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We analyze the Bianchi IX Universe in the polymer quantum mechanics framework by facing both
semiclassical and purely quantum effects near the cosmological singularity. We adopt Misner variables to
describe the model dynamics, applying the polymer paradigm simultaneously to the isotropic one (linked to
the Universe volume) and to the two anisotropy ones (characterizing the physical gravitational degrees of
freedom). Setting two different cutoff scales for the two different variable sets, i.e., the geometrical volume
and the gravity tensor modes, we demonstrate how the semiclassical properties of the Bianchi IX dynamics
are sensitive to the ratio of the cutoff parameters. In particular, the semiclassical evolution turns out to be
chaotic only if the parameter associated to the volume discretization is greater or equal to that one of the
anisotropies. Concerning the chaotic case, we perform a purely quantum polymer analysis, demonstrating
that the original Misner result about the existence of quasiclassical states near the singularity (in the sense
of high occupation numbers) is still valid in the revised approach and able to account for cutoff physics
effects. The possibility for a comparison with the original study by Misner is possible because the
singularity is still present in the semiclassical evolution of the cosmological model for all the parameter
space. We interpret this surprising feature as the consequence of a geometrical volume discretization which
does not prevent the volume from vanishing, i.e., restoring in the minisuperspace analysis its zero value.
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I. INTRODUCTION

One of the most puzzling questions concerning the
viability of general relativity as a physical theory consists
in its feature of predicting singularities of the space-time,
where the radial force and thematter-energy density diverge,
especially in the cosmological implementations [1–3]. The
idea that the classical theory must be abandoned, in the limit
of extreme curvature values, in view of the inclusion of
quantum effects has been not satisfactory addressed by the
canonical approach based on the Wheeler-DeWitt (WDW)
equation [3–6]. In this scenario, the volume of the Universe
(more in general, the metric determinant) seems to have the
properties of an internal timelike variable for the theory, and
therefore the emergence of a Big Bounce is conceptually
forbidden by the natural flows of a clock [6,7].
Loop quantum gravity theory [6,8–10] had more suc-

cess. Indeed, it was very successful in determining a
bouncing cosmology thanks to the discrete nature of the
volume and the graph structure of the theory [11–13],
although its cosmological application suffers some limi-
tations with respect to the survival of the SUð2Þ symmetry
in the minisuperspace formulation [14,15].

A more phenomenological way to investigate the effects
of including cutoff physics in the cosmological dynamics
has been identified [16] in the implementation of the
polymer quantum mechanics to the cosmological setting,
both on a semiclassical and on a purely quantum dynamics
[17–22]. Such a reformulation of canonical quantum
cosmology is able to bring some physical features of the
discretized geometry into the dynamical problem, avoiding
some technical difficulties that loop quantum cosmology
finds in treating general enough cosmological models, like
the Bianchi IX Universe (the most general allowed by the
homogeneity constraint) [3,7,23,24]. In [18], it has been
studied the implementation of the polymer quantum
mechanics to the anisotropy Misner variables of a
Bianchi IX Universe, demonstrating how the semiclassical
evolution can no longer be chaotic. In [20], the same study
has been performed by polymer quantizing the Universe
volume alone, i.e., the standard isotropic Misner variable.
This study is still associated to the presence of semiclassical
chaos and the quantum features derived by Misner about
quasiclassical states surviving near the singularity are
similarly reproduced. The singularity is still present in
both these analyses, in contrast with the general result
derived in [17], where the polymer paradigm is imple-
mented to the cubed scale factor variable instead the usual
Misner one, and the nonsingular cosmology predicted in
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the loop quantum cosmology framework (see [25–27]). In
particular, in [26] it is showed that the cosmological
singularity of the Bianchi IX space-time is replaced by a
bounce that can be approximated as an instantaneous
transition between two classical Bianchi I solutions, with
simple transition rules if the relation between the solutions
before and after the bounce is expressed in terms of the
Misner variables. The reconciling point of view of these
discrepancies is the observation that the zero eigenvalue of
the volume is naturally suppressed in the model quantum
dynamics when the cubed scale factor is polymer discre-
tized. Conversely, when the standard Misner variable is
considered, i.e., the logarithm of the natural scale factor, its
discretization does not prevent the semiclassical emergence
of an asymptotic zero value for the Universe volume.
The present work develops such a point of view to its

maximal extent by requiring that the polymer quantum
mechanics is applied to all the minisuperspace variables,
disregarding their physical nature. Indeed, there is no well-
grounded reason to claim that in a quantum gravity
approach the Universe volume and its anisotropies require
a separate treatment (like it is done in the so-called
multitime approach [28,29]), above all in order to do not
violate the geometrical nature of the gravitational field. We
adopt two different polymer scale parameters for the
isotropic and the two anisotropic Misner variables, in order
to better characterize the relative influence of the two sets
of variables and to make easier the comparison with
previous approaches.
We find that the chaotic properties of the semiclassical

Bianchi IX dynamics survive only as far as the isotropic
variable discretization scale is equal or greater than the
anisotropic variables one. As soon as the ratio of the two
scales is less than one, the features of the original analysis
in [18] are clearly recovered and no quasiclassical occu-
pation numbers can be obtained in the full quantum
treatment near the initial singularity. On the contrary, when
the ratio is greater than (or equal to) one, i.e., when the
chaos of the model is preserved, the quantum analysis can
be developed according to the same scheme proposed by
Misner in [7] and the quasiclassical states still emerge. For
completeness, it has been discussed the validity of the
quantum results in the absence of the square approximation
that Misner used to solve the eigenvalue problem during the
quantum treatment of the model and a brief analysis of the
exact triangular problem in the polymer formulation has
been developed.
Apart from its technical content, the main merit of this

investigation is demonstrating how in the polymer repre-
sentation the chaotic features of the Bianchi IX cosmology
depend on the reciprocal relevance of the cutoff scales
concerning the Universe volume and the gravitational
degrees of freedom (d.o.f.). Furthermore, we demonstrate
that a full polymer quantization of all the minisuperspace
variables does not remove the singularity, simply because

the discretization of the isotropic Misner variable maintains
the possibility of a vanishing value of the space volume.

II. THE POLYMER REPRESENTATION
OF QUANTUM MECHANICS

The polymer quantum mechanics is an alternative
representation of the canonical commutation relations,
nonequivalent to the usual Schrödinger one. It is based
on the assumption that one or more variables of the phase
space are discretized. Therefore, it can be used to inves-
tigate the consequences of the introduction of a physical
cutoff.

A. Polymer kinematics

In order to introduce the polymer representation without
any reference to the Schrödinger one, let us consider the
abstract kets jμi labeled by the real parameter μ ∈ R and
taken from the Hilbert space Hpoly.
A generic state can be defined through a finite linear

combination of them

jψi ¼
XN
i¼1

aijμii; ð1Þ

where μi ∈ R; i ¼ 1;…; N ∈ N.
We choose the inner product so that the fundamental kets

are orthonormal

hμjνi ¼ δμν: ð2Þ

It can be demonstrated that Hpoly is nonseparable.
There are two fundamental operators that can be defined

on this Hilbert space: the symmetric label operator ϵ̂ and
the unitary shift operator ŝðλÞ with λ ∈ R. They act on the
kets jμi as follows:

ϵ̂jμi ≔ μjμi; ŝðλÞjμi ≔ jμþ λi: ð3Þ

Since the kets jμi and μþ λ〉 are orthogonal ∀ λ, the shift
operator ŝðλÞ is discontinuous in λ and there is no
Hermitian operator that can generate it by exponentiation.
Now we consider a one-dimensional system (q; p) and

we denote the wave functions in the p polarization as
ψðpÞ ≔ hpjψi, where ψμðpÞ ≔ hpjμi ¼ eiμp.
It is easy to see that the shift operator acts in this

polarization as

ŝðλÞ · ψμðpÞ ¼ eiλpeiμp ¼ eiðμþλÞp ¼ ψμþλðpÞ; ð4Þ

so ŝðλÞ can be identified with the operator eiλp̂ but p̂ cannot
be defined rigorously.
On the other hand, the operator q̂ acts as a differential

operator in this polarization and therefore it corresponds to
the label operator ϵ̂,
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q̂ · ψμðpÞ ¼ −i
∂
∂pψμðpÞ ¼ μψμðpÞ: ð5Þ

It can be noticed that the eigenvalues of q̂ can be
considered as a discrete set because they label kets that
are always orthonormal.

B. Polymer dynamics

After introducing the polymer kinematical Hilbert space,
we need to solve the problem related to the definition of the
physical operators.
Let us consider a one-dimensional system described by

the Hamiltonian

H ¼ p2

2m
þ VðqÞ ð6Þ

in the p polarization. As seen in the previous section, if we
assume that q̂ is a discrete operator, we have to find an
approximate form for p̂. The standard procedure (widely
described in [16]) is to introduce a regular lattice with
spacing μ0,

γμ0 ¼ fq ∈ R∶ q ¼ nμ0; ∀ n ∈ Zg: ð7Þ

In order to remain in the lattice, the only states permitted
are jψi ¼ P

n bnjμni ∈ Hγμ0
where μn ¼ nμ0. Also, it is

possible to use the action of the operator eiλp̂, after it has
been restricted to the lattice, to define an approximate
version of p̂,

p̂μ0 jμni ¼
1

2iμ0
½eiμ0p̂ − e−iμ0p̂�jμni

¼ 1

2iμ0
ðjμnþ1i − jμn−1iÞ: ð8Þ

It derives from the fact that for p ≪ 1
μ0

one gets

p ⋍ 1
μ0
sinðμ0pÞ ¼ 1

2iμ0
ðeiμ0p − e−iμ0pÞ.

Now, it is possible to introduce an approximate version
of p̂2,

p̂2
μ0 jμni≡ p̂μ0 · p̂μ0 jμni

¼ 1

4μ20
½−jμn−2i þ 2jμni − jμnþ2i�

¼ 1

μ20
sin2ðμ0pÞjμni: ð9Þ

We remind that q̂ is a well-defined operator, so the
regularized version of the Hamiltonian writes as

Ĥμ0 ≔
1

2m
p̂2
μ0 þ V̂ðqÞ ð10Þ

and represents a symmetric and well-defined operator
on Hγμ0

.

III. THE MIXMASTER MODEL
IN THE MISNER VARIABLES

In this section, we introduce the most important results
about the semiclassical and quantum features of the Bianchi
IX dynamics toward the cosmological singularity. This
model was named Mixmaster by Misner, and it is the most
general homogeneous space which admits an isotropic limit.
The line element in the Misner variables [23] for this

model is

ds2 ¼ −NðtÞ2dt2 þ 1

4
e2αðe2βÞijσiσj; ð11Þ

where NðtÞ is the lapse function, σi are three differential
forms depending on the Euler angles of the SO(3) group of
symmetry, and β is a diagonal, traceless matrix. Therefore,
it can be parametrized in terms of the two independent
variables ðβþ; β−Þ as βij ¼ diagðβþ þ ffiffiffi

3
p

β−; βþ −
ffiffiffi
3

p
β−;

−2βþÞ. The Misner variables ðα; β�Þ represent a very
convenient choice to parametrize the line element. In
particular, the variable α is that one related to the volume
and the expansion of the Universe (V ∼ e3α, V denoting a
fiducial volume), while ðβþ; β−Þ contain all the information
about the anisotropies and the shape deformations.
Moreover, the Hamiltonian of the model results to be very
simple when it is written in the Misner variables because its
kinetical term is diagonal. Then, we can write the super-
Hamiltonian as follows:

H¼ Nκ

3ð8πÞ2e
−3α

�
−p2

αþp2þþp2
−þ

3ð4πÞ4
κ2

e4αVðβ�Þ
�
¼0;

ð12Þ

where ðpα; p�Þ are the conjugate momenta to ðα; β�Þ,
respectively, and κ ¼ 8πG (we are in c ¼ 1 units). Due to
the spatial curvature, Vðβ�Þ is a potential term depending
only on the anisotropy variables, whose explicit form is the
following:

Vðβ�Þ ¼ 2e4βþðcoshð4
ffiffiffi
3

p
β−Þ − 1Þ

þ −4e2βþ coshð2
ffiffiffi
3

p
β−Þ þ e−8βþ : ð13Þ

The potential walls are steeply exponential and define a
closed domain with the symmetry of an equilateral triangle,
as we can see in Fig. 1. These walls move outward while
approaching the cosmological singularity (α → −∞) due to
the term e4α in (12) (which increases toward the singularity,
i.e., α → −∞).
Now it is possible to apply the Arnowitt-Deser-Misner

(ADM) reduction [30] to connect the study of the
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Mixmaster dynamics with that one of a pinpoint particle
(called point-Universe) that moves in a potential well. This
procedure consists in solving the super-Hamiltonian con-
straint with respect to the momentum conjugated to the new
time coordinate of the phase space, which here is identified
with α. Then, one obtains the so-called reduced ADM-
Hamiltonian

HADM ≔ −pα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ þ p2

− þ e4α
3ð4πÞ4
κ2

Vðβ�Þ
s

: ð14Þ

The classical dynamics of the model can be analyzed by
studying the corresponding Hamilton’s equations that
describe the evolution (in function of α) of the point-
Universe, identified by the coordinates (βþ; β−), moving in
the potential well. Because of the steepness of the walls, we
can consider the point-Universe as a free particle for most
of its motion, except when it occurs a bounce against one of
the three walls. Using the free-particle approximation
(Vðβ�Þ ∼ 0), it is possible to derive the velocity of the
point-Universe from the Hamilton’s equations, that is called
anisotropy velocity,

β0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0þ2 þ β0−2

q
¼ 1: ð15Þ

On the other hand, the study of the region in which the
potential term becomes relevant gives information about
the position of the potential wall and shows that it moves
outwards with velocity jβ0wallj ¼ 1

2
, so a bounce is always

possible. In particular, every bounce occurs according to
the following reflection law:

1

2
sinðθi þ θfÞ ¼ sin θi − sin θf; ð16Þ

where θi and θf are the incidence angle and the reflection
one taken with respect to the normal of the potential wall.
Moreover, the condition for a bounce to occur is repre-
sented by the existence of a maximum incidence angle

θmax ≡ arccos

�
1

2

�
¼ π

3
: ð17Þ

This result, together with the triangular symmetry of the
system, shows that the point-Universe always has a bounce
against one of the three potential walls.
In conclusion, the ADM reduction procedure in the

Misner parametrization maps the dynamics of the
Mixmaster Universe into the motion of a pinpoint particle
inside a closed two-dimensional domain. The particle
undergoes an infinite series of bounces against the potential
walls while approaching the singularity and the motion
between two subsequent bounces is a uniform rectilinear
one. The only effect of a bounce is to change the direction
of the particle in a way that, as it goes toward the
singularity, it will assume all the possible directions,
regardless the initial condition, and so it will experience
a chaotic dynamics.
Another important benefit of using the Hamiltonian

formalism is that it allows to quantize the system in the
canonical way. As we are interested in the features of the
model near the cosmological singularity, we have to
investigate the quantum effects that can modify the
classical dynamics. Following the canonical formalism,
it is possible to solve the quantum problem that corresponds
to find the eigenvectors and the eigenvalues of a pinpoint
particle in a two-dimensional potential well.
Taking advantage of the geometric properties of the

system, Misner obtained the following adiabatic invariant
which represents the most important result of his quantum
analysis:

hHADMαi ¼ const; ð18Þ

where the symbol h…i denotes the average value over a
large number of bounces. It is possible to use this sort of
conservation law to study the behavior of the quasiclassical
states (i.e., quantum states with very high occupation
numbers) toward the singularity. In particular, as shown
in [7], using the quasiclassical approximation and taking
the limit α → −∞, the expression (18) becomes

hm2 þ n2i ¼ const; ð19Þ

where m, n are the positive and integer quantum numbers
related to the anisotropies ðβþ; β−Þ.

FIG. 1. Equipotentials of the function Vðβ�Þ in the ðβþ; β−Þ
plane.
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Therefore, we can conclude that if the present Universe
is in a quasiclassical state of anisotropy (n2 þm2 ≫ 1),
then it must have been in the same quasiclassical state also
near the cosmological singularity.

IV. SEMICLASSICAL ANALYSIS OF THE
MIXMASTER MODEL IN THE POLYMER

REPRESENTATION

The aim of this section is to discuss the main features of
the Mixmaster semiclassical dynamics in the polymer
representation. The word “semiclassical” means that the
polymer-modified super-Hamiltonian constraint (22) is
obtained as the lowest order term of a WKB expansion
for ℏ → 0.
We choose to define the Misner variables ðα; β�Þ as

discrete ones, so we have to find an approximated form for
the operators ðp2

α; p2
�Þ, as seen in Sec. II B. This procedure

consists in the following formal substitutions:

p2
� →

1

μ2
sin2ðμp�Þ; ð20Þ

p2
α →

1

μ2α
sin2ðμαpαÞ; ð21Þ

where μ is the polymer parameter for the anisotropies,
while μα is that one related to the isotropic variable α.
The super-Hamiltonian constraint (12) becomes

Hpoly¼ Nκ

3ð8πÞ2 e
−3α

�
−
1

μ2α
sin2ðμαpαÞ

þ 1

μ2
sin2ðμpþÞþ

1

μ2
sin2ðμp−Þþ

Vðβ�Þ
μ2α

�
¼ 0; ð22Þ

while the reduced Hamiltonian has the following
expression:

Hα ¼
1

μα
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2α
μ2

½sin2ðμpþÞ þ sin2ðμp−Þ� þ Vðβ�Þ
s

;

ð23Þ

with the condition 0 ≤ μ2α
μ2
½sin2ðμpþÞ þ sin2ðμp−Þ� þ

Vðβ�Þ ≤ 1 due to the presence of the arcsin function.
In both (22) and (23), we have done the substitu-

tion Vðβ�Þ ¼ μ2α
3ð4πÞ4e4α

κ2
Vðβ�Þ.

The dynamics of the model is described by the Hamilton’s
equations, obtained from the reduced Hamiltonian shown
in (23),

β0� ¼ ∂Hα

∂p�
¼ μα

μ

sinð2μp�Þ
sinð2μαHαÞ

ð24aÞ

p0
� ¼ −

∂Hα

∂β� ¼ −
3μαð4πÞ4e4α
κ2 sinð2μαHαÞ

∂Vðβ�Þ
∂β� ð24bÞ

H0
α ¼ 4e4α−8βþ

3μαð4πÞ4
κ2 sinð2μαHαÞ

; ð24cÞ

where we have used the following compact notation:

sinðμαHαÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2α
μ2

½sin2ðμpþÞþ sin2ðμp−Þ�þVðβ�Þ
s

ð25Þ

and the symbol 0 to denote the derivative with respect to α.
According to the discussion of the previous section,

we start our analysis studying the system in the case
Vðβ�Þ ¼ 0. Now we can easily show that the cosmological
singularity is still present. In fact, under this condition it can
be demonstrated that there is a logarithmic relation between
the time variable t and the isotropic one α, so we have that
α ∼ lnðtÞ → −∞ for t → 0 even if α is described in the
polymer formulation. This result points out that the discrete
nature of the isotropic variable α does not prevent the
Universe volume from vanishing.
As we consider the point-Universe as a free particle, we

have that ðpþ; p−Þ (and consequently Hα) are constants of
motion and the modified anisotropy velocity has the
following expression:

β0≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β02þþβ02−

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðμpþÞcos2ðμpþÞþ sin2ðμp−Þcos2ðμp−Þ

Δ2ðμpþ;μp−Þ½1− μ2α
μ2
Δ2ðμpþ;μp−Þ�

vuut ; ð26Þ

where Δðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðxÞ þ sin2ðyÞ

p
. It is easy to realize

that, taking μ and μα vanishing, the relation (15) is
recovered.
To verify if the dynamics has the same chaotic features of

the standard case, it is necessary to study the relative
motion between the particle and the potential walls, whose
velocity is still jβ0wallj ¼ 1

2
because the polymer representa-

tion leaves the potential unchanged. On the other hand, if
we study the anisotropy velocity of the particle while
varying the values of the polymer parameters, we can see
that

β0 ≡ rðμα; μ; p�Þ ≥ 1 ∀p� ∈ R ⇔
μα
μ

≥ 1: ð27Þ

Therefore, we can conclude that the dynamics of the
Mixmaster model is expected to be still chaotic under this
condition, because of the existence of the singularity and
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the presence of a never-ending series of bounces against the
potential walls. Instead, if we choose the polymer param-
eters such that μα=μ < 1 (Fig. 2), the series of bounces
occurs until the particle velocity becomes smaller than the
velocity of the potential walls and then the point-Universe
reaches the singularity with no other bounces. The figures
represented in Fig. 3 show that, by choosing the ratio μα=μ
greater than or equal to one, the anisotropy velocity is
always above the plane z ¼ 1 (here z is the vertical
coordinate).
In order to derive the modified reflection law in the

polymer representation, we introduce the following para-
metrization for the anisotropy velocity:

ðβ0−Þi ¼ ri sin θi ðβ0−Þf ¼ rf sin θf

ðβ0þÞi ¼ −ri cos θi ðβ0þÞf ¼ rf cos θf; ð28Þ

where θi and θf are, respectively, the incident and the
reflection angles and ri and rf are the particle velocities
before and after the bounce.1

The condition for a bounce to occur is ðβ0þÞi > βwall and
this led to the existence of a maximum incidence angle

θi < θpolymax ¼ arccos

�
1

2ri

�
: ð29Þ

Thanks to this result, we can confirm our analysis about
the chaotic features of the dynamics. Indeed, if μα=μ < 1

(⇒ ri < 1), we find θpolymax < π
3
and this imply the absence of

bounces even if the particle moves toward a specific wall.
On the other hand, if μα=μ ≥ 1 (⇒ ri ≥ 1), we have π

3
≤

θpolymax < π
2
and this means that a bounce is always possible,

given the triangular symmetry of the system.

Now, in order to find the relation between the particle
directions before and after a bounce, we have to find the
constants of motion when the point-Universe is nearby
the potential walls. In particular, thanks to the symmetry of
the system, we can consider only one of the three walls and
use the potential term Vðβ�Þ ¼ e−8βþ . In these conditions,
the constants of motion are the following:

K1 ¼ p−; ð30Þ

K2 ¼ Hα − pþ=2: ð31Þ

The first one comes from the fact that the Hamiltonian
Hα depends only from βþ, while the second one derives
from the Hamilton’s equations (24b) and (24c). We use the
constants of motion to write the two following conservation
laws:

ri sin θi sinð2μαHαiÞ ¼ rf sin θf sinð2μαHαfÞ ð32Þ

FIG. 2. 3D profile of the anisotropy velocity (26) with
μα=μ ¼ 0.1.

FIG. 3. 3D profiles of the anisotropy velocity (26) with μα=μ ¼
1 in the first figure and μα=μ ¼ 1.5 in the second one.

1Once the particle has bounced against one of the walls, the
values assumed by the constants of the free-particle motion
change and so the value of the anisotropy velocity changes too.
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Hαi −
1

4μ
arcsin

�
−

μ

μα
ri cos θi sinð2μαHαiÞ

�

¼ Hαf −
1

4μ
arcsin

�
μ

μα
rf cos θf sinð2μαHαfÞ

�
ð33Þ

obtained by using the parametrization (28) and an explicit
expression for ðpþ; p−Þ derived by the Hamilton’s
equations (24b).
After the substitution of (32) in (33) and the use of the

explicit expressions2 (26) for ri;f and (23) for Hα, respec-
tively, we are able to derive the following reflection law:

1

4μ

�
arcsin

�
cos θf

sin θi
sin θf

Δð2μpiþ; 2μpi
−Þ
�

þ arcsinðcos θiΔð2μpiþ; 2μpi
−ÞÞ

�

¼ 1

μα

�
arcsin

�
μα
μ
Δðμpf

þ; μpf
−Þ
�

þ − arcsin

�
μα
μ
Δðμpiþ; μpi

−Þ
��

; ð34Þ

where Δðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðxÞ þ sin2ðyÞ

p
.

In order to make a comparison with the standard case
(16), an expansion up to the second order for μ and μα is
required. The final result is

1

2
sinðθi þ θfÞ ¼ sin θið1þ Π2

fÞð1þ RfÞ
− sin θfð1þ Π2

i Þð1þ RiÞ; ð35Þ

where

(Π2 ¼ 1
6
μ2αp2

R ¼ 2
3
μ2 ðpþÞ4þðp−Þ4

ðpþÞ2þðp−Þ2 ;
ð36Þ

and it is easy to show that in the limit μ; μα → 0, we find the
standard reflection law (16) obtained by Misner [7].
Recovering this limit leads us to infer that the map above

still admits stochastic properties and therefore, when
μα < μ, sooner or later the parameter region where no
bounce takes place is reached, like in [18].

V. QUANTUM PROPERTIES OF THE
POLYMER MIXMASTER MODEL

In this section, we analyze the quantum properties of the
Mixmaster model in the polymer representation by solving
the WDW equation, which corresponds to the quantization

of the modified super-Hamiltonian constraint (22). The
WDW for the polymer Mixmaster model reads as follows:

�
−

1

μ2α
sin2ðμαpαÞ þ

1

μ2
sin2ðμpþÞ þ

1

μ2
sin2ðμp−Þ

þ 3ð4πÞ4
κ2

e4αV̂ðβ�Þ
�
Ψðpα; p�Þ ¼ 0; ð37Þ

where all the canonical variables have been promoted to
operators, using the approximate versions for pα and p�.
As we are interested in the behavior of the model near the

singularity, we consider the potential walls as perfectly
vertical and so we outline the particle motion as that one of
a free particle with appropriate boundary conditions (par-
ticle in a box).
We start with imposing V̂ðβ�Þ ¼ 0 in (37) and solving

the free-particle problem by searching for solutions of the
form

Ψðpα; p�Þ ¼ χðpαÞϕðp�Þ: ð38Þ

The eigenvalue problem for the anisotropy component
ϕðp�Þ of the wave function is the following:

�
1

μ2
sin2ðμpþÞ þ

1

μ2
sin2ðμp−Þ

�
ϕðp�Þ ¼ k2ϕðp�Þ ð39Þ

and can be solved by further separating the variables, i.e.,

8>><
>>:

h
1
μ2
sin2ðμpþÞ − k2þ

i
ϕþðpþÞ ¼ 0h

1
μ2
sin2ðμp−Þ − k2−

i
ϕ−ðp−Þ ¼ 0;

ð40Þ

where ϕðp�Þ ¼ ϕþðpþÞϕ−ðp−Þ and k2 ¼ k2þ þ k2−.
It can be easily shown that the eigenfunctions have the

following expression:

�
ϕþðpþÞ ¼ Aδðpþ − pμ

þÞ þ Bδðpþ þ pμ
þÞ

ϕ−ðp−Þ ¼ Cδðp− − pμ
−Þ þDδðp− þ pμ

−Þ;
ð41Þ

where A, B, C, D are integration constants and

�pμ
þ ¼ 1

μ arcsinðμkþÞ
pμ
− ¼ 1

μ arcsinðμk−Þ:
ð42Þ

Now, after the substitution of this result in the WDW
equation for the free particle [(37) with V̂ðβ�Þ ¼ 0], we can
also solve the problem for the isotropic component of the
wave function

�
−

1

μ2α
sin2ðμαpαÞ þ k2

�
χðpαÞ ¼ 0; ð43Þ

2In using the expression (23), we have neglected the potential
term Vðβ�Þ because we are sufficiently far from the region where
the potential becomes relevant.
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whose solution is

� χðpαÞ ¼ δðpα − p̄αÞ
p̄α ¼ 1

μα
arcsinðμαkÞ: ð44Þ

Does, in order to introduce the boundary conditions for
the free-particle motion, we approximate the triangular
well with a square one having the same area and vertical
walls, in a way that the potential term has the following
expression:

Vðα; β�Þ ¼
�
0 − LðαÞ

2
≤ β� ≤ LðαÞ

2

∞ elsewhere
: ð45Þ

The boundary conditions are imposed on the eigenfunc-
tions (41), expressed in coordinate representation after a
Fourier transformation, as follows:

8<
:

ϕþ
�
LðαÞ
2

	
¼ ϕþ

�
− LðαÞ

2

	
¼ 0

ϕ−

�
LðαÞ
2

	
¼ ϕ−

�
− LðαÞ

2

	
¼ 0:

ð46Þ

After solving the system (46), we are able to write the
complete solution for the anisotropy component of the
wave function, which has the following expression:

ϕm;nðβ�Þ ¼
1

2LðαÞ ðe
ipμ

þβþ − e−ip
μ
þβþe−imπÞ

× ðeipμ
−β− − e−ip

μ
−β−e−inπÞ; ð47Þ

where

�pμ
þ ¼ mπ

LðαÞ
pμ
− ¼ nπ

LðαÞ
; ð48Þ

and m; n ∈ Z are the quantum numbers associated to the
anisotropies ðβþ; β−Þ.
At last, the isotropic solution writes as

8<
:
p̄α¼ 1

μα
arcsinðμαkÞ

χðαÞ¼R
dpαχðpαÞeipαα¼eip̄αα¼e

i
μα

R
x

0
dtarcsinðμαkÞ

; ð49Þ

with

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

μ2
sin2

�
μ

mπ

LðαÞ
�
þ 1

μ2
sin2

�
μ

nπ
LðαÞ

�s
: ð50Þ

It is easy to check that, when μ and μα are taken
vanishing, the Misner solution is recovered and this feature
justifies a posteriori the implicit assumption to deal with
steady potential walls. Indeed, we are recovering the

adiabatic approximation which describes the anisotropies
quantum dynamics as fast with respect to the potential
walls variation.

A. Quasiclassical states near the singularity

As we stressed in Sec. IV, the Mixmaster semiclassical
dynamics preserves its chaotic features only if μα=μ ≥ 1.
Under this condition, we can deduce information about the
quasiclassical nature of the early Universe, after reproduc-
ing a calculation similar to Misner’s one [7]. In particular,
we know that the point-Universe experiences a never-
ending series of bounces toward the singularity and its
direction changes according to (35). As we mentioned
above, we can infer that the particle motion has a stochastic
nature. Then, we can assume that our analysis will not be
influenced by the choice of the initial conditions. In
particular, the choice of θi þ θf ¼ 60° for the first bounce
implies θi ¼ θ0i and θf ¼ θ0f (see Fig. 4) for all the
subsequent bounces and this simplifies the following
calculations.
Therefore, using (32), we find the relation

ri sinðμαHαiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðμαHαiÞ

p
rf sinðμαHαfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðμαHαfÞ

q ¼ sin θf
sin θi

¼ const; ð51Þ

since θi and θf are constant. Now, if we apply the sine
theorem to the triangles ABC and ABD (Fig. 5), we get

rfjαfj
sin 120°

¼ jαj=2
sin θi

; ð52Þ

rijαij
sin 120°

¼ jαj=2
sin θf

; ð53Þ

where we have used the initial condition θi þ θf ¼ 60°.

FIG. 4. Relation between the incident angles of two subsequent
bounces. The figure shows that the initial condition
θi þ θf ¼ 60° implies θi ¼ θ0i, in fact θ0i¼180°−120°−θf¼
180°−120°−ð60°−θiÞ¼θi.
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These last two relations imply that

rijαij sin θf ¼ rfjαfj sin θi; ð54Þ

so, combining (54) and (51), we obtain a quantity that
assumes the same value before and after the bounce,

r2i jαij sinðμαHαiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðμαHαiÞ

q
¼ r2fjαfj sinðμαHαfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðμαHαfÞ

q
: ð55Þ

In order to generalize this result, we consider the bounce
to occur at the time α≡ αn and we apply again the sine
theorem to the same triangles, finding the expressions

rijαij ¼ jαnj
sin 120°
2 sin θf

¼ Cjαnj; ð56Þ

rfjαfj ¼ jαnþ1j
sin 120°
2 sin θf

¼ Cjαnþ1j: ð57Þ

Substituting these relations in (55) and taking the
average value over a large number of bounces, we derive
the following adiabatic invariant:

hrjαj sinðμαHαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðμαHαÞ

q
i ¼ const: ð58Þ

This is not a constant of motion but it represents a
quantity that turns to have the same value just before each
bounce.

As we are interested in the existence of quasiclassical
states near the singularity, we can evaluate the quantity (58)
in the quasiclassical approximations Hα ≃ p̄α, pþ ≃ pμ

þ,
p− ≃ pμ

− [see (48)–(50)] and take the limit α → −∞.
Following this procedure, we obtain the same result derived
by Misner in [7], i.e.,

D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p E
¼ const; ð59Þ

which means that the occupation number is an adiabatic
invariant. Therefore, we can conclude that quasiclassical
states for the Mixmaster anisotropies are allowed toward
the singularity even in the polymer representation, provided
that the choice of the polymer parameters implies a chaotic
dynamics.

B. The free particle in an equilateral triangular well

In [7], Misner implemented the Bianchi IX quantization
through the observation that the eigenvalue problem was
that one of a free particle in an equilateral triangular
potential well, once you consider the exponential walls
as infinitely steep and this is naturally reasonable in the
limit α → −∞. He also estimated that the eigenvalues for a
triangle would be quite the same as those for a square, with
the advantage that the eigenfunctions and the eigenvalues
of the square problem are elementary and well-known. In
polymer-quantizing the Mixmaster model, we have also
approximated the triangular well with a square one of the
same area in order to have the possibility to verify the
consistence of our results through the comparison with
those ones obtained by Misner. However, here we want to
complete our study by discussing the validity of the
quantum analysis in the absence of the square approxima-
tion. Indeed, the triangular problem is solved explicitly in
the ordinary quantum mechanics, as shown in [31,32], so
these results can be used to derive the eigenvalues and the
eigenfunctions in the more general polymer formulation.
We start with considering an equilateral triangle with

vertices located at ð−α=2;− ffiffiffi
3

p
α=2Þ, (α; 0), ð−α=2; ffiffiffi

3
p

α=2Þ
in the ðβþ; β−Þ plane. The eigenvalue problem is represented
by the following Schrödinger equation:

½p2þ þ p2
− þ Vðα; β�Þ�ϕðp�Þ ¼ E2ϕðp�Þ; ð60Þ

where the potential term has the form3

Vðα;β�Þ ¼
�
0 − α

2
≤ βþ ≤ α;−α−βþffiffi

3
p ≤ β− ≤ α−βþffiffi

3
p

∞ elsewhere
: ð61Þ

FIG. 5. Geometric relations between two subsequent collisions.
In particular, here we fix α as the instant in which the first bounce
occurs, so the position of the potential wall is jβwallj ¼ jαj=2,
while the distances traveled by the point-Universe before and
after the bounce are, respectively, di ¼ rijαij and df ¼ rfjαfj.

3We notice that here the variable α is considered to be only a
parameter.
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The energy spectrum is given by

E2 ¼ 1

3α2

�
4π

3

�
2

ðm2 þ n2 −mnÞ; ð62Þ

where m, n are integer numbers and respect the condi-
tion m ≥ 2n.4

For the case m ¼ 2n, there is a single nondegenerate
eigenstate for each n,

ϕo
2n;nðβ�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

9
ffiffiffi
3

p
α2

s
½sinð2Aþðα − βþÞÞ

þ −2 sinðAþðα − βþÞÞ cosð
ffiffiffi
3

p
Aþβ−Þ�; ð63Þ

while for m > 2n, there are two degenerate eigenstates
depending on the symmetry properties

ϕþ
m;nðβ�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

9
ffiffiffi
3

p
α2

s
½− sinðAþðα − βþÞÞ cosðA−β−Þ

þ sinðBþðα − βþÞÞ cosðB−β−Þ
þ sinðCþðα − βþÞÞ cosðC−β−Þ�; ð64Þ

ϕ−
m;nðβ�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

9
ffiffiffi
3

p
α2

s
½− sinðAþðα − βþÞÞ sinðA−β−Þ

þ sinðBþðα − βþÞÞ sinðB−β−Þ
þ − sinðCþðα − βþÞÞ sinðC−β−Þ�: ð65Þ

In these expressions, we have done the following
substitutions to simplify the notation:

8>><
>>:

Aþ ¼ 2πn
3α A− ¼ 2πð2m−nÞ

3
ffiffi
3

p
α

Bþ ¼ 2πm
3α B− ¼ 2πð2n−mÞ

3
ffiffi
3

p
α

Cþ ¼ 2πðn−mÞ
3α C− ¼ 2πðnþmÞ

3
ffiffi
3

p
α

:

ð66Þ

In order to write the eigenfunctions of the triangular
problem in the polymer formulation, we have to solve the
polymer-modified Schrödinger equation, which means
imposing the boundary conditions on the free-particle
eigenstates. In polymer quantum mechanics, the
Hamiltonian in (60) changes its formal expression due to
the substitutions (20) and (21) needed to well-define the
operators pþ and p−, but this modification does not affect
the expression of the free-particle eigenstates that remains
the same of the ordinary quantum mechanics [see (41)].
Now, the simpler way to solve the problem is to impose the
boundary conditions on a linear combination of free-
particle eigenstates according to all the symmetries of
the triangular problem. However, the resulting expression
[e.g., (64)] is not the eigenfunction of the polymer
eigenvalue problem (as it happens for the eigenfunction
(47) of the square problem) since the polymer-Hamiltonian
is not invariant anymore under the rotational symmetries of
the triangular potential term just because of the substitu-
tions (20) and (21). In order to show it, we write the Fourier
transform of ϕþ

m;nðβ�Þ that has the following expression:

ϕþ
m;nðp�Þ ¼ ϕþ

1 ðp�Þ − ϕþ
2 ðp�Þ − ϕþ

3 ðp�Þ

¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2

9
ffiffiffi
3

p
α2

s
½ðeiAþαδðpþ − AþÞ − e−iAþαδðpþ þ AþÞÞ · ðδðp− − A−Þ þ δðp− þ A−ÞÞ

þ −ðeiBþαδðpþ − BþÞ − e−iBþαδðpþ þ BþÞÞ · ðδðp− − B−Þ þ δðp− þ B−ÞÞ
þ −ðeiCþαδðpþ − CþÞ − e−iCþαδðpþ þ CþÞÞ · ðδðp− − C−Þ þ δðp− þ C−ÞÞ�:

The action of the polymer-Hamiltonian on ϕþ
m;nðp�Þ is

�
1

μ2
sin2ðμpþÞ þ

1

μ2
sin2ðμp−Þ

�
ϕþ
m;nðp�Þ

¼ ½E2
1ϕ

þ
1 ðp�Þ − E2

2ϕ
þ
2 ðp�Þ − E2

3ϕ
þ
3 ðp�Þ�; ð67Þ

where

8>><
>>:

E2
1 ¼ 1

μ2
sin2ðμAþÞ þ 1

μ2
sin2ðμA−Þ

E2
2 ¼ 1

μ2
sin2ðμBþÞ þ 1

μ2
sin2ðμB−Þ

E2
3 ¼ 1

μ2
sin2ðμCþÞ þ 1

μ2
sin2ðμC−Þ;

ð68Þ

and this highlights the fact that ϕþ
m;nðp�Þ is not the

eigenfunction of the triangular problem in the polymer
representation. Nevertheless, in the limit α → −∞, we can
make a first order expansion of the sine function to show
that the coefficients E2

1, E
2
2, E

2
3 tend to the same expression

E2 that in this way can be considered to be the energy4We note that E2 → þ∞ for m; n → þ∞ if m ≥ 2n.
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eigenvalue. In fact, using the explicit expressions in (66),
we obtain

A2þ þ A2
− ¼ B2þ þ B2

− ¼ C2þ þ C2
−

¼ 1

3α2

�
4π

3

�
2

ðm2 þ n2 −mnÞ ¼ E2: ð69Þ

Since we are dealing with a limit to the cosmological
singularity (α → −∞) in order to approximate the potential
with a real well, the function (64) can be considered the
natural eigenstate of the triangular polymer problem. In this
limit, the relation (49) for the energy eigenvalue becomes

p̃α ¼
1

μα
arcsinðμαk̃Þ; ð70Þ

with k̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3α2

ð4π
3
Þ2ðm2 þ n2 −mnÞ

q
.

Also, the average values of the operators 1
μ2
sin2ðμpþÞ

and 1
μ2
sin2ðμp−Þ on this eigenstate assume the same

following expression:

p̃ ¼


1

μ2
sin2ðμpþÞ

�
¼



1

μ2
sin2ðμp−Þ

�

¼ 1

6α2

�
4π

3

�
2

ðm2 þ n2 −mnÞ: ð71Þ

Using the new semiclassical approximations Hα ≃ p̃α,
1
μ2
sin2ðμpþÞ ≃ p̃, 1

μ2
sin2ðμp−Þ ≃ p̃ in (58), we find the new

expression of the adiabatic invariant that writes as

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 −mn

p
i ¼ const: ð72Þ

This result still confirms the conservation of the quantum
numbers m, n and so the existence of quasiclassical
states near the singularity even without using the square
approximation.

VI. CONCLUDING REMARKS

We analyzed the Bianchi IX cosmology, as described in
the standard Misner variables, by implementing a semi-
classical and quantum treatment of the dynamics in terms
of the prescriptions of the so-called polymer paradigm. In
other words, we introduced a discrete structure in all the
minisuperspace variables, in order to account for cutoff
physics near the cosmological singularity.
As already clarified by the analyses in [18,20], the

implementation of such a cutoff paradigm is unable to
remove the singularity. In fact, here we demonstrate that the
singularity of Bianchi IX is still present if the configura-
tional variables are taken in the standard Misner choice,
since discretizing the logarithm of the natural Universe
scale factor (i.e., the α Misner variable) means discretizing

the Universe volume but without forbidding its zero value,
like it is done in [17] where α is replaced by the cubed scale
factor and the singularity is removed (see also [19] for a
related analysis in the case of the isotropic Universe).
The main merit of this paper is showing that the

equivalence between the semiclassical dynamics emerging
in polymer quantum cosmology and loop quantum cos-
mology depends strongly on the choice of the phase-space
variables. In loop quantum cosmology, the choice of these
variables is forced by the non-Abelian gauge structure
based on the SUð2Þ group emerging in the Ashtekar-
Barbero-Immirzi connection variables. Moreover, when
the semiclassical limit is taken in the minisuperspace
dynamics, the removal of the singularity can be considered
to be connected with fixing a minimum area scale (see in
this respect [12]). In polymer quantum mechanics, no
privileged set of configurational variables exist, except
by requiring the capability of the theory to reproduce the
semiclassical features of loop quantum cosmology (e.g., in
[19] is shown that to deal with a constant critical density
for the isotropic Universe is necessary to adopt just the
cubed scale factor, i.e., the space volume). Furthermore, in
the polymer approach, the cutoff physics comes out from
the discrete nature of the graph morphology on which the
addressed configurational variables are represented, since
this procedure implies the introduction of a minimal step
automatically. When this step coincides with the minimal
value of a geometric object (areas and volumes), like for the
cubed scale factor, a bouncing cosmology is expected to
emerge and the equivalence with loop quantum cosmology
is reliably guaranteed. The choice of the variable α is on a
different footing, considering that the polymer discretiza-
tion does not prevent the variable α from going to minus
infinity, with the consequence that the cosmological sin-
gularity survives. In other words, in this case we are dealing
with a discrete Universe volume which can also reach the
zero value in the semiclassical dynamics. This situation
suggests an intriguing implication regarding the possibility
to have also in loop quantum cosmology the zero eigen-
value in the volume spectrum and points out that a more
subtle implementation of the kinematical spectrum of the
space volume on a dynamical level is needed. In fact, this
feature of the general theory is hidden in the minisuper-
space applications, especially when the symmetry simpli-
fications make a bit obscure the role played by the zero
eigenvalue for the volume when it is weighted on a
semiclassical configuration. For related criticisms to loop
quantum cosmology in view of reproducing the full space
graph morphology, see [14,15,33,34].
Concerning the study of the chaotic properties of the

model, the most valuable result here achieved consists of
demonstrating that the semiclassical chaotic features of the
Bianchi IXcosmology survive only if the ratio of the polymer
scale parameter for the isotropic variable to that one for the
anisotropies is greater than or equal to the unity. This fact
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proves that the chaos survives only when the Universe
volume discretization is more relevant with respect to the
corresponding discretization of the anisotropies, with the
consequence that the main features of the Misner original
description [7,23] are preserved. On the contrary, a signifi-
cant discretization of the anisotropies (i.e., the physical d.o.f.
of the cosmological gravitational field) with respect to the
volume component leads to a suppression of the chaos, since
new features of the Kasner solution appear.
Finally, for the parameter space associated to the chaotic

features of the model, we reproduced in the polymer
paradigm all the considerations made by Misner on a
quantum level, recovering his result about the possibility to

have high occupation numbers for the anisotropy d.o.f., i.e.,
quasiclassical states, near enough to the singularity. In
particular, the possibility to have a quasiclassical singular
Universe appears in the considered scenario and it is
unaffected by the discretization of the variables.
In conclusion, the fact that all the semiclassical and

quantum features of the usual Bianchi IX model are
recovered when the chaos is preserved suggests that the
polymer lattice scale seems to be essentially a negligible
effect with respect to the physical content of the Misner
representation, except when it introduces a predominant
discretization for the anisotropy d.o.f. over that one for the
Universe volume.
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