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Comparing to a charged anti–de Sitter (AdS) black hole in general relativity, a new interesting phase
transition—the reentrant phase transition—is observed in a charged Born-Infeld-AdS black hole system. It
is worth extending the study of the relationship between the photon sphere and thermodynamic phase
transition (especially the reentrant phase transition) to this black hole background. Black hole systems are
divided into four cases according to the number of thermodynamic critical points, with different values of
the Born-Infeld parameter b, where the black hole systems can have no phase transition, a reentrant phase
transition, or a van der Waals-like phase transition. For these different cases, we obtain the corresponding
pressure-temperature phase structures and temperature-specific volume diagrams. The tiny differences
between these cases are clearly displayed. Then, we calculate the radius rps and the minimal impact
parameter ups of the photon sphere via the effective potential of the radial motion of photons. rps and ups
are found to have different behaviors for the different cases. In particular, with the increase of rps or ups
the temperature exhibits a decrease-increase-decrease-increase behavior for fixed pressure if there is a
reentrant phase transition, while for fixed temperature the pressure exhibits an increase-decrease-increase-
decrease behavior instead. These behaviors are quite different from that of the van der Waals-like phase
transition. Near the critical point, the behavior of rps and ups for the black hole phase transitions confirms

a universal critical exponent of 1
2
. We also find that the temperature and pressure corresponding to the

extremal points of rps and ups are highly consistent with the thermodynamic metastable curve for black
hole systems with different values of b. Furthermore, we also extend the corresponding study to higher-
dimensional black holes cases. The results show that the photon sphere behaves quite differently for the
van der Waals-like and reentrant phase transitions, and both phase transitions can be identified via the
photon sphere.

DOI: 10.1103/PhysRevD.100.104044

I. INTRODUCTION

Since the establishment of the four laws of black hole
thermodynamics [1,2] phase transitions have been an
attractive and valuable subject in gravitational physics.
Of particular interest are phase transitions in anti–de Sitter
(AdS) space, where a negative cosmological constant Λ
was interpreted as the pressure P [3–5],

P ¼ −
Λ
8π

: ð1Þ

The corresponding conjugate quantity is the thermody-
namic volume of the black hole system. After including
this pressure and volume term, the first law of black hole
thermodynamics coincides exactly with that of an ordi-
nary thermodynamic system. The inconsistency of the

first law and the Smarr formula for a rotating AdS black
hole has also been established. Moreover, the small-large
black hole phase transition was identified with the
liquid-gas phase transition of a van der Waals (VdW)
fluid [6]. More interesting phase transitions have also
been found [7–23]. In particular, near the critical point
black hole systems were found to possess the same
critical phenomena as a VdW fluid. This to some extent
implies that these thermodynamic systems may share a
similar microstructure, and the issue was further inves-
tigated in Ref. [23].
Interestingly, information about a black hole’s phase

transition is also expected to be encoded in or revealed by
its dynamic and gravitational properties. Therefore, study-
ing the relationship between them can bridge studies of
these two subjects.
Quasinormal modes (QNMs) are dynamical perturba-

tions, and they can provide us with significant observa-
tional signatures to test the natural properties of these black*weishw@lzu.edu.cn
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holes. The subject of probing the black hole phase
transition using QNMs was numerically investigated in
Ref. [24]. For a charged Reissner-Nordström black hole, it
was found that when the black hole charge exceeds the
Davies point, the QNM frequency ω takes on a spiral-like
shape in the complexω plane. The Davies point is related to
the divergence point of the heat capacity, so this point
actually measures a black hole phase transition between an
unstable phase and a stable phase. Some further studies on
this issue can be found in Refs. [25–29].
For the VdW-like phase transition of a charged AdS

black hole, the result given in Ref. [30] suggests that the
QNMs have different slopes along the small and large
black hole phases. Thus, this signature can be used to
test the first-order small-large black hole phase transi-
tion. However, it was argued that this method was only
accurate for low pressure or temperature, and when the
black hole system approaches its critical case the QNMs
become more complicated, and thus one must be very
careful with these cases. This method was also extended
to other AdS black hole systems [31–40]. All of these
results imply that the VdW-like phase transition can be
identified by the slope of the QNMs. Another interesting
point is whether the reentrant phase transition can be
identified from the behavior of QNMs and how to
distinguish it from the VdW-like phase transition, since
the isothermal and isobaric lines are more complicated.
Thus, we believe that besides the slope of the QNMs,
more subtle information about the QNMs should be
included. Therefore, this issue deserves further study,
and we will not discuss it here.
On the other hand, the geodesics of a test particle

around a black hole is closely related to strong gravita-
tional effects, such as lensing and shadows. Studying
the relationship between geodesics and black hole
thermodynamics will give us a novel way to test phase
transitions by using these observables. This will also open
a new window to study black hole thermodynamics using
astronomical observations. Keeping this in mind, we
studied the behavior of the photon sphere of a charged
AdS black hole when the VdW-like phase transition
occurs [41]. Two key quantities—the radius and the
minimal impact parameter of the photon sphere—were
found to behave quite differently depending on whether
there is a VdW-like phase transition. These two quantities
also experience sudden changes when the phase transition
takes place. These changes decrease with the temperature
and tend to vanish at the critical point. Further calculation
also showed that these changes in the radius and minimal
impact parameter have a universal critical exponent
of 1

2
, which implies that these changes can serve as an

order parameter to describe the small-large black hole
phase transition. Subsequently, we extended our study
to rotating Kerr-AdS black holes [42]. Even when a
black hole is rotating, our results showed that a similar

relationship between the photon ring and the phase
transition also holds. Moreover, it was found that the
temperature and pressure corresponding to the extremal
points of the radius and minimal impact parameter are
highly consistent with the thermodynamic metastable
curve for Kerr-AdS black holes. This study was also
generalized to other black hole backgrounds [43–46]. For
example, the authors of Ref. [43] studied the relation
between the thermodynamic phase transition and the
circular orbits of charged test particles. Photon orbits
and thermodynamic phase transitions were examined in
Gauss-Bonnet AdS black holes [44], massive black holes
[43], and even in a general spherically symmetric space-
time [46]. In addition, the presence of a photon orbit also
reveals a York-Hawking-Page-type phase transition of
spacetimes [47–49].
Apart from the VdW-like phase transition, there are

some other interesting phase transitions, such as the
reentrant phase transition. Therefore, it is of great interest
to examine the relationship between the photon sphere
and the reentrant phase transition. As we know, charged
Born-Infeld (BI)-AdS black holes demonstrate a typical
reentrant phase transition [7,17]. Therefore, it is valuable
to extend our previous study and examine the relationship
for BI-AdS black holes. These will reveal the novel
behavior of the photon sphere during the reentrant phase
transition.
This work is organized as follows. In Sec. II we give a

brief review of the thermodynamics of BI-AdS black
holes. Then, we study four different black hole cases with
different values of the BI parameter b. The corresponding
reentrant phase structure and VdW-like phase structure
are displayed in P-T and T-v diagrams, respectively. We
analyze the thermodynamic properties of each case. In
Sec. III we determine the radius and minimal impact
parameter of the photon sphere by using the effective
potential of radial motion. Then, for each different case
we study the behavior of the pressure and temperature as
a function of rps or ups, respectively. When the reentrant
phase transition takes place, the temperature and pressure
behave quite differently from that of the VdW-like phase
transition. Furthermore, near the critical point we confirm
that the changes Δrps and Δups have a universal critical
exponent of 1

2
, which is the same as that of the VdW-like

phase transition for charged-AdS or rotating Kerr-
AdS black holes. The temperature and pressure corre-
sponding to the extremal points of rps and ups are also
found to be highly consistent with the thermodynamic
metastable curve for BI-AdS black hole systems even
when there is no reentrant or VdW-like phase transition.
In Sec. IV we study the relation between the photon
sphere and the small-large black hole phase transition.
The critical exponents of Δrps and Δups are also calcu-
lated. Finally, our conclusions and discussions are pre-
sented in Sec. V.
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II. THERMODYNAMICS AND PHASE
STRUCTURE

For a four-dimensional charged BI-AdS black hole, it
was found that due to the values of the BI parameter there
may exist a VdW-like phase transition, i.e., the reentrant
phase transition [7]. However, a VdW-like phase transition
only exists for the higher-dimensional black hole cases [8].
When studying black hole phase transitions it is interesting
to examine the phase diagram, using which one could
easily identify the type of phase transition that occurs in
different parameter ranges. In this section, we briefly
review the phase transition. In Refs. [7,8] the phase
diagram was given as a P-T diagram. However, the
coexistence region is only one curve in that diagram. In
order to display the coexistence region we investigate the
phase diagram using a T-v diagram, and study the differ-
ence between the VdW-like and reentrant phase transitions.
The action describing a BI-AdS black hole is

IEM ¼ −
1

16π

Z
M

ffiffiffiffiffiffi
−g

p �
Rþ LBI þ

6

l2

�
; ð2Þ

where the BI term is

LBI ¼ 4b2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2b2
FμνFμν

r �
: ð3Þ

Here the AdS radius l is related to the pressure as P ¼ 3
8πl2.

The BI parameter b denotes the maximal electromagnetic-
field strength, and is related to the string tension. By
solving the corresponding Einstein equations one can
obtain the following black hole solution:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð4Þ

F ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þQ2=b2

p dt ∧ dr: ð5Þ

The metric function is given by

fðrÞ ¼ 1 −
2M
r

þ r2

l2
þ 2b2

r

Z
∞

r

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þQ2

b2

s
− r2

1
CAdr

¼ 1 −
2M
r

þ r2

l2
þ 2b2r2

3

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

s 1
CA

þ 4Q2

3r2 2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4

�
: ð6Þ

Here 2F1 is the hypergeometric function. The parametersM
and Q are the black hole mass and charge, respectively. By
solving fðrþÞ ¼ 0 we can express the black hole mass as

M ¼ rþ
2
þ r3þ
2l2

þ b2r3þ
3

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s 1
A

þ 2Q2

3rþ
2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4þ

�
; ð7Þ

where rþ is the radius of the black hole horizon. Using
the “Euclidean trick,” one can obtain the black hole
temperature as

T ¼ 1

4πrþ

0
@1þ 3r2þ

l2
þ 2b2r2þ

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s 1
A
1
A: ð8Þ

According to the Bekenstein-Hawking area-entropy rela-
tion, the black hole entropy can be calculated as

S ¼ A
4
¼ πr2þ; ð9Þ

where A ¼ 4πr2þ is the area of the black hole horizon. The
electric potential and the electric polarization measured at
infinity with respect to the horizon are

Φ ¼ Q
rþ

2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4þ

�
; ð10Þ

B¼2

3
br3þ

0
@1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s
þ Q2

3brþ

1
A

2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4þ

�
:

ð11Þ

The Gibbs free energy is

GðT; PÞ ¼ 1

4

0
@rþ −

8π

3
Pr3þ −

2b2r3þ
3

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s 1
A

þ 8Q2

3rþ
2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4þ

�1
A: ð12Þ

Employing these thermodynamic quantities, one can check
that the following first law and Smarr formula hold:

dM ¼ TdSþ VdPþΦdQþ Bdb; ð13Þ

M ¼ 2ðTS − VPÞ þΦQ − Bb; ð14Þ

with the thermodynamic volume V ¼ 4πr3þ
3
. Identifying the

specific volume v ¼ 2rþ, we can obtain the state equation
from Eq. (8),

PHOTON SPHERE AND REENTRANT PHASE TRANSITION OF … PHYS. REV. D 100, 104044 (2019)

104044-3



P ¼ T
v
−

1

2πv2
−
b2

4π

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Q2

b2v4

s 1
A: ð15Þ

This state equation is found to have a VdW-like phase
transition or a reentrant phase transition depending on the
value of the BI parameter b. The corresponding critical
points can be obtained by solving

ð∂vPÞT ¼ 0; ð∂2
vPÞT ¼ 0; ð16Þ

and they are given by [7]

Tc ¼
1 − 8xQ2

πvc
;

Pc ¼
1 − 16xQ2

2πv2c
−
b2

4π

�
1 −

1

v2cx

�
;

vc ¼
�
1

x2k
−
16Q2

b2

�1
4

; ð17Þ

with

xk¼2

ffiffiffiffiffiffiffi
−
p
3

r
cos

0
@1

3
arccos

0
@3q
2p

ffiffiffiffiffiffi
−3
p

s 1
A−

2πk
3

1
A; k¼0;1;2;

ð18Þ

p ¼ −
3b2

32Q2
; q ¼ b2

256Q4
: ð19Þ

For x2, the value of the corresponding critical point is
always a complex number. Therefore, we have two critical
points at most. Following Ref. [7], we can divide the
parameter range of b into four cases:

Case I: b < b0. This case is similar to a Schwarzschild-
AdS black hole. It consists of a stable large black hole
phase and an unstable small black hole phase. How-
ever, there do not exist the VdW-like phase transition
and the critical point.

Case II: b0 < b < b1. The case has two positive critical
points c0 and c1. However, c0 has a higher Gibbs free
energy, and thus it is a globally unstable point. For this
case, there exists a first-order phase transition and a
“zeroth”-order phase transition, which is a typical
reentrant phase transition.

Case III: b1 < b < b2. This case is similar to case II,
where a reentrant phase transition exists. The only
difference is that the critical point c0 has a negative
pressure.

Case IV: b2 < b. Only one critical point c1 exists for this
case. The phase transition for this case is the VdW-
type phase transition.

The values of the parameters bi are given by

b0 ¼
1ffiffiffi
8

p
Q
≈
0.3536
Q

; b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
6Q

≈
0.4237
Q

;

b2 ¼
1

2Q
¼ 0.5

Q
: ð20Þ

In the following we take Q ¼ 1 for simplicity. We plot the
isothermal and isobaric curves of these four cases in
Figs. 1–4. All of the different properties can be found.
In particular, the blue dashed lines are for metastable
curves, which are defined by

ð∂vPÞT ¼ 0; or ð∂vTÞP ¼ 0: ð21Þ

From these figures, one finds that the metastable curves
have no extremal point for b < b0, two extremal points for

(a) (b) 

FIG. 1. Case I: Isothermal and isobaric curves of BI-AdS black holes for b ¼ 0.3 < b0. (a) Isothermal curves with temperature
T ¼ 0.02, 0.03, 0.04, 0.043, and 0.06 from bottom to top. (b) Isobaric curves with pressure P ¼ 0.001, 0.002, 0.003, 0.004, 0.005, and
0.006 from bottom to top. The dashed curves describe the extremal points of the isothermal and isobaric curves.
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b ∈ ðb0; b2Þ, and one point for b > b2. Actually, the
extremal points are exactly the critical point of the
thermodynamic phase transition. In summary, we find a
reentrant phase transition for b ∈ ðb0; b2Þ and a VdW-like
phase transition for b > b2.
The new type of phase transition—the reentrant phase

transition—can be understood by studying the Gibbs free
energy. We show the VdWand reentrant phase transition in
Fig. 5(a) and 5(b), respectively. In Fig. 5(a) we can see a
typical swallow-tail behavior, which indicates a small-large
black hole phase transition at T0 ¼ 0.033067. Actually, as

the temperature increases the system prefers the small black
hole phase as it has a low Gibbs free energy. Until the
temperature T0 is reached the large black hole will have a
lower Gibbs free energy, so the system will prefer the large
black hole phase. Thus, at T0 the small-large black hole
phase transition takes place, which is similar to the liquid-
gas phase transition of a VdW fluid. The case of the
reentrant phase transition is more complicated. Taking P ¼
0.001685 and b ¼ 0.45, we show the behavior of the Gibbs
free energy in Fig. 5(b). When T < T1 ¼ 0.031992, there is
no black hole phase. With the increase of the temperature

(a) (b) 

FIG. 3. Case III: Isothermal and isobaric curves of BI-AdS black holes for b ¼ 0.45 ∈ ðb1; b2Þ. (a) Isothermal curves with temperature
T ¼ 0.01, 0.026885 (Tc0), 0.03, 0.045170 (Tc1), 0.05, and 0.06 from bottom to top. (b) Isobaric curves with pressure P ¼ −0.003253
(Pc0), 0.001,0.002, 0.003, 0.003664 (Pc1), and 0.006 from bottom to top. There are two critical points. The second one has a negative
pressure and positive temperature, and thus it is unphysical.

(a) (b) 

FIG. 2. Case II: Isothermal and isobaric curves of BI-AdS black holes for b ¼ 0.4 ∈ ðb0; b1Þ. (a) Isothermal curves with temperature
T ¼ 0.02, 0.03, 0.040492 (Tc0), 0.043, 0.045890 (Tc1), and 0.06 from bottom to top. (b) Isobaric curves with pressure P ¼ 0.001,
0.002016 (Pc0), 0.003, 0.003807 (Pc1), 0.0045, and 0.006 from bottom to top. As opposed to Fig. 1, for certain values of the pressure
and temperature the number of extremal points can be more than one. These two critical points are marked as black dots, which both
have positive pressure and temperature. However, the critical point located at ðTc0; Pc0Þ has a higher Gibbs free energy, so it is not a
global stable point.
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and according to the fact that a thermodynamic system
always prefers a low Gibbs free energy phase, the space-
time will have a large black hole phase when T1 < T < T2.
At T2, a phase transition occurs between a large black
hole and an intermediate black hole, which is of “zeroth”
order. As the temperature increases further, another first-
order phase transition between an intermediate black hole
and a large black hole takes place at T3. This behavior of
the Gibbs free energy admits a typical reentrant phase
transition.
Next, we study the phase structure for BI-AdS black

holes. The results are shown in Figs. 6–8 for b > b0. For
b < b0, only a stable large black hole phase exists, and thus
no phase transition occurs for constant charge.
As mentioned above, for b ∈ ðb0; b1Þ there exists

a reentrant phase transition, which is different from the

VdW-like phase transition. Taking b ¼ 0.4 as an example,
we plot the phase structure in Fig. 6. In Fig. 6(a) we show
the phase structure in the P-T diagram, which is a typical
reentrant phase diagram. The blue solid line denotes the
coexistence curve of the intermediate and large black
holes, which is a first-order phase transition. The short
red dashed curve describes the “zeroth”-order phase tran-
sition between the large and intermediate black hole. It is
worth noting that this curve is not the coexistence curve of
the large and intermediate black holes. It belongs to the
intermediate black hole phase because at that point the
intermediate black hole has a lower Gibbs free energy than
the large black hole. The dot-dashed curves show the
extremal points of the isothermal and isobaric curves of BI-
AdS black holes. The intersection points of these extremal-
point curves (marked with two black dots) are the two

(a) (b) 

FIG. 4. Case IV: Isothermal and isobaric curves of BI-AdS black holes for b ¼ 1 > b2. (a) Isothermal curves with pressure P ¼ 0.01,
0.02, 0.03, 0.043620 (Tc1), 0.05, and 0.06 from bottom to top. (b) Isobaric curves with temperature T ¼ 0.001, 0.002, 0.003372 (Pc1),
0.004, and 0.006 from bottom to top. For this case, only one critical point exists, and we observe the typical VdW-like phase transition.

(a) (b)

FIG. 5. The behavior of the Gibbs free energy. (a) A VdW-like phase transition with P ¼ 0.001685 and b ¼ 1. (b) A reentrant
phase transition with P ¼ 0.001685 and b ¼ 0.45. The temperatures are T0 ¼ 0.033067, T1 ¼ 0.031992, T2 ¼ 0.032812,
and T3 ¼ 0.033322.

XU, WANG, LIU, and WEI PHYS. REV. D 100, 104044 (2019)

104044-6



critical points. It is clear that these critical points have
positive temperature. On the other hand, the upper left
corners bounded by these two extremal point curves are the
regions without any black holes.
In order to clearly show the coexistence region of the

intermediate and large black holes, we plot the phase
structure in the T-v diagram in Fig. 6(b). Below the blue
solid curve is the region of coexistence of intermediate and
large black holes. The intermediate black hole region is on
the left, and the large black hole region is on the right. Since
small black holes are thermodynamically unstable, we do
not show them. Of particular interest is that there is also a
region for the large black hole, which is located in the lower
right corner of the coexistence region. Although it overlaps

with the coexistence region, it is a large black hole region.
The reason for this is that we have a degeneracy in the T-v
diagram. So if the phase structure is displayed in another
diagram, such a degeneracy could be eliminated.
For the BI parameter b ∈ (b1, b2), there is also a

reentrant phase transition. We take b ¼ 0.45, and plot
the phase structures in the P-T and T-v diagrams in Fig. 7.
These phase diagrams are quite similar to the case b ¼ 0.4.
The tiny difference is that one of the critical points has
negative pressure [see Fig. 7(a)], where the critical points
are shown as black dots.
When b > b2 the reentrant phase transition disappears,

and only the standard VdW-like phase transition is left.
The phase diagram is shown in Fig. 8 for b ¼ 1.

(a) (b)

FIG. 7. Phase structures of BI-AdS black holes for b ¼ 0.45 ∈ ðb1; b2Þ. (a) P-T phase diagram. (b) T-v phase diagram. The blue solid
curves are the coexistence curves. The thin red solid curves are the “zeroth”-order phase transition curves. The dot-dashed curves are the
extremal point curves of the isothermal and isobaric curves of BI-AdS black holes. Black dots denote the critical points.

(a) (b)

FIG. 6. Phase structures of BI-AdS black holes for b ¼ 0.4 ∈ ðb0; b1Þ. (a) P-T phase diagram. (b) T-v phase diagram. The blue solid
curves are the coexistence curves. The thin red solid curves are the “zeroth”-order phase transition curves. The dot-dashed curves are the
extremal-point curves of the isothermal and isobaric curves of BI-AdS black holes. Black dots denote the critical points.
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The coexistence curves are plotted as the blue solid curves,
and the extremal-point curves are shown by the dot-dashed
curves. The P-T phase diagram is shown in Fig. 8(a).
Above the coexistence curve is the small black hole phase
region, and below it is the large one. The T-v phase
diagram is shown in Fig. 8(b). The coexistence phase of
small and large black holes is below the coexistence curve.
The small and large black hole phases are located to the left
and right of the coexistence curve, respectively.
In summary, a VdW-like or reentrant phase transition can

be found in different parameter regions of b. The T-v phase
diagrams are quite different for these two types of phase
transitions.

III. NULLGEODESICS AND PHASE TRANSITIONS

In this section, we study the null geodesics—in particu-
lar, the photon sphere—of BI-AdS black holes. Then, we
examine the relation between the parameter properties of
the photon sphere and the thermodynamic phase transition.

A. Null geodesics and the photon sphere

We consider the motion of a free photon orbiting around
a BI-AdS black hole. Since the black hole is spherically
symmetric, we fix θ ¼ π

2
without loss of generality. Then

the Lagrangian of a free photon in the background of
a BI-AdS black hole reads

L ¼ 1

2
gμν _xμ _xν ¼

1

2
ð−fðrÞ_t2 þ _r2=fðrÞ þ r2 _ϕ2Þ: ð22Þ

A dot denotes ordinary differentiation with respect to an
affine parameter. Using the Lagrangian (22), the general-
ized momentum can be calculated as

pμ ¼
∂L
∂ _xμ ¼ gμν _xν: ð23Þ

This spacetime has two Killing vectors ∂t and ∂ϕ. Thus, for
each geodesic there are two constants: the energy E and the
orbital angular momentum L of the photon. Considering
them, the generalized momenta can be expressed as

pt ¼−fðrÞ_t¼−E; pr¼
_r

fðrÞ ; pϕ¼ r2 _ϕ¼L: ð24Þ

A photon is required to satisfy gμν _xμ _xν ¼ 0. Thus, the
radial r motion is

_r2 þ Veff ¼ 0; ð25Þ

where the effective potential is given by

Veff ¼
L2

r2
fðrÞ − E2: ð26Þ

Using the effective potential (26), the unstable photon
sphere can be obtained by solving

Veff ¼ 0; ∂rVeff ¼ 0; ∂r;rVeff < 0: ð27Þ

The first equation gives the minimum impact parameter

ups ¼
L
E

����
rps

¼ rffiffiffiffiffiffiffiffiffi
fðrÞp

����
rps

: ð28Þ

Then, by using the second equation one can find that the
radius of the photon sphere is determined by the following
equation:

2fðrpsÞ − rps∂rfðrpsÞ ¼ 0: ð29Þ

Plugging the metric function (6) into this equation, we
obtain

(a) (b)

FIG. 8. Phase structures of BI-AdS black holes for b ¼ 1 > b2 in the P-V and T-v diagrams.
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r2ps − 3Mrps þ 2Q2
2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4ps

�
¼ 0: ð30Þ

For b ¼ 0, one gets rps ¼ 1
2
ð3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ, which

is the radius of the photon sphere for a Reissner-Nordström
AdS black hole. However, when b ≠ 0, there is no analytic
result.

B. Phase transitions and the photon sphere

For given b and Q, we can solve the radius of the
photon sphere using Eq. (30). By substituting the radius
into Eq. (28) we can obtain the minimum impact
parameter. In order to examine the relation between the
photon sphere and the phase transition we study the

behavior of the radius and minimum impact parameter
along the isothermal and isobaric curves of BI-AdS
black holes.
In Fig. 9 we show the temperature T as a function of the

radius rps of the photon sphere at constant pressures for
different values of the parameter b. In Fig. 9(a) the pressure
P ¼ 0.001, 0.002, 0.003, 0.004, 0.005, and 0.006 (from
bottom to top), and the BI parameter b ¼ 0.3 < b0, which
corresponds to the first case. For this case, T first decreases
and then increases with respect to rps. As shown in
Refs. [41,42], this behavior of T reveals that no VdW-like
phase transition occurs. In Figs. 9(b) and 9(c) we show the
results for b ¼ 0.4 and 0.45, which are related to cases II
and III given above. For these two cases, BI-AdS black
holes exhibit a reentrant phase transition. From these

(a) (b)

(c) (d)

FIG. 9. The temperature T as a function of the radius rps of the photon sphere for different values of the BI parameter b with fixed
pressure P. (a) b ¼ 0.3 < b0 with P ¼ 0.001, 0.002, 0.003, 0.004, 0.005, and 0.006 from bottom to top. (b) b ¼ 0.4 ∈ ðb0; b1Þ with
P ¼ 0.001, 0.002016 (Pc0), 0.003, 0.003807 (Pc1), 0.0045, and 0.006 from bottom to top. (c) b ¼ 0.45 ∈ ðb1; b2Þ with P ¼ −0.003253
(Pc0), 0.001,0.002, 0.003, 0.003664 (Pc1), and 0.006 from bottom to top. (d) b ¼ 1 > b2 with P ¼ 0.01, 0.02, 0.03, 0.043620 (Tc1),
0.05, and 0.06 from bottom to top.
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figures, we find that the temperature has a complicated
behavior with respect to the radius of the photon sphere.
For example, when the pressure Pc0 < P < Pc1, the tem-
perature has a decrease-increase-decrease-increase behav-
ior, which is quite different from the case of b ¼ 0.3, and
can be seen as a sign of the reentrant phase transition. In
Fig. 9(d) we show the results for b ¼ 1. For this case, only
one critical point exists and we find a VdW-like phase
transition. When the pressure is lower than the critical
values, the temperature first increases, then decreases, and
finally increases with the radius of the photon sphere,
which is a typical behavior that implies the existence of a
VdW-like phase transition.
In Fig. 10 we show the pressure P as a function of the

radius rps of the photon sphere at constant temperatures for
different values of the parameter b. We find that the
behaviors are quite similar for different values of b. The
significant difference is that T and P have opposite

behavior with respect to rps. For example, when one
increases with rps, the other one decreases. However, the
number of extremal points is the same.
Next, let us turn to the behavior of the minimum impact

parameter ups of the photon sphere. In Fig. 11 we display
the temperature T as a function of ups for different values of
b at constant pressure. When b ¼ 0.3, corresponding to
case I [see Fig. 11(a)], we find that at small ups the
temperature T decreases rapidly. Then T increases and
approaches a high value at a certain finite ups. However, this
behavior does not indicate a VdW-like phase transition. For
b ¼ 0.4 and 0.45 [shown in Figs. 11(b) and 11(c)] the
behaviors of T become more complicated. In particular, for
fixed pressure Pc0 < P < Pc1, with the increase of ups the
temperature T demonstrates a decrease-increase-decrease-
increase behavior, which implies that there exists a re-
entrant phase transition in the corresponding BI-AdS black
hole background. However, when b ¼ 1 > b2 [shown in

(a) (b)

(c) (d)

FIG. 10. The pressure P as a function of the radius rps of the photon sphere for different values of the BI parameter b with fixed
temperature T. (a) b ¼ 0.3 < b0 with T ¼ 0.02, 0.03, 0.04, 0.043, and 0.06 from bottom to top. (b) b ¼ 0.4 ∈ ðb0; b1Þ with T ¼ 0.02,
0.03, 0.040492 (Tc0), 0.043, 0.045890 (Tc1), and 0.06 from bottom to top. (c) b ¼ 0.45 ∈ ðb1; b2Þ with T ¼ 0.01, 0.026885 (Tc0), 0.03,
0.045170 (Tc1), 0.05, and 0.06 from bottom to top. (d) b ¼ 1 > b2 with T ¼ 0.001, 0.002, 0.003372 (Pc1), 0.004, and 0.006 from
bottom to top.
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Fig. 11(d)] the black hole system exhibits a VdW-like phase
transition. We observe that the temperature shows an
increase-decrease-increase behavior for a constant pressure
P below its critical value. However, when the pressure is
above the critical value, the temperature is only a mono-
tonically increasing function of ups, and thus no phase
transition exists for this case.
Moreover, we also plot the pressure P as a function of the

minimum impact parameter ups in Fig. 12. We can see that
both the reentrant and VdW-like phase transitions can be
identified from the behavior of the pressure P.
In summary, by observing the behavior of the photon

sphere of an BI-AdS black hole, both the reentrant phase
transition and the VdW-like phase transition can be
identified. These two types of phase transitions can be
clearly distinguished by the photon sphere. Thus, we

confirm our previous conjecture that there indeed exists
a relation between the photon sphere and thermodynamic
phase transition.

C. Critical behavior of the photon sphere

As discussed above, when b > b0, there will be one or
two critical points for BI-AdS black hole systems.
However, one of the points has negative pressure or a
higher Gibbs free energy, which makes it unstable or
unphysical. Nevertheless, one physical critical point always
exists for b > b0. Meanwhile, there exists a first-order
phase transition between the intermediate and large
black holes for b0 < b < b2, and a first-order phase
transition between the small and large black holes for
b > b2. With the increase of the pressure and temperature,

(a) (b)

(c) (d)

FIG. 11. The temperature T as a function of the minimum impact parameter ups of the photon sphere for different values of the
BI parameter b with fixed pressure P. (a) b ¼ 0.3 < b0 with P ¼ 0.001, 0.002, 0.003, 0.004, 0.005, and 0.006 from bottom to
top. (b) b ¼ 0.4 ∈ ðb0; b1Þ with P ¼ 0.001, 0.002016 (Pc0), 0.003, 0.003807 (Pc1), 0.0045 and 0.006 from bottom to top.
(c) b ¼ 0.45 ∈ ðb1; b2Þ with P ¼ −0.003253 (Pc0), 0.001,0.002, 0.003, 0.003664 (Pc1), and 0.006 from bottom to top.
(d) b ¼ 1 > b2 with P ¼ 0.01, 0.02, 0.03, 0.043620 (Tc1), 0.05 and 0.06 from bottom to top.
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these first-order phase transitions terminate at the critical
point. Thus, it is worth examining how the radius and
minimum impact parameter of the photon sphere change
along the coexistence curve and to consider their critical
behavior.
Following Refs. [41,42], we rps and ups when the first-

order phase transition occurs. From Fig. 13, we find that
with the increase of the phase transition temperature, both
Δrps and Δups decrease, and when the critical temperature
is approached, both of them vanish. This behavior holds for
b > b0. Such behaviors are also consistent with that
observed in Refs. [41,42].
Next, we calculate the critical exponents of Δrps and

Δups for different values of the BI parameter b. Since there
is no analytic result, we use numerical data to fit them as
follows [41]:

Δrps;Δups ∼ a × ð1 − T̃Þδ; ð31Þ

where a and δ are fitting coefficients. If Δrps andΔups have
a universal critical behavior, then the coefficient δ must
remain constant for different values of b.
The fitting results are listed in Table I. One can notice

that the fitting coefficient a ofΔrps andΔups decreases with
b, while the coefficient δ is always around 1

2
with a

numerical error of no more than 1.73% for different values
of b. So even when the reentrant phase transition is
included, the universal critical exponent does not change.
At last, we examine the consistency between the

extremal points of the radius and minimum impact param-
eter of the photon sphere along the constant temperature or
pressure curve and the metastable curve from the thermo-
dynamic side. For a Kerr-AdS black hole, we have shown

(a) (b)

(c) (d)

FIG. 12. The pressure P as a function of the minimum impact parameter ups of the photon sphere for different values of the BI
parameter b with fixed temperature T. (a) b ¼ 0.3 < b0 with T ¼ 0.02, 0.03, 0.04, 0.043, and 0.06 from bottom to top.
(b) b ¼ 0.4 ∈ ðb0; b1Þ with T ¼ 0.02, 0.03, 0.040492 (Tc0), 0.043, 0.045890 (Tc1) and 0.06 from bottom to top.
(c) b ¼ 0.45 ∈ ðb1; b2Þ with T ¼ 0.01, 0.026885 (Tc0), 0.03, 0.045170 (Tc1), 0.05 and 0.06 from bottom to top. (d) b ¼ 1 > b2
with T ¼ 0.001, 0.002, 0.003372 (Pc1), 0.004 and 0.006 from bottom to top.
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that they are consistent with each other when the VdW-like
phase transition occurs [42]. However, for the case of the
reentrant phase transition, the metastable curves became
rather interesting; see Figs. 6(a) and 7(a). In Fig. 14 we
show the metastable curves (dashed lines) and the extremal
point of the radius rps of the photon sphere (black dots) in
the P-T diagram for different values of b. When b > b2
[Fig. 14(d)], the typical VdW phase transition takes place.
From this, one can see that these results are highly
consistent with each other, which also supports our result
for the Kerr-AdS black holes [42]. When b0 < b < b2, we
have the reentrant phase transition; see Figs. 14(b) and
14(c). It is worth noting that there are three metastable
curves; however, the extremal points are still in good
agreement with the metastable curves. For b < b0, we
can also see that they agree with each other even when there
is no phase transition. Thus, we confirm that for the entire
range of the BI parameter b the extremal points of rps
always coincide with the thermodynamic metastable curves
for BI-AdS black holes, and they are independent of the
type of phase transition.

IV. NULL GEODESICS AND PHASE TRANSITION
FOR HIGHER-DIMENSIONAL BLACK HOLES

In the higher-dimensional BI-AdS black hole cases,
i.e., d ≥ 5, it was found that there is no reentrant phase

transition [8], and only the VdW-like phase transition
occurs. Here we extend the above treatment of null geo-
desics to the higher-dimensional cases and examine the
behavior of the temperature in terms of rps and ups.
The metric for d-dimensional BI-AdS black holes is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

d−2; ð32Þ

where dΩ2
ðd−2Þ is the line element on the unit (d − 2)-

dimensional sphere Sðd−2Þ, and the metric function is
given by

fðrÞ ¼ 1þ r2

l2
−

16πMr3−d

ðd − 2Þωd−2

þ 4b2r2

ðd − 2Þðd − 1Þ

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π2Q2r4−2d

b2ω2
d−2

þ 1

s 1
A

ð33Þ

þ 64π2Q2r6−2d

ðd − 3Þðd − 1Þω2
d−2

× 2F1

�
1

2
;
d − 3

2d − 4
;
3d − 7

2d − 4
;−

16π2Q2r4−2d

b2ω2
d−2

�
; ð34Þ

(a) (b)

FIG. 13. Behaviors of Δrps and Δups as a function of the phase transition temperature T=Tc for b ¼ 0.41–1 from top to bottom.

TABLE I. Values of the fitting coefficients a and δ near the critical point following the fitting equation (31) for different
values of b.

b 0.41 0.42 0.43 0.44 0.45 1.00

Δrps a 18.059025 17.761526 17.419893 17.173444 17.072752 16.346841
δ 0.508291 0.507801 0.505974 0.504958 0.505207 0.508663

Δups a 7.737585 7.508655 7.313941 7.143246 7.041705 6.083478
δ 0.506776 0.506175 0.505248 0.504228 0.504426 0.506008
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where ωd−2 ¼ 2π
d−1
2

Γðd−1
2
Þ is the volume of the unit sphere Sðd−2Þ.

The temperature of the black hole can be calculated as

T ¼ ∂rfðrþÞ
4π

¼ ð4πPþ b2Þrþ
ðd − 2Þπ −

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
br2dþ ω2

d−2 þ 16π2Q2r4þ
q

ðd − 2Þπωd−2rd−1þ
: ð35Þ

Solving for the pressure, we can get the equation of state for
black holes,

P ¼ ðd − 2ÞT
4rþ

−
ðd − 2Þðd − 3Þ

16πr2þ
−
b2ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π2Q2

b2ω2r2d−4þ
þ 1

q
Þ

4π
:

ð36Þ

This equation of state describes a small-large black hole
phase transition. The critical point can be obtained by solving

ð∂vPÞT ¼ 0; ð∂2
vPÞT ¼ 0: ð37Þ

Since there is no analytical result, we list the critical values of
the thermodynamic quantities with fixed b ¼ 0.1 andQ ¼ 1
for d ¼ 5–8 in Table II. From this table we can see that with

(a) (b)

(c) (d)

FIG. 14. Extremal points of the radius rps and the minimal impact parameter ups of the photon sphere (black dots) and the
thermodynamic metastable curves (dashed lines) of BI-AdS black holes shown in the P-T diagram. (a) b ¼ 0.3. (b) b ¼ 0.4.
(c) b ¼ 0.45. (d) b ¼ 1.0.

TABLE II. Critical values of vc, Tc, Pc, and
Pcvc
Tc

with fixed
b ¼ 0.1 and Q ¼ 1 for d ¼ 5, 6, 7, and 8.

d 5 6 7 8

vc 0.169765 0.309020 0.346222 0.350027
Tc 1.250000 1.030065 1.103263 1.212527
Pc 2.453574 1.249208 1.273844 1.442595
Pcvc
Tc

0.333225 0.374763 0.399754 0.416442
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the increase of the dimension number d, the value of the
critical specific volume vc increases, while the values of Tc

and Pc first decrease, and then increase. Moreover, the
dimensionless parameter Pcvc

Tc
is larger than 1=8 of the

four-dimensional charged AdS black hole.
Higher-dimensional black holes also possess a photon

sphere, which is also described by Eqs. (28) and (29) as for
four-dimensional case. For simplicity, we plot the temper-
ature T as function of rps and ups in Figs. 15 and 16,
respectively.
In Fig. 15 the temperature T is plotted against rps for

d ¼ 5, 6, 7, and 8. It is clear that when the pressure T < Tc,
the temperature first increases, then decreases, and finally
increases with rps. This behavior typically indicates a

VdW-like phase transition. We can also see that this
behavior disappears when T ≥ Tc, so the small-large black
hole can be identified by the radius of the photon sphere.
This result is also independent of the dimension d of the
spacetime.
In Fig. 16 the temperature T is plotted against the

minimum impact parameter ups for d ¼ 5, 6, 7, and 8.
For a fixed pressure P below the critical value, with the
increase of ups the temperature has an increase-decrease-
increase behavior. Above the critical value, this behavior
also disappears.
In summary, with the increase of rps or ups, the behavior

of the temperature is similar to that of the four-dimensional
black hole case with b ¼ 1 given in Sec. III. So the

(a) (b)

(c) (d)

FIG. 15. The temperature T as a function of the radius rps of the photon sphere with b ¼ 0.1 and Q ¼ 1. (a) d ¼ 5 and the pressure
P ¼ 1.5, 2.0, 2.45357 (Pc), 3.0, and 3.5 from bottom to top. (b) d ¼ 6 and the pressure P ¼ 0.4, 0.8, 1.24921 (Pc), 1.6, and 2.0 from
bottom to top. (c) d ¼ 7 and the pressure P ¼ 0.3, 0.8, 1.27384 (Pc), 1.8, and 2.3 from bottom to top. (d) d ¼ 8 and the pressure
P ¼ 0.6, 1.0, 1.4426 (Pc), 2.0, and 2.6 from bottom to top.
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small-large black hole phase transition can occur even in
higher-dimensional BI-AdS black holes.
It is worth examining the critical exponents of Δrps and

Δups at the critical point. We first numerically calculate
Δrps and Δups, and then fit the data with Eq. (31). The
results are listed in Table III. Obviously, the fitting
coefficient is always around 0.5 for different d. So one

can conclude that Δrps and Δups have a universal critical
exponent of 1

2
. This result confirms that four-dimensional

BI-AdS black holes and d-dimensional charged AdS black
holes share the same critical exponent [41].

V. CONCLUSIONS AND DISCUSSIONS

In this paper we studied the relationship between the null
geodesic and thermodynamic reentrant phase transition of
BI-AdS black holes by examining the radius rps and the
minimal impact parameter ups of the photon sphere.
We started with the state equation of BI-AdS black holes.

It was shown that the thermodynamic properties are closely
dependent on the BI parameter b. According to the number
of critical points of the phase transition, the region of b is
divided into four cases: b < b0 (case I), b ∈ ðb0; b1Þ (case
II), b ∈ ðb1; b2Þ (case III), and b > b2 (case IV). In case I
there is no phase transition, while in cases II and III there

(a) (b)

(c) (d)

FIG. 16. The temperature T as a function of the minimum impact parameter ups of the photon sphere with b ¼ 0.1 and Q ¼ 1.
(a) d ¼ 5 and the pressure P ¼ 1.5, 2.0, 2.45357 (Pc), 3.0, and 3.5 from bottom to top. (b) d ¼ 6 and the pressure P ¼ 0.4, 0.8, 1.24921
(Pc), 1.6, and 2.0 from bottom to top. (c) d ¼ 7 and the pressure P ¼ 0.3, 0.8, 1.27384 (Pc), 1.8, and 2.3 from bottom to top. (d) d ¼ 8
and the pressure P ¼ 0.6, 1.0, 1.4426 (Pc), 2.0, and 2.6 from bottom to top.

TABLE III. Values of the fitting coefficients a and δ near the
critical point following the fitting equation (31) for d ¼ 5, 6, 7,
and 8 with b ¼ 0.1 and Q ¼ 1.

d 5 6 7 8

Δrps a 0.821686 1.465679 1.702252 1.758366
δ 0.506893 0.497529 0.500749 0.499735

Δups a 0.000711 0.001931 0.003142 0.004750
δ 0.548137 0.531734 0.544612 0.514444
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are two critical points and a typical reentrant phase
transition. The tiny difference between them is that one
of the critical points is positive in case II and negative in
case III. However, since they have a higher Gibbs free
energy, they will not appear in the phase diagram of the
black hole system. For case IV there is only one critical
point, and thus only a VdW-like phase transition is shown.
For the three cases with b > b0, the reentrant and VdW-like
phase transitions were described in the P-T phase diagram;
see Figs. 6–8. The extremal point curves were also plotted.
It is clear that the critical points always occur at the
interaction point of the two extremal-point curves. Also,
the “zeroth”-order phase transition curve coincides with the
extremal-point curves. We also used the T-v phase dia-
gram. For the reentrant phase diagram, the coexistence of
the intermediate and large black hole cannot be extended to
T ¼ 0, while ends at a certain temperature, where the
“zeroth”-order phase transitions start.
Next, we followed the Lagrangian of a free photon to

obtain the null geodesics for the black holes. Employing the
effective potential of radial motion, we numerically solved
for the radius rps and the minimal impact parameter ups of
the photon sphere for BI-AdS black holes. The results also
indicate that these quantities are closely dependent on the
black hole charge and BI parameter. Then, in order to find
the relationship between the photon sphere and the phase
transition, we plotted the temperature and pressure in terms
of rps and ups, respectively, for different values of b.
We obtained the temperature T for fixed pressure P as a

function of rps and ups (Figs. 9 and 11, respectively). The
temperature behaves very differently for the different types
of phase transitions, and thus the phase transition can be
identified from the behavior of the temperature. In par-
ticular, the reentrant phase transition can be identified from
the decrease-increase-decrease-increase behavior of the
temperature with the increase of rps and ups.
We then obtained the pressure P for fixed temperature T

as a function of rps and ups (Figs. 10 and 12, respectively).
P also behaves differently for different values of b. With the
increase of rps or ups, a reentrant phase transition can take
place if the pressure exhibits an increase-decrease-increase-
decrease behavior.

We also examined the critical behaviors of rps andups near
the critical point. Since only one of the critical points is
physical when b > b0, we fitted the formula (31) with the
numerical results near the critical point. The results are
shown in Table I. The fitting coefficient a for both Δrps and
Δups decreases with the parameter b, while it is obvious that
the fitting coefficient δ is around 1

2
with a numerical error of

no more than 1.73%. Therefore, Δrps and Δups have a
universal critical exponent of 1

2
. These results are exactly

consistent with that of the VdW-like phase transition of a
charged and rotating AdS black hole given in Refs. [41,42].
Furthermore, we calculated the temperature and pressure

corresponding to the extremal points of the radius rps and
minimal impact parameter ups of the photon sphere. For
different values of b, our results show that they completely
agree with that of the metastable curves obtained from the
thermodynamic side (see Fig. 14). This property also holds
even for b < b0, where no reentrant or VdW-like phase
transition exists.
Finally, we extended the study to higher-dimensional BI-

AdS black holes. The results indicate that the small-large
black hole phase transition in higher-dimensional cases can
also be identified from the null geodesics. In particular, at
the critical pointΔrps andΔups also have a universal critical
exponent of 1

2
.

In conclusion, we have investigated the relationship
between the photon sphere and the thermodynamic phase
transition for charged BI-AdS black holes. All of the results
imply that information about the reentrant and VdW-like
phase transitions of the black holes are encoded in and can
be identified by the properties of the photon sphere. The
reentrant phase transition can also be distinguished from
the VdW-like phase transition through the photon sphere.
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