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We investigate the three-dimensional, general relativistic Poynting-Robertson (PR) effect in the case of
rigidly rotating spherical source which emits radiation radially in the local comoving frame. Such radiation
field is meant to approximate the field produced by the surface of a rotating neutron star, or by the central
radiating hot corona of accreting black holes; it extends the purely radial radiation field that we considered
in a previous study. Its angular momentum is expressed in terms of the rotation frequency and radius of the
emitting source. For the background we adopt a Kerr spacetime geometry. We derive the equations of
motion for test particles influenced by such radiation field, recovering the classical and weak-field
approximation for slow rotation. We concentrate on solutions consisting of particles orbiting along circular
orbits off and parallel to the equatorial plane, which are stabilized by the balance between gravitational
attraction, radiation force and PR drag. Such solutions are found to lie on a critical hypersurface, whose
shape may morph from prolate to oblate depending on the Kerr spin parameter and the luminosity, rotation
and radius of the radiating sphere. For selected parameter ranges, the critical hypersurface intersects the
radiating sphere giving rise to a bulging equatorial region or, alternatively, two lobes above the poles. We
calculate the trajectories of test particles in the close vicinity of the critical hypersurface for a selected set of
initial parameters and analyze the spatial and angular velocity of test particles captured on the critical
hypersurface.

DOI: 10.1103/PhysRevD.100.104053

I. INTRODUCTION

Radiation emitted from a central massive body has long
been known to affect the orbit of gravitating particles both
as an result of the radial, outward-directed force and
“radiation drag” caused by the so-called Poynting-
Robertson (PR) effect [1,2]. Originally studied in relation
to the motion of dust, comets and meteors in the solar
systems [3–5], the PR effect has been discussed in more
recent years in the context of matter accreting toward
compact objects, especially black holes (BHs) of all masses
and neutron stars (NSs), which radiate at a sizable fraction
of their Eddington luminosity or very close to it (e.g., [6]).
This has motivated extending the treatment of the PR effect
to the more general framework of general relativity (GR)
[7–10]. Early attempts at handling the nongeodesic

(dissipative) PR equations of motion in GR were based
on a direct spacetime approach [7,11–14]) and provided a
limited, though inspiring, description of the effect. Only in
2009–2011 Bini and his collaborators [15,16] derived a full
GR description of the PR effect by using a more suitable
formalism (the observer-splitting formalism [17–21]).
Recently, the Lagrangian formulation of the PR effect,
involving an analytical form of the Rayleigh potential, has
been developed [22–24]. Moreover, we have recently
worked out the three-dimensional (3D) generalization of
the two-dimensional model (2D) of Bini and collaborators
[25]. The radiation field assumed in [25] consists of
photons emitted in a purely radial direction with respect
to the zero angular momentum observer (ZAMO) frame of
the Kerr spacetime background. In that case a coherent set
of dynamical equations is derived, based on which particle
motion under the combined effect of radiation and gravity
is determined and the critical hypersurface, where all forces
attain equilibrium, is found. New effects such as the
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latitudinal drift of the trajectories and existence of sus-
pended circular orbits were investigated. Based on these
results, Wielgius performed a 3D treatment by employing
finite size radiation effects framed in a simplified Kerr
spacetime, including only linear terms in the spin [26].
In the present work we adopt a different prescription

for the 3D radiation field, which provides a somewhat
more realistic description of emission properties of
rotating compact objects or the hot coronae around
them. Its properties are designed to match at the equator
those of the 2D radiation field introduced in [16]. The
paper is structured as follows: in Sec. II we introduce
the geometrical setup of our model. Section III describes
the radiation field, an approximation of that emitted
from a rigidly rotating spherical surface. In Sec. IV we
derive the GR equations of motion for test particles in
the Kerr spacetime under the influence of the radiation
field. In Sec. V we discuss the salient features of the
critical hypersurface on which radiation forces balance
gravity, and present calculations of selected orbits in the
vicinity of critical hypersurfaces. Our conclusions are
in Sec. VI.

II. GEOMETRIC SETUP

We consider a central compact object, whose outer
spacetime geometry is described by the Kerr metric.
Using geometric units (c ¼ G ¼ 1) and metric signature
ð−;þ;þ;þÞ, the line element of the Kerr spacetime
expressed in Boyer-Lindquist coordinates, parametrized
by themassM and theKerr parameter (spin) a, reads as [27]:

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mra
Σ

sin2θdt dφ

þ Σ
Δ
dr2 þ Σdθ2 þ ρsin2θdφ2; ð1Þ

where Σ ≡ r2 þ a2 cos2 θ, Δ ≡ r2 − 2Mr þ a2, and
ρ≡ r2 þ a2 þ 2Ma2r sin2 θ=Σ. The determinant of the
Kerr metric reads g ¼ −Σ2sin2θ. In the Kerr spacetime
the radial coordinates of the outer event horizon Rþ and of
the static limit (outer boundary of the ergosphere) RSL are
given by [28]

Rþ ¼ Mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ;

RSL ¼ Mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2cos2θ

p
Þ; ð2Þ

respectively.
We consider the zero angular momentum observers

(ZAMOs), whose future-pointing unit normal to the spatial
hypersurfaces is given by

n ¼ 1

N
ð∂t − Nφ∂φÞ; ð3Þ

where N ¼ ð−gttÞ−1=2 is the time lapse function and Nφ ¼
gtφ=gφφ the spatial shift vector field. We conduct our
investigations outside the event horizon, where the time
coordinate hypersurfaces are spacelike, i.e., gtt < 0. An
orthonormal frame adapted to the ZAMOs is

et̂ ¼ n; er̂ ¼
1ffiffiffiffiffiffi
grr

p ∂r;

eθ̂ ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ; eφ̂ ¼ 1ffiffiffiffiffiffiffigφφ
p ∂φ: ð4Þ

All the vector and tensor indices (e.g., vα, Tαβ) associated to
the ZAMO frame will be labeled by a hat (e.g., vα̂; T α̂ β̂),
instead all the scalar quantities measured in the ZAMO
frame (e.g., f) will be followed by (n) [e.g., fðnÞ]. In the
kinematic decomposition of the ZAMO congruence, we
have that the nonzero ZAMO kinematic quantities are
acceleration aðnÞ ¼ ∇nn, expansion tensor along the φ̂-
direction θφ̂ðnÞ, and the relative Lie curvature vector
kðLieÞðnÞ (see Table 1 in [25] for their explicit expressions
and for further details).

III. RADIATION FIELD

We consider a radiation field consisting of a flux of
photons traveling along null geodesics in the Kerr geom-
etry. The related stress-energy tensor is [25]

Tμν ¼ Φ2kμkν; kμkμ ¼ 0; kμ∇μkν ¼ 0; ð5Þ

whereΦ is a parameter linked to the radiation field intensity
and k is the photon four-momentum field. By splitting k
with respect to the ZAMO frame, we obtain

k ¼ EðnÞ½nþ ν̂ðk; nÞ�;
ν̂ðk; nÞ ¼ sin ζ sin β er̂ þ cos ζ eθ̂ þ sin ζ cos β eφ̂; ð6Þ

where ν̂ðk; nÞ is the photon spatial unit relative velocity
with respect to the ZAMOs, β and ζ are the two angles
measured in the ZAMO frame in the azimuthal and polar
direction, respectively (see Fig. 1). The radiation field is
governed by the two impact parameters (b; q), associated
respectively with the two emission angles (β; ζ). The
photon energy, EðnÞ, and the photon angular momentum
along the polar direction θ̂, Lθ̂ðnÞ, with respect to the
ZAMO frame is expressed in the frame of distant static
observer by the following formulas [25]

EðnÞ ¼ E
N
ð1þ bNφÞ; ð7Þ

Lθ̂ðnÞ≡ EðnÞ cos β sin ζ ¼ Lzffiffiffiffiffiffiffigφφ
p ; ð8Þ

PAVEL BAKALA et al. PHYS. REV. D 100, 104053 (2019)

104053-2



where E ¼ −kt > 0 is the conserved photon energy, Lz ¼
kφ is the conserved angular momentum along the polar z
axis orthogonal to the equatorial plane, and b ¼ Lz=E is the
azimuthal photon impact parameter, where all these quan-
tities are measured by a distant static observer. At this
impact parameter, we associate the relative azimuthal angle
in the ZAMO frame [25]

cos β ¼ bE
sin ζ ffiffiffiffiffiffiffigφφ

p EðnÞ ¼
bN

sin ζ ffiffiffiffiffiffiffigφφ
p ð1þ bNφÞ : ð9Þ

The photon four-momentum components in the Kerr
geometry are given by [27]

kt ¼ Σ−1ðab − a2sin2θ þ ðr2 þ a2ÞPΔ−1Þ;
kr ¼ srΣ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðrÞ

q
;

kθ ¼ sθΣ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θb;qðθÞ

q

kφ ¼ Σ−1ðbcosec2θ − aþ aPΔ−1Þ; ð10Þ

where P≡ r2 þ a2 − ba, and the pair of signs sr, sθ
describes the orientation of the radial and latitudinal
evolution, respectively. The radial and latitudinal effective
potentials are respectively [27]

Rb;qðrÞ ¼ ðr2 þ a2 − abÞ2 − Δ½qþ ðb − aÞ2�; ð11Þ

Θb;qðθÞ ¼ qþ a2cos2θ − b2cot2θ; ð12Þ

where

q≡
�
kθ
kt

�
2

þ
�
b tan

�
π

2
− θ

��
2

− a2cos2θ; ð13Þ

is the latitudinal photon impact parameter related to
Carter’s constant of motion Q through [27]

q ¼ Q=E2: ð14Þ

A. Radiation field from a spherical
rigidly rotating surface

In the previous paper [25] we considered a test radiation
field made by photons moving along purely radial direc-
tions in any ZAMO frame and even at infinity, independ-
ently of the radial coordinate. Here we consider a somewhat
more complex model, consisting of a radiation field emitted
from a spherical surface with a radius R⋆ centered at the
origin of the Boyer-Lindquist coordinates and rigidly
rotating with angular velocity Ω⋆. The azimuthal motion
of the photons, as measured by a static observer at infinity,
is now determined not only by frame-dragging (as in [25]),
but also by rotation of the surface. The present radiation
field model is thus more general than our previous model.
The four-momentum of a photon outgoing from a rigidly

rotating spherical surface in a purely radial direction with
respect to the corotating local observer frame labeled by
fehti; ehri; ehθi; ehφig is

FIG. 1. Visual representation of the radiation field-test particle interaction geometry. The spatial location of the test particle is
described by Boyer-Linquist coordinates fr; θ;φg. The ZAMO local frame is fet̂; er̂; eθ̂; eφ̂g. The photons of the radiation field travel
along null geodesics with four-momentum k. Two photon impact parameters, b and q are related respectively to the two angles β and ζ,
measured in the local ZAMO frame. The test particle moves with a velocity described by the magnitude ν and two angles α and ψ ,
measured in the local ZAMO frame.
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k ¼ ehti þ ehri: ð15Þ

In the Kerr geometry (1), the timelike unit surface four-
velocity, Usurf, of the stationary observer is

Usurf ¼ N ð∂ t þ Ω⋆∂φÞ; ð16Þ

where

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt −Ω⋆ð2gtφ þ gφφΩ⋆Þ

p : ð17Þ

Here the metric coefficients are evaluated at the radial
coordinate R⋆ and at the polar coordinate of the photon
emission θe. The corotating orthonormal frame compo-
nents related to the stationary observer sitting at the
radiating surface take the following form

ehti ¼ Usurf; ehri ¼
1ffiffiffiffiffiffi
grr

p ∂r; ehθi ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ;

ehϕi ¼
N ½ðgtφ þ gφφΩ⋆Þ∂t þ ðgtt þ gtφΩ⋆Þ∂φ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gtφ2 − gφφgtt
q : ð18Þ

Then, the photon four-momentum (15) can be rewritten in
such coordinate frame as

k ¼ N∂t þ
1ffiffiffiffiffiffi
grr

p ∂r þ Ω⋆N∂φ: ð19Þ

A straightforward calculation yields the azimuthal impact
parameter b ¼ −kφ=kt

b≡ −
gtφ þ gφφΩ⋆
gtt þ gtφΩ⋆

¼ sin2θe½ðR4⋆ þ a2BÞΩ⋆ − 2MaR⋆�
½R2⋆ − 2MR⋆ þ aðacos2θe þ 2MR⋆Ω⋆sin2θeÞ�

; ð20Þ

where

B ¼ ða2 þ R2⋆Þcos2θe þ 2MR⋆sin2θe þ R2⋆ ð21Þ

b can be approximated in terms of the photon impact
parameter in the Schwarzschild geometry, bSchw, plus a
correction term of first order in the spin parameter

b ¼ bSchw −AaþOða2Þ; ð22Þ

where

bSchw ¼ R2⋆Ω⋆sin2θe
1 − 2M=R⋆

; ð23Þ

A ¼ 2Msin2θeðMR3⋆Ω2⋆sin2θe þ R⋆ − 2MÞ
ðR⋆ − 2MÞ2 : ð24Þ

From Eq. (22) it is apparent that the radially outgoing
photon has the same specific angular momentum of a
matter element located at the emission point on the rotating
surface [see Eq. (23)]. In addition, the influence of frame-
dragging entails the decrease of the value of the emitted
photon impact parameter of the radiation field [see
Eq. (24)]. The azimuthal photon impact parameter is not
fixed, but instead it ranges from the minimum value
bðθe ¼ 0Þ ¼ 0 (describing photons emitted from the poles
of the surface along polar axis) to the maximum value
bðθe ¼ π=2Þ (corresponding to photons emitted in the
equatorial plane).
The latitudinal photon impact parameter, q, is obtained

from the condition

Θb;qðθeÞ ¼ 0; ð25Þ

resulting from the absence of the polar component of the
photon four-momentum (19). From Eqs. (12) and (25) we
can express q as a function of the photon emission polar
angle θe as

q ¼ b2cot2θe − a2cos2θe: ð26Þ

This relation also fixes the Carter constant Q for a given
photon trajectory through Eq. (14). The latitudinal potential
(12) is independent of the radial coordinate and therefore
the polar angle, θ ¼ θe, along a given photon trajectory is
conserved. Therefore in the case of our radiation field
which is emitted radially in the frame of the rigidly rotating
emitting surface, the latitudinal photon impact parameter q
(and also the Carter constant Q) is fully determined by the
emission angle θe, the azimuthal photon impact parameter
bðθe;Ω⋆;R⋆; aÞ and the Kerr parameter (spin) a. As in our
previous paper [25], such setup for the radiation field
significantly simplifies the integration of test particle
trajectories in that only one photon trajectory [described
by the corresponding pair (b; q)] emitted at θe can reach the
instantaneous test particle position at the polar coordi-
nate θ ¼ θe.
Naturally, also in the arbitrary ZAMO frame (4), the

local polar component of the photon four-momentum
remains identically zero (kθ̂ ¼ kθ=

ffiffiffiffiffiffi
gθθ

p ¼ 0). Then using
Eq. (6), we can easily see that the local polar angle of the
photon four-momentum in the ZAMO frame always takes
the value ζ ¼ π=2. In view of the last condition, we have
that the azimuthal photon angle β, given by Eq. (9), takes
the form

cos β ¼ bNffiffiffiffiffiffiffigφφ
p ð1þ bNφÞ : ð27Þ

We adopt the radiation field we introduced in this section
as a heuristic approximation of the emission from a rotating
NS or from the surface of a rotating hot corona in the close
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vicinity of a BH, and therefore we will consider hereafter
only the case of outgoing photons, i.e., sin β ≥ 0.
Considering only the emission of an individual light ray
(that orthogonal to the surface) from each point of the
rotating sphere, as done in the present study, makes the
problem analytically treatable and represents a clear step
forward in capturing the behavior of test particle under the
influence of the gravitational and radiation field generated
by (or around) rotating compact objects. More realistic
models should include the whole range of outgoing light
ray directions as well as the angular dependence of the
surface emissivity.

1. Emission from NS surface

Let us consider a radiation field emitted from the surface
a rotating NS. The Kerr parameter a is expressed as a
function the NS angular velocity Ω⋆ through

a ¼ CΩ⋆; ð28Þ
where C depends on the NS structure and equation of state
[29–31]. For a NS of radius R⋆ ¼ 11 km and mass
M ¼ 1.5 M⊙, we choose C ¼ 1.1X 10−4 s (see, e.g., [29–
32] for details). A moderate NS rotation frequency of f⋆ ≡
Ω⋆=2π ¼ 300 Hz corresponds to a ≈ 0.21. In this case the
maximum value of the azimuthal photon impact parameter
on the NS equator would be bðθe ¼ π=2Þ ≈ 0.43. For a NS
rotation frequency of f⋆ ¼ 900 Hz we get a ≈ 0.62 and
bðθe ¼ π=2Þ ≈ 1.29. In the nonrotating case (a ¼ 0,
Schwarzschild spacetime) the radiation field has b ¼ 0,
which is identical with the zero spin test field described in
[25]. Note, that the physically meaningful range of rotation
frequency is limited by the value of the NS break-up
frequency from above.

2. Emission from a hot corona around a BH

Let us now consider a radiation field emitted from a
spherical corona which is rigidly rotating with angular
velocity Ω⋆. We assume that the Kerr parameter, a, is
determined entirely by the central BH. We restrict our
consideration here only positive values of the angular
velocity Ω⋆, i.e., emitting surfaces corotating with the BH.
The existence of the emission surface rotating with Ω⋆ ≥

0 and located on R⋆ requires that the four-velocity Usurf
takes real values. This corresponds to positive values of N
on the equatorial plane (θe ¼ π=2), where Usurf reaches its
maximum value. Such condition translates into

Ω−ðR⋆; π=2Þ < Ω⋆ < ΩþðR⋆; π=2Þ;

Ω�ðR⋆; π=2Þ ¼
−gtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtφ2 − gφφgtt

q
gφφ

; ð29Þ

which exclude the possibility of superluminal rotation of
the emission surface. Note that in the investigated case of

Ω⋆ > 0, the minimum value Ω−ðR⋆; 0Þ is relevant only
inside of the BH ergosphere, where there cannot be static
observers.

3. b-range in the Schwarzschild geometry

In the Schwarzschild case, the photon impact parameter
values (23) are always positive and limited from above only
by the condition Ω⋆ < ΩþðR⋆; π=2Þ (see left panel in
Fig. 2). The maximum frequency ΩþðR⋆; π=2Þ is indeed
unphysical. If we consider a emitting rotating hot corona
in the background of the Schwarzchild geometry, the
rotation frequency f⋆ ¼ 300 Hz corresponds to the value
of bSchw ≈ 0.575, while the higher rotation frequency f⋆ ¼
900 Hz corresponds to the value of bSchw ≈ 1.725.

4. Estimation of b-range in Kerr geometry

In the Kerr metric, frame-dragging makes matters
more intricate. The upper limit of b is again controlled
by the condition Ω⋆ < ΩþðR⋆; π=2Þ, but contrary to the
Schwarzschild case, the azimuthal photon impact param-
eter b can be both positive and negative. We can distinguish
the following cases for the behavior of the azimuthal
photon impact parameter b (see the right panel in Fig. 2):

(i) for Ω⋆ ¼ ΩZAMOðR⋆Þ b ¼ 0, as the emitting surface
rotates with the same angular velocity as the
spacetime (red curve);

(ii) for Ω⋆ ≥ ΩZAMOðR⋆Þ, b ≥ 0 (green region);
(iii) for Ω⋆ ≤ ΩZAMOðR⋆Þ b ≤ 0 (red region).

If the emitting surface is located inside the ergosphere,
where the surface rotation frequency is limited by the
condition 0 < Ω−ðR⋆; 0Þ < Ω⋆, we can distinguish the
following additional cases:

(i) for Ω∞ðR⋆Þ ≤ Ω⋆ ≤ ΩZAMOðR⋆Þ photons can pos-
sess extreme negative values of b reaching −∞ for
Ω⋆ → Ω∞ðR⋆Þ (see the bottom part and boundary of
the red region).

(ii) for Ω⋆ ¼ Ω∞ðR⋆Þ with Ω∞ðR⋆Þ≡ −gtt=gtϕ >
Ω−ðR⋆; 0Þ, the conserved photon energy is kt ¼ 0
and limΩ⋆→Ω�

∞
bðθe¼π=2Þ¼∓∞ (see the cyan curve);

(iii) for Ω−ðR⋆; 0Þ < Ω⋆ ≤ Ω∞ðR⋆Þ, the conserved pho-
ton energy is negative kt < 0, and photons cannot
escape from the ergosphere. Their b is positive,
reaching þ∞ for Ω⋆ → Ω∞ðR⋆Þ. Such radiation
fields cannot affect physical processes outside the
ergosphere (see the beige region and [33] for further
details).

B. Intensity parameter

Since the photon four-momentum k is completely
determined by the (b; q) pair, the coordinate dependence
of Φ then follows from the conservation equations
Tαβ

;β ¼ 0. Due to the absence of photon latitudinal motion
(kθ ¼ 0) and the symmetries of the Kerr spacetime, these
can be written as
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0 ¼ ∇βðΦ2kβÞ ¼ 1

Σ sin θ
∂rðΣ sin θΦ2krÞ: ð30Þ

However, Eq. (30) does not fix the intensity parameter
unambiguously. The conservation equations would still be
fulfilled, even if we multiplied the derivative with respect to
the radial coordinate (Σ sin θΦ2kr) of the expression by an
arbitrary function of the θ coordinate. Therefore condition
(30) determines the class of radiation fields that differ from
one another by the latitudinal distribution of intensity. A
natural requirement for the radiation field model is that it
attains spherical symmetry for the case of pure radially
outgoing field (b ¼ 0) in a Schwarzschild background
geometry. This in turn requires that the intensity parameter
is independent of the θ coordinate, which can be easily
achieved by multiplying the derivative with respect to the
radial coordinate of (30) by a factor 1= sin θ. The condition
(30) then will take the form

0 ¼ ∂rðΣΦ2krÞ: ð31Þ
By expressing kr through Eq. (10) and substituting the
values of the impact parameters obtained above in Eqs. (20)
and (26) in Eq. (30), we obtain

Φ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðrÞ

q
¼ const ¼ Φ2

0; ð32Þ

where Φ2
0 is a new constant related to the intensity of the

radiation field at the emitting surface. Then, the parameter
Φ2 is related to the radial effective potential (11) by the
formula

Φ2 ¼ Φ2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rb;qðrÞ
p : ð33Þ

Note that in the case of a non-rotating emitting surface in a
Schwarzschild spacetime, Eq. (33) has the simple limit
Φ2 ¼ Φ2

0=r
2, apparently preserving the spacetime spherical

symmetry. Also note, that in the case b ¼ 0 expression (33)
coincides with the formula for the intensity parameter of the
radial radiation field described in [25] and can be consid-
ered its generalization.

IV. INTERACTION OF RADIATION—TEST
PARTICLE

A. Test particle motion

We consider a test particle moving in the 3D space
endowed with a timelike four-velocity U and a spatial
three-velocity with respect to the ZAMOs, νðU; nÞ, [25]:

U ¼ γðU; nÞ½nþ νðU; nÞ�; ð34Þ

FIG. 2. Contour plot of the azimuthal impact parameter b of photons emitted from the equator (θe ¼ π=2) as function of radius, R⋆,
and rotation frequency, f⋆ ¼ Ω⋆=2π of the emitting surface. Left panel: Schwarzschild geometry using a NS mass of M ¼ 1.5M⊙.
Positive impact parameter values are limited from above only by ΩþðR⋆; π=2Þ. Right panel: Kerr geometry using a value of a ¼ 0.9 and
a BH mass ofM ¼ 5M⊙. The green region corresponds to positive values of b, while the red region corresponds to negative values. The
yellow curve ending at the radius of the innermost stable cicular orbit (ISCO) denotes the Keplerian orbital frequency
ΩK ¼ ½Mðr3=2 þ aÞ�−1. The red curve denotes the zero value of b corresponding to the condition Ω⋆ ¼ ΩZAMOðR⋆Þ, i.e., the surface
rotates at the frequency of spacetime rotation. Along the cyan curve, whereΩ⋆ ¼ Ω∞ðR⋆Þ≡ −gtt=gtφ, the value of the azimuthal photon
impact parameter diverges (b → −∞). The beige region under the cyan curve corresponds to photons emitted with negative conserved
energy −kt from surfaces rotating at Ω−ðR⋆; 0Þ < Ω⋆ ≤ Ω∞ðR⋆Þ. Such photons cannot escape from the ergosphere. The gray regions
denote the cases of (unphysical) superluminal rotation.
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ν ¼ νðsinψ sin αer̂ þ cosψeθ̂ þ sinψ cos αeφ̂Þ; ð35Þ

where γðU; nÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kνðU; nÞk2

p
is the Lorentz factor,

ν ¼ kνðU; nÞk, γðU; nÞ ¼ γ. Here ν represents the magni-
tude of the test particle spatial velocity νðU; nÞ, α is the
azimuthal angle of the vector νðU; nÞ measured clockwise
from the positive φ̂ direction in the r̂ − φ̂ tangent plane in
the ZAMO frame, and ψ is the polar angle of the vector
νðU; nÞ measured from the axis orthogonal to the r̂ − φ̂
tangent plane in the ZAMO frame (see Fig. 1). The explicit
expression for the test particle velocity components with
respect to the ZAMOs are

Ut ≡ dt
dτ

¼ γ

N
; Ur ≡ dr

dτ
¼ γνr̂ffiffiffiffiffiffi

grr
p ;

Uθ ≡ dθ
dτ

¼ γνθ̂ffiffiffiffiffiffi
gθθ

p ; Uφ ≡ dφ
dτ

¼ γνφ̂ffiffiffiffiffiffiffigφφ
p −

γNφ

N
; ð36Þ

where τ is the proper time parameter along U. Using the
observer-splitting formalism, the test particle acceleration
relative to the ZAMO congruence, aðUÞ ¼ ∇UU, is given
by [22,25]

aðUÞr̂ ¼ γ2½aðnÞr̂ þ kðLieÞðnÞr̂ν2ðcos2αsin2ψ þ cos2ψÞ
þ 2ν cos α sinψθðnÞr̂φ̂�

þ γ

�
γ2 sin α sinψ

dν
dτ

þ ν cos α sinψ
dα
dτ

þ ν cosψ sin α
dψ
dτ

�
; ð37Þ

aðUÞθ̂¼ γ2½aðnÞθ̂þkðLieÞðnÞθ̂ν2sin2ψcos2α
−kðLieÞðnÞr̂ν2 sinψ sinαcosψþ2νcosαsinψθðnÞθ̂ φ̂�

þγ

�
γ2cosψ

dν
dτ

−νsinψ
dψ
dτ

�
: ð38Þ

aðUÞφ̂ ¼ −γ2ν2 cos α sinψ ½sin α sinψkðLieÞðnÞr̂

þ kðLieÞðnÞθ̂ cosψ � þ γ

�
γ2 cos α sinψ

dν
dτ

− ν sin α sinψ
dα
dτ

þ ν cos α cosψ
dψ
dτ

�
; ð39Þ

aðUÞt̂¼ γ2νfsinαsinψ ½aðnÞr̂þ2νcosαsinψθðnÞr̂φ̂�

þ cosψ ½aðnÞθ̂þ2νcosαsinψθðnÞθ̂ φ̂�gþ γ3ν
dν
dτ

:

ð40Þ

B. Splitting of the radiation force

We assume that the radiation test particle interaction
occurs through elastic, Thomson-like scattering, charac-
terized by a constant momentum-transfer cross section σ,
independent of direction and frequency of the radiation
field. The radiation force is [25]

F ðradÞðUÞα ¼ −σPðUÞαβTβ
μUμ; ð41Þ

where PðUÞαβ ¼ δαβ þ UαUβ projects a vector orthogonally
toU. Decomposing the photon four-momentum k first with
respect to the test particle four-velocity, U, and then in the
ZAMO frame, n, we have [25]

k ¼ EðnÞ½nþ ν̂ðk; nÞ� ¼ EðUÞ½Uþ V̂ðk; UÞ�: ð42Þ

Using Eq. (42) in Eq. (41), we obtain

F ðradÞðUÞα ¼ −σΦ2½PðUÞαβkβ�ðkμUμÞ
¼ σ½ΦEðUÞ�2V̂ðk;UÞα: ð43Þ

The test particle equations of motion is maðUÞ ¼
FðradÞðUÞ, where m is the test particle mass; by defining
σ̃ ¼ σ=m, we have

aðUÞ ¼ σ̃Φ2EðUÞ2V̂ðk;UÞ: ð44Þ

Taking the scalar product of Eq. (42) andU and considering
ζ ¼ π=2, we find

EðUÞ ¼ γEðnÞ½1 − ν sinψ cosðα − βÞ�; ð45Þ

Such splitting permits to determine V̂ðk;UÞ¼ V̂tnþ V̂rer̂þ
V̂θeθ̂þ V̂φeφ̂ as [25]

V̂ r̂ ¼ sin β
γ½1 − ν sinψ cosðα − βÞ� − γν sinψ sin α; ð46Þ

V̂ θ̂ ¼ −γν cosψ ; ð47Þ

V̂φ̂ ¼ cos β
γ½1 − ν sinψ cosðα − βÞ� − γν sinψ cos α; ð48Þ

V̂ t̂ ¼ γν

�
sinψ cosðα − βÞ − ν

1 − ν sinψ cosðα − βÞ
�
: ð49Þ

C. General relativistic equations of motion

The equations of motion for a test particle moving in a
3D space, defined in terms of ðr; θ;φ; ν;ψ ;αÞ, represent a
set of coupled ordinary differential equations of the first
order, i.e., [25]
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dν
dτ

¼ −
1

γ
fsin α sinψ ½aðnÞr̂þ2ν cos α sinψθðnÞr̂φ̂�

þ cosψ ½aðnÞθ̂þ2ν cos α sinψθðnÞθ̂ φ̂�g

þ σ̃½ΦEðUÞ�2
γ3ν

V̂ t̂; ð50Þ

dψ
dτ

¼ γ

ν
fsinψ ½aðnÞθ̂ þ kðLieÞðnÞθ̂ν2cos2α

þ 2ν cos αsin2ψθðnÞθ̂ φ̂� − sin α cosψ ½aðnÞr̂
þ kðLieÞðnÞr̂ν2 þ 2ν cos α sinψθðnÞr̂φ̂�g

þ σ̃½ΦEðUÞ�2
γν2 sinψ

½V̂ t̂ cosψ − V̂ θ̂ν�; ð51Þ

dα
dτ

¼ −
γ cos α
ν sinψ

½aðnÞr̂ þ 2θðnÞr̂φ̂ν cos α sinψ

þ kðLieÞðnÞr̂ν2 þ kðLieÞðnÞθ̂ν2cos2ψ sin α�

þ σ̃½ΦEðUÞ�2 cos α
γν sinψ

½V̂ r̂ − V̂φ̂ tan α�; ð52Þ

Ur ≡ dr
dτ

¼ γν sin α sinψffiffiffiffiffiffi
grr

p ; ð53Þ

Uθ ≡ dθ
dτ

¼ γν cosψffiffiffiffiffiffi
gθθ

p ; ð54Þ

Uφ ≡ dφ
dτ

¼ γν cos α sinψffiffiffiffiffiffiffigφφ
p −

γNφ

N
: ð55Þ

For b ¼ 0 the equations of motion reduce to the radial
radiation field in 3D case [25].
We define the relative luminosity of the radiation field

as A=M ¼ σ̃Φ2
0E

2 ≡ L∞=LEdd, ranging in [0, 1], where L∞
is the luminosity at infinity and LEDD ¼ 4πMm=σ is the
is the Eddington luminosity at infinity [15,16,25]. Using
Eqs. (33) and (45), the term σ̃½ΦEðUÞ�2 becomes

σ̃½ΦEðUÞ�2¼Aγ2ð1þbNφÞ2½1−νsinψ cosðα−βÞ�2
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðrÞ

p : ð56Þ

In Appendix A we show the way Eqs. (50)–(55) reduce
in the classical limit. In Appendix B we show the weak field
approximations of Eqs. (50)–(55) at the first order in the
Kerr parameter a for slow rotations (a → 0).

V. CRITICAL HYPERSURFACES

The set of Eqs. (50)–(55) admits a solution in which
gravitational attraction, radiation pressure, and PR drag
effect balance each other on an axially symmetric hyper-
surface, partially or fully encapsulating the emitting sphere.
In order to obtain the condition determining the radial
coordinate of such a hypersurface, the critical radius rðcritÞ,

we consider a captured test particle in radial equilibrium
moving in a purely circular motion (α ¼ 0; ψ ¼ �π=2;
ν ¼ const) along, in general, a non-equatorial orbit. Then
for dν

dτ ¼ 0 Eq. (50) takes the following form

Að1þ bNφÞ2ð1 − ν cos βÞðcos β − νÞ
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðrðcritÞÞ

q ¼ 0; ð57Þ

from which it follows

ν ¼ cos β: ð58Þ

Therefore the azimuthal velocity of the captured test
particle is equal to the azimuthal velocity of the photons
of the radiation field.1 Considering that in the ZAMO frame
the velocity of the captured test particle is tangential to the
hypersurface (α ¼ 0), for dα

dτ ¼ 0 Eq. (52) takes the follow-
ing form

aðnÞr̂þ2θðnÞr̂φ̂νþkðLieÞðnÞrν2¼
Að1þbNφÞ2 sinβ
N2γ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðrðcritÞÞ

q : ð59Þ

This generalizes the result obtained in [16], where the
equilibrium was analyzed only in the equatorial plane. Note
that, similarly to the 3D case with purely radial radiation
field [25], a latitudinal drift on the critical hypersurface
toward the equatorial plane is to be expected, as the
condition dψ

dτ ¼ 0 is not fulfilled automatically. In Sec. VA
we analyze in detail the condition for the existence of orbits
with a constant latitude coordinate. Note also that in the
case of a radiation field with zero angular momentum
(b ¼ 0; β ¼ π=2), Eq. (59) reduces to Eq. (53) in [25]; for
non-zero angular momentum radiation fields the same
holds on the polar axis (θ ¼ 0, π) where the angular
momentum of the photons emitted by the spherical surface
is zero. Therefore, the axisymmetric shape of the critical
hypersurfaces can be obtained by solving the implicit
equation (59) for the (r; θ) coordinates by specifying a
set of the initial parameters fA; a; R⋆;Ω⋆g. The pair of
photon impact parameters (b; q) is found in terms of R⋆,
Ω⋆; θ through Eq. (20) and Eq. (26), respectively.2

In our previous work [25], in which a zero angular
momentum radiation field (b ¼ 0; β ¼ π=2) was analyzed,
we found that for nonzero a the critical hypersurface
always takes a prolate shape due to the fact the frame
dragging effect attains its maximum at the equator. In the
more general case considered in the present study, the shape

1Assuming the opposite direction of the particle velocity
(α ¼ π), we get at the same solution except for the negative
sign of ν.

2Equation (26) displays a divergence in q at the polar axis (i.e.,
θ ¼ 0; π). Therefore our numerical analysis of the behavior
extends to the close vicinity of, rather than the poles themselves.
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of the critical surface, besides frame dragging, is deter-
mined also by the angular momentum of the radiation field
photons, which is now a function of the polar coordinate.
Hereafter we show that the critical hypersurfaces may
morph between an oblate and a prolate shape depending on
the parameters governing the value of the critical radius
rðcritÞ ¼ rðcritÞðA; a; θ;Ω⋆; R⋆Þ. We carry out a more detailed
analysis of the properties of the critical hypersurface in the
cases of a NS and a BH in Secs. V C and VD, respectively.

A. Multiplicity of the critical hypersurface

As demonstrated in [16], Eq. (59) may have one or three
solutions depending on the values of A,a,b. The switch
from one regime to the other occurs at fixed values of a,θ
when a critical value of the impact parameter B is reached;
the corresponding criterion is discussed in detail below. In
the mode of existence of three critical radii, the innermost
solution is located in the close vicinity of the event horizon,
the second inner solution is inside below the unstable
spherical photon orbit region [34], and the only external
solution may be located far from the emitting surface (see
Figs. 1–3 in [16] for details). In the case studied here of a
rigidly rotating emitting surface, the critical radii located
inside the emitting surface are not relevant. In addition, the
range of the impact parameter b and thus the formal
existence of the regime of three critical radii are limited
by the maximum rotational frequency of a NS and, in the
case of a BH, by the fact that the rotation of the emitting
surface cannot be superluminal (see Secs. III A 1—III A 4).
To find the criterion for distinguishing the regimes with
one critical radius and with three critical radii, we approxi-
mated Eq. (59) with a third order polynomial. Then, in
order to count the number of solutions of Eq. (59), we
exploited the standard formula for third order algebraic
equation, which can be written in the canonical form as
a3x3 þ a2x2 þ a1xþ a0 ¼ 0 [35]. The discriminant ΔIII is
defined as follows

ΔIII ¼ 4ð3a3a1−a22Þ3þð27a23a0−9a3a2a1þ2a32Þ2: ð60Þ

In the case of ΔIII > 0 there exist three real solutions while
in the case of ΔIII < 0 there is only one real solution. In the
limit case of ΔIII ¼ 0 the equation has a multiple real root.
To this end, we consider separately the following two
functions

y1 ¼ aðnÞr̂ þ 2θðnÞr̂φ̂ cos β þ kðLieÞðnÞrcos2β; ð61Þ

y2 ¼
Að1þ bNφÞ2sin4β

N2
ffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðr

p : ð62Þ

Let us consider first Eq. (61), and its Taylor expansion
for 1=r → 0; we obtain

y1 ≈
r2

ρ
ffiffiffiffiffi
Σ5

p
�
r3 þ r2

�
1 −

b2

sin2θ

�

þ r

�
−6abþ 3b2

sin2θ
− a2 cos 2θ þ 2a2 þ 3

�

þ 6ab −
ð2a2 cos 2θ þ a2 þ 3Þb2

2sin2θ

þ 1

2
ð3a2 cos 2θ − 4a2 þ 5Þ

�
; ð63Þ

where ρ
ffiffiffiffiffi
Σ5

p
is a factor in common with all terms in y1 (for

further details see Table 1 in [25]) and can be approximated
through the following polynomial

1

ρ
ffiffiffiffiffi
Σ5

p ≈ −
2a2sin2θ

r10
−
a2ð5cos2θ þ 2Þ

2r9
þ 1

r7
: ð64Þ

Combining these results, we get

y1 ≈
1

r5

�
r3 þ r2

�
1−

b2

sin2θ

�

þ r

�
−6abþ 3b2

sin2θ
−
5a2cos2θ

2
− a2 cos2θþ a2 þ 3

�

−
a2

2
ð5cos2θþ 2Þ

�
1−

b2

sin2θ

�
− 2a2sin2θ

þ 6ab
1

2
ð3a2 cos2θ− 4a2 þ 5Þ

−
ð2a2 cos2θþ a2 þ 3Þb2

2sin2θ

�
ð65Þ

Let us now consider Eq. (62), and its Taylor expansion
for 1=r → 0

y2 ≈
A
r5

�
r3 þ 2r2 þ r

�
−
3

2

b2

sin2θ
−
a2

2
ðcos2θ þ 1Þ þ 4

�

− 2abþ 2a2sin2θ − 4a2 þ 8

�
: ð66Þ

Combining Eqs. (65) and (66) we obtain an approxi-
mation of Eq. (59) through a polynomial of third order of
the form

a3r3 þ a2r2 þ a1rþ a0
r5

¼ 0; ð67Þ

where
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a3¼ 1−A;

a2¼ 1−2A−
b2

sin2θ
;

a1¼−
A
2

�
−

3b2

sin2θ
−a2ð1þ cos2θÞþ8

�
−6ab

3b2

sin2θ

−
a2

2
ð5cos2θþ2Þ−a2 cos2θþ2a2þ3;

a0¼−Að−2abþ2a2sin2θ−4a2þ8Þ

−
a2

2
ð5cos2θþ2Þ

�
1−

b2

sin2θ

�
þ6ab−2a2sin2θ

−
ð2a2 cos2θþa2þ3Þb2

2sin2θ
þð3a2 cos2θ−4a2þ5Þ

2
:

ð68Þ
Therefore, the above coefficients determine the value of the
discriminant (60). Physically meaningful critical radii are
located above the emitting surface.

B. Constant latitude suspended orbits
bound on the critical hypersurface

In the simpler case of the test radiation field with zero
angular momentum (b ¼ 0) investigated in the previous
paper [25], the particle captured on an off-equatorial
circular orbit bound on the critical hypersurface with a
constant polar coordinate θ̄ must fulfil the condition
cosψ ¼ 0, dψ

dτ ¼ 0, ν ¼ 0 for which a complete balance
of all forces acting at the critical hypersurface is attained.
Here we investigate the condition for similar suspended off-
equatorial circular orbits for the more complex case of the
rotating test radiation field (b ≠ 0).
For a particle to be captured on an suspended off-

equatorial circular orbit bound on the critical hypersurface,
i.e., without the presence of the effect of latitudinal drift,
the condition dψ=dτ ¼ 0 must be fulfilled along with the
solution of Eq. (59). The test particle velocity on the critical
hypersurface is equal to the azimuthal photon velocity
(ν ¼ cos β). Using Eq. (51) with α ¼ 0, r ¼ rcritðθ̄Þ, θ ¼ θ̄,
imposing dψ=dτ ¼ 0, we obtain

γν½aðnÞθ̂ þ kðLieÞðnÞθ̂ν2 þ 2νsin2ψθðnÞθ̂ φ̂�

þ Að1þ bNφÞ2ν cosψð1 − ν2 sinψÞ
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðrcritÞ

p ¼ 0: ð69Þ

By solving this implicit equation for ψ, we obtain the
condition for suspended circular orbits.3

The condition (69) significantly depends on the radius of
the emitting surface R⋆ and its rotational frequency Ω⋆. In

Fig. 3, we illustrate the behavior of the local polar angle in
theZAMOframeψ as a function of the latitudinal coordinate
θ̄ of circular suspended orbits bound on the critical hyper-
surface. On the equator, the value of the local polar angle is
ψ ¼ π=2 due to the mirror symmetry. The angle ψ decreases
with growing latitudinal coordinate θ̄ to itsminimum, thenψ
grows and it reaches the value of ψ ¼ π=2 again on the polar
axis, where the test radiating field is nonrotating (b ¼ 0).

C. Critical hypersurfaces in the case of a NS

We consider a template NS of mass M ¼ 1.5M⊙ and
radius R⋆ ¼ 6M. The emitting source we consider is the
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FIG. 3. The local polar angle in the ZAMO frame ψ as a
function of the latitudinal coordinate θ̄ of circular suspended
orbits in the case of NS of mass M ¼ 1.5M⊙ and radius
R⋆ ¼ 6M. Top panel: The plot is constructed for fixed luminosity
parameter A ¼ 0.8 and star rotation frequency f⋆ ¼ 300 Hz
(red), f⋆ ¼ 400 Hz (green), f⋆ ¼ 500 Hz (blue), f⋆ ¼ 600 Hz
(black). Bottom panel: The plot is constructed for fixed star
rotation frequency f⋆ ¼ 700 Hz and luminosity parameter A ¼
0.7 (black), A ¼ 0.7 (blue), A ¼ 0.8 (green), A ¼ 0.85 (red).

3Note that in the case reported in the previous paper [25], i.e.,
for b ¼ 0, the condition for suspended circular orbits takes the
very simple form aðnÞθ̂ ¼ 0.
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spherical surface of the NS. All solutions lying inside the
NS have no physical meaning (these include also the
internal solutions Eq. (59) in the close vicinity of the event
horizon and in the region of the spherical photon orbits).
In Fig. 4 we investigate the way the critical radius

changes along the polar axis and at the equator of NS for
different values of the luminosity parameter. The NS
rotation frequency is fixed here at f⋆ ¼ 600 Hz (corre-
sponding to Ω⋆ ¼ 0.031M−1 and through Eq. (28) to Kerr
parameter a ¼ 0.41). The critical hypersurface above the
emitting surface is always oblate (note that it changes
from prolate to oblate for A ≃ 0.65 in the nonphysical
region inside the NS). Moreover, the difference of the
polar and equatorial value of the critical radius gives
rise to an interesting new effect. For the luminosity range
A ∈ ½0.705; 0.81�, the physically meaningful part of the
critical hypersurface located above the surface of NS forms
a lobe around the star equator. For A < 0.705, the entire
critical hypersurface is located inside NS (and thus is
nonphysical), while for A > 0.81, the entire critical hyper-
surface is located above the NS surface. For the lower
limiting value A ¼ 0.705, the critical hypersurface just
emerges from the NS interior at the equator, while for the
upper limiting value A ¼ 0.81, the completely emerged
critical hypersurface touches only the poles of NS.
Figure 5 shows the way the critical radius behaves in

terms of the NS angular velocity. The luminosity parameter
is fixed at the value of A ¼ 0.81. The NS rotation frequency
range is f⋆ ∈ ½0; 800� Hz (corresponding to Ω⋆ ∈
½0; 0.041�M−1 or a ∈ ½0; 0.55�, note that fastest know NS
spins at ∼716 Hz [36]). We consider only positive rotation
frequencies, because Ω⋆ is linearly connected to the Kerr
parameter a by the relation (28). On the poles, where
surface velocity is zero and frame dragging effect is absent,
the critical radius value varies slightly only as a result of
changes in spacetime geometry as determined by a growing

with the Ω⋆. The critical radius on the pole reaches the
radius of the NS for Ω⋆ ¼ 0.031M−1, which is in accor-
dance with the profile of polar critical radius plotted in
Fig. 4. On the contrary there is a much stronger dependence
on Ω⋆ at the equator because the surface velocity and
magnitude of frame dragging reach their maxima. Thus,
similar to Fig. 4, the critical hypersurface located above the
emitting surface of NS is always oblate.
The left panel of Fig. 6 compares the shape of the critical

hypersurfaces for a rotating template NS with Kerr param-
eter a ¼ 0.41 (f⋆ ¼ 600 Hz, Ω⋆ ¼ 0.031M−1) and for a
nonrotating NS (a ¼ 0), where the luminosity parameter of
the radiating field is fixed at the value of A ¼ 0.8. In the
rotating case, the critical radius is reqcrit ∼ 12.05M at the

equator and rpolecrit ∼ 5.74M at the poles. In the nonrotating
case, the critical hypersurface naturally takes the shape of a
spherewith the radius rcrit ∼ 5.56M. Indeed, the nonrotating
case has no physical meaning as the resulting equilibrium
sphere is located inside NS. However, such a nonrotating
solution coincides with the case of a pure radially moving
test field photon on the background of the Schwarzschild
spacetime geometry discussed in [25], where we calculated
the critical radius as a result of a static equilibrium.
The right panel of Fig. 6 illustrates the shape of the critical

hypersurfaces for the values of the relative luminosity in the
interval 0.75–0.88 and for a constant value of the Kerr
parameter a ¼ 0.41 (f⋆ ¼ 600 Hz, Ω⋆ ¼ 0.031M−1). The
figure clearly demonstrates that in the appropriate luminos-
ity range, the critical hypersurface forms only a lobe
around the NS equator. In Fig. 7 we plot the spatial
velocity of the test particle captured on the critical hyper-
surface vðcritÞ as measured by a static observer at infinity,
for a luminosity parameter of A ¼ 0.75 and a NS Kerr
parameter of a ¼ 0.41 (f⋆ ¼ 600 Hz, Ω⋆ ¼ 0.031M−1).

FIG. 4. Critical radius rðcritÞ at the poles (blue line) and at equator
(orange line) as a function of the luminosity parameter A for
a NS model with rotation frequency f⋆¼600, Ω⋆¼0.031M−1,
a ¼ 0.41). The dashed red line represents the NS surface, the gray
area indicates the (nonphysical) solutions inside the NS.

FIG. 5. Critical radius rðcritÞ at the poles (blue line) and at the
equator of the NS (orange line) as a function of the NS rotation
angular velocity Ω⋆ for a luminosity parameter of A ¼ 0.81. The
dashed red line represents the NS surface, the gray area indicates
the (nonphysical) solutions inside NS.
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The lobe of the critical hypersurface intersects the NS
surface at θ ¼ 42.5°.
The spatial velocity of test particles captured on the

critical hypersurface is

vðcritÞ ¼ rðcritÞ sin θΩðcritÞ: ð70Þ

By using Eq. (36) and Eq. (58), the angular velocity of test
particles captured on the critical hypersurface is

ΩðcritÞ ¼ Uϕ=Ut ¼ N cos βffiffiffiffiffiffiffigφφ
p þΩZAMO: ð71Þ

The spatial velocity of the NS surface νNS as measured by a
static observer at infinity is

vNS ¼ R⋆ sin θΩ⋆: ð72Þ
The angular velocity of the particles captured on the

critical hypersurface ΩðcritÞ, which is equal to the angular

FIG. 6. Left panel: Critical hypersurfaces for the case of a rotating NS with Kerr parameter a ¼ 0.41 (orange, f⋆ ¼ 600 Hz,
Ω⋆ ¼ 0.031M−1) and for the nonrotating case (blue). For a nonrotating NS, the critical radius is constant and it takes unphysical value of
rðcritÞ ∼ 5.56M. In the case of a rotating NS, the critical radius takes the value reqðcritÞ ∼ 12.05M in the equatorial plane, while it takes the

value of rpoleðcritÞ ∼ 5.74M at the poles. The relative luminosity of the radiating field is fixed at A ¼ 0.8. Right panel: Critical hypersurfaces

for a relative luminosity A ¼ 0.75, 0.78, 0.8, 0.85, 0.88 at Kerr parameter a ¼ 0.41 (f⋆ ¼ 600 Hz,Ω⋆ ¼ 0.031M−1). The corresponding
critical radii in the equatorial plane are reqðcritÞ ∼ 8.88M, 10.61M, 12.05M, 17.26M, 22.43M, while at poles they are rpoleðcritÞ ∼ 4.73M,

5.28M, 5.74M, 7.43M, 9.11M. In both panels the gray sphere represents the NS surface, separating the physical solutions (outside its
surface) from the unphysical ones (inside its surface). The red arrow is the polar axis.

FIG. 7. Left panel: The spatial velocity of test particles vðcritÞ captured on the critical hypersurface forming a lobe and the spatial
velocity of the NS surface vNS as measured by a static observer at infinity as functions of polar angle θ. The spatial velocity values ranges
between zero and maximum value of 0.21. The red arrow represents the polar axis. For the critical hypersurface size dimensions see the
corresponding case in Fig. 6. Right panel: The spatial velocity of the critical hypersurface forming a lobe vðcritÞ (blue) and the spatial
velocity of NS surface vNS (yellow) as a function of the polar angle θ. The vertical dashed blue line is located at θ ¼ 42.5° representing
the polar angle at which the critical hypersurface lobe intersects the NS surface. Both plots are constructed for template NS with Kerr
parameter a ¼ 0.41 (f⋆ ¼ 600 Hz, Ω⋆ ¼ 0.031M−1) and for a radiating field with luminosity parameter A ¼ 0.75.
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velocity of NS surfaceΩ⋆ at the intersection ring, decreases
for increasing polar angle θ, reaching the minimum value
on the equatorial plane (see Fig. 8). At the intersection ring,
the spatial velocity of the NS surface vNS and that of test
particles captured on the critical hypersurface vðcritÞ are also
equal. However vðcritÞ is always higher than the vNS on the
critical hypersurface lobe, owing to the growth of rðcritÞ with
the polar angle θ. vðcritÞ also grows with θ, and it reaches its
maximum value vðcritÞðθ ¼ π=2Þ ¼ 0.21 on the equato-
rial plane.

1. Examples of test particle orbits in the vicinity of the
critical hypersurface around NS

In Fig. 9, we compare the results of the integration of the
trajectories of test particles interacting with a radiation field
emitted by the surface of a slowly or rapidly rotating NS.
The left panels of Fig. 9 corresponds to the case of a rapidly
rotating template NS with Kerr parameter a ¼ 0.41
(f⋆ ¼ 600 Hz, Ω⋆ ¼ 0.031M−1) and with relative lumi-
nosity A ¼ 0.8. The critical hypersurface forms a large
flattened lobe, with reqcrit ∼ 12.05M at the equator and rpolecrit ∼
5.74M at the poles. The right panels of Fig. 9 corresponds
to the case of a slowly rotating template NS with Kerr
parameter a ¼ 0.07 (f⋆ ¼ 100 Hz, Ω⋆ ¼ 0.005M−1) and
relative luminosity A ¼ 0.85. The critical hypersurface
envelopes the entire NS surface, its radius being reqcrit ∼
7.37M at the equator and rpolecrit ∼ 7.21M at the poles.
On the both top panels of Fig. 9, the test particles are

emitted outside the critical hypersurface at r0 ¼ 15M, θ0 ¼
10° with a small initial velocity ν0 ¼ 0.01 oriented in the
azimuthal corotating direction (orange) and oriented radi-
ally toward the emitting surface (red). On the top left panel
corresponding to the case of the rapid rotation, the

trajectory of the particle with the azimuthally oriented
initial velocity (orange) intersects the critical hypersurface
from the outside. The particle is then captured on the
critical hypersurface after passing a radial turning point.
After a very short latitudinal drift, the particle’s trajectory is
stabilized in the equatorial plane. On the contrary, the
particle with radially oriented initial velocity falls down
the NS surface. The top right panel of Fig. 9 shows to the
case of a slowly rotating template NS with Kerr parameter
a ¼ 0.07 (f⋆ ¼ 100 Hz, Ω⋆ ¼ 0.005M−1) and relative
luminosity A ¼ 0.85. The critical hypersurface envelopes
the entire NS surface, its radius being reqcrit ∼ 7.37M at the

equator and rpolecrit ∼ 7.21M at the poles. In this case, the
trajectories differ only in their initial behavior. Both test
particles are then captured on the critical hypersurface and
drift latitudinally toward the equatorial plane, where a final,
circular orbit is attained.
On the both bottom panels of Fig. 9, the test particles are

emitted inside the critical hypersurface at r0 ¼ 7M with the
initial velocity ν oriented in the azimuthal corotating
direction. The behavior of the test particles is qualitatively
the same regardless of the velocity of NS rotation. The test
particles emitted with sufficiently small velocity ν are
captured on the critical hypersurface from the inside
(red). The test particles emitted with greater velocity ν
intersect the critical hypersurface from the inside and they
also intersect the equatorial plane. The particle is then
captured on the critical hypersurface after passing a radial
turning point (green). Captured test particles drift latitudi-
nally toward the equatorial plane, where a final, circular
orbit is attained. Similarly as in the cases illustrated in the
top panels, the latitudinal drift is slower in the case of the
slow rotation. Finally, the test particles emitted with
sufficiently high velocity ν intersect the critical hypersur-
face from the inside and then escape to infinity (blue).

D. Critical hypersurfaces in the case of a BH

We consider a BH of mass M ¼ 5M⊙ and spin a ¼ 0.9.
We placed the model emitting surface at R⋆ ¼ 2.5M. The
emitting surface rotates with angular velocity Ω⋆, which is
unrelated to the BH spin. In the case of this relatively high
value of the spin and at the value of the angular velocity of
the emitting surface Ω⋆ ≤ Ωþ, Eq. (59) has only one
solution, and the BH is enveloped by one critical hyper-
surface at the most [see the condition (60)].
Figure 10 shows the critical radius changes as a

function of the luminosity parameters for two different
rotation frequencies of the emitting surface f⋆ ¼ 300 Hz
(Ω⋆ ¼ 0.05M−1) and f⋆ ¼ 1400 Hz (Ω⋆ ¼ 0.22M−1). The
slow rotation case corresponds to the negative value of test
field impact parameter on the equator b ¼ −1.55 while the
fast rotation case corresponds to the positive one b ¼ 2.67
In the case of slow rotation with f⋆ ¼ 300 Hz, the change
from a prolate to an oblate hypersurface takes place when

FIG. 8. The angular velocity ΩðcritÞ of test particles captured on
the critical hypersurface forming a lobe as a function of polar
angle θ. The vertical dashed blue line is located at θ ¼ 42.5°
representing the polar angle at which the critical hypersurface
lobe intersects the NS surface. The plot is constructed for a NS
with Kerr parameter a ¼ 0.41 (f⋆ ¼ 600 Hz, Ω⋆ ¼ 0.031M−1)
and for radiating field with luminosity parameter A ¼ 0.75.
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the luminosity parameter exceeds A ≈ 0.86. For the range
of luminosity values A ∈ ½0.425; 0.53�, the critical hyper-
surface only partially emerges from the emitting surface
and forms two lobes around poles of the emitting surface.
In the case of fast rotation with f⋆ ¼ 1400 Hz, the behavior

is simpler. The critical hypersurface always has an
oblate shape. For luminosities A < 0.4, the critical hyper-
surface forms a lobe around equator of the emitting surface,
for higher luminosities the entire critical hypersurface is
located outside the emitting surface.

FIG. 9. Examples of trajectories of test particles interacting with the radiation field emitted by the surface of a slowly or rapidly
rotating NS. Left panels: The cases of rapidly rotating template NS with Kerr parameter a ¼ 0.41 (f⋆ ¼ 600 Hz, Ω⋆ ¼ 0.031M−1) and
with relative luminosity A ¼ 0.8. The critical hypersurface forms a big lobe. Right panels: The cases of slowly rotating template NS with
Kerr parameter a ¼ 0.07 (f⋆ ¼ 100 Hz, Ω⋆ ¼ 0.005M−1) and with relative luminosity A ¼ 0.85. The critical hypersurface wraps the
entire NS surface. Top panels: The test particles are emitted outside the critical hypersurface at r0 ¼ 15M, θ0 ¼ 10° with the small initial
velocity ν0 ¼ 0.01 oriented in the azimuthal corotating direction (orange) and oriented radially toward the emitting surface (red).
Bottom panels: The test particles are emitted inside the critical hypersurface at r0 ¼ 7M with the initial velocity oriented in the
azimuthal corotating direction. Bottom left panel: The initial polar angle is θ0 ¼ 45°, the magnitude of initial velocity is ν0 ¼ 0.01 (red),
ν0 ¼ 0.3 (green), ν0 ¼ 0.38 (blue). Bottom right panel: The initial polar angle is θ0 ¼ 60°, the magnitude of initial velocity is ν0 ¼ 0.01
(red), ν0 ¼ 0.36 (green), ν0 ¼ 0.42 (blue). The black sphere corresponds to the emitting surface of the NS. The blue-gray
quasiellipsoidal oblate surface denotes the position of the critical hypersurface.
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In Fig. 11, we illustrate the behavior of the critical
hypersurface as a function of the angular velocity of
the emitting surface Ω⋆ for fixed luminosity A ¼ 0.5
and fixed spin parameter a ¼ 0.9. The Ω⋆ interval ranges
between zero and limiting valueΩþðR⋆;a;π=2Þ¼ 0.28M−1

(f⋆ ¼ 1808 Hz). In the angular velocity range Ω⋆ <
0.07M−1 (f⋆ ¼ 452 Hz), the critical hypersurface forms
two lobes around the poles of the emitting surfaces. For
Ω⋆ ¼ 0.07M−1, the critical hypersurface coincides with the
emitting surface. For Ω⋆ > 0.07M−1, the critical hypersur-
face is a lobe around the equator of the emitting surface. In
Fig. 12, we illustrate such behavior by 3D plot of the
critical hypersurface shape for the slowly rotating case with

Ω⋆ ≡ 0.05M−1 (f⋆ ¼ 323 Hz) and for the fast rotating
case with Ω⋆ ≡ 0.24M−1 (f⋆ ¼ 1550 Hz). The figure also
clearly illustrates, that both hypersurfaces coincide on the
polar axis, where photons coming radially from rigidly
rotating emitting surface have always zero angular momen-
tum (b ¼ 0).

1. Examples of test particle orbits in the vicinity
of the critical hypersurface around BH

In Fig. 13, we illustrate the results of the integration of
some selected trajectories of test particles influenced by the
radiation field emitted by a slowly or rapidly rotating
surface as in the case corresponding to Fig. 12, i.e., for the
value of luminosity parameter A ¼ 0.5 and the emitting

FIG. 10. Critical radius rðcritÞ as a function of the luminosity parameter A at the poles (blue line) and at the equator (orange line). The
dashed red line represents the emitting surface, and the dashed blue line is the BH outer event horizon at RH ¼ 1.44M. In the left panel
f⋆ ¼ 300 Hz, while in the right panel f⋆ ¼ 1400 Hz. The plot is constructed for the case of BH spin a ¼ 0.9 and the radius of the
emitting surface R⋆ ¼ 2.5M.

FIG. 11. Critical radius rðcritÞ as a function of the angular
velocity of the emitting source Ω⋆ at the poles (blue line) and at
the equator (orange line). The dashed red line represents the
emitting surface and the dashed blue line indicates the BH outer
event horizon. The vertical dashed green line is the ZAMO
angular velocity ΩZAMO ¼ 0.09M−1. The plot is constructed for a
luminosity parameter of A ¼ 0.5, BH spin of a ¼ 0.9 and radius
of the emitting surface of R⋆ ¼ 2.5M.

FIG. 12. Critical hypersurfaces for a luminosity parameter of
A ¼ 0.5, BH spin of a ¼ 0.9 and radius of the emitting surface of
R⋆ ¼ 2.5M. The black sphere is the BH outer event horizon with
size RH ¼ 1.44M, the red ellipsoid around the BH outer event
horizon represents the ergosphere and the green sphere is the
emitting surface. The orange surface is calculated for Ω⋆ ¼
0.05M−1 it has reqðcritÞ ¼ 2.42M and rpoleðcritÞ ¼ 2.89M. The blue

surface is obtained setting Ω⋆ ¼ 0.24M−1 and has reqðcritÞ ¼
15.65M and rpoleðcritÞ ¼ 2.89M.
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surface located at R⋆ ¼ 2.5M in the vicinity of a BH with
spin a ¼ 0.9. In the left panel, when the emitting surface
rotates rapidly with Ω⋆ ¼ 0.24M−1, the azimuthal impact
parameter of the photons is b ¼ 3.03 on the equator. The
test particles are emitted above the critical hypersurface at
r0 ¼ 20M, θ0 ¼ pi=8. The particle emitted with initial
velocity ν0 ¼ 0.22 oriented in the azimuthal counterrotat-
ing direction (blue) intersects the critical hypersurface and
makes several loops inside it before it stabilizes on the
circular equatorial orbit on the critical hypersurface. The
particle emitted with initial velocity ν0 ¼ 0.25 oriented also
in the azimuthal counterrotating direction (orange) escapes
to infinity. Finally, the test particle emitted with an initial
velocity ν0 ¼ 0.22 oriented radially toward the BH (red)
falls on the emitting surface. On the right panel, when the
emitting surface rotates slowly with Ω⋆ ≡ 0.05M−1 <
ΩZAMO (f⋆ ¼ 323 Hz), the azimuthal impact parameter
of the photons is characterized by a negative value of b ¼
−1.24 on the equator. The test particles are emitted again
above the critical hypersurface (which in this case consists
of two polar lobes) at r0 ¼ 5M, θ0 ¼ pi=8 with the
velocity oriented in the azimuthal counterrotating direction.
The particle emitted with initial velocity ν0 ¼ 0.1 (red) is
captured on the northern polar lobe, and after the latitudinal
drift, it impacts the emitting surface at its intersection ring
with the northern lobe. Similarly the particle emitted with
initial velocity ν0 ¼ 0.5 (orange) after making a loop is

captured on the southern polar lobe, and after the latitudinal
drift, it impacts the emitting surface at its intersection ring
with the southern lobe. Finally, the test particle emitted with
initial velocity ν0 ¼ 0.8 (blue) escapes to infinity.

VI. CONCLUSIONS

We extended the general relativistic model of the 3D PR
effect presented in [25] by considering the radiation field
emitted in the purely radial direction in a local corotating
frame from a rigidly rotating spherical source in the
background of the Kerr spacetime geometry. This setup,
though clearly idealized, may approximate the radiating
surface of a rotating NS as well as that of a hot rotating
corona in close vicinity of a BH. Owing to the rigid rotation
of the emitting surface, the photon azimuthal impact
parameter of the radiation field b (a proxy of its angular
momentum) is a function of the polar angle θ, with the
highest value in the equatorial plane and zero value on the
poles. In order to simplify the integration of test particles
trajectories, we assume that the emitted photons are not
moving in the latitudinal direction and their θ coordinate is
conserved along the photon trajectory. Such a setup for
the test radiation field is parametrized by the radius of the
emitting surface R⋆ and its angular velocity Ω⋆ and the
emitted luminosity A. We have considered the range of
possible values of azimuthal impact parameter of the

FIG. 13. Test particle trajectories influenced by a radiation field with relative luminosity A ¼ 0.5 emitted from a surface at R⋆ ¼ 2.5M
in the vicinity of BH with spin a ¼ 0.9. Left panel: the case of a rapidly rotating surface with Ω⋆ ≡ 0.24M−1 (f⋆ ¼ 1550 Hz). The test
particles trajectories start outside the critical hypersurface at r0 ¼ 20M, θ0 ¼ pi=8 with initial velocity ν0 ¼ 0.22 oriented in the
counterrotating azimuthal direction (blue), with ν0 ¼ 0.25 oriented in the counterrotating azimuthal direction (orange) and with ν0 ¼
0.22 oriented radially toward the emitting surface (red). Right panel: The case of a slowly rotating surface withΩ⋆ ≡ 0.05M−1 < ΩZAMO
(f⋆ ¼ 323 Hz). Test particles are emitted above the critical hypersurface forming two polar lobes at r0 ¼ 5M, θ0 ¼ pi=8 with the initial
velocity ν0 ¼ 0.1 (red), ν0 ¼ 0.5 (orange) and ν0 ¼ 0.8 (blue) oriented in the counterrotating azimuthal direction. The black sphere is
the BH outer event horizon with size RH ¼ 1.44M, while the red ellipsoid around the BH outer event horizon represents the ergosphere
and the green sphere is the emitting surface.
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radiation field b depending on the parameters R⋆, Ω⋆ and
the spin of a NS or BH, when the maximum values of the
angular velocity of the emitting surface Ω⋆ are limited
below superluminal rotation. In the case of a nonzero spin,
the photon azimuthal impact parameter of the radiation
field b can attain both positive and negative values for
positive (i.e., corotating) angular velocities Ω⋆. In the case
in which the emitting surface is partially located in the
ergosphere and rotates slowly with the angular velocity
going to Ω∞ðR⋆Þ≡ −gtt=gtϕ < ΩZAMO, the azimuthal
impact parameter of the radiation field b diverges to
−∞. For extremely slowly rotating surfaces located in
the ergosphere with Ω⋆ < Ω∞ðR⋆Þ b is positive again.
However, the photons emitted from such surfaces cannot
escape the ergosphere. (see Fig. 2).
Using the observer-splitting formalism, we formulated

the equations of motion (50)–(55) for test particles influ-
enced by our test radiation field. Their specific class of
solutions corresponds to the axially symmetric critical
hypersurface, which is formed by test particles on the
generally off-equatorial circular orbits around the emitting
surface stabilized by the balance between gravitational
attraction, radiation forces and PR drag. We have demon-
strated that the shape of the critical hypersurface depends
on the spin of the NS or BH and the parameters of the
radiation field R⋆ and Ω⋆. Depending on the interplay of
such parameters, the critical hypersurface may morph
between the oblate and prolate shape.
By using a cubic approximation of Eq. (59) to

determine the location of critical hypersurface, we found
a criterion for distinguishing the regime with only one
critical hypersurface from the regime with three critical
hypersurfaces. It should be noted, however, that the inner
solutions of Eq. (59) are found in the close vicinity of
the outer event horizon and in the region of spherical
photon orbits, such that their physical relevance is likely
very limited. Therefore, in the examples we analyzed,
multiple critical hypersurfaces are not relevant. We
determined the conditions for the existence of off-
equatorial suspended circular orbits bound on the critical
hypersurface and determined the corresponding value of
the polar angle ψ of the velocity of the test particle ν as
measured in the ZAMO frame as a function of latitudinal
coordinate θ.
We analyzed in detail representative cases for both a

rotating NS and a rotating BH. In the case of a NS, its
spherical surface is the source of the radiation field and the
Kerr parameter a is proportional to the angular velocity of
the emitting surface Ω⋆; we found that the critical hyper-
surface always takes an oblate shape. Interestingly, over a
limited range of relative luminosity values A, the critical
hypersurface forms only a lobe around the NS equator. The
angular velocity of the particles captured on such a
hypersurface is equal to Ω⋆ in the ring of intersection
with the NS surface and decreases with the polar

angle θ reaching a minimum on the equatorial plane
(see Figs. 7 and 8)
In the case of an emitting surface approximating a

spherical rotating hot-corona in the close vicinity of a
BH, the critical hypersurface can take a prolate as well as an
oblate shape. We analyzed the case of the emitting surface
located outside the ergosphere of a BH where suspended
off-equatorial orbits can exist. For high values of Ω⋆,
similar to the case of a NS, the critical hypersurface always
takes an oblate shape, and over a range of relative
luminosities A, it may form only a lobe around the equator
of the emitting surface. In the case of slowly rotating
emitting surfaces, an inversion effect may arise, where the
prolate critical hypersurface forms two lobes around the
poles of the emitting surface. In both cases, we integrated
selected trajectories of test particles influenced by the
interaction with the radiating field emitted from slowly
as well as rapidly rotating emitting surfaces.
A more complete analysis and classification of orbits in

the radiation field emitted by a rigidly rotating spherical
source, including the analysis of the stability of off-
equatorial suspended orbits on the critical hypersurface
and the conditions for capturing the test particles on such
orbits will be the subject of a separate study.
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APPENDIX A: CLASSICAL 3D LIMIT WITH
NONZERO PHOTON IMPACT PARAMETER

In this section we report the classical limit of Eqs. (50)–
(52). We already know how to treat the kinematic part from
our previous study [25], so we focus our attention on the
radiation force F ðradÞðUÞα (43). We first consider the
Schwarzschild limit a ¼ 0 of Eq. (56), for which we obtain

σ½ΦEðUÞ�2 ¼ Aγ2½1 − ν sinψ cos ðα − βÞ�2
rð1 − 2M

r Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ð1 − 2M

r Þðqþ b2Þ
q : ðA1Þ

Then for r → þ∞, we have
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σ½ΦEðUÞ�2 ≈ Aγ2½1 − ν sinψ cos ðα − βÞ�2
r2

: ðA2Þ

Finally, we consider ν → 0; the radiative force components
Eqs. (46)–(48) reduce to

F ðradÞðUÞr̂ ¼ A
r2

�
sin β − _rð1þ sin2βÞ − r _φ sin θ

sinð2βÞ
2

�
;

ðA3Þ

F ðradÞðUÞθ̂ ¼ −
A
r
_θ; ðA4Þ

F ðradÞðUÞφ̂ ¼ A
r2

�
cos β − _r

sinð2βÞ
2

− r _φ sin θð1þ cos2βÞ
�
;

ðA5Þ

where we exploited the following approximations of the
test particle velocity components [cf. Eqs. (36)]

Ur ≡ _r ≈ ν sinψ sin α; ðA6Þ

Uθ ≡ _θ ≈
ν cosψ

r
; ðA7Þ

Uφ ≡ _φ ≈
ν sinψ cos α

r sin θ
; ðA8Þ

here the dot indicates the derivative with respect to the
time t. It should be stressed that the classical 3D result
concerning the radial radiation field (reported in the
Appendix of Ref. [25]) is recovered easily for β ¼ π=2
in Eqs. (A3)–(A5). Therefore the related classical equations
of motion read as

r̈− r _φ2sin2θ− r_θ2þGM
r2

¼Ac
r2

sinβ−
A
r2

�
_rð1þ sin2βÞþ r _φsinθ

sinð2βÞ
2

�
; ðA9Þ

rθ̈ þ 2_r _θ−r _φ2 sin θ cos θ ¼ −A
_θ

r
; ðA10Þ

rφ̈ sin θ þ 2_r _φ sin θ þ 2r_θ _φ cos θ ¼ A
r2
cos β

−
A
r2

�
_r
sinð2βÞ

2
þ r _φ sin θð1þ cos2βÞ

�
; ðA11Þ

where on the right-hand side of Eqs. (A9) and (A11) we
have the radiation pressure projected along the radial and
azimuthal direction of the emitted photon and the PR effect
is multiplied by a factor taking into account the nonradial
direction of the emitted photon. In addition we note that the
nonradial emission of the photons breaks the spherical
symmetry of the equations of motion (see Appendix of

Ref. [25]). Classically the azimuthal photon angle β is
related to the photon impact parameter b through [see
Eq. (9)]

cos β ¼ b
r sin θ

: ðA12Þ

In our previous work [25], we saw that the time component
of the equations of motion corresponds to the energy
balance

d
dt

�
ν2

2
−
GM
r

�
¼ Ac

r2
ð_r sin β þ r _φ sin θ cos βÞ

−
A
r2
½_r2ð1þ sin2βÞ þ r2 _θ2

þ r2 _φ2sin2θð1þ cos2βÞ
þ _φ _rr sin θ sinð2βÞ�; ðA13Þ

where the left term represents the total mechanical energy,
while the right term corresponds to the radiation pressure
and the energy dissipated through the PR effect.

APPENDIX B: WEAK FIELD LIMIT
WITH SLOW AND FAST ROTATIONS

We determine here the weak field approximation
(r → ∞) of the equations of motion (50)–(52), at the first
order in the spin parameter a for slow rotations (a → 0).
Applying such limits to Eq. (56) we get

σ½ΦEðUÞ�2 ≈ Aγ2ΓðνÞfða; rÞ ðB1Þ

where ΓðνÞ ¼ ½1 − ν sinψ cos ðα − βÞ�2 and

fða; rÞ ¼ 1

r2
þ 2M

r3
þ 8M2 þ b2 þ q

2r4
þ 8M3

r5

−
2Mb
r5

aþ O

�
1

r6

�
þ O

�
a
r6

�
þ O

�
a2

r4

�
: ðB2Þ

Therefore, the radiation field components read as

F ðradÞðUÞr̂ ≈ Aγ2ΓðνÞfða; rÞV r̂; ðB3Þ

F ðradÞðUÞθ̂ ≈ Aγ2ΓðνÞfða; rÞV θ̂; ðB4Þ

F ðradÞðUÞφ̂ ≈ Aγ2ΓðνÞfða; rÞVφ̂: ðB5Þ

For slow motion (ν → 0), Eqs. (B3)–(B5) reduce to

F ðradÞðUÞr̂ ≈ Afða; rÞ
�
sin β − _rð1þ sin2βÞ

−
�
r _φ −

2aM
r2

�
sin θ

sinð2βÞ
2

�
; ðB6Þ
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F ðradÞðUÞθ̂ ≈ −Afða; rÞr_θ; ðB7Þ

F ðradÞðUÞφ̂ ≈ Afða; rÞ
�
cos β − _r

sinð2βÞ
2

−
�
r _φ −

2aM
r2

�
sin θð1þ cos2βÞ

�
; ðB8Þ

where we have exploited the following approximations for
the test particle velocity components

Ur ≡ _r ≈ ν sinψ sin αþ O

�
1

r

�
þ O

�
a2

r2

�
; ðB9Þ

Uθ ≡ _θ ≈
ν cosψ

r
þ O

�
1

r3

�
þ O

�
a2

r3

�
; ðB10Þ

Uφ ≡ _φ ≈
ν cos α sinψ

r sin θ
þ 2Ma

r3
þ O

�
1

r4

�
þ O

�
a2

r3

�

þ O

�
a
r4

�
; ðB11Þ

here dot means the derivative with respect to the affine
parameter τ. We note that Eqs. (B9)–(B10) are similar to
Eqs. (A6)–(A7) in the classical limit. In addition, in
Eqs. (B6) and (B8) by substituting the azimuthal test
particle velocity Eq. (B11), there is a factor a that when
multiplied by fða; rÞ gives a term of second order in a that
must be neglected. Therefore, we have

F ðradÞðUÞr̂≈A

�
f1ðrÞ½sinβ− _rð1þ sin2βÞ�

−f2ða;rÞ _φsinθ
sinð2βÞ

2
−
2aM
r4

sinθ
sinð2βÞ

2

�

þO

�
1

r5

�
þO

�
a2

r3

�
þO

�
a
r5

�
; ðB12Þ

F ðradÞðUÞθ̂ ≈ −Af2ða; rÞr_θ þ O

�
1

r5

�
þ O

�
a2

r3

�

þ O

�
a
r5

�
; ðB13Þ

F ðradÞðUÞφ̂ ≈ A

�
f1ðrÞ

�
cos β − _r

sinð2βÞ
2

�

− f2ða; rÞ _φ sin θð1þ cos2βÞ

−
2aM
r4

sin θð1þ cos2βÞ
�

þ O

�
1

r5

�
þ O

�
a2

r3

�
þ O

�
a
r5

�
; ðB14Þ

where

f1ðrÞ ¼
1

r2
þ 2M

r3
þ 8M2 þ b2 þ q

2r4
; ðB15Þ

f2ða; rÞ ¼
1

r
þ 2M

r2
þ 8M2 þ b2 þ q

2r3
þ 8M3

r4
−
2Mb
r4

a:

ðB16Þ

We note that the impact parameters appear already at the
r−3-order, whereas the spin parameter appear for the first
time at the r−4 term. The slow-rotation configures as an
effect of the fourth-order in the general relativistic radi-
ation processes. Note also that the next order in the spin
parameter is still linear, whereas the second order appears at
the third order.
Now we have also to consider the approximation of the

geometric part (see Table I in Ref. [25], for further details),
which yields

aðUÞr̂ ¼ d
dτ

ðγ_rÞ − 6γ2aM _φ sin θ
r2

−
γ2

r

�
r2 _θ2 þ

�
r2 _φ2 −

4Ma _φ
r

�
sin2θ

�

þMγ2

r2
½1þ r2 _θ2 þ r2sin2θ�

þMγ2

r3

�
1þ 1

2
ðr2 _θ2 þ r2sin2θÞ

�
;

þ O

�
1

r4

�
þ O

�
a
r3

�
þ O

�
a2

r3

�
ðB17Þ

aðUÞθ̂ ¼ d
dτ

ðγr_θÞ − γ2M_r _θ
r

þ γ2

r

�
r_θ _r−

�
r _φ −

4aM _φ

r

��
;

þ O
�
1

r3

�
þ O

�
a
r3

�
þ O

�
a2

r3

�
; ðB18Þ

aðUÞφ̂ ¼ d
dτ

�
γ

�
r _φ −

2Ma
r2

��
−
γ2M_r _φ

r
;

γ2

r

��
r _φ −

2Ma
r2

�
ðr_θ cos θ þ _r sin θÞ

�
;

þ O

�
1

r4

�
þ O

�
a
r4

�
þ O

�
a2

r3

�
: ðB19Þ

In the geometric part the spin appears linearly already at
the third order. This means that the linearized frame
dragging effect has more relevance in the gravitational-
geometric part than in the radiation processes. The second
order effect in the spin appear also at the third order. In this
case, it is important to note that the affine parameter τ is
related to the coordinate time t not linearly as in the classic
limit, but it satisfies this condition [see Ut in Eq. (36)]
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Ut ≡ _t ≈ γ

�
1þM

r

�
þ O

�
1

r2

�
þ O

�
a2

r3

�
; ðB20Þ

and in the slow motion approximation, it reduces to

Ut ≡ _t ≈
�
1þM

r

�
: ðB21Þ

Therefore, in order to pass from the proper time τ derivative
to the coordinate time t derivative, we have to multiply such
t-derivative by the geometrical factor of Eq. (B21). In the
slow-motion limit the test particle acceleration components
Eqs. (B17)–(B19) become

aðUÞr̂≈ r̈þ2aM _φsinθð2sinθ−3Þ
r2

þM
r2

�
1þM

r

�
; ðB22Þ

aðUÞθ̂ ≈ _rθ þ r_θ þ 4aM _φ cos θ
r2

; ðB23Þ

aðUÞφ̂ ≈ rφ̈ sin θ þ _r _φ sin θ þ r _φ _θ cos θ

−
2Ma
r3

ðr_θ cos θ þ _r sin θÞ: ðB24Þ
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