes, the eccentricity functions at any given PN

order can be derived from time derivatives (and potentially
integrals) of mass and current multipole moments of the
system. In general, higher PN order requires higher multi-
pole moments, and their derivatives and PN corrections.
The lowest-order multipole moment that appears in these
fluxes is the trace-free part of the Newtonian (0PN) mass
quadrupole moment, Iij, found through calculation on a
Newtonian orbit. It is from this tensor that R0 [10] and
Z0 [11] were first derived. At 1PN in the fluxes, the 0PN
mass octupole and current quadrupole moments appear, as
well as the 1PN correction to the mass quadrupole (which
entails quadrupole moment calculation on a precessing
1PN orbit) [9]. In turn, at 2PN in the fluxes, the 0PN mass
hexadecapole and current octupole appear, as well as 1PN
corrections to the mass octupole and current quadrupole
and the 2PN correction to the mass quadrupole.
In this paper, we determine PN flux content that is

generated exclusively by the 0PN mass quadrupole.
However, it is not difficult to see that extending the
procedures outlined here to higher multipole moments
and their PN corrections will yield additional analytic
pieces of comparable depth in other terms in the PN
expansion. Such an exploration at the 1PN correction level
has in fact been successful, and results will be reported in a
subsequent paper.

B. Quadrupole moment and the Kepler problem

We briefly review the calculation of the Newtonian
quadrupole to derive functions that are essential for the
rest of the paper. The analysis starts with the Kepler motion
problem for bound, elliptical orbits and uses the Fourier
series expansion for its time dependence. The masses are
constrained to the x–y plane, and the relative motion is
described in terms of polar coordinates r ¼ rðtÞ and
φ ¼ φðtÞ for the separation and azimuthal angles, respec-
tively. Because our preferred time eccentricity et reduces to
the usual Keplerian eccentricity at 0PN order, r and φ can
simply be given by

r ¼ að1 − e2t Þ
1þ et cosφ

; _φ2 ¼ að1 − e2t ÞM
r4

; ð2:4Þ

where M ¼ m1 þm2.
Summing over the two bodies, the gravitational wave

fluxes will be obtained from the components of the trace-
free mass quadrupole tensor,

Ixx ¼ μr2cos2φ − μr2=3;

Ixy ¼ Iyx ¼ μr2 sinφ cosφ;

Iyy ¼ μr2sin2φ − μr2=3;

Izz ¼ −μr2=3: ð2:5Þ

Here μ ¼ m1m2=M is the reduced mass of the system,
and r and φ are evaluated as functions of some curve
parameter. A convenient choice is the eccentric anomaly
u ¼ arccosðða − rÞ=aetÞ, which yields

Ixx ¼
1

6
μa2ð1þ 5e2t − 8et cos u − ðe2t − 3Þ cos 2uÞ;

Ixy ¼ Iyx ¼ μa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
ðcos u − etÞ sin u;

Iyy ¼
1

6
μa2ð1 − 4e2t þ 4et cos uþ ð2e2t − 3Þ cos 2uÞ;

Izz ¼ −
1

3
μa2ðet cos u − 1Þ2: ð2:6Þ

Since the tensor components (2.6) are all periodic
functions of u (or t), each can be written as a Fourier
series. Following the discussion of Arun [15], we write

Iij ¼
X∞
n¼−∞

IðnÞij einl; ð2:7Þ

where IðnÞij is the nth Fourier component of Iij, and l is the
mean anomaly of the motion

l ¼ u − et sin u ¼ 2π

Tr
ðt − tPÞ ¼ Ωrðt − tPÞ: ð2:8Þ

Here Tr is the radial libration period, Ωr the radial angular
frequency (equal to Ωφ in the Newtonian limit), and tP the
time of periastron crossing. The Fourier components are
derived from

IðnÞij ¼ 1

2π

Z
2π

0

IijðuðlÞÞe−inldl: ð2:9Þ

The Fourier series coefficient integrals are taken over
mean anomaly (or time), while the quadrupole moment
components are sinusoidal functions of u. We can evaluate
these integrals in several ways, but the easiest is to write
them in terms of u,

IðnÞij ¼ 1

2π

Z
2π

0

Iije−inðu−et sin uÞð1 − et cos uÞdu: ð2:10Þ

Once the various circular functions have been recast as
complex exponentials, Eq. (2.10) will reduce to a sum of
Bessel integrals [56] of the form
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1

2π

Z
2π

0

e−ipuþix sin udu ¼ JpðxÞ: ð2:11Þ

Then these are simplified using Bessel function identities
(see [10,51] for a similar derivation) to obtain

IðnÞxx ¼ 2μa2
�
e2t − 3

3n2e2t
JnðnetÞ þ

1 − e2t
net

J0nðnetÞ
�
;

IðnÞxy ¼ IðnÞyx

¼ μa2
�
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
net

��
−
1 − e2t
et

JnðnetÞ þ
1

n
J0nðnetÞ

�
;

IðnÞyy ¼ 2μa2
�
3 − 2e2t
3n2e2t

JnðnetÞ −
1 − e2t
net

J0nðnetÞ
�
;

IðnÞzz ¼ μa2
2JnðnetÞ

3n2
: ð2:12Þ

C. Power spectra g(n;et) and g̃(n;et) and the
Peters-Mathews enhancement functions

With these expressions in hand, the Newtonian-order
energy and angular momentum fluxes can be found using
the classic formulas

�
dE
dt

�
N
¼ 1

5
h I…ij I

…

iji; ð2:13Þ

�
dL
dt

�
N
¼ 2

5
ϵijkL̂iḧIjb I

…

kbi; ð2:14Þ

where angled brackets denote the time average over
an orbital period and L̂i is the unit vector in the angular
momentum direction, which here is L̂i ¼ ð0; 0; 1Þ.

1. The function gðn;etÞ and the spectral content
of the Newtonian quadrupole energy flux

For the energy flux, a Fourier decomposition of (2.13)
can be found from a double application of the sum (2.7),
giving

�
dE
dt

�
N
¼ 1

5

� X∞
n1¼−∞

X∞
n2¼−∞

ðin1ΩrÞ3ðin2ΩrÞ3

× Iðn1Þij Iðn2Þij eiðn1þn2Þl
�

¼ 2

5
ðΩrÞ6

X∞
n¼1

n6IðnÞij IðnÞ�ij : ð2:15Þ

The final equality follows from the time average giving
δn1;−n2 and, because IijðtÞ is real, from the crossing

relations Ið−nÞij ¼ IðnÞ�ij on the Fourier coefficients.

A dimensionless portion of the energy flux can be
isolated and normalized by removing a factor of 16μ2a4

(which generalizes to 16μ2M4=x4 beyond Newtonian
order), leading to

�
dE
dt

�
N
¼ 32

5
ðΩrÞ6μ2a4

X∞
n¼1

gðn; etÞ; ð2:16Þ

gðn; etÞ ≔
1

16μ2a4
n6jIðnÞij j2: ð2:17Þ

As is obvious from the expression above, the dimensionless
function gðn; etÞ (first derived in [10] and then corrected in
[51]) represents the (relative) power radiated in the nth
harmonic of the orbital frequency (i.e., the power spec-
trum). Combining (2.12) and (2.17), this function is found
to be

gðn;etÞ ¼
n2

2

	�
−
4

e3t
− 3etþ

7

et

�
nJnðnetÞJ0nðnetÞ

þ
�
1

e4t
−

1

e2t
þ
�
1

e4t
− e2t −

3

e2t
þ 3

�
n2þ 1

3

�
JnðnetÞ2

þ
��

e2t þ
1

e2t
− 2

�
n2þ 1

e2t
− 1

�
J0nðnetÞ2



:

ð2:18Þ

The total power is the sum of gðn; etÞ over all harmonics,
which once computed yields the first example of an
eccentricity enhancement function (so named because
eccentric orbits have enhanced flux relative to a
circular orbit of the same a or orbital frequency Ωφ).
Straightforwardly summing this function yields an infinite
series in et,

R0 ¼
X∞
n¼1

gðn; etÞ

¼ 1þ 157

24
e2t þ

605

32
e4t þ

3815

96
e6t þ � � � : ð2:19Þ

A cleaner result is found by introducing the known
eccentricity singular factor ð1 − e2t Þ−7=2 and resumming
the series to find a closed-form expression

R0ðetÞ ¼
1

ð1 − e2t Þ7=2
�
1þ 73

24
e2t þ

37

96
e4t

�
; ð2:20Þ

which is the classic result from Peters and Mathews [10].
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2. The function g̃(n;et) and the spectral content of the
Newtonian quadrupole angular momentum flux

Similarly, we plug (2.7) into (2.14) and find�
dL
dt

�
N
¼ 2

5
ϵijkL̂i

� X∞
n1¼−∞

X∞
n2¼−∞

ðin1ΩrÞ2ðin2ΩrÞ3

× Iðn1Þjb Iðn2Þkb eiðn1þn2Þl
�

¼ −
4

5
ðΩrÞ5iϵijkL̂i

X∞
n¼1

n5IðnÞjb I
ðnÞ�
kb

¼ 32

5
ðΩrÞ5μ2a4

X∞
n¼1

g̃ðn; etÞ; ð2:21Þ

where g̃ðn; etÞ is given by

g̃ðn; etÞ ≔
−i

8μ2a4
ϵijkL̂in5I

ðnÞ
jb I

ðnÞ�
kb : ð2:22Þ

The dimensionless function g̃ðn; etÞ mirrors its energy flux
counterpart and is found to be

g̃ðn; etÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p 	�
−

2

e2t
þ 2

�
n2J0nðneÞ2

þ n
e3t

½2 − e2t þ 2n2ð1 − e2t Þ2�JnðnetÞJ0nðnetÞ

þ
�
−

2

e4t
þ 3

e2t
− 1

�
n2JnðnetÞ2



; ð2:23Þ

which represents the (relative) power spectrum for angular
momentum radiated per harmonic of the orbital frequency.
The sum of g̃ðn; etÞ over all n can be used to obtain the

Newtonian quadrupole angular momentum enhancement
function, which was originally derived by Peters [11].
Pulling out the eccentricity singular factor ð1 − e2t Þ−2 (in
this case) leads to

Z0ðetÞ ¼
X∞
n¼1

g̃ðn; etÞ ¼
1

ð1 − e2t Þ2
�
1þ 7

8
e2t

�
: ð2:24Þ

3. Discussion

The Newtonian quadrupole power spectra, gðn; etÞ and
g̃ðn; etÞ, will be shown in this paper to be the exclusive
factors that determine the eccentricity dependence of all the
higher-PN leading-log terms. In summing these functions
directly, particular eccentricity singular factors appeared in
R0 and Z0, revealing the remaining part of these enhance-
ment functions to be polynomials (which are of course
finite as et → 1), giving the expressions closed forms.
These two eccentricity singular factors were identified in
the original derivations [10,11]. As shown by more recent
asymptotic analysis in [39,49,57], enhancement functions
at other PN orders have predictable singular factors.
Specifically, we can see in those results that sums of the

form
P

nkgðn; etÞ will have the singular dependence
1=ð1 − e2t Þð7=2þ3k=2Þ, while those of the type

P
nkg̃ðn; etÞ

will carry a factor of 1=ð1 − e2t Þð2þ3k=2Þ. These factors will
be essential for extracting from g and g̃ new closed-form
expressions for the higher-PN order leading-log enhance-
ment functions.

D. Other enhancement functions already known
to depend only upon g(n;et) and g̃(n;et)

Although the original application of gðn; etÞ and g̃ðn; etÞ
(summing them directly) was to derive the Newtonian
(0PN) order fluxes, these functions were each later found to
determine three additional enhancement functions.

1. The 1.5PN tail functions φ(et) and φ̃(et)

The first of these is the 1.5PN energy enhancement
function φðetÞ (proportional to R3=2), which was found in
[51] to be the lowest-order tail correction to the Newtonian-
order flux. Blanchet and Schafer evaluated the relevant sum
numerically and plotted the enhancement function. Later,
Arun et al. [15,17] provided the first two (nontrivial)
coefficients of a power series for φðetÞ and then [39] used
the Bessel representation (2.18) to compute analytic coef-
ficients to arbitrary powers of e2t . By combining that
expansion with the expected eccentricity singular function,
the resummed power series expansion was shown [39] to be
convergent for all et. The required sum over gðn; etÞ and the
leading part of the expansion are

φðetÞ ¼
X∞
n¼1

�
n
2

�
gðn; etÞ

¼ 1

ð1 − e2t Þ5
�
1þ 1375

192
e2t þ

3935

768
e4t þ

10007

36864
e6t

þ 2321

884736
e8t −

237857

353894400
e10t þ � � �

�
ð2:25Þ

(which corrects a sign error in [39] on the e10t term). Like
most enhancement functions, φðetÞ is defined such that its
circular orbit limit is unity. The full (relative) energy flux
term at 1.5PN order is

R3=2ðetÞ ¼ 4πφðetÞ: ð2:26Þ
Thus, a series proportional to the 1.5PN tail term

emerges directly from a sum over n of the gðn; etÞ
amplitudes multiplied by the factor n=2. Unfortunately,
(2.25) is an infinite series, with φ not expected [51] to have
a closed-form representation. However, by multiplying the
sum in (2.25) by ð1 − e2t Þ5 and expanding in a MacLaurin
series in et, the coefficients each involve a finite sum in n
and are easily found to hundreds of orders in et in a matter
of seconds using MATHEMATICA. The eccentricity singular
factor exponent was chosen to be −5 (k ¼ 1) in accordance
with the earlier discussion.
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The 1.5PN angular momentum enhancement function
follows similarly and can be found in [17] [though without
explicit mention of g̃ðn; etÞ],

φ̃ðetÞ ¼
X∞
n¼1

�
n
2

�
g̃ðn; etÞ

¼ 1

ð1 − e2t Þ7=2
�
1þ 97

32
e2t þ

49

128
e4t −

49

18432
e6t

−
109

147456
e8t −

2567

58982400
e10t þ � � �

�
; ð2:27Þ

with its own eccentricity singular factor, which leaves an
infinite series that is convergent for all et. In fact, all the
summations over gðn; etÞ considered in this paper can be
translated from giving energy flux terms to giving angular
momentum flux terms by making the simple substitution
g → g̃. Hence, for the rest of the paper, we focus almost
exclusively on the energy flux contributions, with it being
obvious how the corresponding angular momentum flux
terms are determined. Our full compilation of all of these
enhancement functions can be found at [58].

2. The 3PN functions F(et) and χ(et)

As Arun et al. [15,17] showed, the Newtonian mass
quadrupole makes an appearance again at 3PN relative
order in the flux in two additional enhancement functions:

FðetÞ ¼
X∞
n¼1

�
n2

4

�
gðn; etÞ; ð2:28Þ

χðetÞ ¼
X∞
n¼1

�
n2

4

�
log

�
n
2

�
gðn; etÞ: ð2:29Þ

Because of the even power of n in its summation, FðetÞ
turns out to have its own closed-form expression

FðetÞ ¼
1

ð1 − e2t Þ13=2
�
1þ 85

6
e2t þ

5171

192
e4t

þ 1751

192
e6t þ

297

1024
e8t

�
: ð2:30Þ

This result follows from being able to convert the sum over
Fourier amplitudes to an integral over time (time average) in
the time domain (i.e., application of Parseval’s theorem). The
result is proportional to the integral of the square of the fourth

time derivative, hð4ÞIijð4ÞIiji [15], which once integrated
becomes (2.30). Here prescripts indicate time derivatives
of moments, e.g., ð2ÞIijðtÞ ¼ d2IijðtÞ=dt2, which should not
be confused with Fourier coefficients, such as IðnÞij .
The logðn=2Þ factor in the sum for the enhancement

function χðetÞ all but ensures that it will not have a closed
form. [While χðetÞ is referred to as an enhancement
function, it is a rare case of one that vanishes as et → 0
[15].] As with φðetÞ, the best option is to isolate a
convergent series in et that can be calculated to arbitrary
order as needed. As shown in [39], that process involves
identifying and pulling out a particular term that is both
logarithmically and power-law divergent and then deter-
mining the remaining expansion

χðetÞ ¼ −
3

2
FðetÞ logð1− e2t Þ

þ 1

ð1− e2t Þ13=2
��

−
3

2
−
77

3
logð2Þ þ 6561

256
logð3Þ

�
e2t

þ
�
−22þ 34855

64
logð2Þ− 295245

1024
logð3Þ

�
e4t

þ
�
−
6595

128
−
1167467

192
logð2Þ þ 24247269

16384
logð3Þ

þ 244140625

147456
logð5Þ

�
e6t þ � � �

�
: ð2:31Þ

The infinite series in square braces then turns out to be
convergent for all et. Interestingly, the function FðetÞ itself
appears in a termwith logarithmic divergence as et → 1, and
thus plays an essential role in the expansion of χðetÞ. This
makes χðetÞ possess not only the expected eccentricity sin-
gular factor for a 3PN enhancement function, ð1 − e2t Þ−13=2,
but also a separate logarithmic/power-law divergence. This
fact will be important in Sec. IVwherewe study the structure
of the subleading logarithms (defined in the Introduction).
Whatwe show is that each subleading logarithm is intimately
connected to its associated leading logarithms (e.g., at 6PN
the subleading termR6L bears some functional connection to
the R6L2 leading log).
The first such connection between the two sequences

occurs at 3PN order. The following sum, of 3PN log (a
leading log) and 3PN (a subleading log), is equal to the full
3PN (relative) flux [16] at lowest order in the mass ratio

R3 þR3L logx ¼
1

ð1− e2t Þ13=2
�
2193295679

9979200
þ 20506331429

19958400
e2t −

3611354071

13305600
e4t þ

4786812253

26611200
e6t þ

21505140101

141926400
e8t

−
8977637

11354112
e10t þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q �
−
14047483

151200
þ 36863231

100800
e2t þ

759524951

403200
e4t þ

1399661203

2419200
e6t þ

185

48
e8t

��

þ
�
16

3
π2 −

1712

105
γE −

116761

3675

�
FðetÞ−

856

105
log

��
8ð1− e2t Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

p
�
2

x

�
FðetÞ−

1712

105
χðetÞ: ð2:32Þ
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This expression shows a distinctive manner in which the
functions χðetÞ and FðetÞ combine in the net 3PN flux.
Both functions are known to contribute [15] to the tail-of-
tail and tail2 hereditary pieces. These two functions are also
associated with all of the transcendental numbers in the
flux. Clearly, one appearance of the function FðetÞ above
can be seen to gather all of the obvious transcendental
numbers, like π2 and the Euler-Mascheroni constant γE.
However, the expansion of χðetÞ (2.31) reveals added
transcendentals. The gathering of all the transcendentals
on FðetÞ and χðetÞ at 3PN has an analogue at higher PN
orders that will be exploited in Sec. IV.
Though it is not apparent in (2.32), F also appears in the

instantaneous part [15]. Upon examining (2.32) more
closely, we see that every part of the total 3PN flux has
a closed-form representation except the χðetÞ term, which is
an infinite series. In addition, FðetÞ multiplies an obvious
divergent logarithm of 1 − e2t , but the same term with a
different coefficient appears in the expansion of χðetÞ.
Finally, what is most significant for the discussion in this
section is that FðetÞ is proportional to the log x term, which
means that

R3LðetÞ ¼ −
856

105
FðetÞ: ð2:33Þ

So, except for a rational numerical factor that gives the
circular orbit limit, a sum over the Newtonian mass
quadrupole Fourier spectrum gðn; etÞ gives the entire
R3L flux function, which is a closed-form expression.
All of the discussion here pertains equally well to the full

3PN angular momentum flux and analogous enhancement
functions F̃ðetÞ and χ̃ðetÞ obtained from g̃ðn; etÞ [17].

III. OBTAINING THE ENTIRE LEADING-
LOGARITHM SEQUENCE FROM THE

MASS QUADRUPOLE POWER SPECTRA
g(n; et) AND g̃(n; et)

As the review in the last section has shown, the eccentric-
orbit Newtonian mass quadrupole spectrum gðn; etÞ is
solely responsible for determining the first three leading-
log eccentricity functions, R0, R3=2, and R3L. These flux
terms emerged from sums over gðn; etÞ times factors of n=2
to the first three integer powers. In this paper, we show that
this progression continues to higher PN order, with addi-
tional leading-log terms being determined exclusively by
sums over gðn; etÞ times increasing powers of n=2. The
progression splits into two infinite sequences for even and
odd powers of n=2, which correspond to fluxes at integer
and half-integer powers of x, respectively.

A. All leading-log enhancement functions at integer
powers of x have closed-form expressions

As we briefly touched on in the Introduction, we
first consider all sums over the product of the Newtonian

mass quadrupole spectrum gðn; etÞ and even powers
of n=2,

TkðetÞ ¼
X∞
n¼1

�
n
2

�
2k
gðn; etÞ; ð3:1Þ

where k ≥ 0 is an integer. Under this definition, T0ðetÞ ¼
R0ðetÞ and T1ðetÞ ¼ FðetÞ. With even powers of n, every
one of these sums can be converted to the time domain and
shown to be proportional to an integral (time average) of
products of time derivatives of IijðtÞ,

hðkþ3ÞIijðtÞðkþ3ÞIijðtÞi: ð3:2Þ

If instead we view this in reverse, and convert (3.2) to the
frequency domain, then each time derivative carries with it a
factor of Ωr ¼ x3=2=M þOðx5=2Þ. Since the Newtonian
relative order flux (2.13) itself carries a factor of Ω6

r [i.e.,
(2.17)], each Tk will be a ð3kÞPN order quantity.
Furthermore, it can be shown that the resulting expression
will be singular as et → 1 and that the singular dependence is
captured for each k by an eccentricity singular factor,
1=ð1 − e2t Þ3kþ7=2. Once this term is factored out of the
TkðetÞ, the remaining dependence is a polynomial in even
powers of et of order 4ðkþ 1Þ, giving each Tk a closed-form
expression.
In what follows, we show that each TkðetÞ is indeed an

energy flux enhancement function that is proportional to
the (leading-log) energy flux at PN order ð3kÞLðkÞ; i.e.,
Rð3kÞLðkÞðetÞ ∝ TkðetÞ (further discussion is found in
Sec. IV E). Therefore, for example, the next two functions
in this sequence should give (k ¼ 2) R6L2ðetÞ ∝ T2ðetÞ
(i.e., the 6PN log2 term) and (k ¼ 3) R9L3ðetÞ ∝ T3ðetÞ
(i.e., the 9PN log3 term). If TkðetÞ represent enhancement
functions, it should be the case that they all reduce to unity
in the circular-orbit limit. Then the constant of proportion-
ality between Rð3kÞLðkÞðetÞ and TkðetÞ will simply be the
circular orbit flux for the k (integer) order leading-log term.
We can easily prove that the TkðetÞ reduce to unity for

et ¼ 0 by considering the expansion of gðn; etÞ in et [39],

gðn;etÞ¼
�
n
2

�
2n
e2n−4t

�
1

Γðn−1Þ2−
ðn−1Þðn2þ4n−2Þ

2ΓðnÞ2 e2t

þ6n4þ45n3þ18n2−48nþ8

48ΓðnÞ2 e4t þ�� �
�
: ð3:3Þ

Inspection shows that for n ¼ 1 the e−2t and e0t coefficients
vanish [since Γð0Þ−1 → 0]. The n ¼ 2 harmonic is the only
one that contributes at e0t , and its coefficient is clearly unity.
For higher harmonics (n ≥ 3), the expansion begins at e2t or
higher. Thus, in any sum over harmonics of gðn; etÞ times a
power of n=2 (i.e., some Tk), the result is a function that
equals unity when et ¼ 0.
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As an example of using this process to determine higher-order PN terms, consider the next leading-log term at
6PN,R6L2ðetÞ. If we introduce the known circular-orbit factor Rcirc

6L2 ¼ 366368=11025 [35], the procedure above suggests
that the eccentricity-dependent 6PN leading-log flux will be

R6L2ðetÞ ¼
�
366368

11025

�
T2ðetÞ ¼

�
366368

11025

�X∞
n¼1

�
n4

16

�
gðn; etÞ

¼ 366368

11025ð1 − e2t Þ19=2
�
1þ 16579

384
e2t þ

459595

1536
e4t þ

847853

1536
e6t þ

3672745

12288
e8t þ

1997845

49152
e10t þ 41325

65536
e12t

�
:

ð3:4Þ

This closed-form expression was, in fact, found in our previous work by fitting extremely high precision BHPT
numerical flux data from a two-dimensional array of orbits to the PN model (2.1) for the energy flux (see [49] and
MATHEMATICA notebook at [58]). [The BHPT data are fit to a model with the parameters y and (Darwin) e, but as
mentioned in Sec. II for leading-log terms, there is no difference between those parameters and x and et at lowest
order in the mass ratio.] Interestingly, Forseth et al. [39] actually found the entire R6L2ðetÞ term [in their Eq. (6.13)]
but did not realize that the series terminated at e12t .
In a similar fashion we can consider the next leading log at integer powers of x, 9PN log3. The circular-orbit flux is

Rcirc
9L3 ¼ −ð313611008=3472875Þ [35], suggesting that the full eccentricity-dependent term is

R9L3ðetÞ ¼ −
�
313611008

3472875

�
T3ðetÞ ¼ −

�
313611008

3472875

�X∞
n¼1

�
n6

64

�
gðn; etÞ

¼ −
313611008

3472875ð1 − e2t Þ25=2
�
1þ 86207

768
e2t þ

192133

96
e4t þ

21418885

2048
e6t þ

5050405

256
e8t

þ 465472553

32768
e10t þ 60415733

16384
e12t þ 71973111

262144
e14t þ 1341375

524288
e16t

�
: ð3:5Þ

This expression also matches perfectly our more recent BHPT numerical fitting results [49,58]. The analogues
in the angular momentum flux, Z6L2ðetÞ and Z9L3ðetÞ, found analytically from the functions T̃2ðetÞ (4.14) and T̃3ðetÞ
upon swapping gðn; etÞ for g̃ðn; etÞ, are easily calculated and have also been shown to match our BHPT numerical
results.
With R0ðetÞ, R3LðetÞ, R6L2ðetÞ, and R9L3ðetÞ all determined analytically by this procedure, there is no reason to

believe it does not continue ad infinitum. Given the circular-orbit flux found by [35], our procedure indicates that the
R12L4ðetÞ leading-log term will be

R12L4ðetÞ ¼
�
67112755712

364651875

�
T4ðetÞ ¼

�
67112755712

364651875

�X∞
n¼1

�
n8

256

�
gðn; etÞ

¼ 67112755712

364651875ð1 − e2t Þ31=2
�
1þ 1667665

6144
e2t þ

262261909

24576
e4t þ

381097931

3072
e6t þ

4556442679

8192
e8t

þ 141652841401

131072
e10t þ 495810570055

524288
e12t þ 95441646013

262144
e14t þ 233938838161

4194304
e16t

þ 176821654149

67108864
e18t þ 4419580725

268435456
e20t

�
: ð3:6Þ

What about still higher-order leading-log terms? With an
understanding of the role of the TkðetÞ, the key remaining
issue is to determine the general form for the circular-orbit
limit of these fluxes. As it turns out, first-order BHPT has
the ability to provide the circular-orbit limit of the entire

leading-log series. For Schwarzschild EMRIs, BHPT uses
spherical harmonics to decompose field and source terms,
with mode numbers l, m being related to symmetric trace-
free mass and current multipole moments like Iij. For
eccentric orbits in the frequency domain, perturbation
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quantities become functions of the triple set of mode
numbers l; m; n0, where n0 is the Fourier series index in
BHPT that gives harmonics of the radial libration fre-
quency. The index n0 contrasts with n, the power spectrum
index in gðn; etÞ and g̃ðn; etÞ. In BHPT, circular orbits
correspond to n0 ¼ 0, while for the quadrupole moment the
circular orbit flux is determined by n ¼ 2. Using Johnson-
McDaniel’s Slm tail factorization [59], it is possible to use
BHPT to extract the circular-orbit limit of the entire
leading-logarithm series. Indeed, we can infer from the
discussion in Sec. IV of [29] that this limit is generated
entirely by the quadrupole factor jS22j2, which can be
written as

jS22j2 ¼ exp

�
2ν̄ðγE þ 2 logð2Þ þ logðyÞ=2Þ þ 4πy3=2

þ
X∞
k¼2

ζðkÞ
k

ðð4y3=2i − ν̄Þk

þ ð−4y3=2i − ν̄Þk − 2ð−2ν̄ÞkÞ
�
: ð3:7Þ

Here, ν̄ ¼ ν − l, where ν is the renormalized angular
momentum, an (in general) lmn0-dependent quantity
from the MST analytic function expansion formalism
[40,41] of BHPT (note the notational conflict with the
symmetric mass ratio). The parameter ν̄ has a PN
expansion in powers of y3 (¼ x3 for our purposes here).
From (3.7), the piece that generates the (circular)
leading logarithms is

exp

�
−
856

105
y3 logðyÞ þ 4πy3=2

�
; ð3:8Þ

where −856=105 is the coefficient of y3 in the PN
expansion for ν̄. Note that this leading-logarithm factor
is different from the one introduced by Damour and
Nagar in [60,61], as theirs related to a waveform phase
term that cancels in the fluxes. Equation (3.8) immedi-
ately yields the circular-orbit portion of Rð3kÞLðkÞ as [62]

Rcirc
ð3kÞLðkÞ ¼

�
−
856

105

�
k
�
1

k!

�
: ð3:9Þ

Note that this result exactly matches an earlier estimate
given in [36] and is consistent with that derived through
effective field theory arguments in [50] (see also the
discussion in [63]).
The entire infinite sequence of integer-order leading

logarithms can be found by taking the factors (3.9) and
combining them with the TkðetÞ summations to yield

Rð3kÞLðkÞðetÞ ¼
�
−
856

105

�
k
�
1

k!

�X∞
n¼1

�
n
2

�
2k
gðn; etÞ

ð3:10Þ

for all k ≥ 0. These terms are then transformed into
closed-form expressions by factoring out the known
eccentricity singular dependence 1=ð1 − e2t Þ3kþ7=2 and
resumming.
All of these results carry over to analogously give

Zð3kÞLðkÞðetÞ since the circular orbit limits are the same,
Zcirc

ð3kÞLðkÞ ¼ Rcirc
ð3kÞLðkÞ, and only the substitution gðn; etÞ →

g̃ðn; etÞ is required. Closed-form expressions emerge once
the singular factors 1=ð1 − e2t Þ2þ3k are pulled out.

B. All leading-log enhancement functions
at half-integer powers of x are infinite

series with known coefficients

To find the leading-log enhancement functions at half-
integer powers of x, we turn our attention to sums over
gðn; etÞ with odd powers of n=2, as mentioned in the
Introduction:

ΘkðetÞ ¼
X∞
n¼1

�
n
2

�
2kþ1

gðn; etÞ; ð3:11Þ

where k ≥ 0 are integers. EachΘkðet ¼ 0Þ ¼ 1, just as with
the TkðetÞ. We see immediately that one known enhance-
ment function, the 1.5PN tail φðetÞ ¼ Θ0ðetÞ, is the first
element in this sequence.
Unlike the previous TkðetÞ, the ΘkðetÞ functions have

a complicated form when translated back to the time
domain [see, e.g., Eq. (4.5) of [15]], and it is strongly
suspected [51] that none will have a closed-form
expression in et. Nevertheless, each sum provides an
infinite series in e2t with rational coefficients that can be
determined rapidly to any order. Moreover, we can again
remove an eccentricity singular factor, 1=ð1 − e2t Þ3kþ5,
from each sum that then makes each resummed series
converge for all et ≤ 1.
The prediction is that the sums (3.11) represent the

enhancement functions for all leading-log terms at half-
integer PN orders, not just at 1.5PN. Each ΘkðetÞ is related
to the leading-log flux that is 1.5PN orders higher in the
relative flux than the TkðetÞ with corresponding k. Thus,
this class of functions will produce the PN terms R3=2,
R9=2L, R15=2L2, etc., with each constituting the first
appearance of a new power of logðxÞ at half-integer powers
of x. For each k we will have Rð3kþ3=2ÞLðkÞ ∝ Θk, with
the constant of proportionality again being the circular-
orbit flux.
We consider the specific example of k ¼ 1 that purports

to give R9=2L. In this case the circular-orbit limit is
Rcirc

9=2L ¼ −3424π=105, which yields
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R9=2LðetÞ ¼ −
3424π

105

X∞
n¼1

�
n3

8

�
gðn; etÞ

¼ −
3424π

105ð1 − e2t Þ8
�
1þ 19555

768
e2t þ

303647

3072
e4t

þ 13263935

147456
e6t þ

64393025

3538944
e8t

þ 557011627

1415577600
e10t þ � � �

�
: ð3:12Þ

The expansion forR9=2L perfectly matches the results from
fitting, to e18t as found in [39] and to e30t as obtained in our
more recent work [49,58]. The nonsingular infinite series
converges to approximately 233.8451300137 as et → 1.
In the same way, Θ2ðetÞ can be evaluated to reproduce
R15=2L2ðetÞ, which we found matches our BHPT fitting
results to e30t [49,58].
Rather than enumerate explicitly added individual lead-

ing-log functions, we jump straight to the form of the
general solution. Once again, (3.8) provides the circular-
orbit limit to the leading-log energy fluxes, which for the
half-integer power in the x sequence is

Rcirc
ð3kþ3=2ÞLðkÞ ¼ 4π

�
−
856

105

�
k
�
1

k!

�
: ð3:13Þ

The only difference from the previous sequence is the
added factor of 4π. The circular-orbit limits can be
combined with (3.11) to yield the full set (k ≥ 0) of
half-integer in x leading-log energy fluxes

Rð3kþ3=2ÞLðkÞðetÞ ¼
�
4π

k!

��
−
856

105

�
k X∞
n¼1

�
n
2

�
2kþ1

gðn; etÞ:

ð3:14Þ

Each term will have a singular behavior like 1=ð1 − e2t Þ3kþ5

as et → 1. Once these factors are pulled out, each
resummed series will converge as et → 1, though none
of them is expected to truncate and leave a polynomial. The
series coefficients are known in the sense that they can
easily be calculated analytically from (3.11) and (2.18) with
minimal symbolic computational expense.
The results carry over from (3.14) to give the

corresponding leading-log angular momentum fluxes
Zð3kþ3=2ÞLðkÞðetÞ by doing nothing more than substituting
g̃ðn; etÞ in place of gðn; etÞ. The eccentricity singular
factors in this case will be 1=ð1 − e2t Þ3kþ7=2.

C. Summary

We have shown that the eccentricity dependence of the
entire infinite sequence of leading-logarithm energy and
angular momentum PN flux terms is analytically deter-
mined by the Newtonian quadrupole moment spectra

gðn; etÞ and g̃ðn; etÞ. This implies further that all of the
leading-log terms appear only at lowest order in the mass
ratio ν. In the next section we show that additional analytic
knowledge of terms at high PN order, this time of the
eccentricity dependence of the subleading logarithms, can
be coaxed out of a combination of information in the
Newtonian quadrupole moment power spectra and BHPT
flux results.

IV. ADDITIONAL PN STRUCTURE
FROM g(n;et) AND PERTURBATION

THEORY

A. Generalizations of χ(et)

As the previous section argued, the succession of
Newtonian mass quadrupole sums (3.1) and (3.11)
provides the eccentricity dependence of the entire
leading-log PN sequence. The first three elements in
this sequence were equal to, or proportional to, the
previously known flux functions R0ðetÞ, R3=2ðetÞ, and
R3LðetÞ. There was, however, one other previously
known enhancement function, χðetÞ, that did not make
an appearance within the leading-log sequence. Instead,
as inspection of (2.32) indicates, χðetÞ showed up as
part of R3ðetÞ, the nonlog part at 3PN order, which we
classify as a subleading log. As the Introduction out-
lined, this hints at the possible use of two more classes
of sums, namely

ΛkðetÞ ¼
X∞
n¼1

�
n
2

�
2k
log

�
n
2

�
gðn; etÞ;

ΞkðetÞ ¼
X∞
n¼1

�
n
2

�
2kþ1

log

�
n
2

�
gðn; etÞ; ð4:1Þ

for integers k ≥ 1. It is clear that Λ1ðetÞ reproduces the
3PN enhancement function χðetÞ.
A first question to ask is, if more of these functions were

to appear in the PN expansion, at what PN order would
they show up? We can answer that question by considering
their divergence properties as et → 1. As stated in Sec. II,
χðetÞ contains the logarithmic divergence found in
−ð3=2ÞFðetÞ logð1 − e2t Þ in addition to the algebraic sin-
gularity of FðetÞ. A similar behavior appears in eachΛkðetÞ
and ΞðetÞ. To see this, we apply the same asymptotic
analysis found in Sec. IV of [39], using the transition zone
asymptotic expansions of JnðnetÞ (i.e., large n with et ≃ 1
[56]) to expand gðn; etÞ and replacing the sum over n with
an integral over a continuous variable ξ ¼ ρðzÞn. Here,
ρðzÞ ¼ logð1þ

ffiffi
z

pffiffiffiffiffiffi
1−z

p Þ − ffiffiffi
z

p
and z ¼ 1 − e2t . Then the log terms

in (4.1) are replaced by

log

�
n
2

�
→ log

�
ξ

2ρðzÞ
�
; ð4:2Þ
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followed by splitting off the − logðρÞ portion, expanding in
z, and integrating over ξ. The result is that we find the
asymptotic singular dependence of ΛkðetÞ and ΞðetÞ to be

ΛkðetÞ ∼ −
3

2
TkðetÞ logð1 − e2t Þ

∼ Λð0Þ
k logð1 − e2t Þð1 − e2t Þ−3k−7=2; ð4:3Þ

ΞkðetÞ ∼ −
3

2
ΘkðetÞ logð1 − e2t Þ

∼ Ξð0Þ
k logð1 − e2t Þð1 − e2t Þ−3k−5; ð4:4Þ

respectively, where Λð0Þ
k and Ξð0Þ

k are constants. The
algebraic part of the eccentricity singular dependence
indicates that, if these terms show up in the PN fluxes at
all, they will appear at relative PN orders 3k and
3kþ 3=2, respectively.1 Given that these functions do
not show up in the leading-log sequence, but based on
the way χðetÞ appears in R3, a conjecture would be
that they contribute to the subleading-log sequence
(previously defined). Thus, with the reemergence of
TkðetÞ in (4.3), we might expect ΛkðetÞ to contribute to
the subleading-log sequence R3, R6L, R9L2, etc.
Likewise, since ΘkðetÞ reappears in (4.4), we conjecture
that the ΞkðetÞ contribute to the half-integer subleading-
log sequence R9=2, R15=2L, R21=2L2, etc. Furthermore,
the asymptotic connection between ΛkðetÞ and TkðetÞ in
(4.3) leads us to conjecture that the higher-order sub-
leading-log terms Rð3kÞLðk−1ÞðetÞ all have structures
nearly identical to that of R3ðetÞ in (2.32), with
closed-form expressions supplementing the appearance
of ΛkðetÞ.
We note in passing that there is another way of regarding

subleading-log terms. These terms, which appear at PN
order 3k or 3kþ 3=2 but involve one power of logðxÞ less

than the leading-log term, can also be thought of as 3PN
corrections to the previous leading log in the series. Thus,
R3ðetÞ, R9=2ðetÞ, R6LðetÞ, and R15=2LðetÞ are 3PN cor-
rections to R0ðetÞ, R3=2ðetÞ, R3LðetÞ, and R9=2LðetÞ,
respectively. This alternative designation scheme will
become especially useful in future work, as we compute
additional sequences of logarithms in the two flux
expansions.

B. The 6PN subleading-log example

The conjectures made in the previous subsection appear
to be correct, as far as we have been able to verify with
BHPT calculations. To give an example and demonstrate
the structure of a subleading-log term beyond R3ðetÞ, we
consider R6LðetÞ. In the end, we obtain the entire 6L term
(i.e., its entire et dependence) at lowest order in ν. Because
our analysis makes heavy use of BHPT results, we work
initially in terms of Darwin eccentricity e and compactness
y. We first express Λ2ðetÞ and T2ðetÞ in terms of e, as
these functions are needed in the analysis. However, since
they only depend upon the Newtonian mass quadrupole
spectrum, they can be converted by simply swapping
et for e.
The process then involves (i) making an ansatz on the

analytic form of L6LðeÞ that includes an assumed depend-
ence on Λ2ðeÞ and T2ðeÞ, (ii) using BHPT to compute
analytic coefficients in the expansion of L6LðeÞ to a high
finite order in e2 (in our case, this was done using high-
precision numerical data and “experimental mathematics”;
see [29,39,49] for details), (iii) subtracting the parts
involving Λ2ðeÞ and T2ðeÞ to determine the (closed-form
algebraic) rest of the analytic model, and (iv) converting
back to et to obtain R6LðetÞ.
The guess for the general form of L6LðeÞ, based on

resemblance to (2.32), is

Lmodel
6L ¼ 1

ð1 − e2Þ19=2 ½a0 þ a2e2 þ a4e4 þ a6e6 þ a8e8 þ a10e10 þ a12e12 þ a14e14 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ðb0 þ b2e2 þ b4e4

þ b6e6 þ b8e8 þ b10e10 þ b12e12Þ� þ
�
c1π2 þ c2γE þ c3 logð2Þ þ c4 log

�
1 − e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

T2ðeÞ þ d1Λ2ðeÞ;

ð4:5Þ

for some rational coefficient set fai; bi; ci; dig. In the model, T2 reappears but is written as a function of e,

T2ðeÞ ¼
1

ð1 − e2Þ19=2
�
1þ 16579

384
e2 þ 459595

1536
e4 þ 847853

1536
e6 þ 3672745

12288
e8 þ 1997845

49152
e10 þ 41325

65536
e12

�
; ð4:6Þ

1The same conclusion can easily be reached by power counting, since each power of n in (4.1) corresponds to a factor ofΩr from time
derivatives of Iij. Thus each power of n brings with it a factor proportional to x3=2, at lowest order in ν, making the relative PN orders 3k
and 3kþ 3=2 as mentioned. The asymptotic analysis, however, has the advantage of also revealing the logarithmic singularity and
(importantly) the connections to the previously defined functions TkðetÞ and ΘkðetÞ.
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and so does Λ2, also written in terms of e,

Λ2ðeÞ ¼
1

ð1 − e2Þ19=2
��

−
22147 logð2Þ

384
þ 59049 logð3Þ

1024

�
e2 þ

�
945063 logð2Þ

512
−
3365793 logð3Þ

4096

�
e4

þ
�
−
47071565 logð2Þ

1536
þ 357108669 logð3Þ

65536
þ 6103515625 logð5Þ

589824

�
e6

þ
�
10209340261 logð2Þ

36864
þ 27480125205 logð3Þ

524288
−
726318359375 logð5Þ

4718592

�
e8 þ � � �

�
: ð4:7Þ

For brevity only the first part of Λ2ðeÞ is presented, despite having been (necessarily) determined to e30. Also, it is not
necessary to isolate the logarithmic divergence in Λ2ðeÞ. Despite the generality of (4.5), we anticipate some coefficients
being linked. Based on the form of R3 and the structure found within the l ¼ 2, m ¼ 2, n0 ¼ 0 mode flux (see [49] and
Sec. IV E), we expected (and ultimately confirmed) the following connections: c2 ¼ c3=3 ¼ c4 ¼ d1.
The next step is the computation of the analytic expansion of L6LðeÞ through e30, which was done using high-precision

BHPT numerical data, fitting [49] to the PN model, and using the PSLQ integer relation algorithm [43]. That process
yielded

Lð30Þ
6L ¼ 1

ð1 − e2Þ19=2
�
−
246137536815857

314659144800
þ 1465472γE

11025
−
13696π2

315
þ 2930944 logð2Þ

11025

þ
�
−
25915820507512391

629318289600
þ 189812971γE

33075
−
1773953π2

945
þ 18009277 logð2Þ

4725
þ 75116889 logð3Þ

9800

�
e2

þ
�
−
56861331626354501

167818210560
þ 1052380631γE

26460
−
9835333π2

756
þ 42983885171 logð2Þ

132300
−
4281662673 logð3Þ

39200

�
e4

þ
�
−
710806279550045831

1006909263360
þ 9707068997γE

132300
−
90720271π2

3780
−
519508209691 logð2Þ

132300
þ 454281905709 logð3Þ

627200

þ 2795166015625 logð5Þ
2032128

�
e6 þ

�
−
10213351238593603069

40276370534400
þ 8409851501γE

211680
−
78596743π2

6048

þ 117139032193219 logð2Þ
3175200

þ 6991554521601 logð3Þ
1003520

−
47517822265625 logð5Þ

2322432

�
e8

þ
�
3985515397336843519

26850913689600
þ 4574665481γE

846720
−
42753883π2

24192
−
252510878807655859 logð2Þ

952560000

−
576360297584196039 logð3Þ

4014080000
þ 223101765869140625 logð5Þ

1560674304
þ 380483822091361849 logð7Þ

6635520000

�
e10

þ
�
50719954422267749

3254656204800
þ 6308399γE

75264
−
294785π2

10752
þ 2887481794238961637 logð2Þ

1270080000

þ 17322463230547056201 logð3Þ
16056320000

−
1297619485595703125 logð5Þ

2080899072
−
2663386754639532943 logð7Þ

2949120000

�
e12

þ
�
−
477961162088755717

14320487301120
−
339392544622900323521 logð2Þ

17503290000
−
15568492847979888930357 logð3Þ

6294077440000

þ 20971917520162841796875 logð5Þ
11012117889024

þ 77148041218710802588787 logð7Þ
11466178560000

�
e14 þ � � � þ κ30e30

�
: ð4:8Þ

The truncated expansion is distinguished by the superscript (30). Once again, an abbreviation of the full series is presented;
the placeholder coefficient κ30 denotes the true length of the analytic expansion. The full series to e30 would require multiple
pages to print out.
We continue the procedure by subtracting off the piece in the ansatz with no closed-form expression, namely Λ2ðeÞ. The

proportionality constant is d1 ¼ 1465472=11025, easily found through inspection of the Lð30Þ
6L series. Once Λ2ðeÞ is

removed, a significant reduction in complexity is observed, which allows the entire remaining series to be written down
through e30,
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Lð30Þ
6L −

1465472

11025
Λ2ðeÞ¼

1

ð1−e2Þ19=2
�
−
246137536815857

314659144800
þ1465472γE

11025
−
13696π2

315
þ2930944 logð2Þ

11025

þ
�
−
25915820507512391

629318289600
þ189812971γE

33075
−
1773953π2

945
þ379625942 logð2Þ

33075

�
e2

þ
�
−
56861331626354501

167818210560
þ1052380631γE

26460
−
9835333π2

756
þ1052380631 logð2Þ

13230

�
e4

þ
�
−
710806279550045831

1006909263360
þ9707068997γE

132300
−
90720271π2

3780
þ9707068997 logð2Þ

66150

�
e6

þ
�
−
10213351238593603069

40276370534400
þ8409851501γE

211680
−
78596743π2

6048
þ8409851501 logð2Þ

105840

�
e8

þ
�
3985515397336843519

26850913689600
þ4574665481γE

846720
−
42753883π2

24192
þ4574665481 logð2Þ

423360

�
e10

þ
�
50719954422267749

3254656204800
þ6308399γE

75264
−
294785π2

10752
þ6308399 logð2Þ

37632

�
e12

−
477961162088755717

14320487301120
e14−

5413490909883323

182078668800
e16−

5584575351395413

218494402560
e18

−
81136058237959211

3641573376000
e20−

1578479509403151527

80114614272000
e22−

2261257978156608611

128183382835200
e24

−
531918812054997639011

33327679537152000
e26−

388387963969333233793

26662143629721600
e28−

892815371640935597927

66655359074304000
e30

�
:

ð4:9Þ

We note also that each coefficient after e12 is purely rational. The undeniable conclusion is that Λ2ðeÞ does indeed provide a
desired contribution to L6LðeÞ.
In the next step, we confirm another tenet of the analytic model—that all of the transcendental numbers, γE, π2, and

log(2), in the first terms up to e12 in (4.9) simply appear as a specific combination that multiplies T2ðeÞ (a function which
contains a 12th order polynomial). The revised model then becomes

Lmodel
6L ¼ 1

ð1 − e2Þ19=2 ½a0 þ a2e2 þ a4e4 þ a6e6 þ a8e8 þ a10e10 þ a12e12 þ a14e14

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ðb0 þ b2e2 þ b4e4 þ b6e6 þ b8e8 þ b10e10 þ b12e12Þ�

þ
�
1465472

11025
γE −

13696π2

315
þ 4396416

11025
logð2Þ þ 1465472

11025
log

�
1 − e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

T2ðeÞ þ
1465472

11025
Λ2ðeÞ; ð4:10Þ

once the ci coefficients are determined and inserted. If we now subtract the T2ðeÞ part of the model as well from Lð30Þ
6L [i.e.,

from (4.9)], we are left with

1

ð1− e2Þ19=2
�
−
246137536815857

314659144800
−
5170616505141979

125863657920
e2 −

280649774449416601

839091052800
e4 −

3391928161684113811

5034546316800
e6

−
1456012194152323001

8055274106880
e8 þ 29600878702417369091

134254568448000
e10 þ 1074387193648790113

16273281024000
e12 þ 17814341408826553

4773495767040
e14

−
31846235946197

303464448000
e16 −

219944663655131

273118003200
e18 −

113553895395893

115605504000
e20 −

172257218309077

173408256000
e22

−
394386143943349

416179814400
e24 −

700775531336071

792723456000
e26 −

25403642219761117

31074759475200
e28 −

19524067936619881

25895632896000
e30

�
; ð4:11Þ

a purely rational series in e2.
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At this point the 16 rational coefficients in (4.11) must be determined, if possible, by the remaining 15 unknown constants
ai and bi in the model. This was the reason for carrying out our numerical fitting and analytic expansions to e30, to provide
an overdetermined system of equations. We find that indeed a solution for the ai and bi can be obtained, verifying the ansatz
and giving the entire analytic structure of L6LðeÞ as

L6LðeÞ¼
1

ð1−e2Þ19=2
�
−
2634350510203129

1573295724000
−
239953038071655043

3146591448000
e2−

411009526770805477

839091052800
e4

−
17212115479135988207

25172731584000
e6−

81213393300931861

40276370534400
e8þ6299935941231102319

26850913689600
e10þ30953812320468361

650931240960
e12

þ205680487293493

227309322240
e14þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p �
74362302719

83349000
þ5938296687287

166698000
e2þ1203568974373

6945750
e4

þ67465356696233

666792000
e6−

1111945369132247

10668672000
e8−

32687662125259

790272000
e10−

116022069

100352
e12

��

þ
�
1465472

11025
γE−

13696π2

315
þ4396416

11025
logð2Þþ1465472

11025
log

�
1−e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
��

T2ðeÞþ
1465472

11025
Λ2ðeÞ: ð4:12Þ

Everything in this expression for L6LðeÞ is in closed form except for the infinite series Λ2ðeÞ, which nevertheless itself has
coefficients that can be easily determined analytically to arbitrary order in e2.
Having achieved this end in the energy flux, we can perform precisely the same procedure on the 6L angular momentum

flux term to find

J 6LðeÞ¼
1

ð1−e2Þ8
�
−
2460815702382469

1573295724000
−
60681012190195757

1573295724000
e2−

613664666042477719

4195455264000
e4

−
142507823837043079

1258636579200
e6þ220635683492763683

40276370534400
e8þ1157237897488423

114747494400
e10þ39115865356031

113654661120
e12

þ
ffiffiffiffiffiffiffiffiffiffiffi
1−e2

p �
86202239

110250
þ2193242627

147000
e2þ31184553527

882000
e4−

20643131927

3528000
e6−

190378390633

14112000
e8−

8199949

12544
e10

��

þ
�
1465472

11025
γE−

13696π2

315
þ4396416

11025
logð2Þþ1465472

11025
log

�
1−e2

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
��

T̃2ðeÞþ
1465472

11025
Λ̃2ðeÞ; ð4:13Þ

where the (closed-form) enhancement function

T̃2ðeÞ ¼
1

ð1 − e2Þ8
�
1þ 3259

128
e2 þ 1581

16
e4 þ 46015

512
e6 þ 18595

1024
e8 þ 6345

16384
e10

�
ð4:14Þ

is used and where the leading part of the infinite series for Λ̃2ðeÞ is

Λ̃2ðeÞ ¼
1

ð1 − e2Þ8
��

−
4923 logð2Þ

128
þ 19683 logð3Þ

512

�
e2 þ

�
16037 logð2Þ

16
−
1003833 logð3Þ

2048

�
e4

þ
�
−
63030583 logð2Þ

4608
þ 94458717 logð3Þ

32768
þ 1220703125 logð5Þ

294912

�
e6

þ
�
976014461 logð2Þ

9216
þ 3811868829 logð3Þ

262144
−
130615234375 logð5Þ

2359296

�
e8 þ � � �

�
; ð4:15Þ

though for our purposes (again) it had to be expanded to e30. Note that the ci and d1 coefficients are exactly the same as
those in the 6L energy flux.
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With complete understanding of L6LðeÞ and J 6LðeÞ (in terms of PN parameters e and y), we can obtain R6LðetÞ and
Z6LðetÞ (at lowest order in ν) by using y ¼ xþOðνÞ and converting e to et using [39]

e2

e2t
¼ 1þ 6yþ 17 − 21e2t þ 15

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
1 − e2t

y2 þ 26 − 107e2t þ 54e4t þ ð150 − 90e2t Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð1 − e2t Þ2

y3 þOðy4Þ: ð4:16Þ

The effect of this PN expansion between e and et is that, in order to convert to R6LðetÞ from L6LðeÞ, we have to
account for terms that ripple through also from transforming L3LðeÞ, L4LðeÞ, and L5LðeÞ. To accomplish this, each of
these flux terms must be known to e30 (see [49,58]). The same procedure is followed to convert to Z6LðetÞ from J 6LðeÞ.
We find

R6LðetÞ ¼
1

ð1 − e2t Þ19=2
�
−
2634350510203129

1573295724000
−
76144416345305443

3146591448000
e2t −

31937513191666597

839091052800
e4t

−
399990451980530207

25172731584000
e6t −

2328285213193351381

40276370534400
e8t −

821024946321249521

26850913689600
e10t

−
113510030676997

59175567360
e12t þ 732785694853

227309322240
e14t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q �
74362302719

83349000
−
1295489312713

166698000
e2t

−
9312957259141

55566000
e4t −

220905190597267

666792000
e6t −

1481390282809247

10668672000
e8t −

8130086922259

790272000
e10t −

10593

448
e12t

��

þ
�
1465472

11025
γE −

13696π2

315
þ 4396416

11025
logð2Þ þ 1465472

11025
log

�
1 − e2t

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
��

T2ðetÞ þ
1465472

11025
Λ2ðetÞ;

ð4:17Þ

Z6LðetÞ ¼
1

ð1 − e2t Þ8
�
−
2460815702382469

1573295724000
−
14809210436217557

1573295724000
e2t þ

38156471442639881

4195455264000
e4t

þ 489605424663941

1258636579200
e6t −

530424582265919197

40276370534400
e8t −

153117422046377

114747494400
e10t þ 121354621781

37884887040
e12t

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q �
86202239

110250
−
1047437123

147000
e2t −

54935631223

882000
e4t

−
189779591177

3528000
e6t −

93801917383

14112000
e8t −

2461

112
e10t

��

þ
�
1465472

11025
γE −

13696π2

315
þ 4396416

11025
logð2Þ þ 1465472

11025
log

�
1 − e2t

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
��

T̃2ðetÞ þ
1465472

11025
Λ̃2ðetÞ:

ð4:18Þ

In principle, this procedure might be followed to simplify
and make analytically known the next subleading-log terms
(at an integer power of x), i.e., L9L2 and J 9L2.

C. The 9=2PN subleading-log example

The procedure laid out above for using the Newtonian
quadrupole to determine the subleading-log term L6LðeÞ, at
an integer power of y, also works at half-integer powers of
y. The first such term would be the subleading-log L9=2

(associated with leading log L9=2L). Recall that we can also

consider this term to be a 3PN correction to the previous
leading log, L3=2ðeÞ. Since the 1.5PN tail L3=2ðeÞ is an
infinite series, we must expect L9=2 to be one as well. We
show here, however, that if we follow the same procedure
and isolate the transcendental portion (except for an overall
multiplicative factor of π) using the Newtonian mass
quadrupole sums Θ1ðeÞ and Ξ1ðeÞ, then the remaining
infinite series involves only rational coefficients. We thus
transform the complicated fitting result in [49,58] into a
much more manageable form,
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L9=2ðeÞ ¼
π

ð1− e2Þ8
�
265978667519

745113600
þ 5009791040801

447068160
e2 þ 4046503446057439

71530905600
e4 þ 551321612915453

8047226880
e6

þ 422210831769796213

65922882600960
e8 −

18560339255510812003

2746786775040000
e10 −

146292481172437451857

339031967662080000
e12

þ 392821388634552281893

5285816586731520000
e14 þ 2162084778435646377506023

17011268009412526080000
e16 þ 140095355726033870461460573

1071709884592989143040000
e18

þ 943121499884145402173125024543

7716311169069521829888000000
e20 þ 741566762964436290955111519639

6669097510410086724403200000
e22

þ 863925808693107071875922125163041313

8604736371831510295293984768000000
e24 þ 26361076468942343108164030017209652079

290840089367905047980936685158400000
e26 þ � � �

�

−
�
6848π

105
γE þ

20544π

105
logð2Þ þ 6848π

105
log

�
1− e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
��

Θ1ðeÞ−
6848π

105
Ξ1ðeÞ: ð4:19Þ

While (4.19) is still an infinite series, we have identified
some of the tail dependence by isolating the entire
transcendental portion of L9=2 using only the Newtonian
mass quadrupole. The process translates trivially from
energy to angular momentum fluxes. Furthermore, the
route followed in the previous subsection could be used
again to translate L9=2ðeÞ toR9=2ðetÞ. Finally, with enough
BHPT fitting data, similar simplifications could be per-
formed at higher PN orders, for L15=2L, J 15=2L, L21=2L2,
J 21=2L2, etc.

D. Discussion

Separating off the transcendentals, as done in (4.19),
required relatively few exact coefficients from perturbation
theory once the presence of Θ1ðeÞ and Ξ1ðeÞ was under-
stood and the first part of their Taylor expansions was used.
Once the transcendental terms are split off, the fitting
methods of [39,49] could be used to determine the
remaining rational series to fairly high order in e2. For
the rest of the subleading-log sequence, the same technique
might be pushed as high as, say, 15PN, for both integer and
half-integer in y terms.
However, the integer-order subleading logs consist of a

closed-form part, which appears once the Tk and Λk parts
are isolated, as seen with L6L in (4.12). Determining this
entire closed-form part becomes difficult around the 9PN
log2 level, as higher orders in y in BHPT calculations
require many more decimals of numerical accuracy for a
successful PSLQ fit. Additionally, each “jump” by
y3 logðyÞ seems to increase the total number of unknowns,
ai and bi, by 4. Thus, L9L2 would necessitate a fit out to e38

to yield an overdetermined system of equations for the
coefficients in the remaining closed-form terms. This is no
small feat, even using the technique described in [49]
(modified eulerlog procedure) of extracting a purely
rational series from each individual flux component
Llmn0
9L2 . Hence, even if determining the entire analytic

dependence of L9L2ðeÞ through this method is possible,

obtaining the entire eccentricity dependence of any further
integer-order subleading logs in the sequence would be
prohibitively expensive through fitting alone.
However, there exists an alternate way forward, which

allows for an easier calculation of complicated high-PN
logarithms like L9L2ðeÞ to high (finite) order in e2.
In a private communication, Nathan Johnson-McDaniel
revealed a means by which his circular-orbit Slm tail
factorization [59] (based on earlier work in [60,64]) can
be extended to an Slmn0 tail factorization for eccentric orbits.
This lmn0 factorization can be combined with fitting
methods to greatly simplify (relative to fitting alone) the
process of computing certain logarithmic PN terms to
arbitrary order in e2. Interestingly, the log terms which
can be obtained in this manner include the first five PN
corrections to any integer-order leading logarithm and the
first four PN corrections to any half-integer-order leading
logarithm. As a result, subleading logarithms can be
determined using this approach.
This procedure begins by picking a desired order p for

corrections to the leading logarithms. For example, since
the subleading-log terms addressed in this section are 3PN
corrections to the prior leading-log term, to consider
subleading logs we need to take p ¼ 3. Then, second,
we pick a desired order α in the eccentricity expansion (i.e.,
having the expansion stop at e2α). Next, the exact analytic
form must be found of all the lmn0 modes needed to reach
yp (relative order) in the full flux with an eccentricity
expansion to e2α. This can be done by either fitting high-
precision numerical data or by direct analytic expansion of
the equations of BHPT [31,48]. (Indeed, we have begun to
supplement numerical results with output from a newly
written MATHEMATICA code that does the PN expansions
symbolically and outputs analytic PN expressions.) Either
way this will produce expressions for a total of approx-
imately 2α⌈ðp2 þ 6pþ 3Þ=2⌉ modes. Each individual
lmn0 mode is then subjected to tail factorization using
Slmn0 and reexpanded, which removes the transcendentals
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and leaves a rational double expansion through yp and e2α.
Note in the example of p ¼ 3, this leaves an expansion in
rationals only through 3PN (y3). In the next step, we
expand each Slmn0 tail factor to an arbitrary order in y and
e2. Then the expanded lmn0 tail factors are multiplied by
the rational series expansions for lmn0, reexpanded, and
summed over all modes. The result, remarkably, generates
all members of the (p)PN correction to the leading-
logarithm series to e2α. Again, in the p ¼ 3 example, once
we have all modes necessary to reach 3PN in the (relative)
flux in fully analytic form, expansion of the Slmn0 to high
PN order provides everything we need to find all the
subleading logs, e.g., 6L, 9L2, 12L3, etc., to high PN order.
In the particular example of subleading log L9L2ðeÞ,

factored lmn0 modes have to be analytically calculated up to
l ¼ 5,m ¼ 5 (excluding l ¼ 5; m ¼ 0, 2, 4) in order to reach
3PN order, and 38 n0 modes are needed to reach e38 for each
lm. Multiplying each such mode by the analytic expansion
of its respective Slmn0 , with the analytic expansion carried to
9PN order, and then summing all modes together will yield
(among other things) L9L2ðeÞ to e38. Those results can then
be combined with the Newtonian mass quadrupole sums
T3ðeÞ and Λ3ðeÞ to produce a compact, L6LðeÞ-type
[Eq. (4.12)] solution for L9L2ðeÞ. Finally, L9L2ðeÞ can be
coupled with L6L2ðeÞ, L7L2ðeÞ, andL8L2ðeÞ (listed in [49]),
along with (4.16), to obtain R9L2ðetÞ.
Despite the added cost of symbolic calculation, Johnson-

McDaniel’s lmn0 factorization provides a significant com-
putational speedup over fitting alone, particularly when
attempting to reach high orders in y. Additionally, setting
p ¼ 0 in the above procedure reveals an alternative means
of calculating the leading logarithms themselves to arbi-
trary order in e2. By setting p ¼ 0, we only require an
analytic expansion of the lm modes needed to give the
Peters-Mathews flux (i.e., l ¼ 2; m ¼ −2, 0, 2) with the
range in n0 determined by the desired expansion in e2.
The Slmn0 factors are then expanded for this more restricted
number of modes and used in the procedure above. We
have used it to verify the results of Sec. III and the given
general PN form for leading logs out to 21PN (L21L7) in
expansions to e6. Since these terms depend only on
the Newtonian quadrupole, they convert directly from
expansions in y and e to expansions in x and et via
e → et. Unfortunately, compared to the multipole moment
approach, this process becomes increasingly expensive at
higher powers of e2, where the number of necessary BHPT
lmn0 modes grows large. However, for the more compli-
cated subleading-log terms like L6L;L9L2, etc., this fac-
torization technique offers an efficient means to generate
expansions at high PN order to comparable finite orders in
e2. Costs will likely be reduced further upon full imple-
mentation of direct analytic PN expansion of the BHPT
equations. Combining that analytic approach with Slmn0

factorizations would be additionally fruitful.

E. More general relations among coefficients
in subleading-logarithmic terms

The preceding subsections described how explicit cal-
culations from perturbation theory can be coupled with
Newtonian mass quadrupole summations to extract sub-
leading logarithms, like R6L. Now, we seek to identify
some of the broader structure within this sequence of flux
terms. This task will again involve complementary discov-
eries from both perturbation theory and PN theory, meaning
most deductions will necessarily remain relevant only to
lowest order in the mass ratio. Remarkably, the results will,
though, allow for the partial delineation of instantaneous
and hereditary terms in the flux.
The process requires analysis of four separate sources of

transcendental structure within the flux:
(1) Fourier tail integrals of the form [15]

Z
∞

0

einΩrτ logq
�

τ

2r0

�
dτ; ð4:20Þ

where q > 0 is an integer which generally increases
with PN order [see, for instance, Eq. (4.8) of [65]], n
is the same Fourier harmonic number appearing in
gðn; etÞ, and r0 is an arbitrary scale parameter that
cancels in the full flux.

(2) The perturbation theory eulerlog function for lmn0
modes (see [49,59,64]):

eulerlogm;n0 ðyÞ ¼ γE þ log j2mþ 2n0j þ 1

2
logðyÞ:

ð4:21Þ

(3) Instantaneous integrals of the form

Z
2π

0

logk½ð1 − et cos uÞ=x�
ð1 − et cos uÞj

du ð4:22Þ

for integers ðk; jÞ, which emerge with various values
of j during the orbital average of logkðrÞ terms in the
flux. We reuse the integer k here to match the index
on Tk, as we expect the relevant integrals (for integer
leading/subleading logs) to appear at ð3kÞPN order.
See [16] for a description and evaluation of these
integrals.

(4) The elimination of all divergences as et → 1 (in par-
ticular, logarithmic divergences) by using an ex-
pansion in the compactness parameter 1=p (p the
semilatus rectum) instead of in x or y.

1. Comparison of eulerlog functions

Starting with the first item in the list, we consider
the given class of hereditary integrals. A common regu-
larization procedure entails computation of the following
integrals:
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Z
∞

0

e−jnjατ logq
�

τ

2r0

�
dτ; ð4:23Þ

for constant α, which is treated as real and positive, but is
ultimately replaced by ðsignð−nÞiΩrÞ [15,57]. One key
facet of these integrals is that their evaluation yields the
transcendentals γE and logð2jnjαr0Þ only in the combina-
tion ðγE þ logð2jnjαr0ÞÞt for one or more t ∈ f1; 2;…; qg.
In fact, we show in the Appendix that (4.23) can be
calculated by taking the simpler integral

1

jnjα
Z

∞

0

e−τlogqðτÞdτ; ð4:24Þ

and transforming the result by γE → γE þ logð2jnjαr0Þ.
Once the substitution for α is made and the imaginary

portion separated, the transformation becomes γE →
γE þ πi=2signð−nÞ þ logð2jnjΩrr0Þ. When products are
taken and a sum is made over positive and negative n,
the relationship between π and the rest of the expression is
slightly obscured by the signð−nÞ function; however,
the particular linkage among the transcendental factors
ðγE þ logð2jnjΩrr0ÞÞ must hold everywhere.
This simple connection constitutes a purely hereditary

type of eulerlog function. Taking the Newtonian limit,
assuming some necessary cancellations (see a related
discussion in [45]), and omitting the unphysical regulari-
zation constant, we obtain a contribution of the form

Bk

�
2

3

�
k−1

�
γE þ 2 logð2Þ þ log

���� n2
����þ 3

2
logðxÞ

�
k
; ð4:25Þ

at (3k)PN order for some constant Bk. When k ≥ 1, this can
be expanded to isolate the two highest powers of logðxÞ as

Bk logðxÞk−1
�
k

�
γE þ 2 logð2Þ þ log

���� n2
����
�
þ 3

2
logðxÞ

�
;

ð4:26Þ
thus providing the expected ratio between the highest
power of logðxÞ and the combination of transcendentals
that serves as the coefficient for the next highest power
of logðxÞ.
An eccentricity dependence is attached to these tail

integrals in the form of time derivatives of the mass
quadrupole (see, for instance, [61,65]). One can use a
dimensional argument to show that this yields a factor of
ðn=2Þ2kgðn; etÞ for integral orders [70]. After adjusting the
initial constant to absorb any additional rationals, we can
sum over n to find that logðxÞk−1 must be attached to

Ck

��
kγE þ 2k logð2Þ þ 3

2
logðxÞ

�
Tk þ kΛk

�
: ð4:27Þ

However, one must again take care to note that (4.26)
and (4.27) only refer to pieces specifically in the hereditary

flux. On the other hand, the eulerlogm;n0 function in (4.21),
which is derived through BHPT, characterizes the lmn0
modes of the entire flux. It is a direct eccentric-orbit
extension of the circular-orbit function eulerlogmðxÞ pre-
sented in [64]. Then, using a similar argument, we can
obtain the following ratio of coefficients for lmn0 modes in
the total flux:

kðγE þ logð2Þ þ log jmþ n0jÞ þ 1

2
logðxÞ: ð4:28Þ

The log jmþ n0j term will partially contribute to both
(logð2ÞTk) and Λk upon summation over lmn0, obscuring
their final coefficients in the flux. However, γE and logðxÞ
must remain fixed in the ratio k to 1=2. With the leading-
logarithm series already calculated, the full contribution to
the leading-log plus subleading-log terms is then found
to be

�
−
856

105

�
k 1

k!
ð2kγE þ logðxÞÞTkðetÞ: ð4:29Þ

Note that if k ¼ 1, this provides exactly the γE and logðxÞ
contributions to the net 3PN flux in (2.32). Additionally, it
is well known that γE and Λk are only present in the tail—
neither makes an appearance in the instantaneous flux.
Therefore, Λk can be included to get the full coefficient

�
−
856

105

�
k 1

k!
½ð2kγE þ logðxÞÞTkðetÞ þ 2kΛkðetÞ�: ð4:30Þ

Interestingly, coupling this (full-flux) expression with
the tail result (4.27) leads to another conclusion: The
instantaneous portion of the leading logarithm must equal
−ð2=3Þ its hereditary counterpart, or

Rinst
ð3kÞLðkÞ ¼ −ð2=3ÞRtail

ð3kÞLðkÞ ¼ −2Rð3kÞLðkÞ: ð4:31Þ

2. Instantaneous connection and
logarithmic divergence

We can move a step further via the last two items on the
list. Expanding out (4.22) to retain the highest two powers
of logðxÞ leaves

ð−1Þk logðxÞk−1
Z

2π

0

logðxÞ−klogð1−etcosuÞ
ð1−etcosuÞj

du: ð4:32Þ

Multiple integrals like this appear at any particular PN
order, differing in values of j. Evaluation and summation of
all relevant integrals yields (among other terms) a loga-
rithmic portion of the form

fkðetÞ
�
logðxÞ − k log

�
2ð1 − e2t Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
��

; ð4:33Þ
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for some eccentricity function fkðetÞ. However, (4.31)
indicates that this instantaneous logðxÞ must be attached
to −2Rð3kÞLðkÞðetÞ. Therefore, we must have fkðetÞ ¼
−2Rð3kÞLðkÞðetÞ.
Finally, we can compile all this information together to

determine the following significant portion of the sublead-
ing-log (3PN log) series:

Rpartial
ð3kÞLðk−1Þ ¼

�
−
856

105

�
k 1

k!

��
2kγE þ 6k logð2Þ

þ 2k log

�
1 − e2t

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
�
þ logðxÞ

�
TkðetÞ

þ 2kΛkðetÞ
�
; ð4:34Þ

for all k ≥ 1. A similar expression (with 4π out front and
Tk → Θk, Λk → Ξk) follows for half-integer terms. As we
can see, the case k ¼ 2 matches the last line of R6L in
(4.17), and we have verified the corresponding portion of
R9L2 as well. Moreover, setting et ¼ 0 for arbitrary k
reproduces the known circular-orbit eulerlog ratio, found
using the BHPT 220 mode.
There is another means by which to confirm the specific

relationship among the coefficients of logðxÞ, logð1 − e2t Þ,
and ΛkðetÞ in the above. As mentioned in the last item on
the list, all divergences in eccentricity should vanish in a
PN expansion that is made over 1=p instead of x or y. This
includes logarithmic divergences like logð1 − e2t Þ, which
appear in the three listed terms. Indeed, because x can be
expanded in 1=p as

x ¼ 1 − e2t
p

þOð1=p2Þ; ð4:35Þ

each power of logðxÞ will necessarily contribute a loga-
rithmic divergence as et → 1. When this fact is applied with
the divergence of ΛkðetÞ (see Sec. IVA), we see that the
exact ratio of coefficients in (4.34) will eliminate all the
logarithmic divergences at logðpÞk−1=p3k order. Thus, this
alternative fit provides an additional check on our results.

V. CONCLUSIONS AND OUTLOOK

This paper has illustrated a relatively novel way to use
known BHPT and PN techniques to make progress in
understanding the PN expansions of the energy and angular
momentum gravitational wave fluxes for eccentric-orbit
EMRIs. By pairing finite-order eccentricity expansions
from BHPT (found either by combining numerical fitting
with PSLQ or by analytically PN expanding the equations
of BHPT directly) with astute predictions for the multipole
content of select flux terms, we can ascertain exact or
greatly simplified forms for the eccentricity dependence of
those terms to high PN orders at lowest order in the mass

ratio—results which would otherwise have required years
of progress in the full PN theory. In this paper we have
shown that several sequences of PN fluxes (leading
logarithms and subleading logarithms) can be understood
in this way merely by seeing the role of the Newtonian
mass quadrupole moment power spectra, gðn; etÞ and
g̃ðn; etÞ.
More specifically, we showed in Sec. III that the entire

sequence of integer in x PN-order leading-log terms are
closed-form expressions in et, and the entire sequence of
half-integer in x leading-log terms are infinite series in e2t
with easily determined rational coefficients. For the energy
flux, the Newtonian mass quadrupole moment enters into
these sequences of terms through the Fourier sums TkðetÞ
and ΘkðetÞ, which are sums over filtered weightings of the
quadrupole spectrum gðn; etÞ. Equivalent sums exist for
leading-log angular momentum fluxes.
Yet the Newtonian mass quadrupole moment plays an

even wider role than just explaining the leading-log
sequences. As Sec. IV showed, adequate BHPT results
can, in principle, be combined with an ansatz for how the
Newtonian quadrupole moment enters the subleading-log
flux sequences to completely determine their eccentricity
dependence also. With the subleading-log sequences, two
new sets of Fourier sums, ΛkðetÞ and ΞkðetÞ, are defined
from the quadrupole spectrum gðn; etÞ (with mirror images
for angular momentum). We then demonstrated the process
explicitly with the (integer-order) R6LðetÞ flux term. At
half-integer in x, adequate BHPT data and essentially the
same procedure also allowed a key decomposition of the
subleading-log term L9=2ðeÞ, revealing in that case an
infinite series in e2 with rational coefficients that can be
determined to high order in e2. We suspect that this
procedure can be applied successfully to higher PN order
subleading-log terms, giving complete R3-type analytic
representations for L9L2ðeÞ, L12L3ðeÞ, etc., and their
RiðetÞ, J iðeÞ, ZiðetÞ counterparts. We also suspect that
L9=2-type segregations of transcendental terms and
rational-coefficient infinite series will occur at higher PN
orders for all half-integer in x subleading logs, like
L15=2ðeÞ, L21=2ðeÞ, etc., and that these might be found
given enough BHPT data.
The methods and results developed here are another

example in a body of literature using BHPT to inform PN
theory and vice versa. Our focus on leading and subleading
logarithms, though differing in scope, is strongly reminis-
cent of [29] and [49], who used the appearance of the
eulerlog function to develop an understanding of lower
powers of logarithms from higher ones. It is also not unlike
the calculation of the redshift invariant achieved by [26],
who combined logarithmic derivations with self-force data
to extract nonlogarithmic terms numerically.
With leading-log and subleading-log fluxes (at lowest

order in the mass ratio) so well understood analytically, by
exploiting the role of the Newtonian mass quadrupole

ECCENTRIC-ORBIT EXTREME-MASS-RATIO-INSPIRAL … PHYS. REV. D 100, 104060 (2019)

104060-21



moment spectra and making judicious use of BHPT results,
what more might be done to find flux terms at high PN
order without the full PN formalism? It turns out that
similar headway can be made for terms that are a 1PN
correction to elements of the leading-log and subleading-
log sequences (to be reported elsewhere [66]). That analysis
requires the Fourier amplitudes of the next Newtonian
multipole moments (current quadrupole and mass octupole)
and the 1PN correction to the mass quadrupole moment.
Together with the approach of this paper, a pattern emerges
for chipping away at an analytic understanding of the PN
expansion in the fluxes. Rather than proceed one power in x
(or y) at a time, as would be typical in advances in the full
PN formalism, we take each order in multipole moments as
a group, using them to calculate all the most significant PN
contributions from that group. This leads to making
progress through the PN expansion in a “diagonal” sense.
We first come to understand the eccentricity dependence of
the entire leading-log (diagonal) sequences, x3k logkðxÞ
and x3kþ3=2 logkðxÞ. Next, we gain an understanding of
the subleading-log diagonals, with PN dependence
x3k logk−1ðxÞ and x3kþ3=2 logk−1ðxÞ. Then, as we will
show elsewhere [66], we can tackle the 1PN corrections
to the leading logs, which are the diagonals in the PN
expansion with x3kþ1 logkðxÞ and x3kþ5=2 logkðxÞ, and 1PN
corrections to the subleading logs, with x3kþ1 logk−1ðxÞ
and x3kþ5=2 logk−1ðxÞ.
Stated in different notation, in the subsequent paper on

1PN corrections to leading and subleading logarithms,
we will show additional closed-form expressions for the
integer-PN-order 1PN logarithms Rð3kþ1ÞLðkÞðetÞ and
Zð3kþ1ÞLðkÞðetÞ (for k ≥ 0) (e.g., R4L, R7L2, R10L3, etc.)
and find infinite power series for half-integer-PN-order
1PN logarithms Rð3kþ5=2ÞLðkÞ and Zð3kþ5=2ÞLðkÞ (e.g.,
R11=2L, R17=2L2, etc.), at lowest order in the mass ratio.
Interestingly, there is some prospect that we might ascertain
the corresponding contributions at next order in ν as well,
though without (at present) second-order BHPT results to
help in confirmation. Some of these results have already
been obtained simply by PSLQ analysis of high-precision
BHPT numerical results. For example, a closed-form
expression for L4L is found in [39], and other closed-form
expressions for J 4L, L7L2, and J 7L2 are found in [49].
Completely new results have been found in making 1PN
corrections to the subleading logs, with (analytically
understood) infinite series obtained for L4 and J 4 [66].
The remaining integer-order 1PN corrections to the sub-
leading logarithms (e.g., L7L, L10L2, etc.) can be similarly
obtained by combining the other 1PN logarithms with the
Slmn0 factorization. The irrational portions of half-integer-
order terms like L11=2, L17=2L, L23=2L2, etc., will likely
follow as well.
To provide a more concrete view of how all these pieces

tie together, Table I shows the present state of knowledge of

the eccentricity dependence of energy flux terms LiðeÞ for
PN orders through 7.5PN order and (somewhat) beyond, at
lowest order in the mass ratio. Analogous depth of under-
standing exists for the angular momentum fluxes, J iðeÞ.
Going beyond these orders, converting to RiðetÞ and
ZiðetÞ, and moving to higher orders in ν are all subjects
for potential future work.
Finally, with the success of these methods in the fluxes at

infinity for a spinless system, it is natural to ask whether we
might see similar progress in finding underlying analytic

TABLE I. State of knowledge of eccentricity dependence of PN
flux terms. The second column is the power series expansion
order in e to which the respective flux term is known at present.
The terms L3 and L3L were previously known [15]. The closed-
form result for L4L was also previously known [39]. All other
results come from this paper and its companion [49]. Flux terms
labeled as “all orders” are infinite series in e2 with analytically
calculable coefficients. Other terms are “only” known in analytic
form up to order e30 (or, in a few cases, less). The third column
gives the number of PN corrections to the leading logs which
must be calculated to derive the term fully. The fourth column
indicates the number of leading-log [and ΛðetÞ=ΞðetÞ] correc-
tions which must be calculated to extract the term to all orders in e
in the manner of Sec. IV. A superset of these terms allows for the
separation of transcendental contributions in the same way, as
shown in column five. Above 5PN it is more difficult to apply
these methods (labeled by asterisk). The last two rows represent
all further leading logarithms.

Term

Known
order
in e

PN order
beyond
LL

Order for
fitting

extraction

Order to find
transcendental

part

L3 All orders 3PN 0PN 0PN
L3L Closed form � � � � � � � � �
L7=2 Fitted to e30 2PN � � � � � �
L4 Fitted to e30 4PN 1PN 1PN
L4L Closed form 1PN � � � � � �
L9=2 Fitted to e30 3PN � � � 0PN
L9=2L All orders � � � � � � � � �
L5 Fitted to e30 5PN 2PN 2PN
L5L Closed form 2PN � � � � � �
L11=2 Fitted to e30 4PN � � � 1PN
L11=2L Fitted to e30 1PN � � � � � �
L6 Fitted to e20 6PN 3PN* 3PN*
L6L All orders 3PN 0PN 0PN
L6L2 Closed form � � � � � � � � �
L13=2 Fitted to e30 5PN � � � 2PN
L13=2L Fitted to e30 2PN � � � � � �
L7 Fitted to e12 7PN 4PN* 4PN*
L7L Fitted to e26 4PN 1PN 1PN
L7L2 Closed form 1PN � � � � � �
L15=2 Fitted to e12 6PN � � � 3PN*
L15=2L Fitted to e26 3PN � � � 0PN
L15=2L2 All orders � � � � � � � � �
Lð3kÞLðkÞ Closed form � � � � � � � � �
Lð3kþ3=2ÞLðkÞ All orders � � � � � � � � �
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explanations for the radiation to the horizon of the primary
black hole or for general radiation when the primary black
hole has spin. Unfortunately, it is presently unclear if the
techniques of this paper can be generalized to leading and
subleading-logarithmic contributions in either of those cases.
In the case of radiation to the horizon (with no black hole

spin), preliminary results for eccentric fluxes [67] reveal
structure similar to that at infinity, but with several key
differences in the corresponding eulerlog functions and
correlations among transcendentals. Several of the lowest
PN-order fluxes at the horizon have closed-form expressions,
and it is possible that a Bessel function expansion of the
quadrupole moment, in some altered form, might determine
the analytic form in eccentricity of the leading horizon flux.
We might then be able to generate added corresponding
horizon leading logs from that formula, but this is speculative
at this point. The eccentricity dependence of the horizon
fluxes will be given in more detail in a later paper.
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APPENDIX: TAIL EULERLOG FUNCTION

We prove that the integral (4.23) can be found using
the simpler integral (4.24) under the transformation
γE → γE þ logð2jnjαr0Þ. To proceed, we first write general
forms for the two integrals. Recall that the Gamma function
ΓðxÞ is given by

ΓðxÞ ¼
Z

∞

0

tx−1e−tdt: ðA1Þ

Then, the two tail integrals can be written as [68]
Z

∞

0

e−τlogqðτÞdτ ¼ dqΓðxþ 1Þ
dxq

����
x¼0

;

Z
∞

0

e−jnjατlogq
�

τ

2r0

�
dτ ¼ 1

jnjα
dq

dxq

�
Γðxþ 1Þ
ð2jnjαr0Þx

�����
x¼0

;

ðA2Þ

where the second relation is obtained using the variable
substitution u ¼ jnjατ.
Both Γðxþ 1Þ and Γðxþ 1Þ=ð2jnjαr0Þx permit conver-

gent Taylor series about x ¼ 0 for jxj < 1. These are most
easily computed using the following representations, valid
for jxj < 1 [69]:

Γðxþ 1Þ ¼ exp

�
−γExþ

X∞
k¼2

ζðkÞ
k

ð−xÞk
�

Γðxþ 1Þ
ð2jnjαr0Þx

¼ ð2jnjαr0Þ−x exp
�
−γExþ

X∞
k¼2

ζðkÞ
k

ð−xÞk
�
:

ðA3Þ

Then, either integral containing logq can be calculated by
expanding the necessary term about x ¼ 0 and picking out
the coefficient of xq=q!, possibly with a factor of 1=jnjα.
But the second expression can be rewritten as

Γðxþ1Þ
ð2jnjαr0Þx

¼ exp

�
−ðγEþ logð2jnjαr0ÞÞxþ

X∞
k¼2

ζðkÞ
k

ð−xÞk
�
: ðA4Þ

Thus, this latter series can be evaluated by making the
substitution γE → γE þ logð2jnjαr0Þ in the first. This
completes the proof.
The above results imply a way in which gðn; etÞ appears

inR6. Given the form of the exponentials in (A3), it seems
likely that the hereditary flux will source the appearance of
certain transcendentals like ζð3Þ at higher orders in the PN
expansion. Indeed, we can see in the BHPT fitting results
from [49,58] that the 6PN term L6 contains three such
pieces:

Lpartial
6 ¼ −

�
27392

105
ζð3Þ þ 256

45
π4 þ 27392

315
γEπ

2

�
T2ðeÞ:

ðA5Þ

Of course, because the eccentricity dependence is solely
determined by the Newtonian sum T2,R6ðetÞ will have the
same three contributions with T2ðeÞ → T2ðetÞ.
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