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We study a class of charged cosmological black holes defined by the Shah-Vaidya solution, which is
similar to the McVittie solution but for a central object of nonzero electric charge. We show that the Shah-
Vaidya metric is a solution of Einstein’s equations with a mass parameter and a cuscuton and a Maxwell
fields as sources. We then analyze the possible causal structures of the solution under some few physically
reasonable assumptions and determine the regions in the parameter space corresponding to well-behaved
charged cosmological black holes and those corresponding to naked singularities. The asymptotic behavior
of the Hubble factor HðtÞ is also determinant to the causal properties of the spacetime, and a theorem
explaining its effect is stated. Examples of causal diagrams covering all the possible types of spacetimes
allowed by our initial assumptions are drawn and discussed.
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I. INTRODUCTION

Black holes (BHs) have fascinated the general relativity
(GR) community over the years. They represent solutions
that, on the one hand, reach the theoretical applicability limit
of GR and, on the other hand, demand our most resourceful
observational techniques in order to be detected [1,2].
Stationary and quasistationary BH theory dates from the

1970s and has uncovered a series of intriguing phenomena
(BH thermodynamics, superradiance, and Hawking radia-
tion) [3]. However, as far as we know, BHs in nature are
formed by the collapse of matter under its own gravitational
field. Therefore, they are dynamically generated objects that
reach a stationary final state. To study the formation and
evolution of BHs, we have to consider solutions that evolve
in time. A particularly tractable though still rich case of
dynamical BH solutions is the black hole in an expanding
universe, which has been the target of a significant number
of studies [4–6].
The McVittie spacetime is one of the most representative

exact solutions of such a kind. It was first investigated in 1933
[7] and describes a Schwarzschild black hole embedded in a
Friedman-Lemaître-Robertson-Walker (FLRW) spacetime. It
tookmany years after the solutionwas released in order for an
appropriate assessment to be made about its causal structure.
That delay may have happened because of the lack of
mathematical tools available, since many important works

on themachinery for the analysis of dynamical solutions have
been presented in the last two decades, namely, Refs. [8,9].
Since then, theMcVittie solution has been extensively studied
by many authors (see, e.g., Refs. [10–16]).
Similarly to the Schwarzschild black hole, the McVittie

spacetime is characterized by a mass parameter associated
to a localized object. The addition of other parameters such
as an electric charge and rotation has been considered in the
literature. Of particular interest for the present work is the
charged version of the McVittie metric given by Shah and
Vaidya in 1968 [17]. Worth mentioning at this point is also
the extremely charged multiple cosmological black holes
solution presented in Ref. [18], which is a generalization of
the many charged black holes solution found by Hartle and
Hawking [19]. The causal structure of the solution pre-
sented in Ref. [18] was considered in Refs. [20,21].
In addition to the McVittie spacetime, charged cosmo-

logical black hole spacetimes have gained some attention
recently, as can be seen in Refs. [22–25]. The addition of
charge can enrich the discussion by bringing new ingredients
into play, which are useful in the study of more complex
scenarios. For instance, it may have a qualitative behavior
similar to asymptotically cosmological rotating black holes,
since a nonvanishing charge or angular momentum of the
central object has similar effects on the spacetime geometry,
as they introduce onemore horizon behind the event horizon,
in the nonextremal cases.
In the present work, we investigate the charged McVittie

spacetime, or Shah-Vaidya (SV) solution, by analyzing its
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fluid characteristics and its causal structure. Foremost, we
start by showing that an electromagnetic field plus a scalar
field known as cuscuton [26] are sources of the SV
solution. Afterward, we analyze the causal structure,
investigating the singularities and the horizons. We found
that there are two main scenarios that may change with the
parameters. Although the undercharged cases behave in a
similar way to the neutral case in the region outside the
event horizon—we present a similar theorem relating the
Hubble factor to the analytic continuation—in the over-
charged case, the causal structure is much different, with
the presence of naked singularities.
This paper is organized as follows. In Sec. II, we present

the main elements of the Shah-Vaidya metric and its
derivation as a solution of the Einstein-Maxwell equations
for a central mass and electric charge in a self-gravitating
cuscuton background. In Sec. III, we perform a change of
variables to analyze the metric in areal radius coordinates,
which is convenient in order to locate and characterize
singularities and discontinuities throughout the various
cases. In Sec. IV, we study the causal structure of the
different cases and construct a few examples. We present
our conclusions and next steps in Sec. V.
Throughout this work, we employ reduced Planck units

and the ð−;þ;þ;þÞ signature for the spacetime metric.
Greek indices run from 0 to 3. We use isotropic spherical
coordinates with the timelike coordinate denoted by t and
the spacelike radial coordinate denoted by r. When writing
down differential equations, the primes represent partial
derivatives with respect to the r coordinate, and overhead
dots represent partial derivatives with respect to the t
coordinate.

II. CHARGED COSMOLOGICAL BLACK HOLE

A. Metric in isotropic coordinates

The Shah-Vaidya line element, in isotropic coordinates,
is given by [5,17,23,24,27,28]

ds2 ¼ −
½1 − μ2 þ χ2�2
½ð1þ μÞ2 − χ2�2 dt

2

þ a2ðtÞ½ð1þ μÞ2 − χ2�2ðdr2 þ r2dΩ2Þ; ð1Þ

where aðtÞ is the scale factor and the functions μ and χ are
defined, respectively, as

μ ¼ μðt; rÞ≡ m
2raðtÞ ; ð2aÞ

χ ¼ χðt; rÞ≡ q
2raðtÞ : ð2bÞ

The parameters m and q are to be associated to the mass
and electric charge of a localized source.

The presence of a pointlike electric charge gives rise to
an electromagnetic Faraday-Maxwell field strength, which
may be written as

Fμν ¼
q

r2aðtÞ
½1 − μ2 þ χ2�

½ð1þ μÞ2 − χ2�2 ðδ
t
μδ

r
ν − δrμδ

t
νÞ; ð3Þ

where δνμ is the Kronecker delta tensor.

B. Field sources

In this section, we show that the line element (1) is a
solution to the coupled Einstein-Maxwell equations with
the homogeneous cuscuton field as a source and a central
object with electric charge. The procedure is analogous to
the one developed in Refs. [17,29].
The cuscuton field has been proposed as noncanonical

field theory that has no dynamical degree of freedom
but that is able to change the dynamics of other fields,
including gravity, when coupled to them [26,30]. The
action for the cuscuton scalar ϕ is given by

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½μ2
ffiffiffiffiffiffiffiffiffi
j2Xj

p
− VðϕÞ�; ð4Þ

with VðϕÞ being the scalar potential, μ being the cuscuton
coupling, and X being the usual scalar kinetic term given by

X ≡ −
1

2
gμν∇μϕ∇νϕ: ð5Þ

The second source is a nonzero electromagnetic field, the
action of which is given by

SEM ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
−

1

16π
FμνFμν þ AμJμ

�
; ð6Þ

so the full action is

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4xRþ SEM þ Sϕ: ð7Þ

We assume a spherically symmetric ansatz for the metric,
with the following generic line element:

ds2 ¼ −e2νðt;rÞd tþ e2λðt;rÞd r2 þ Y2ðt; rÞ dΩ2: ð8Þ

In such a metric, the free electromagnetic field quantities
Fμν reduce to a single function, denoted by Eðt; rÞ, where

Fμν ¼ Eðt; rÞðδtμδrν − δrμδ
t
νÞ: ð9Þ

We assume a comoving current in this frame, that is,

Jμ ¼ jðt; rÞuμ; ð10Þ
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where uμ ≡ e−νδμt is the comoving flow in metric (8). Since
the cuscuton field is assumed to be neutral and there are no
other couplings, the Maxwell equations read

_Eþ E

�
2
_Y
Y
− _λ − _ν

�
¼ 0; ð11aÞ

E0 þ E

�
2
Y 0

Y
− λ0 − ν0

�
¼ −4πjeνþ2λ: ð11bÞ

Equation (11) can be integrated to give

E ¼ q
eðνþλÞ

Y2
; ð12Þ

where q ¼ qðrÞ is an integration factor that may depend on
the radial coordinate r. Inserting this solution for Eðt; rÞ
into Eq. (11b), we find

q0 ¼ −4πjY2eλ: ð13Þ
By assuming that there is no charge distribution in the bulk,
we set j ¼ 0 and then integrate the last equation to find that,
in such a case, q is also a constant throughout r.
The equation of motion for the homogeneous cuscuton

field ϕ ¼ ϕðtÞ is cast from the action (7) with metric (8)
as [29]

�
2 _Y
Y

þ _λ

�
e−ν ¼ −

1

μ2
dV
dϕ

≡ 3HðtÞ: ð14Þ

As in the uncharged case, this result means that the foliation
defined by the flow uμ (which also coincides with the
direction defined by the field) has a constant mean extrinsic
curvature (CMC), that is,

Kμ
μ ≡ 1

2
gμνLuðgμν þ uμuνÞ ¼ 3HðtÞ; ð15Þ

where Lu stands for the Lie derivative and HðtÞ is the same
homogeneous function as defined in Eq. (14), which also
tells us that the expansion scalar associated with the flow uμ

is independent of the radial coordinate.
Finally, the Einstein equations read

_Y 0 − Y 0 _λ − _Yν0 ¼ 0; ð16aÞ
�
2 _Y _λ

Y
þ
�
_Y
Y

�2�
e−2ν þ

�
2ðλ0Y 0 − Y 00Þ

Y
−
�
Y 0

Y

�
2
�
e−2λ þ 1

Y2

¼ q2

Y4
þ V; ð16bÞ

�
2ðŸ − _ν _YÞ

Y
þ
�
_Y
Y

�2�
e−2ν −

�
2ν0Y 0

Y
þ
�
Y 0

Y

�
2
�
e−2λ

þ 1

Y2
¼ q2

Y4
− μ2e−ν _ϕþ V; ð16cÞ

�
_ν _λ−λ̈ − _λ2 þ

_Yð_ν − _λÞ − Ÿ
Y

�
e−2ν

þ
�
ν00 þ ν02 − ν0λ0 þ Y 0ðν0 − λ0Þ þ Y 00

Y

�
e−2λ

¼ q2

Y4
þ μ2e−ν _ϕ − V: ð16dÞ

Further imposing that the traceless part of the extrinsic
curvature vanishes, that is, that the comoving flow is shear
free,1 we find the relations

_λ ¼
_Y
Y
; ð17Þ

Y ¼ ηðrÞeλ; ð18Þ

where ηðrÞ is a function that depends only on the radial
coordinate. Inserting these conditions and Eq. (15) into the
momentum constraint (16), we find

eν ¼
_λ

H
: ð19Þ

With this, the metric (8) can be cast in the form

ds2 ¼ −
�
_λ

H

�2

dt2 þ e2λ½dr2 þ η2ðrÞdΩ2�: ð20Þ

An important difference with respect to the uncharged
Kustaanheimo-Qvist class of shear-free, perfect-fluid met-
rics is that here, because of the presence of the electro-
magnetic field, the pressure isotropy condition is no longer
satisfied. This means that, in the present case, the difference
between the radial and angular components of the Einstein
equations is not zero. Instead, after subtracting Eq. (16c)
from (16d), we now find an anisotropy source term that
reads

− λ02 − 2
λ0 _λ0

_λ
þ λ00 þ

_λ00

_λ
−
η0

η

�
λ0 þ

_λ0

_λ

�

þ 1

η2
ðηη00 − η02 þ 1Þ ¼ −

2q2e−2λ

η4
; ð21Þ

so we are motivated to choose a gauge for which [27,31]

ηη00 − η02 þ 1 ¼ 0 ⇒ η02 ¼ 1 − kη2; ð22Þ

where k is an integration constant that may be normalized
to k ¼ 0;�1. Integrating this equation, we get

1Imposing shear-free flow in a spherically symmetric metric
implies a CMC comoving foliation, but the converse is not true.
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ηðrÞ ¼
8<
:

sinh r k ¼ −1;
r k ¼ 0;

sin r k ¼ 1:

ð23Þ

Equation (21) multiplied by the factor _λeλ can be
rewritten as a total derivative, namely,

∂t

�
eλ
�
λ00 − λ02 − λ0

η0

η

�
þ 2q2e−2λ

η4

�
¼ 0; ð24Þ

which reduces to the ordinary differential equation

eλ
�
λ00 − λ02 − λ0

η0

η
þ 2q2e−2λ

η4

�
¼ ψðrÞ; ð25Þ

where ψðrÞ is an arbitrary function of the radial coordi-
nate alone.
With these results, we note that the Weyl part of the

Misner-Sharp mass now reads [32–34]

MðWÞ
MS ¼ η3ðrÞ

3
ψðrÞ − e−λðt;rÞ

ηðrÞ q2: ð26Þ

Since we are interested in cosmological solutions, we
choose the function ηðrÞ that provides a spatially flat
metric, that is, k ¼ 0, and, by Eq. (23), η ¼ r. Now, the
second term of Eq. (26) is due to the presence of the central
charge q, whereas the first term is related to the presence of
a central mass. For that reason, we make the following
ansatz for ψ [34], which holds for a spatially flat asymptotic
FLRW spacetime,2

ψðrÞ ¼ 3m
r3

: ð27Þ

With such a choice, it can be shown that the following
expression is a solution to Eq. (25),

eλ ¼ aðtÞ
��

1þ m
2aðtÞr

�
2

−
�

q
2aðtÞr

�
2
�
; ð28Þ

where aðtÞ is an arbitrary function of the coordinate t alone.
Considering the definition of the trace of the extrinsic
curvature, Eq. (15), and bearing in mind that we are looking
for cosmological solutions, we identify

H ¼ _a
a
: ð29Þ

This identification and the metric function (28) substituted
into Eq. (19) furnish the metric coefficient eν,

eν ¼ 1 − ½m=2aðtÞr�2 þ ½q=2aðtÞr�2
½1þm=2aðtÞr�2 − ½q=2aðtÞr�2 : ð30Þ

Applying this solution to the electromagnetic field (12), we
find

E ¼ q
ar2

1 −m2=4a2r2 þ q2=4a2r2

½ð1þm=2arÞ2 − q2=4a2r2�2 ; ð31Þ

which is consistent with Eq. (3).
The remaining independent Einstein equations, (16b)

and (16c), finally read

V − 3H2 ¼ 0; ð32Þ

V − 3H2 ¼ ðμ2 _ϕþ 2 _HÞ ð1þm=2arÞ2 − q2=4a2r2

1 −m2 − q2=4a2r2
; ð33Þ

so the cuscuton field satisfies the relation μ2 _ϕþ 2 _H ¼ 0.
Combining this relation with the equation of motion of the
cuscuton field, Eq. (14), we find the same solution for the
potential as in Ref. [29], i.e.,

�
dV
dϕ

�
2

¼ 3μ4V; ð34Þ

V ¼ 3μ4

4
ðϕ − V0Þ2; ð35Þ

and it is then seen that the entire system is consistent.
In summary, we have shown that the Shah-Vaidya metric

is an exact solution of the Einstein-Maxwell equations with
a neutral cuscuton field source with a quadratic potential
and that it represents a central object with Misner-Sharp
massm and electric charge q in a spatially flat environment.

III. PROPERTIES OF THE SHAH-VAIDYA
SPACETIME

A. Areal radius coordinate

The Shah-Vaidya metric and related physical and geo-
metric quantities assume simpler forms when expressed in
terms of the areal radius R, defined from metric (1) as

R ¼ ar½ð1þ μÞ2 − χ2� ¼ arþmþm2 − q2

4ar
; ð36Þ

which transforms the line element (1) into the form

2A more generic ansatz is ψ ¼ 3mw02ðrÞ=w3ðrÞ, with
wðrÞ ¼ 2ηðr=2Þ, which would recover the properties of cosmo-
logical spacetimes of any spatial curvature, as shown in Ref. [34]
by assuming that the source is an otherwise unconstrained perfect
fluid. However, as it was shown in Ref. [29], a metric of the
family (20) with k ≠ 0 is not a solution of the cuscuton equation
of motion, Eq. (14).
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ds2 ¼ −N2dt2 þ
�
dR
N

−HRdt

�
2

þ R2dΩ2; ð37Þ

where N ¼ NðRÞ is the lapse function, given by

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
R

þ q2

R2

r
: ð38Þ

Notice that the transformation (36) is defined in the real
domain for r and R if 1 − 2m=Rþ q2=R2 ≥ 0. In fact,
solving Eq. (36) for r, one gets two branches, namely [23],

2ar ¼ R −m� R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
R

þ q2

R2

r
; ð39Þ

where the positive branch is the one that corresponds to
R → ∞ as r → ∞ and the interpretation of the negative
branch is given in the following sections.
As just mentioned, the isotropic radius r is real only if

1 − 2m=Rþ q2=R2 > 0. Even though this is well known
for the relation between isotropic and areal radial coor-
dinates in the Reissner-Nordström metric, we review some
details here for completeness and for future reference.
There are three different cases to be considered: (i) the
undercharged, (ii) the extremely charged, and (iii) the
overcharged cases.

1. Undercharged case: m2 > q2

In this case, the lapse function NðRÞ has two
roots R� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, and N2ðRÞ is negative in the

interval R− < R < Rþ. Hence, considering that the iso-
tropic coordinate is real, the domain of the areal radius
coordinate R should be restricted to the intervals Rþ ≤ R <
∞ and 0 ≤ R ≤ R−. If one assumes, as usual, that the areal
radius ranges from zero to infinity, R ∈ ½0;∞Þ, then
we conclude that, for m2 > q2, the isotropic coordinate
r does not cover the interval R− < R < Rþ. The region
R ∈ ½Rþ;∞Þ is covered once by ar ∈ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
=2;∞Þ

and again (twice) by ar ∈ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
=2; 0Þ. On the

other hand, the region R ∈ ½0; R−� is covered once by
ar ∈ ½−ðmþ jqjÞ=2;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
=2Þ and again (twice)

by ar ∈ ½ð−mþ jqjÞ=2;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
=2Þ.

2. Extremal case: m2 = q2

In this case, NðRÞ has a double root Rþ ¼ R− ¼
m ¼ jqj, and N2ðRÞ is non-negative in the whole domain
0 ≤ R < ∞, where it is assumed, as usual, that the areal
radius ranges from zero to infinity. We then conclude that,
for m2 ¼ q2, the isotropic coordinate r covers (once) all
the range of R. Equation (36) reduces to R ¼ arþm,
and so the region R ∈ ½Rþ ¼ R−;∞Þ is covered once by
ar ∈ ½0;∞Þ. On the other hand, the region R ∈
½0; R− ¼ Rþ� is covered once by ar ∈ ½−m; 0Þ.

3. Overcharged case: m2 < q2

In this case, NðRÞ has no real roots, and N2ðRÞ remains
nonzero in the whole domain 0 ≤ R < ∞, where it is
assumed, as usual, that the areal radius ranges from zero to
infinity. Therefore, for m2 < q2, the isotropic coordinate r
covers (twice) all the range of R. Indeed, the full range
R ∈ ½0;∞Þ is covered once by ar ∈ ½ð−mþ jqjÞ=2;∞Þ
and again (twice) by ar ∈ ½ð−m − jqjÞ=2; 0Þ.

B. Scale factor

Here, we assume that the function aðtÞ, which plays the
role of the scale factor, implies a big bang–type expanding
model and consider a few different asymptotic behaviors at
late times. The important function in the present analysis is
the Hubble factor as defined in Eq. (29). In view of this fact,
we enumerate here the assumptions on HðtÞ.

(i) Big bang hypothesis: limt→0HðtÞ → þ∞.
(ii) Null energy condition satisfied: _HðtÞ < 0.
(iii) Expanding hypothesis: HðtÞ ≥ 0:

(a) Asymptotically de Sitter cosmological model:
HðtÞ → H0 ¼ constant at large t.

(b) Asymptotically empty model: HðtÞ → 0 at large
t. See the Appendix C.

C. Curvature scalars

To understand the structure of the Shah-Vaidya space-
time, we have to describe the curvature singularities
displayed by the metric (37). Part of this analysis can be
found in previous works, e.g., Refs. [5,23,24]. For such a
purpose, we make use of scalar invariants such as the Ricci
R and the Kretschmann K scalars. These may be written,
respectively, in the form

R ¼ 12H2ðtÞ þ 6 _H
NðRÞ ; ð40Þ

K ¼ 48

�
m
R3

−
q2

R4

�
2

þ 8q4

R8
þ 24H4

þ 4 _H
NðRÞ

�
3 _H
N

þ 6H2 −
2q2

R4

�
; ð41Þ

where NðRÞ is the lapse defined in Eq. (38).
Assuming that the areal radius is restricted to the interval

0 ≤ R < ∞, it is clearly seen that singularities may occur at
R ¼ 0, or at regions of the spacetime where NðRÞ ¼ 0,
besides the singularities for which H and/or _H become
arbitrarily large. Such a situation happens, for instance, if
the scale factor is assumed to have a big-bang-like
behavior. Therefore, the important function to investigate
here is NðRÞ, the real positive roots of which lead to
curvature singularities. On the other hand, if NðRÞ does not
vanish anywhere, the singularity lies at R ¼ 0.
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Let us then assume that NðRÞ vanishes, and let us call S0

the corresponding locus, which corresponds in general to a
spherical surface (of constant R) in the spacetime. The loci
where NðRÞ vanishes are given by the two spherical
surfaces, S�, defined by R ¼ R�, where

R� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
; ð42Þ

which are real for m2 ≥ q2.
It is straightforward to show that the singularities S� are

both spacelike surfaces if the roots ofNðRÞ are real. Indeed,
taking nμ as the gradient of the surface S ¼ R ¼ constant,
namely, nμ ¼ ∇μS, we have that

n2 ¼ nμnμ ¼ N2 −H2R2: ð43Þ

Taking now the limit R → R�, it follows that n2 ¼ n2� ¼
−H2R2

� < 0. Hence, the normal vectors nμ� are both
timelike vectors, and consequently S� are both spacelike
surfaces.
Analogously, it can be shown that the singularity at

R ¼ 0 is timelike. Indeed, following the same procedure as
above, we may take the limit of small R into Eq. (43) to
obtain n2 → q2=R2 > 0, showing that nμ is a spacelike
vector so that R ¼ 0 is a timelike surface.
To proceed further, it is convenient to split the study of

singular surfaces in the following cases.

1. Undercharged case: m2 > q2

Let us choose the positive branch of the isotropic radial
coordinate [see Eqs. (36) and (39)] for which the aðtÞr → 0
limit corresponds to R → ∞, while R ¼ 0 corresponds to
aðtÞr ¼ ð−m� jqjÞ=2, where the isotropic coordinate r is
allowed to assume negative values. Is this case, when
m2 > q2, the function NðRÞ has two real positive roots for
R, R� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, both corresponding to singular-

ities of the curvature scalars, besides the central singularity
at R ¼ 0.
The presence of curvature singularities requires that the

initial range 0 ≤ R < ∞ is reconsidered. In fact, the
original range may be split into three intervals, separated
by points (surfaces) where the curvature scalars diverge,
namely, (i) Rþ < R < ∞, (ii) R− < R < Rþ, and
(iii) 0 < R < R−. Since the metric may describe a cosmo-
logical spacetime, the asymptotic region R → ∞ is of
interest. So, we will restrict our analysis to the interval
Rþ < R < ∞, with Rþ representing a boundary of the
spacetime. The regions R ¼ R− and R ¼ 0 are also
curvature singularities but are of little interest for the
present analysis, since they are beyond the singular
spacetime boundary at R ¼ Rþ. Of course, the coordinate
patches ii and iii in the intervals R− < R < Rþ and
0 < R < R−, respectively, correspond to disconnected
spacetimes of which the boundaries are singular surfaces

in the sense that the curvature scalars diverge at those
boundaries. None of these spacetime patches is considered
in the present work.
As shown above, the spacetime boundary R → Rþ is a

spacelike singular surface, and we notice here that, apart
from the roots of the scale factor aðtÞ, it is the only
curvature singularity. The causal structure of these space-
times is studied in Sec. IV.

2. Extremely charged case m2 = q2

This is a particular but very interesting situation for these
solutions. First of all, Eq. (36) becomes R ¼ aðtÞrþm, so
that R ¼ 0 corresponds to r ¼ −m=a. The lapse function
NðRÞ has only one positive root, R ¼ R� ¼ m, which
corresponds to a singularity of the curvature scalars. The
relevant spacetimes are obtained by choosing R in the range
m < R < ∞. This branch presents a singular boundary at
R → m. The causal structure of these spacetimes are
studied in Sec. IV.
The other region, namely, 0 < R < m, represents

another spacetime with singular boundaries at R ¼ 0 and
R ¼ m, which we do not consider here.

3. Overcharged case: m2 < q2

In this case, the lapse function has no roots, and there is a
curvature singularity at R ¼ 0. The spacetime described by
the overcharged SV metric includes all the range of the
radial coordinate 0 < R < ∞ and is bounded by a singular
timelike surface at R ¼ 0.
Similarly to the static overcharged Reissner-Nordström-

de Sitter (RNdS) case, depending on the asymptotic form of
the scale factor aðtÞ, there may be interesting causal
structures here. This is also investigated in Sec. IV.

IV. CAUSAL STRUCTURE

The aim of this section is to characterize the family of
spacetimes represented by the Shah-Vaidya metric and
determine their causal structure, which depends on some
specified parameters and on the asymptotic behavior as it
will be seen next. Our approach is to determine the loci of
interest:

(i) curvature singularities;
(ii) apparent horizons (AHs);
(iii) end points of incomplete geodesics.
Since the singularities were already approached in

Sec. III, in this section, we study the AHs and geodesic
completeness, in order to determine when an analytical
continuation is possible. Finally, we characterize those
continuations by means of a theorem and display a few
representative examples.

A. Existence and number of apparent horizons

The apparent or trapping horizons are defined here
following the approach proposed by Ref. [8], based on a
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study of the optical scalars related to null congruences
defined by a codimension-2 foliation of the spacetime. This
so-called dual null approach has been used in a variety of
applications in black hole physics [8,9,35,36] and beyond
[6,37–40].
We define AHs as the loci where one of the null

expansions related to ingoing or outgoing null geodesics
vanishes. In spherically symmetric spacetimes like the
Shah-Vaidya case, the AHs are three-dimensional hyper-
surfaces that evolve in time, corresponding to a sphere at
each time, and the analysis of the null expansion is reduced
to the analysis of dR�ðtÞ=dt, where R�ðtÞ are outgoing/
ingoing null geodesics. This allows us to classify each
spacetime sphere as being:
(a) regular, if ðdRþ=dtÞðdR−=dtÞ < 0;
(b) trapped, if ðdRþ=dtÞðdR−=dtÞ > 0 and both are

negative;
(c) antitrapped, if ðdRþ=dtÞðdR−=dtÞ > 0 and both are

positive;
(d) marginal, if ðdRþ=dtÞðdR−=dtÞ ¼ 0.
From the above definitions, it follows that the AHs are

loci defined by the continuous sets of marginal spheres.
From this, and assuming continuity of all quantities, we
also see that the AHs are the boundaries between different
regions.
The equations for outgoing/ingoing null geodesics are,

respectively,

dR�
dt

¼ NðR�ÞðR�HðtÞ � NðR�ÞÞ; ð44Þ

where we can readily notice that only dR−=dt may vanish.
Therefore, all the AHs of the Shah-Vaidya metric (37) are
given by the real and positive solutions of the equation

NðRÞ −HðtÞR ¼ 0 ⇔ NðRÞ2 −HðtÞ2R2 ¼ 0 ⇔

−H2ðtÞR4 þ R2 − 2mRþ q2 ¼ 0: ð45Þ
A simple analysis shows that this polynomial has at most
three or at least one real positive root, depending on the
relative values of H, m, and q. In cases in which there are
two roots, one of them is double, corresponding to an
extremal case.
For the numerical and graphical analysis, it is convenient

to define the dimensionless quantities

x ¼ R
m
; σ ¼ q

m
; h ¼ mH; ð46Þ

such that Eq. (45) for the apparent horizons reads

h2x4 − x2 þ 2x − σ2 ¼ 0: ð47Þ
The number of horizons is determined by the parameters

ðh; σ2Þ, and there are four possibilities, corresponding to
four regions in the parameter space, as seen in Fig. 1,
namely:

(i) Region I.—undercharged cases with the formation of
two horizons, R− and Rþ.

(ii) Region II.—also undercharged cases but without
horizons and therefore presenting a naked
singularity.

(iii) Region III.—slightly overcharged cases with the
formation of three horizons, R0, R−, and Rþ.

(iv) Region IV.—overcharged cases with one single
horizon Rþ.

It is important to note that a time-dependent solution,
with H ¼ HðtÞ, may correspond to different regions at
different times. In the cases we consider, as limt→0H ¼ ∞,
_H < 0, and q ¼ constant, the evolution of a given solution
in the parameter space describes a horizontal straight line,
at the corresponding constant σ2, starting from infinity and
moving to right, toward smaller values of h. Depending on
σ2 and the final value limt→∞ HðtÞ, such solutions may
present a behavior corresponding to one or two regions of
the ðh; σ2Þ plane.
The existence of AHs is in a sense related to the

singularity problem. As seen in the previous section, the
spacelike curvature singularity at finite areal radius only
appears if m2 ≥ q2. If m2 < q2, the only curvature singu-
larity appears at R ¼ 0, and it is timelike. For this reason,
we will analyze the relevant cases separately.

1. Regions I and II

Regions I and II cover the whole region of the parameter
space for σ2 < 1 and are separated by the curve for σ2c−, the
dashed line in Fig. 1. Region I is a bounded region, while
region II is unbounded, extending to h → ∞.

FIG. 1. Graphs of the different σ2 ¼ q2=m2 curves for the
extremal cases as a function of h ¼ mHðtÞ: σ2cþ (dotted curve)
and σ2c− (dashed curve). The solid horizontal line is the σ2 ¼ 1
curve, as indicated. Regions I and II cover the whole region of the
parameter space for σ2 < 1 and are separated from each other by
the curve of σ2c−. Region III is bounded by the line σ2 ¼ 1 (from
below) and by the curves for σ2cþ (from above) and for σ2c− (from
the right). Region IV comprises all the parameter space not
belonging to the other three regions.
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In this case, we may have between one end three real
roots for Eq. (47), but the smallest of them is always below
the curvature singularity, which, in terms of reduced
variables, is the smallest root of

x2 − 2xþ σ2 ¼ 0: ð48Þ

This means that there are between zero and two apparent
horizons in the region covered by the ðt; RÞ coordinates, as
we can see in the example from Fig. 2. The whole region II
presents no AHs, and the singularity at Rþ is naked. The
geodesic lines for a representative case of such a region are
shown in Fig. 3.

2. Line σ2 = 1, q2 =m2

Consider now the special case m ¼ q (σ2 ¼ 1). In this
case, the AHs correspond to roots of the two second-order
polynomials,

HR2 þ R −m ¼ 0; HR2 − Rþm ¼ 0; ð49Þ

which can be easily computed. The solutions to (49) are,
respectively,

R1;2 ¼
1

H
ð−1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4mH
p Þ; ð50Þ

R3;4 ¼
1

H
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4mH

p
Þ; ð51Þ

showing that, for 0 < h ≤ 1=4, there is just one real
positive root for R smaller than the radius of the singularity
locus (which is at R ¼ m) and two real roots for R larger
than m. Hence, there may be two (or none) AHs. For
h > 1=4, there is no AH, since the only positive root is
smaller than the singularity radius.

3. Regions III and IV

Region III is a bounded region in the parameter space. It
is bounded from below by the line σ2 ¼ 1, from above by
the curve for σ2cþ, and from the right by the curve for σ2c−.
Region IV is an unbounded region in the parameter space. It
comprises all the parameter space with σ2 > 1 not belong-
ing to region III.
When jqj > m, Eq. (48) has no roots, and there is no

finite radius singularity to consider. Therefore, all positive
roots of Eq. (47) should be considered AHs in the
spacetime. Thus, the overcharged case displays three
AHs, for solutions in region III (cf. Fig. 4), or one AH,
for solutions in region IV (cf. Fig. 5).

4. Extremal cases

The boundaries between the various regions in parameter
space are given by the extremal cases, in which two or more
horizons coincide. An analysis of the roots of Eq. (47) leads
us to the graph in Fig. 1, the deduction of which is given in
Appendix A. The boundaries are given by

σ2c�ðhÞ ¼ x2c�ðhÞ½1 − 3h2x2c�ðhÞ�; ð52Þ

where

xc�ðhÞ ¼
ffiffiffi
6

p

3h
cos

�
π

3
� 1

3
arccos

�
3

ffiffiffi
6

p
h

2

��
: ð53Þ

The dotted and dashed curves contain the extremal cases.
The dotted line corresponds to the cases in which the two
innermost AHs coincide, while the dashed line corresponds

FIG. 2. Region I: The ingoing/outgoing geodesics (dotted/
dotted dashed) for the undercharged case in which m ¼ 1 and
q ¼ 0.50, considering the scale factor aðtÞ ¼ sinh ð3H0t=2Þ2=3,
with H0 ¼ 0.05. The singularity in Sþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
is

represented by a sinuous line, and the two horizons R� are also
represented by continuous and dashed lines, respectively. These
horizons divide the spacetime into a regular region (þ−) and an
antitrapped region (þþ).

FIG. 3. Region II: The ingoing/outgoing geodesics (dotted/
dotted dashed) for the undercharged case in which m ¼ 1 and
q ¼ 0.50, considering the scale factor aðtÞ ¼ sinh ð3H0t=3Þ2=3,
with H0 ¼ 0.30. There is a singularity Sþ at R¼mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−q2

p
,

but no apparent horizons are formed.
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to cases in which the two outermost horizons coincide. The
point of convergence of both curves corresponds to the
unique case in which all three horizons coincide, located at
σ2 ¼ 9=8 and h ¼ ffiffiffi

6
p

=9.

B. Geodesic completeness

Let us first consider the case in which, for large enough
times, there is a regular region separated from a trapped/
antitrapped region by an AH that we denote R̂ðtÞ. Let R∞
be the limiting value of this horizon radius for large times,
i.e., R∞ ≡ limt→∞R̂−ðtÞ.

Now, let us write down the equations for the null ingoing
geodesics,

dR−

dt
¼ NðR−Þ½R−HðtÞ − NðR−Þ�; ð54Þ

R00
−ðλÞ ¼

R−R02
−ðλÞ _HðtÞ

NðR−ÞðNðR−Þ − R−HðtÞÞ2 ; ð55Þ

where the prime indicates the derivative with respect to the
affine parameter λ.
By definition, R̂ðtÞ is a root of dR−=dðtÞ. If d2R−=

dt < 0, the AH acts as an attractor for ingoing null geodesics
that are nearby. In particular, R∞ ¼ limt→∞ R−ðtÞ for all
ingoing null geodesics with values at a neighborhood
of R∞. The d2R−=dt2 < 0 condition implies that dR−=dt >
0 just below the AH (R < R̂) and dR−=dt < 0 just above the
AH (R > R̂). This is equivalent to saying that the region
below the AH is antitrapped and the region above it is
regular. Such an AH exists in spacetimes that asymptotically
reach regions I and III in Fig. 1, the geodesic lines of which
are depicted, respectively, in Figs. 3 and 4. For those cases,
we prove geodesic incompleteness of ingoing null geodesics
as follows.
From Eq. (B9), by imposing the null energy condition

over the full spacetime, the Hubble parameter is restricted
to _HðtÞ ≤ 0. Therefore, considering a null ingoing geodesic
in the regular region, we have R−

0ð0Þ < 0 and R00
−ð0Þ < 0,

for all R− > R̂. This implies that R− reaches R∞ at a finite
affine parameter interval Δλ < ½R−ð0Þ − R∞�=R0

−ð0Þ, even
though t → ∞. This argument is similar to what was shown
in Ref. [12] for the uncharged McVittie metric.
When d2R−=dt2 > 0, the AH is a repulsive barrier to

ingoing null geodesics. This happens for spacetimes that
asymptotes to region III in Fig. 1. In this case, if there are no
more horizons, the ingoing null geodesics below the
horizon fall into the central singularity at R ¼ 0, being
incomplete—for small R, the metric behaves as an RNdS
spacetime—while the ingoing geodesics above the AH
escape to infinity and are complete. When there is no AH,
the same is valid for ingoing null geodesics, since in this
case dR−=dt > 0 everywhere, R−ðtÞ → ∞ as t → ∞, and
for large values of R the spacetime behaves as a FLRW
spacetime and is therefore geodesically complete at infinity.
This is the case for spacetimes that at large times reach
region II of Fig. 1 for large times.
The outgoing null geodesics are always complete and

reach future infinity.
In Figs. 2–5, we depict examples of spacetimes of which

the evolution ends in each one of the four regions shown
in Fig. 1.

FIG. 4. Region III: The ingoing/outgoing geodesics (dotted/
dotted dashed) for the overcharged case in which m ¼ 1 and
q ¼ 1.02, considering the scale factor aðtÞ ¼ sinh ð3H0t=2Þ2=3,
with H0 ¼ 0.24. There are three horizons, indicated by R0, R−,
and Rþ, that divide the spacetime into two regular regions (þ−)
separated by an antitrapped region (þþ). There is a singularity at
R ¼ 0, not shown.

FIG. 5. Region IV: The ingoing/outgoing geodesics (dotted/
dotted dashed) for the overcharged case in which m ¼ 1 and
q ¼ 1.20, considering the scale factor aðtÞ ¼ sinh ð3H0t=2Þ2=3,
with H0 ¼ 0.14. There is a singularity at R ¼ 0, not shown, and
the only horizon is represented by a dashed line which divides
the spacetime into a regular region (þ−) and an antitrapped
region (þþ).
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C. Analytic continuation

As seen above, there are instances in which the Shah-
Vaidya metric is geodesically incomplete but the incom-
plete geodesics of which do not end in a singularity. This
means that those cases may be extendable by the use of new
coordinate patches.
If HðtÞ asymptotes to a constant H0 > 0, the spacetime

metric asymptotes to a RNdS metric for t → ∞. Since
ingoing null geodesics reach t ¼ ∞ for a finite affine
parameter, we can say that at that surface the SV metric
coincides with an RNdS metric. To prove this, we can
extend the SV metric by gluing it with a corresponding
RNdS patch at t ¼ ∞, for which we need to show that there
exists a nonsingular coordinate system covering the two
pieces. This was done for the McVittie solution by Kaloper
et al. [12], and following that work, we define the new
coordinate

dτ ¼ dtþ dR
NðRÞðNðRÞ −H0RÞ

; ð56Þ

which is formally identical to the construction made in
Ref. [12], but for the fact that in our case NðRÞ contains a
charge term. We must prove that the total variation Δτ
along ingoing null geodesics close to R̂−ðtÞ is bounded as
t → ∞. Using Eq. (54), we obtain, along ingoing null
geodesics,

dτ
dR

¼ 1

NðRÞ
�

1

NðRÞ −H0R
−

1

NðRÞ −HðtÞR
�
; ð57Þ

which leads to

Δτ ¼
Z

R∞ dR
NðRÞ

�
1

NðRÞ −H0R
−

1

NðRÞ −HðtÞR
�
: ð58Þ

The integrand of Eq. (58) diverges on the horizon R̂− and
at R∞. We can make an expansion near R∞ to obtain, at
leading order in R − R∞,

Δτ ≈
Z

0

z0

dz
−H2

0R
2
∞ΔHðtÞ

B2z2 −H2
0R

2
∞BΔHðtÞz ; ð59Þ

where z ¼ zðtÞ≡ R − R∞, B≡H0R∞½N0ðR∞Þ −H0�,
and ΔHðtÞ ¼ HðtÞ −H0.
Now, we must consider the two allegedly small quan-

tities that appear in the integrand of Eq. (59), z andΔH. For
zðtÞ, we apply the same expansion procedure to Eq. (54), to
get dz=dt ≈ ðH0R2

∞ΔH − BzÞ, which yields

zðtÞ ≈ e−Bðt−t0Þz0 þH0R2
∞e−Bt

Z
t

t0

eBuΔHðuÞdu: ð60Þ

Following the procedure of Ref. [41], we consider two
possibilities, depending on the asymptotic behavior
of ΔHðtÞ:

(i) ΔHðtÞ ∈ oðe−BtÞ. This means that the first expo-
nential term in Eq. (60) dominates for large times;
thus, zðtÞ ≈ e−Bðt−t0Þz0, and Eq. (59) becomes

Δτ ≈
Z

0 dz
z
ΔH
z

: ð61Þ

Therefore, if ΔH=z ∈ oðzαÞ, for α > 0, then the
integral in Eq. (61) converges. This last condition is
verified for the most physically meaningful scenar-
ios, which lead to an exponentially vanishingΔHðtÞ,
that is ΔHðtÞ ¼ expð−βtÞ, with β > B.

(ii) ΔHðtÞ > Oðe−BtÞ. This means that the second term
in Eq. (60), the one containingΔHðtÞ, dominates the
first exponential term for large times. Then, we can
approximate zðtÞ by

zðtÞ ≈ 1

B
ΔHðtÞ þ e−Bðt−t0Þ

�
z0 þ

ΔHðt0Þ
B

�
; ð62Þ

where only the first term dominates for large times.
Substituting the leading term of Eq. (62) into
Eq. (59), we obtain

Δτ ∼
Z

0

dz
1

ΔH
: ð63Þ

Since, in this case, zðtÞ ∼ ΔH, we have

Δτ ∼
Z

0 dðΔHÞ
ΔH

; ð64Þ

which diverges.
Therefore, the coordinate τ is only suitable in order to

analytically extend the Shah-Vaidya spacetime if e−Bt

dominates ΔHðtÞ. This situation includes the physically
relevant cases of the McVittie spacetime considered in
Ref. [12], which hold here for the charged case. This does
not mean that the Shah-Vaidya spacetime is not extendable
in other cases, since the ingoing null geodesics do not end
in a singularity and are incomplete, they still may be
extendable. The meaning of this result is that τ is not a good
coordinate for the extension in those cases, so another
coordinate should be employed (a coordinate proportional
to the affine parameter of ingoing null geodesics, for
example, would be finite).
In the cases in which the τ coordinate is finite as t → ∞,

we can extend the spacetime with a patch of RNdS
spacetime, which consists in replacing HðtÞ by H0 in
the Shah-Vaidya metric written in the τ coordinate, namely,
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ds2 ¼ −ðN2 −H2R2Þdτ2

−
2dτ dR
N

�
HR −

N2 −H2R2

N −H0R

�

þ dR2

N2

�
1þ 2HR

N −H0R
−

N2 −H2R2

ðN −H0RÞ2
�
þ R2dΩ2:

ð65Þ

At the limit R → R∞ and t → ∞, the metric reduces to

ds2 ¼ 2dτ dRþ R2
∞ dΩ; ð66Þ

which is the metric of a null surface, as it happens for the
uncharged McVittie spacetimes, but now corresponding to
one of the event horizons of the static RNdS metric. Which
kind of horizon and which patch of the RNdS spacetime
appears behind depends on the properties of the RNdS
spacetime limit—whether region I or III in parameter space
(cf. Fig. 1)—and on the asymptotic properties of the
Hubble function HðtÞ, as we discuss next.

D. Causal structure theorem

In Ref. [14], a theorem concerned with the causal
structure for uncharged McVittie spacetimes was stated,
and a generalized version of it was proved in Ref. [41]. This
theorem specifically tells us that the analytical continuation
of the spacetime depends not only on the limit t → ∞ but
also on how this limit is approached. The important features
to determine in order to analytically continue the spacetime
through the null surface at the timelike infinity are the kind
of surface it is and in which direction the ingoing null
geodesics are crossing it. In other words, the theorem
determines whether the ingoing null geodesics reach a
horizon from a regular region or from a trapped/antitrapped
region. Moreover, since the expansion of outgoing null
geodesics changes sign at the horizon, and taking into
account that the horizon is the boundary separating those
regions, the theorem also tells us what kind of region (of the
static limiting spacetime) lies behind the horizon.
Here, we establish an analogous result available for the

Shah-Vaidya metric. We separate the analysis according the
region of Fig. 1 each case reaches asymptotically.

1. Region I

Shah-Vaidya spacetimes that, at late times, reach region I
of Fig. 1 are similar to uncharged McVittie spacetimes with
respect to singularities [in the patch covered by coordinates
ðt; RÞ] and AHs, as they have a big bang singularity at finite
areal radius and two AHs, separating a regular region from
two antitrapped regions, as depicted in Fig. 2.
For the present study, it is convenient to define the

function

fðt; RÞ ¼ RHðtÞ − NðRÞ; ð67Þ

such that the inner horizon R−ðtÞ is the smallest solution of
fðt; R−ðtÞÞ ¼ 0, that lies in the region above the singular
locus R ¼ R�. We also define the quantity

R∞ ≡ lim
t→∞

R−ðtÞ: ð68Þ

The derivative of the inner horizon function with respect to
time t is given by

_R−ðtÞ ¼ −
R−ðtÞ _HðtÞ
f0ðt; R−ðtÞÞ

< 0: ð69Þ

The last result is obtained by noticing that _H < 0,
f0ðt; R−Þ < 0, following the same line of arguments given
in Ref. [14]. This guarantees that, following the argument
of Ref. [41], when the areal radius of the inner apparent
horizon is decreasing, there may be only two types of
causal structure: a single black hole or a black hole/white
hole pair.
Applying the same method for the causal structure

theorem (CST) used in Refs. [14,41], we obtain the
following result for limt→∞HðtÞ ¼ H0 > 0:
Proposition IV.1. Let there be ΔH ¼ H −H0,

B ¼ −NðR∞Þf0∞ðR∞Þ ¼ m=R2
∞ − q2=R3

∞ −H2
0R∞, and

ti > 0. If there exists δ > 0 such that

F δ
−ðti; tÞ ¼

Z
t

ti

eðB−δÞuΔHðuÞ du ð70Þ

diverges as t → ∞, then a single black hole is present.
Analogously, if there exists δ > 0 such that

F δþðti; tÞ ¼
Z

t

ti

eðBþδÞuΔHðuÞdu ð71Þ

FIG. 6. Causal structure for the undercharged SV spacetime
with m ¼ 1, q ¼ 0.5, and H0 ¼ 0.05, where there are two
apparent horizons covering the singularity at NðRÞ ¼ 0 for
observers in the regular region. The horizons were found numeri-
cally, while the boundaries are schematic.
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converges as t → ∞, then a black hole/white hole pair is
present.
When there is a single black hole, it means that the

surface t → ∞ along ingoing null geodesics corresponds to
a black hole event horizon. In the case in which there is a
black hole/white hole pair, part of such a surface corre-
sponds to a black hole event horizon, but there is a
bifurcation point dividing it, and the other part of the
surface corresponds to a white hole horizon. Comparing
with the uncharged case, we remark that the charge only
appears through its contribution in R∞ < Rneutral

∞ , which
changes the value of the parameter B. Formally, using our
adapted notation, the CST has the exact same form.
Representative causal diagrams for these cases are depicted
in Figs. 6 and 7.

2. Region III

In this case, Proposition IV.1 also applies to indicate
what kind of region the ingoing null geodesics reach at the
end of the coordinate patch near the R̂− horizon. However,
in this case, R̂− is not the innermost horizon, as we have yet
another horizon, the R̂0 horizon, between the inner horizon
and a timelike singularity at R ¼ 0, as depicted in Fig. 4.
Therefore, the resulting causal structure is different and also
depends on the behavior of this extra horizon.
Since the spacetimes belonging to this region of the

parameter space are pathological, e.g., they do not contain a
Cauchy surface, instead of looking for a general analytical
result for this case, we prefer just to show some

representative causal structure examples, as in Fig. 8
(see Sec. IV E for more details).

3. Regions II and IV

In these cases, the causal structure theorem and
Proposition IV.1 do not hold.
In spacetimes represented by region II, there is no AH,

and the patch covered by the coordinates is antitrapped
everywhere; therefore, there is no doubt about the causal
structure. The geodesic lines are depicted in Fig. 3, and a
sketch of the corresponding causal diagrams is shown
in Fig. 9.
Spacetimes represented by region IV present a single AH

separating an antitrapped region that extends until future
infinity from a regular region near the singularity at R ¼ 0.
There is no ambiguity about the final destiny of ingoing
null geodesics, since all of those that are in the regular
region fall into the singularity, while those in the anti-
trapped region reach future infinity. This case is depicted in
Figs. 5 and 10.

4. Application of the CST to a simple model

Here, we consider models with a Hubble function of the
form

FIG. 7. Causal structure for the undercharged SV spacetime
where mH0 > 0.075. There are two apparent horizons and a
bifurcation point, besides a singularity at NðRÞ ¼ 0 that is
covered by the two horizons.

FIG. 8. Causal structure for the overcharged SV spacetime with
three horizons and a singularity at R ¼ 0.

FIG. 9. Causal structure for the undercharged SV spacetime
without horizons and a naked singularity at NðRÞ ¼ 0.
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HðtÞ ¼ H0 coth

�
3H0t
2

�
; ð72Þ

where H0 is a positive constant.
Following the reasoning of Sec. Vof Ref. [14], we have

the asymptotic form for F δ
�,

F δ
� ∼

Z
eðB−3H0�δÞu du: ð73Þ

Therefore, convergence will be determined by the sign of
B − 3H0. Again, following the procedure of Ref. [14], we
define the parameter

η ¼ B
3H0

− 1; ð74Þ

which is important to determine the type of causal structure
in undercharged SV spacetimes, for which m2 > q2. If
η > 0, then the solution corresponds to the single black
hole case, and the causal structure corresponds to the one
depicted in Fig. 6. If η < 0, the solution corresponds to a
black hole/white hole pair, and the causal structure is the
one depicted in Fig. 7.
The value of η depends on h ¼ mHðtÞ and σ ¼ q=m for

each model, according to Fig. 11. We can see that, even
considering only models that behave asymptotically like a
ΛCDM model, we can find both types of causal structures
shown in Figs. 6 and 7 for every value of the charge,
provided that q=m ≤ 1.

E. Causal structure: A few interesting cases

A few interesting causal structures can be crafted in four
different scenarios related with the regions presented in
Fig. 1. As in the previous section, we consider here models

of which the Hubble parameter is of the form given by
Eq. (72).

1. Region I

This region, the AHs and geodesic lines of which are
presented in Fig. 2, represents an undercharged case with
q < m and small mH0. For such values of the parameters,
there is a singularity S at R ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
that can be

considered as an initial singularity, since it is spacelike andno
information from its past can escape to the future. Thismeans
that, for spacetimes that asymptotically reach region I,we can
use a numerical method explained in Refs. [13,14,42] in
order to draw the respective causal diagrams. This method
consists of the defining a Cauchy surface fromwhich we can
connect each event of the spacetime patch under study by an
ingoing null geodesic and an outgoing null geodesic. We
numerically integrate the two geodesics and perform a
coordinate transformation in order to depict a compact space
where the null geodesics are straight lines at 45°. Plotting the
loci of interest in this conformally compact space, we obtain
the causal structure. In these cases, we define a Cauchy
surface slightly above the initial singularity in order to apply
the numerical method mentioned.
The causal diagram presented in Fig. 6 corresponds to

the single black hole case of Proposition IV.1. It presents
two AHs, R̂− and R̂þ respectively, along with an initial
singularity at Sþ. The null surface at the left corresponds to
the surface reached at time infinity by ingoing null geo-
desics. At this surface, the metric is equal to its RNdS limit,
meaning that the causal structure can be extended and
“glued” in a RNdS manifold such as the one presented in
Ref. [43], considering that the region behind the event
horizon must be a RNdS trapped region, as both null
ingoing and outgoing geodesics have negative expansion
scalars on that side of the horizon.

FIG. 10. Causal structure for the overcharged SV spacetime
with one horizon and a singularity at R ¼ 0.

FIG. 11. Behavior of the parameter η as a function of mH0

for several values of q. We see that the behavior is similar to the
uncharged case, with significant changes happening only very
close to the extremal case q ¼ m. The zeros of the curves for η are
mH0 ¼ 0.0755 for q ¼ 0, mH0 ¼ 0.0758 for q ¼ 0.5m, mH0 ¼
0.0674 for q ¼ 0.9m, and mH0 ¼ 0.0366 for q ¼ 0.99m.
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In Fig. 7, the continuation is also into a RNdS manifold,
but the difference is that part of the null surface at the
timelike infinity is not a black hole event horizon, as there
is a set of ingoing null geodesics that is able to cross it
coming from an antitrapped region. This means that a
regular RNdS patch lies behind this part of the horizon,
where the two null congruences have expansions of
opposite signs. This surface is a white hole horizon, the
interior of which is the antitrapped region near the
singularity in the ðt; RÞ coordinate patch. There is also
an event horizon, as the boundary of the regular region, that
should be continued into a trapped RNdS region, as in the
previous case of Fig. 6.

2. Region II

The solutions in this region correspond to asymptotically
undercharged RNdS spacetimes, but now with higher
values of mH0. The singularity at R ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
is

still present; however, no AH is formed, and the singularity
is naked, as can be seen in Fig. 3 and in the causal diagram
of Fig. 9. These spacetimes are not analytically extendable.

3. Region III

The solutions in this region correspond to spacetimes
that asymptote to overcharged RNdS solution with
1 < q=m < 1.125. They present three AHs, a singularity
at R ¼ 0 and an initial singularity at t ¼ 0, as shown in
Fig. 4. These cases do not present a Cauchy surface, and a
numerical construction of the horizons is not possible;
therefore, the whole diagram in Fig. 8 is schematic. The
inner horizon R0 covers the singularity in R ¼ 0, while the
two other horizons, a black hole one and a cosmological
one (R− and Rþ respectively), delimit a regular region that
ends in an event horizon, allowing an extension to a RNdS
[43] causal structure. The singularity at R ¼ 0 is naked,
since it is causally connected to external observers. This
kind of structure occurs solely with the addition of charge
and is not present in the original McVittie solution.

4. Region IV

Finally, the fourth region contains overcharged SV
spacetimes that also have a singularity at R ¼ 0 and an
initial singularity at t ¼ 0. The Cauchy surface is not
present either, as can be seen in Fig. 5. These solutions
present one cosmological horizon (R−) that covers the
singularity at R ¼ 0 and is causally complete, as shown in
the schematic diagram depicted in Fig. 10.

V. CONCLUSIONS

In this work, we have studied the Shah-Vaidya solution,
which can be understood as a charged version of the known
McVittie solution, but considering the presence of a central
electric charge.

For the first time, this metric has been derived from a
Lagrangian formalism, with the action defined by the
Einstein-Hilbert action plus a Maxwell field and cuscuton
field as sources. We considered metrics that asymptote to
the Reissner-Nordström-de Sitter solution as t → ∞. We
studied the properties of the spacetimes and analyzed the
changes of such properties in the parameter space of
the asymptotic metric, corresponding to specific values
of the electric charge and of the Hubble parameter. We
found out that there are regions in the parameter space
where the Shah-Vaidya metric does correspond to charged
cosmological black holes, provided that the parameters
asymptotes to a suitable region of values. On the other
hand, some cases correspond to naked singularities.
Regarding the black hole cases, we concluded that

those include the two kinds of structures found in the
uncharged McVittie case, with the only difference being
that they are analytically continued with patches of
Reissner-Nordström-de Sitter spacetimes, instead of the
Kottler spacetimes of the uncharged case. The difference
between these two cases does not lie in the limiting values
of the metric but in the asymptotic behavior of the Hubble
factor HðtÞ. This is similar to what happens in the
uncharged McVittie case, for which a theorem proved in
Ref. [14] determines the asymptotic conditions for each
type of causal structure. We have stated here a very similar
theorem valid for a large class of the Shah-Vaidya space-
times. Finally, we provided examples representing each
qualitative type of causal structure that can be found under
our initial assumptions and constructed the corresponding
causal diagrams.
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APPENDIX A: REGIONS OF THE
PARAMETER SPACE

In this Appendix, we study the cases in which the
horizons are multiple roots of PðxÞ defined in Eq. (47),
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PðxÞ ¼ −h2x4 þ x2 − 2xþ σ2: ðA1Þ

We are interested in the extremal cases, in which two or
more horizons coincide; that is, PðxÞ has a double or triple
root. An extremal case is the division between regimes with
different properties and possibly a different number of
horizons. For this purpose, we adopt the following
procedure:
(1) Fix a value for h.
(2) Solve the equation P0ðxÞ ¼ 0, and obtain the

roots xc�.
(3) Solve the equation Pðxc�Þ ¼ 0 for σ in order to find

the values σc� that correspond the extremal cases of
double roots.

Therefore, for a double root case, the system we have to
solve is the following:

PðxÞ ¼ −h2x4 þ x2 − 2xþ σ2 ¼ 0; ðA2Þ
P0ðxÞ ¼ −4h2x3 þ 2x − 2 ¼ 0: ðA3Þ

We notice that Eq. (A3) is independent of the charge
parameter σ and can be solved for xc, the value(s) for which
the graphic of PðxÞ has horizontal slope curve. The solution
may be obtained by comparison to the equation for the
horizons of Schwarzschild-de Sitter spacetimes, which
yield the same equation as (A3). Therefore, the solution
for the roots of P0ðxÞ, for 0 < h <

ffiffiffi
6

p
=9, may be written in

the form

xc� ¼
ffiffiffi
6

p

3h
cos

�
π � ξ

3

�
; ðA4Þ

where

ξ ¼ arccos
�
3

ffiffiffi
6

p
h

2

�
: ðA5Þ

We note here that, for h ¼ ffiffiffi
6

p
=9, the polynomial P0ðxÞ

has a double root and, therefore, if PðxÞ has a root at the
same point, it will be a triple root.
Let σc� be a critical charge for which there is a double

root at xc�. Thus, σc� satisfies

Pðxc�Þ ¼ 0 ⇒ σ2c� ¼ h2x4c� − x2c� þ 2xc�
¼ x2c�ð1 − 3h2x2c�Þ; ðA6Þ

where we used the fact that P0ðxc�Þ ¼ 0 in order to find the
last equality.
Now, we have to study the range of h for which a double

root may exist. The first constraint is that σ2c� ≥ 0, which
implies 3h2x2c� ≤ 1. When considering the minus sign,
we obtain h ≥ 1=3

ffiffiffi
3

p
, while for the plus sign, we get

jhj < ffiffiffi
2

p
=3

ffiffiffi
3

p
.

Lastly, we should remark that we can build extremal
horizons in two ways in this spacetime, as follows:

(1) When the internal horizon and event horizon
coincide, which corresponds to xcþ being a double
root of PðxÞ. The range of existence of such a
solution is, by combining the constraints found,
0 ≤ 3

ffiffiffi
3

p
h ≤

ffiffiffi
2

p
.

(2) When the event horizon and the cosmological
horizon coincide, which corresponds to xc− being
a double root of PðxÞ. The corresponding range of
existence is 1 ≤ 3

ffiffiffi
3

p
h ≤

ffiffiffi
2

p
.

APPENDIX B: THE SOURCES OF THE
SHAH-VAIDYA SPACETIME

For the sake of completeness, we write here the non-
trivial components of the Einstein tensor in terms of the
areal radius,

Gt
t ¼ −3H2 −

q2

R4
; ðB1Þ

GR
t ¼ 2RH _H; ðB2Þ

GR
R ¼ −3H2 −

q2

R4
−
2 _H
N

; ðB3Þ

Gφ
φ ¼ Gθ

θ ¼ −3H2 þ q2

R4
−
2 _H
N

: ðB4Þ

Therefore, the sources for the Shah-Vaidya metric (37) may
be interpreted as a perfect fluid of which the energy density
ρ and pressure p are given, respectively, by

ρ ¼ 3H2

8π
þ q2

8πR4
ðB5Þ

p ¼ −
3H2

8π
−

_H
4πN

þ q2

24πR4
: ðB6Þ

In addition, there is an electromagnetic energy-momentum
tensor Eν

μ given by

Eν
μ ¼

q2

R4
diagð−1; 1;−1;−1Þ: ðB7Þ

When establishing the structural properties of the space-
time, such as the presence of singularities and the nature
of trapping horizons, an important issue is the analysis of
the energy conditions. Useful here are the null (NEC), weak
(WEC), and strong (SEC) energy conditions. For the
present case, we have

NEC∶ −
_H

4πN
þ q2

6πR4
≥ 0; ðB8Þ

WEC∶
3H2

8π
þ q2

8πR4
≥ 0; −

_H
4πN

þ q2

6πR4
≥ 0; ðB9Þ
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SEC∶ −
3H2

4π
−

3 _H
4πN

þ q2

6πR4
≥ 0;

−
_H

4πN
þ q2

6πR4
≥ 0: ðB10Þ

Relevant studies were performed in Refs. [8,44], which
present theorems relating the chronological character of the
apparent/trapping horizons to the null energy condition.
Here, for the sake of simplicity, we stick to the statement
given in Ref. [8]:
Theorem B.1. If the null energy condition holds, then

an outer (inner) trapping horizon is spacelike (timelike),
and a trapping horizon is null if and only if, additionally, the
internal shear and normal energy density (energy flux)
vanish.
This theorem gives a different way of establishing—

indirectly—the character of the apparent horizons in the
Shah-Vaidya spacetime.

APPENDIX C: THE CASE limt→∞HðtÞ= 0
1. Singularities and horizons

Assuming that the scale factor is a power-law function
of the form aðtÞ ¼ a0 þ a1tα, with α > 0, it follows that
limt→∞HðtÞ ¼ 0 and limt→∞ _HðtÞ ¼ 0. This case corre-
sponds to the vertical axis in Fig. 1, and the SV metric (37)
asymptotes to the Reissner-Nordström metric at large
times.
From relations (40) and (41), one concludes that

limt→∞RðtÞ ¼ 0 and limt→∞KðtÞ ¼ 48ðmR3 − q2

R4Þ2 þ 8q4

R8 .
These results confirm that the spacetime presents the same
singularities as the Reissner-Nordström solution, a timelike
singularity at R ¼ 0 alone. Since the asymptotic limit is
also the Reissner-Nordström solution, a similar causal
structure is also expected.

2. Causal structure

The causal structure presents three qualitatively disjoint
cases, all of them asymptotic to the Reissner-Nordström
solutions.
The first case, for values of m2 > q2, presents two

apparent horizons Rþ and R− and an initial singularity
at Sþ. The corresponding causal diagram is shown in
Fig. 12. The initial singularity at t ¼ 0 is hidden to
observers in the regular region (þ;−) by the two apparent
horizons, while observers in the antitrapped region (þ;þ)
are not.
The second case is for m2 < q2 and sufficiently far from

the line σ ¼ q2=m2 ¼ 1, the overcharged case, with one

apparent horizon R− covering the singularity at R ¼ 0.
Notice that, unlike the ΛCDM cases, this case presents a
lightlike future infinity. The corresponding causal diagram
is shown in Fig. 13. The singularity is hidden to observers
in the regular region (þ;−) by the two apparent horizons.
The third case emerges when considering values

q=m≳ 1, a case with three apparent horizons at intermedi-
ate times. Given that this is a very peculiar case that,
asymptotically, tends to the case with only one horizon
shown in Fig. 13, we chose to not explore it further.

FIG. 12. Causal structure for SV spacetime in the case
aðtÞ ¼ t2=3, and with m2 > q2.

FIG. 13. Causal structure for SV spacetime in the case
aðtÞ ¼ t2=3, and with m2 < q2.
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(1984).
[32] M. Carrera and D. Giulini, Rev. Mod. Phys. 82, 169 (2010).
[33] V. Faraoni, Symmetry 7, 2038 (2015).
[34] D. C. Guariento and F. Mercati, Phys. Rev. D 94, 064023

(2016).
[35] M. Dafermos, Classical Quantum Gravity 22, 2221 (2005).
[36] E. Schnetter and B. Krishnan, Phys. Rev. D 73, 021502

(2006).
[37] A. Maciel, M. Le Delliou, and J. P. Mimoso, Phys. Rev. D

92, 083525 (2015).
[38] A. Maciel, Phys. Rev. D 93, 104013 (2016).
[39] V. Faraoni, Classical Quantum Gravity 33, 015007 (2016).
[40] A. Maciel, M. Le Delliou, and J. P. Mimoso, Phys. Rev. D

98, 024016 (2018).
[41] A. M. da Silva, D. C. Guariento, and C. Molina, Phys. Rev.

D 91, 084043 (2015).
[42] M. Walker, J. Math. Phys. (N.Y.) 11, 2280 (1970).
[43] H. Laue and M. Weiss, Phys. Rev. D 16, 3376 (1977).
[44] L. Andersson, M. Mars, and W. Simon, Phys. Rev. Lett. 95,

111102 (2005).

CHARGED COSMOLOGICAL BLACK HOLES: A THOROUGH … PHYS. REV. D 100, 104050 (2019)

104050-17

https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.1142/S0218271814300237
https://doi.org/10.1103/PhysRevD.7.949
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/BF02345020
https://doi.org/10.1093/mnras/253.4.675
https://doi.org/10.1093/mnras/253.4.675
https://doi.org/10.1007/s10714-005-0119-7
https://doi.org/10.1088/0264-9381/23/6/008
https://doi.org/10.1088/0264-9381/23/6/008
https://doi.org/10.3390/galaxies1030114
https://doi.org/10.1093/mnras/92.6.500
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1103/PhysRevD.49.831
https://doi.org/10.1103/PhysRevD.49.6467
https://doi.org/10.1103/PhysRevD.49.6467
https://doi.org/10.1103/PhysRevD.53.1938
https://doi.org/10.1088/0264-9381/15/10/017
https://doi.org/10.1088/0264-9381/15/10/017
https://doi.org/10.1142/S0218271811020354
https://doi.org/10.1088/0264-9381/20/24/L03
https://doi.org/10.1088/0264-9381/20/24/L03
https://doi.org/10.1103/PhysRevD.58.064006
https://doi.org/10.1088/0264-9381/16/4/012
https://doi.org/10.1088/0264-9381/16/4/012
https://doi.org/10.1088/0264-9381/16/10/310
https://doi.org/10.1088/0264-9381/31/23/235008
https://doi.org/10.1088/0264-9381/31/23/235008
https://doi.org/10.1103/PhysRevD.81.043521
https://doi.org/10.1103/PhysRevD.81.104044
https://doi.org/10.1103/PhysRevD.81.104044
https://doi.org/10.1103/PhysRevD.84.044045
https://doi.org/10.1103/PhysRevD.84.044045
https://doi.org/10.1088/1742-6596/283/1/012001
https://doi.org/10.1088/1742-6596/283/1/012001
https://doi.org/10.1103/PhysRevD.87.064030
https://doi.org/10.1103/PhysRevD.87.064030
https://doi.org/10.1103/PhysRevD.86.084002
https://doi.org/10.1103/PhysRevD.86.084002
https://doi.org/10.1103/PhysRevD.85.083526
https://doi.org/10.1103/PhysRevD.85.083526
https://doi.org/10.1103/PhysRevD.47.5370
https://doi.org/10.1007/BF01645696
https://doi.org/10.1007/BF01645696
https://doi.org/10.1103/PhysRevD.52.796
https://doi.org/10.1103/PhysRevD.52.796
https://doi.org/10.1007/JHEP04(2013)129
https://doi.org/10.1007/JHEP04(2013)129
https://arXiv.org/abs/0911.3849
https://doi.org/10.1103/PhysRevD.89.104053
https://doi.org/10.1103/PhysRevD.89.104053
https://doi.org/10.1103/PhysRevD.89.103514
https://doi.org/10.1103/PhysRevD.89.103514
https://doi.org/10.1088/0264-9381/32/11/115004
https://doi.org/10.1088/0264-9381/32/11/115004
https://doi.org/10.1007/s10714-017-2261-4
https://doi.org/10.1007/s10714-017-2261-4
https://doi.org/10.1103/PhysRevD.75.083513
https://doi.org/10.1103/PhysRevD.75.083513
https://doi.org/10.1103/PhysRevD.75.123509
https://doi.org/10.1103/PhysRevD.75.123509
https://doi.org/10.1063/1.527558
https://doi.org/10.1063/1.527992
https://doi.org/10.1063/1.527992
https://doi.org/10.1063/1.527962
https://doi.org/10.1016/j.physletb.2004.05.076
https://doi.org/10.1103/PhysRevD.89.104018
https://doi.org/10.1103/PhysRevD.95.104049
https://doi.org/10.1103/PhysRevD.95.104049
https://doi.org/10.1103/RevModPhys.82.169
https://doi.org/10.3390/sym7042038
https://doi.org/10.1103/PhysRevD.94.064023
https://doi.org/10.1103/PhysRevD.94.064023
https://doi.org/10.1088/0264-9381/22/11/019
https://doi.org/10.1103/PhysRevD.73.021502
https://doi.org/10.1103/PhysRevD.73.021502
https://doi.org/10.1103/PhysRevD.92.083525
https://doi.org/10.1103/PhysRevD.92.083525
https://doi.org/10.1103/PhysRevD.93.104013
https://doi.org/10.1088/0264-9381/33/1/015007
https://doi.org/10.1103/PhysRevD.98.024016
https://doi.org/10.1103/PhysRevD.98.024016
https://doi.org/10.1103/PhysRevD.91.084043
https://doi.org/10.1103/PhysRevD.91.084043
https://doi.org/10.1063/1.1665393
https://doi.org/10.1103/PhysRevD.16.3376
https://doi.org/10.1103/PhysRevLett.95.111102
https://doi.org/10.1103/PhysRevLett.95.111102

