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In the literature, the Newman-Janis algorithm (NJA) has been widely used to construct stationary and
axisymmetric spacetimes to describe rotating black holes. In addition, it has been recently shown that the
general stationary and axisymmetric spacetime generated through NJA allows the complete separability of
the null geodesic equations. In fact, the Hamilton-Jacobi equation in this spacetime is also separable if one
of the metric functions is additively separable. In this work, we further study the conditions for a separable
Klein-Gordon equation in such a general spacetime. The relations between the NJA spacetime and other
parametrized axially symmetric spacetimes in the literature are also discussed.
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I. INTRODUCTION

In Einstein’s general relativity (GR), it is well known that
isolated and rotating black holes are described by the Kerr
metric, which is axisymmetric and asymptotically flat. The
Kerr metric is a solution to the vacuum Einstein equation
and, according to the no-hair theorem, it is completely
described by two external observable classical parameters:
its mass and angular momentum. However, so far there is
still no solid proof that the no-hair theorem must be true.
Actually, any amount of violations of the no-hair theorem,
no matter how tiny it would be, may imply the necessity to
modify GR.
In order to examine whether the no-hair theorem is

indeed valid, several strong-field tests have been suggested,
such as using gravitational waves associated with black
hole perturbations, extreme mass-ratio inspirals, and black
hole shadows [1]. These strong-field tests can be imple-
mented in a theory-agnostic way, but this relies on the
construction of a modified spacetime deviating from the
Kerr metric where those deviations can be expressed
parametrically. In the literature, there have been several
parametrized Kerr-like spacetimes being proposed and
studied. See Refs. [2–14] and references therein.
In addition to the aforementioned parametric models, the

Newman-Janis algorithm (NJA) is another powerful tool to
construct stationary and axisymmetric spacetimes [15–17].
Starting with a static and spherically symmetric seed metric,

one can use NJA to generate the corresponding stationary
and axisymmetric spacetime. This approach not only
works well for the Kerr and Kerr-Newman metrics, it is
also widely used to construct effective models for rotating
black holes in different theories [18–25]. In fact, since the
derivation of rotating metrics in generally modified
theories of gravity could be much more difficult than
that of spherically symmetric metrics, NJA is also com-
monly used to investigate rotating black holes in modified
theories of gravity.
Even though NJA is powerful and easy to implement, it

still has some shortcomings. For example, it has been
proven that the rotating black holes generated through NJA
in some modified theories of gravity are actually not the
solution of the same theory [26,27]. Furthermore, there
are some ambiguities in the whole process of NJA [28],
such as those in the complexification of metric functions,
and the uniqueness of the complex coordinate transforma-
tions. However, NJA can also be regarded as a method to
construct parametrized Kerr-like spacetimes because the
resultant metric may depend on some arbitrary functions
which should be fixed via observational tests.
In order to treat the NJA spacetime as a parametrized Kerr-

like spacetime, one has to first investigate the properties of
such a resultant metric. In Ref. [25], it has been proven that
the general stationary and axisymmetric metric generated via
NJA allows for completely separable null geodesic equa-
tions. In this work, we will study the separability of the
Klein-Gordon equation for such a general spacetime derived
via NJA (we shall call it NJA metric from now on). The
separability of the Klein-Gordon equation [29] is crucial in
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dealing with several physical problems, such as the quasi-
normal modes and the scattering problem of the black hole.
We will show explicitly what conditions this class of
spacetimes actually count on to render the separability of
the Klein-Gordon equation. Then, we will compare the NJA
metric with other parametrized Kerr-like spacetimes in the
literature, which were proposed in Refs. [4,10,30,31],
respectively. They are characterized by the existence of
the Carter constant of motion and the separability of the
Hamilton-Jacobi equation. The metric proposed in [10],
especially, allows for the separability of the Hamilton-Jacobi
and the Klein-Gordon equations. We will illustrate the
relations between these parametrized metrics.
The rest of this paper is organized as follows. In Sec. II,

we review the general setup of NJA and the generation of the
general stationary and axisymmetric spacetime. Section III
presents the condition for the separability of the Klein-
Gordon equation in such a general spacetime. In Sec. IV, we
compare the NJA metric with other parametrized Kerr-like
spacetimes in the literature. We draw our conclusions and
discussions in Sec. V.

II. THE GENERAL NEWMAN-JANIS ALGORITHM

In this section, we review how NJA works to generate
stationary and axisymmetric spacetimes. We start with the
most general static and spherically symmetric spacetime as
a seed metric. This seed metric can be written as

ds2 ¼ −gðrÞdt2 þ dr2

fðrÞ þ hðrÞdΩ2; ð1Þ

where fðrÞ, gðrÞ and hðrÞ are functions of the radial
coordinate r. The first step of NJA is to introduce the
advanced null coordinates (u; r; θ;ϕ), in which u is
defined by

u≡ t − r�; ð2Þ
where r� is the tortoise radius satisfying

dr�
dr

≡ 1ffiffiffiffiffi
fg

p : ð3Þ

In the advanced null coordinates, the metric (1) reads

ds2 ¼ −gðrÞdu2 − 2

ffiffiffiffiffiffiffiffiffi
gðrÞ
fðrÞ

s
dudrþ hðrÞdΩ2: ð4Þ

Then, we express the inverse metric gμν of the spacetime
(4) by using a null tetrad Zμ

a ¼ ðlμ; nμ; mμ; m̄μÞ such that

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ; ð5Þ
where m̄μ is the complex conjugate ofmμ. Given the metric
(4), the components of the null tetrad Zμ

a can be written as

lμ ¼ δμr ; nμ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ
gðrÞ

s
δμu −

fðrÞ
2

δμr ; ð6Þ

mμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2hðrÞp

�
δμθ þ

i
sin θ

δμϕ

�
: ð7Þ

Note that these tetrad components satisfy the following
relations:

lμlμ ¼ nμnμ ¼ mμmμ ¼ lμmμ ¼ nμmμ ¼ 0; ð8Þ

lμnμ ¼ −1; mμm̄μ ¼ 1: ð9Þ

Next, we introduce the following complex coordinate
transformation:

u0 ¼ u − ia cos θ; r0 ¼ rþ ia cos θ; ð10Þ

where a is a constant and it can be treated as the spin
parameter of the final rotating black hole. Note that the θ
and ϕ coordinates remain unchanged, and the new coor-
dinates u0 and r0 are both real valued. After the coordinate
transformation, the metric functions are not functions of r0
only. In fact, they should be functions of the coordinate θ as
well, depending on how one complexifies the r0 coordinate.
In this work, we will skip the complexification procedure
as was first introduced in Ref. [20]. In this regard, we will
treat the metric functions after complexifications as some
arbitrary functions of r0 and θ for the time being:

fðrÞ→ Fðr0; θÞ; gðrÞ → Gðr0; θÞ; hðrÞ → Hðr0; θÞ:
ð11Þ

See also Ref. [18] for another way of complexification.
According to the coordinate transformation rule Z0μ

a ¼
ð∂x0μ=∂xνÞZν

a, the null tetrad expressed in the new coor-
dinate system can be written as

l0μ ¼ δμr0 ; n0μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr0; θÞ
Gðr0; θÞ

s
δμu0 −

Fðr0; θÞ
2

δμr0 ; ð12Þ

m0μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hðr0; θÞp

�
ia sin θðδμu0 − δμr0 Þ þ δμθ þ

i
sin θ

δμϕ

�
:

ð13Þ

From now on, we will drop the prime for the sake of
simplicity. Considering the new tetrad and using Eq. (5),
one can build the following line element:
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ds2 ¼ −Gdu2 − 2

ffiffiffiffi
G
F

r
dudr

þ 2asin2θ

�
G −

ffiffiffiffi
G
F

r �
dudϕ

þ 2a

ffiffiffiffi
G
F

r
sin2θdrdϕþHdθ2

þ sin2θ

�
H þ a2sin2θ

�
2

ffiffiffiffi
G
F

r
− G

��
dϕ2: ð14Þ

The last step of NJA is to rewrite the metric (14) in the
Boyer-Lindquist coordinate (t, r, θ, ψ) such that its gtψ
component is the only off-diagonal component. In general,
this can be achieved by introducing the following trans-
formations:

du ¼ dtþ a1ðrÞdr; dϕ ¼ dψ þ a2ðrÞdr; ð15Þ

where

a1ðrÞ ¼ −
XðrÞ
ΔðrÞ ; ð16Þ

a2ðrÞ ¼ −
a

ΔðrÞ ; ð17Þ

and

ΔðrÞ≡ Fðr; θÞHðr; θÞ þ a2sin2θ;

XðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; θÞ
Gðr; θÞ

s
Hðr; θÞ þ a2sin2θ: ð18Þ

It is important to emphasize that a1ðrÞ and a2ðrÞ are
functions of r only. They cannot depend on θ in order to
retain the integrability of the transformations (15) [19,32].
This means that ΔðrÞ and XðrÞ should also depend on r
only, even though the metric functions may contain
arbitrary dependence on θ. Note that the condition for
integrability of such transformations was first pointed out
in Ref. [32].
It should also be stressed that even though the NJA

approach we consider here and that in Ref. [20] are very
similar, there is actually a subtle difference. At the end of
the algorithm in Ref. [20], the author linked the new metric
functions [Fðr; θÞ, Gðr; θÞ, and Hðr; θÞ] to the seed metric
in a certain way [Eq. (14) in Ref. [20]], such that the
integrability condition of Eq. (15) is guaranteed. However,
in this paper we have not assumed any relation between
the new metric functions and the seed metric functions. The
new metric functions are assumed to be as general as
possible, as long as the integrability condition is satisfied.
Finally, the rotating metric in the Boyer-Lindquist

coordinate can be written as

ds2 ¼ −Gdt2 þ 2asin2θ

�
G −

ffiffiffiffi
G
F

r �
dtdψ

þHdθ2 þH
Δ
dr2

þ sin2θ

�
H þ a2sin2θ

�
2

ffiffiffiffi
G
F

r
−G

��
dψ2; ð19Þ

subject to the constraint that ΔðrÞ and XðrÞ given in
Eq. (18) should depend on r only. It should be emphasized
that we have not made any specific assumption on the seed
metric at the beginning. In addition, we have not considered
any particular way of complexification in the algorithm.
The only requirement is the integrability of the trans-
formations (15), which implies that ΔðrÞ and XðrÞ only
depend on r. Therefore, the metric (19) is the most general
rotating spacetime metric based on the applicability of
NJA. In Ref. [25], it has been shown that the general
spacetime (19) allows for the separability of the null
geodesic equations. However, this does not imply that
the Hamilton-Jacobi equation is also separable. In fact, the
separability of the Hamilton-Jacobi equation of this metric
requires that the metric function Hðr; θÞ should be addi-
tively separable. For the allowance of separable null
geodesic equations, this requirement is not necessary.
Note that the Kerr metric is recovered when

F ¼ G ¼ 1 −
2Mr
H

; H ¼ r2 þ a2cos2θ: ð20Þ

In this case, from Eq. (18), we obtain

ΔðrÞ ¼ r2 − 2Mrþ a2; XðrÞ ¼ r2 þ a2: ð21Þ

III. SEPARATION OF VARIABLES IN THE
KLEIN-GORDON EQUATION

The Klein-Gordon equation describes the evolution of a
massive scalar field Φ on curved spacetimes. It is given by

□Φ − μ2Φ

¼ 1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p ∂νΦÞ − μ2Φ ¼ 0; ð22Þ

where μ stands for the mass of the scalar field. Inserting the
metric (19) into Eq. (22) and using Eq. (18), the Klein-
Gordon equation can be written as

0 ¼ ∂rðΔY∂rΦÞ − a2

Δ
Y∂2

ψΦþ 2aY
Δ

ðΔ − XÞ∂t∂ψΦ

− Y2ðX − a2sin2θÞμ2Φ −
Y
Δ
X2∂2

tΦ

þ 1

sin θ
∂θðY sin θ∂θΦÞ þ Y

sin2θ
∂2
ψΦþ a2Ysin2θ∂2

tΦ;

ð23Þ
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where we have defined

Y ¼ Yðr; θÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðr; θÞ
Fðr; θÞ

s
: ð24Þ

Then, we consider the following decomposition:

Φðt; r; θ;ψÞ≡ e−iωtþimψΨðr; θÞ; ð25Þ

such that Eq. (23) can be rewritten as

∂rðΔY∂rΨÞ þ ∂y½Yð1 − y2Þ∂yΨ� þ Vðr; y;m;ωÞΨ ¼ 0;

ð26Þ

where we have defined y≡ cos θ. The effective potential
Vðr; y;m;ωÞ reads

Vðr; y;m;ωÞ

¼ Y

�
a2ð1 − y2Þμ2Y − Xμ2Y þ X2ω2

Δ
−

m2

1 − y2

− a2ð1 − y2Þω2 þ a2m2

Δ
þ 2a

Δ
ðΔ − XÞωm

�
: ð27Þ

Now, we investigate the necessary condition for Eq. (26)
to be separable in terms of r and y. First, according to the
first two terms of Eq. (26), a necessary condition is that
Yðr; yÞ must be a product of a function of r and a function
of y:

Yðr; yÞ ¼ YrðrÞYyðyÞ: ð28Þ

Furthermore, the asymptotic flatness condition requires that
Yð∞; yÞ → 1. This implies that YyðyÞ ¼ 1. Also, for the
separability of Eq. (26), the effective potential divided by
YrðrÞ, that is, Vðr; y;m;ωÞ=YrðrÞ, is required to be written
as a sum of a function of r and a function of y for any given
ω, m, and μ. It can be seen that the y2μ2Y on the right-hand
side of Eq. (27) violates this requirement, unless Y ¼
Yr ¼ constant. This constant is then fixed to unity due to
the asymptotic flatness condition. As a result, for the
general stationary and axisymmetric black holes generated
through NJA, the separability of the massive Klein-Gordon
equation requires Fðr; θÞ ¼ Gðr; θÞ. If this requirement is
fulfilled, considering the ansatz Ψðr; yÞ ¼ RðrÞΘðyÞ, the
Klein-Gordon equation can be separated into an angular
part and a radial part, which read

�
∂y½ð1 − y2Þ∂y� þ ðω2 − μ2Þa2y2

−
m2y2

1 − y2
− ðm − aωÞ2 þ C

�
ΘðyÞ ¼ 0; ð29Þ

and

�
∂rðΔ∂rÞ þ

ðωX − amÞ2
Δ

− ðX − a2Þμ2 − C

�
RðrÞ ¼ 0;

ð30Þ

respectively, where C is a separation constant.
Before closing this section, we would like to mention

that the condition Y ¼ 1 for the separability of the Klein-
Gordon equation can be relaxed when one considers a
massless scalar field (μ ¼ 0). The massless Klein-Gordon
equation can be separable as long as Y ¼ YrðrÞ and the
function YrðrÞ satisfies the asymptotic flatness condition
(Yrð∞Þ → 1) for a physically viable solution.

IV. COMPARISON WITH OTHER
PARAMETRIZED KERR-LIKE

METRICS

The general stationary and axisymmetric spacetime
obtained through NJA, i.e., Eq. (19), is described by three
functions: ΔðrÞ, XðrÞ, and Hðr; θÞ, and in principle it can
be used to parametrize possible deviations from the Kerr
spacetime. Therefore, in this section we will compare the
NJA metric (19) with other parametrization approaches in
the literature.

A. The Johannsen parametrized spacetime

The first parametrized Kerr-like spacetime we are going
to consider is the Johannsen parametrized spacetime [4],
whose spacetime metric is given by

gθθ ¼ Σ̃; grr ¼
Σ̃

Δ0A5ðrÞ
;

gtt ¼ −
Σ̃½Δ0 − a2A2ðrÞ2sin2θ�

Γ2
;

gtψ ¼ −
a½ðr2 þ a2ÞA1ðrÞA2ðrÞ − Δ0�Σ̃sin2θ

Γ2
;

gψψ ¼ Σ̃sin2θ½ðr2 þ a2Þ2A1ðrÞ2 − a2Δ0sin2θ�
Γ2

; ð31Þ

where

Γ≡ ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ;
Σ̃≡ r2 þ a2cos2θ þ f̃ðrÞ;
Δ0 ≡ r2 − 2Mrþ a2: ð32Þ

In can be seen that the Johannsen parametrized spacetime is
determined by four functions, A1ðrÞ, A2ðrÞ, A5ðrÞ, and
f̃ðrÞ. This metric is featured by the existence of the Carter
constant of motion, which implies the separability of the
Hamilton-Jacobi equation and null geodesic equations [4].
As we have mentioned previously, the NJA metric (19)

also allows for separable null geodesic equations [25].
In addition, the Hamilton-Jacobi equation of the NJA
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metric is separable when Hðr; θÞ is an additively separable
function. In fact, the two metrics (19) and (31) are
compatible if and only if

Hðr; θÞ ¼ Σ̃; and A5ðrÞA2ðrÞ2 ¼ 1: ð33Þ

Furthermore, if Eq. (33) is satisfied, it can be shown that

ΔðrÞ ¼ Δ0

A2
2

; XðrÞ ¼ ðr2 þ a2ÞA1

A2

: ð34Þ

It should be mentioned that the author of Ref. [25] has
shown that the shadow of the NJAmetric (19) is completely
determined by ΔðrÞ and XðrÞ only. This is consistent with
the results in Ref. [11], showing that the shadow of the
Johannsen parametrized spacetime only depends on the
deviation parameters in A1ðrÞ and A2ðrÞ.

B. The KSZ parametrized spacetime

In Ref. [7], Konoplya, Rezzolla and Zhidenko (KRZ)
proposed a general axisymmetric spacetime metric whose
metric functions are expressed as generic functions of r
and θ. We shall refer to this metric as KRZ spacetime.
In Ref. [10], furthermore, the condition of the separability
of the Klein-Gordon and the Hamilton-Jacobi equations for
the KRZ parametrized spacetime has been investigated, and
a subclass of KRZ spacetime is obtained (we then refer to it
as KSZ spacetime). The KSZ parametrized spacetime is
given by

gtt ¼ −
N2 −W2sin2θ

K2
; gtψ ¼ −Wrsin2θ;

gψψ ¼ K2r2sin2θ; gθθ ¼ r2RΣðrÞ þ a2cos2θ;

grr ¼
gθθRBðrÞ2
r2N2

; ð35Þ

where

W ¼ aRMðrÞ
r2RΣðrÞ þ a2cos2θ

;

N2 ¼ RΣðrÞ −
RMðrÞ

r
þ a2

r2
;

K2 ¼ r2R2
Σ þ a2RΣ þ a2N2cos2θ
r2RΣðrÞ þ a2cos2θ

þ aW
r

: ð36Þ

In Ref. [10], it has been proven that the KSZ spacetime
allows for the separability of the Klein-Gordon equation
and the Hamilton-Jacobi equation. Essentially, the KSZ
spacetime is determined by three functions, RΣðrÞ, RMðrÞ,
and RBðrÞ. Actually, only two of them are independent
since one can redefine the radial variable to fix one of these
functions.

The KSZ metric and the NJA metric (19) are compatible
if and only if

RΣðrÞ ¼
XðrÞ − a2

r2
;

RMðrÞ ¼
XðrÞ − ΔðrÞ

r
;

RBðrÞ ¼ 1;

Hðr; θÞ ¼ XðrÞ − a2sin2θ: ð37Þ

Therefore, the functions Δ and X completely determine RΣ
and RM. Also, according to Eq. (18), the last equation in
Eq. (37) implies Fðr; θÞ ¼ Gðr; θÞ, which is just the
necessary condition for the separability of the Klein-
Gordon equation of the metric (19) as we have proven
in Sec. III. Finally, since the third equation in Eq. (37) turns
out to be just a gauge choice, one can therefore conclude
that the KSZ parametrized spacetime is a subclass of the
metric (19). It should be also emphasized that if a metric
belongs to the NJA metric and its Klein-Gordon equation is
separable, then it must belong to the KSZ metric as well.

C. The PK parametrized spacetime

In Ref. [30], Papadopoulos and Kokkotas (PK) proposed
an innovative approach to construct the most general
axisymmetric spacetimes which respect the preservation
of the Carter constant and the asymptotic flatness con-
dition. In the contravariant form, the metric tensor can be
expressed as [30]

gtt ¼ A5ðrÞ þ B5ðyÞ
A1ðrÞ þ B1ðyÞ

;

gtψ ¼ A4ðrÞ þ B4ðyÞ
A1ðrÞ þ B1ðyÞ

;

gψψ ¼ A3ðrÞ þ B3ðyÞ
A1ðrÞ þ B1ðyÞ

;

gyy ¼ B2ðyÞ
A1ðrÞ þ B1ðyÞ

;

grr ¼ A2ðrÞ
A1ðrÞ þ B1ðyÞ

; ð38Þ

where AiðrÞ and BiðyÞ are arbitrary functions. The metric
(38) is the most general axisymmetric metric for the
preservation of the Carter constant and the asymptotic
flatness condition in the spacetime. In Ref. [30], it has been
shown that the Johannsen metric given in Eqs. (31) is just a
subclass of the metric (38).
As we have mentioned, the separability of the Hamilton-

Jacobi equation of the NJA metric (19) requires that the
function Hðr; yÞ is additively separable, i.e., Hðr; yÞ ¼
H1ðrÞ þH2ðyÞ. In fact, the NJA metric (19) and the PK
metric (38) are compatible if and only if
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A1ðrÞ ¼ H1ðrÞ; B1ðyÞ ¼ H2ðyÞ;
A2ðrÞ ¼ ΔðrÞ; B2ðyÞ ¼ 1 − y2;

A3ðrÞ ¼ −
a2

ΔðrÞ ; B3ðyÞ ¼
1

1 − y2
;

A4ðrÞ ¼ −
aXðrÞ
ΔðrÞ ; B4ðyÞ ¼ a;

A5ðrÞ ¼ −
XðrÞ2
ΔðrÞ ; B5ðyÞ ¼ a2ð1 − y2Þ: ð39Þ

Therefore, the NJA metric (19) is a subclass of the PK
metric, subject to the condition Hðr; yÞ ¼ H1ðrÞ þH2ðyÞ.
If the metric function Hðr; yÞ is not additively separable,
the NJA metric does not belong to the PK metric and its
Hamilton-Jacobi equation is not separable in general.
It would be worth mentioning that there exists a set of

PK metrics (region B in Fig. 1) which belongs to the NJA
metric, but does not belong to the Johannsen metric. This
particular set of metric contains an additively separable
Hðr; yÞ, but the function H2ðyÞ is an arbitrary function of y
and cannot be expressed as a2y2 þ constant.

D. Carter’s metric

Finally, we include the comparison of our metrics with
the metric proposed by Carter in Ref. [31] (we refer to it
as Carter’s metric). The Carter’s metric allows the sepa-
rability of the Hamilton-Jacobi equation and the analogs
Schrödinger equation. The separability of the latter
imposes a stronger restriction on the metric and the metric
can be expressed as a simple algebraic form [31]. The
metric can be written as

gtt ¼
ΔyðyÞQrðrÞ2 − ΔrðrÞQyðyÞ2

Zðr; yÞ ;

gtψ ¼ ΔrðrÞPyðyÞQyðyÞ − ΔyðyÞPrðrÞQrðrÞ
Zðr; yÞ ;

gψψ ¼ ΔyðyÞPrðrÞ2 − ΔrðrÞPyðyÞ2
Zðr; yÞ ;

gyy ¼
Zðr; yÞ
ΔyðyÞ

; grr ¼
Zðr; yÞ
ΔrðrÞ

; ð40Þ

where ΔrðrÞ, PrðrÞ, QrðrÞ, ΔyðyÞ, PyðyÞ, and QyðyÞ are
arbitrary functions, subject to the condition that the
function Z ≡ PrQy − PyQr is an additively separable
function, i.e., Zðr; yÞ ¼ Z1ðrÞ þ Z2ðyÞ.
First of all, it can be shown that the Carter’s metric is a

subclass of the PK metric according to the following
allocations:

A1ðrÞ ¼ Z1ðrÞ; B1ðyÞ ¼ Z2ðyÞ;
A2ðrÞ ¼ ΔrðrÞ; B2ðyÞ ¼ ΔyðyÞ;

A3ðrÞ ¼ −
Q2

r

Δr
; B3ðyÞ ¼

Q2
y

Δy
;

A4ðrÞ ¼ −
PrQr

Δr
; B4ðyÞ ¼

PyQy

Δy
;

A5ðrÞ ¼ −
P2
r

Δr
; B5ðyÞ ¼

P2
y

Δy
: ð41Þ

According to Eq. (39) and the results in Ref. [30] [Eq. (14)
in that paper], we find that the NJA metric and the
Johannsen metric share the same B2, B3, B4, and B5 when
they are expressed under the PK parametrization. This
particular set of B2, B3, B4, and B5 is equivalent to the
following choice of Carter’s metric functions:

Δy ¼ 1 − y2; Py ¼ að1 − y2Þ; Qy ¼ 1: ð42Þ

To proceed, we fix these functions with Eq. (42) and
compare the Carter’s metric with the KSZ metric (35). We
find that after fixing RBðrÞ ¼ 1, these two metrics are
related through the allocations

ΔrðrÞ ¼ r2RΣðrÞ − rRMðrÞ þ a2;

PrðrÞ ¼ r2RΣðrÞ þ a2; QrðrÞ ¼ a;

Zðr; yÞ ¼ r2RΣðrÞ þ a2y2: ð43Þ

Therefore, the KSZ metric is a subclass of the Carter’s
metric.
Furthermore, the NJA metric is compatible with the

Carter’s metric if and only if

FIG. 1. This Venn diagram shows the relations among the sets
of different metrics discussed in this paper. The NJA metric is
given by the union A ∪ B ∪ C ∪ D. The Johannsen metric is
depicted by the union C ∪ D ∪ E. The KSZ metric corresponds to
region D. The Carter’s metric is depicted by the union D ∪ F.
Finally, the PK metric is given by the region enclosed by the
dashed rectangle.
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Δy ¼ 1 − y2; Py ¼ að1 − y2Þ; Qy ¼ 1;

Δr ¼ ΔðrÞ; Pr ¼ XðrÞ; Qr ¼ a: ð44Þ

In this case, we have

Zðr; yÞ ¼ Hðr; yÞ ¼ XðrÞ − a2ð1 − y2Þ; ð45Þ

which reduces to the last equation of (37). Therefore, the
intersection of the NJA metric and the Carter’s metric is
exactly the KSZ metric in which the Klein-Gordon equa-
tion is separable.
Finally, if we relax the condition of Eq. (42) or allow

QrðrÞ to be a varying function of r, the resultant Carter’s
metrics would neither belong to the NJA metric nor the
Johannsen metric.

E. Discussions

In Fig. 1, we show the Venn diagram to illustrate the
relations between the sets of NJA metric (A ∪ B ∪ C ∪ D),
the Johannsen metric (C ∪ D ∪ E), the KSZ metric (region
D), the Carter’s metric (D ∪ F), and the PK metric
(enclosed by the dashed rectangle). Except for region A
where Hðr; yÞ is not additively separable, all the metrics
represented in this Venn diagram allow for a separable
Hamilton-Jacobi equation and they belong to the PK
metric. Region E represents the Johannsen metrics whose
A5ðrÞA2ðrÞ2 ≠ 1, so they do not belong to the set of NJA
metrics. Region B represents the NJA metrics whose metric
function Hðr; yÞ is additively separable but cannot be
written as H1ðrÞ þ a2y2. The intersection of the sets of
the NJA metrics and the Johannsen metrics is the region
C ∪ D. The metrics in this intersection satisfy Eq. (33).
Region D stands for the KSZ metric and it is a subclass of
the Johannsen metric and the NJA metric. The metrics in
this region allow for a separable Klein-Gordon equation.
Finally, the Carter’s metric is depicted in the region D ∪ F.
Region F corresponds to the metrics in which the condition
(42) is relaxed or QrðrÞ is not a constant. The metrics in
region F would neither belong to the NJA metric nor the
Johannsen metric.

V. CONCLUSIONS

In this work, we consider the general stationary and
axisymmetric spacetime generated through NJA and study
what criteria the metric functions should satisfy in order to
guarantee the separability of the Klein-Gordon equation.
In general, the original spacetime metric is described by

three functions: ΔðrÞ, XðrÞ, and Hðr; θÞ. We have found
that a relation between XðrÞ andHðr; θÞ should be imposed
for the separability of the Klein-Gordon equation.
Then, we have studied the relations between the NJA

metric and four parametrized Kerr-like spacetimes in the
literature. The first one is the Johannsen parametrized
metric [4] which allows for the separability of the
Hamilton-Jacobi equation. We have found the condition
for the intersection of the Johannsen and the NJA metrics
where the two metrics are compatible. The second metric
is the KSZ metric [10] in which the Hamilton-Jacobi and
the Klein-Gordon equations are both separable. We have
shown that the set of the KSZ metric lies in the
intersection of the sets of the NJA and the Johannsen
metrics. The third metric is the PK metric [30], which is
the most general axisymmetric metric for the preservation
of the Carter constant and the asymptotic flatness con-
dition in the spacetime. We have found that the metric
function Hðr; yÞ in the NJA metric should be additively
separable, otherwise it does not belong to the PK metric.
Finally, the fourth metric that we have considered is the
Carter’s metric [31]. This metric allows for a separable
Hamilton-Jacobi equation and the analogs Schrödinger
equation. We have found that by adjusting properly the
metric functions [the condition (42) and QrðrÞ ¼ a], the
Carter’s metric reduces to the KSZ metric. The Venn
diagram in Fig. 1 illustrates the relations among these sets
of metrics.
The separability of the Klein-Gordon equation in the

general stationary and axisymmetric spacetime is known to
be important in studying several physical problems, such
as quasinormal modes and scattering problems around
the rotating black hole. This investigation can be further
extended to the separability condition for the Maxwell
equations and gravitational perturbation equations. We
leave these issues for our future works.
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