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The thermodynamic equilibrium condition for a static self-gravitating fluid in the Einstein theory is
defined by the Tolman-Ehrenfest temperature law, T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxiÞ

p
¼ constant, according to which the proper

temperature depends explicitly on the position within the medium through the metric coefficient g00ðxiÞ.
By assuming the validity of Tolman-Ehrenfest “pocket temperature,” Klein also proved a similar relation

for the chemical potential, namely, μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxiÞ

p
¼ constant. In this paper we prove that a more general

relation uniting both quantities holds regardless of the equation of state satisfied by the medium, and that
the original Tolman-Ehrenfest law form is valid only if the chemical potential vanishes identically. In the
general case of equilibrium, the temperature and the chemical potential are intertwined in such a way that
only a definite (position dependent) relation uniting both quantities is obeyed. As an illustration of these
results, the temperature expressions for an isothermal gas (finite spherical distribution) and a neutron star
are also determined.

DOI: 10.1103/PhysRevD.100.104042

I. INTRODUCTION

It is usually believed, at least for nonmembers of the
general relativity community, that equality of temperature
is a condition for thermal equilibrium between two systems
or between two parts of a single system (“zeroth” law of
thermodynamics). Furthermore, the second law of thermo-
dynamics, in one of its variants, e.g., Clausius’ one, states
that heat flows from a hotter to a colder medium, till
thermal equilibrium is finally restored. However, both of
these basic conditions can be violated in the framework of
general relativity.
Many decades ago, Tolman and Ehrenfest discussed how

to determine the temperature distribution within a self-
gravitating fluid that has come to thermal equilibrium. The
result was a remarkable thermogravitational effect in the
framework of general relativity: heat, as any other source of
energy, is subjected to gravity. The preliminary results
assuming spherical symmetry were obtained by Tolman in
the weak field approximation [1], but a proof of the theorem
valid for a more general static field was published in a
subsequent paper by Tolman and Ehrenfest [2] (see also
[3]). In order to discuss the equilibrium temperature to this

particular case, they assumed that the self-gravitating fluid
generates a static gravitational field described by the line
element

ds2 ¼ g00c2dt2 − gijdxidxj; ð1Þ
where Latin indices denote spatial coordinates and the
signature adopted here is (þ;−;−;−). The components
g00ðxrÞ and gijðxrÞ are independent of time but depends in
an arbitrary way of the spatial coordinates xr (r ¼ 1, 2, 3).
Under such conditions, the “pocket temperature” Tolman-
Ehrenfest (TE) theorem can be expressed as

T
ffiffiffi
g

p
00ðxiÞ ¼ T̃ ¼ constant; ð2Þ

where T̃ is constant in all parts of the system. The
interesting aspect of this relation is that the proper temper-
ature necessarily varies from point to point within the self-
gravitating fluid that has come to equilibrium, thereby
violating the so-called “zeroth” law of thermodynamics [4].
This result is nowadays considered an important key in the
framework of black-hole physics [5], or more generally, to
compact objects in the astrophysical domain. Tolman
stressed that the temperature T is directly measurable by
local observers, and as such, it must be considered the
fundamental quantity that we mean by temperature at a
given point.
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In principle, due to its physical interest, the Tolman
distribution law demands a closer scrutiny. As it appears,
the proof of the TE theorem is very particular in many
different aspects. To begin with, since the self-gravitating
fluid may have a generic nature, they first assumed that the
parts of the system whose temperature needs to be
compared are in thermal contact with a small connecting
tube containing blackbody radiation, or at least could be put
in such contacting device without perturbing the system
which should be considered a kind of reservoir. In other
words, the tube works like a radiation thermometer.
Second, the energy conservation law was applied to the
thermometer itself not to the fluid source of curvature as it
should be desirable in principle. Finally, it should be
remarked that black body radiation is a very special kind
of medium since its chemical potential is zero, and its basic
thermodynamic quantities (temperature, pressure, and
energy density) are related in a very simple way.
Moreover, photons suffers gravitational redshift in the
presence of a static field, a kinematic phenomenon that
is not directly related with the idea of thermal equilibrium.
In literature, several have been the trials to determine

or extend the TE theorem. For example Buchdahl [6]
formally extended TE result to self-gravitating fluids
supporting stationary spacetime through the timelike
Killing vector

Ka ¼ ð∂tÞa ¼ ð1; 0; 0; 0Þa ð3Þ

As shown by [7], even considering that the approach of [6]
looks similar to the TE result, it is incomplete because is
valid only for a very specific class of 4-velocities. While in
a static spacetime, as that used in the TE derivation, one has
a unique candidate for the 4-velocity fields necessary to
explicit the heat bath’s rest frame, in the case of a stationary
nonstatic spacetime (as that in [6] proof) the rest frame of
the bath can be fixed by several 4-velocities fields.
A different approach to derive the TE effect, as well as

Tolman-Oppenheimer-Volkoff (TOV) [8,9], Klein related
result[10], and in particular the derivation of Einstein’s
equations from thermodynamics of the self-gravitating gas
was attempted by Cocke [11]. He derived the TOVequation
through a maximum entropy principle which was later on
extended by [12]. A further generalization to arbitrary
perfect fluids was also given by Gao [13,14]. Some time
after, Roupas [15–18] specified in which thermodynamic
ensemble the calculation must be performed thereby
recalculating the TOV, TE, and Klein result. It is also
worth mentioning that Rovelli and Smerlek [19] also
obtained the TE relation by applying the equivalence
principle to a property of thermal time.
In this paper,wediscuss a general proof of theTE theorem,

in a simpler and more general form from that discussed by
[6,7], and similarly we will not use the maximum entropy
principle as adopted by many authors [11–17].

As we shall see, using only thermodynamics and general
relativity, it is possible to show that under given conditions
(null chemical potential) the source of curvature satisfies
exactly the TE law. The result is valid for any kind of fluid,
not only in the radiative case as originally considered by
Tolman and Ehrenfest. In the general case of equilibrium
(non-null chemical potential), the temperature and the
chemical potential and the metric coefficient g00ðxrÞ are
entertained in such a way that only a definite (position
dependent) relation uniting such quantities is obeyed. Such
a result generalizes both the TE and Klein relations.
The paper is organized as follows. In Sec. III, we obtain

the TE relation for a simple fluid regardless the values of its
chemical potential, and in Sec. IV, we show how the
temperature changes due to the TE effect in an isothermal
gas, and inside neutron stars. Finally, we close with a brief
summary of the main results.

II. THERMODYNAMIC STATES

As is widely known, the thermodynamic states of a
relativistic simple fluid are characterized by three funda-
mental quantities: (i) an energy-momentum tensor Tαβ, (ii) a
particle current Nα, and (iii) an entropy current Sα. In
addition, the fundamental equations ofmotion are expressed
by the conservation law of energy-momentum (Tαβ

;β ¼ 0)
and the number density of particles (Nα

;α ¼ 0), where the
semicolon denotes covariant derivative. Moreover, for a
simple fluid, in the absence of classical dissipative mech-
anisms (e.g., viscosity, heat flow), the entropy flux is also
conserved quantity (Sα;α ¼ 0). In an arbitrary hydrody-
namic frame of reference, whose four-velocity obeys
uαuα ¼ 1, these quantities take the following forms:

Tαβ ¼ ðρþ pÞuαuβ − pgαβ; ð4Þ
Nα ¼ nuα; ð5Þ
Sα ¼ nσuα: ð6Þ

In the above relations, the variables ρ, p, n, and σ stand
respectively for the energy density, thermostatic pressure,
particle number density and specific entropy (per particle),
and are related by the so-called Gibbs law [20–22]

nTdσ ¼ dρ −
ρþ p
n

dn: ð7Þ

The above local expression when combined with the energy
conservation law for a perfect fluid (uαT

αβ
;β ¼ 0) and the

conservation of the particle current (Nα
;α ¼ 0), implies that

the dσ=ds is conserved along the world lines of the fluid
(see, for instance, [21]). It means that the flow is isentropic,
a result also in accordance with the conserved entropy
current (Sα;α ¼ 0).
Nevertheless, the constancy of σ along each world line,

does not mean that it is a global constant within the whole
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volume of the fluid. In other words, the constant may vary
from world line to world line. In particular, for comoving
observers at rest with the volume elements of a static
inhomogeneous simple fluid (the case study here),
σ ¼ σðxiÞ. It varies from place to place thereby making
sense to calculate partial space derivatives in the fluid, and,
of course, the same happens with the remaining physical
quantities.
On the other hand, in the frame defined by (1), g00 ¼ g−100 ,

an observer at rest has 4-velocity uα ¼ δα0=
ffiffiffiffiffiffi
g00

p
. From

uαuα ¼ 1 we also see that uα ¼ ffiffiffi
g

p
00
δα

0 while the four-
acceleration aα ¼ uα;βu

β ¼ Γ0
α0 ¼ −∂αg00=2g00. As onemay

check, by using the above results valid for the static metric
(1), the energy conservation law takes the following form:

∂p
∂xi þ

�
ρþ p
2

�
g−100

∂g00
∂xi ¼ 0; ð8Þ

or, equivalently,

∂ lnðρþ pÞ
∂xi þ ∂ ln ffiffiffi

g
p

00

∂xi ¼ 1

ρþ p
∂ρ
∂xi : ð9Þ

Now, since the thermodynamic variables are related with
the relativistic chemical potential (thermodynamic poten-
tial) per particle by the local Euler expression [23]

Tσ ¼ ρþ p
n

− μ; ð10Þ

there are two kind of fluids to be considered, namely those
with and with no chemical potential.1 Let us now discuss
each case separately.
(i) μ ¼ 0
Particles with no chemical potential includes as particu-

lar cases the radiation blackbody fluid (massless photons)
as discussed by Tolman and Ehrenfest and a spin-2
massless field described by the Fierz-Pauli Lagrangian
[24] which coincides with the first order weak field
approximation of general relativity (massless gravitons).
It should be noticed, however, that the massless property
does not imply a nullified chemical potential. For instance,
in special relativity, when g00 ¼ 1 and gij ¼ δij in metric
(1), a kinetic theoretic approach for an effectively massless
(ultra -relativistic) ideal gas yields for the fugacity (in
natural units2), expðμ=TÞ ¼ π2n

T3 . Note also that since n ∝ T3

in this limit, the fugacity or equivalently, the ratio
μ=T ¼ constant. Actually, for an ideal noninteracting
(and nonquantum) relativistic gas such a property remains
valid regardless of the temperature interval [23].

Now, by using that ρþ p ¼ nTσ, we first rewrite (9) in
the form

∂ lnT ffiffiffi
g

p
00

∂xi ¼ 1

ρþ p
∂ρ
∂xi −

1

nσ
∂nσ
∂xi ; ð11Þ

or still,

∂ lnT ffiffiffi
g

p
00

∂xi ¼ 1

ρþ p

�∂ρ
∂xi −

ρþ p
n

∂n
∂xi − nT

∂σ
∂xi

�
: ð12Þ

As discussed before, in the inhomogeneous static fluid
discussed here, all quantities in the Gibbs law, namely, ρ, σ,
p, T and n are local functions of the spatial coordinates
alone. In this way, one may think that the differentials in (7)
are just the differences between infinitely adjacent points
of space.
Notice that all the local thermodynamic properties of the

fluid can be expressed in terms of n and T. In particular, we
have σ ¼ σðn; TÞ, ρ ¼ ρðn; TÞ, and p ¼ pðn; TÞ. As a
consequence of the second law of thermodynamics these
three functions have to comply with the differential relation
(7). Consequently, regarding the differentials appearing
in (7) as the increments associated with neighboring points
in the inhomogeneous static fluid, it follows that

nT
∂σ
∂xi ¼

∂ρ
∂xi −

�
ρþ p
n

� ∂n
∂xi : ð13Þ

The above equation means3 that the right-hand side
(RHS) of (12) is identically null, thereby showing that
T

ffiffiffi
g

p
00
ðxiÞ ¼ T̃ as derived by Tolman and Ehrenfest. The

present proof is, however, more general than the original
TE theorem since the fluid is not restricted to blackbody
radiation, and, perhaps, more important, the introduction
of a radiation thermometer connecting two parts of the
medium is by no means a necessary device. Further, since
the equation of state obeyed by the fluid does not play any
role in this approach, such a result strongly suggest that a
general proof including a non-null chemical potential
could in principle be accomplished. This case will be
discussed next.
(ii) μ ≠ 0
Let us consider again the energy conservation law for the

general static configuration. It is easy to see that Eq. (9)
now leads to the following relation [compare with Eq. (12)]

∂ lnT ffiffiffi
g

p
00

∂xi ¼ 1

ρþp

�∂ρ
∂xi−

ρþp
n

∂n
∂xi−nT

∂σ
∂xi−

ρþp
σþμ=T

∂μ
∂xi

�
;

ð14Þ
1For an ideal relativistic gas, the chemical potential per particle

includes the nonrelativistic value plus the rest mass-energy
contribution, μ ¼ μNR þmc2.

2ℏ ¼ kB ¼ c ¼ 1.

3In this connection see also discussion above and below
Eq. (16).
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and since the first three terms within the bracket on the
RHS sum zero due to Gibbs law (13), after some algebra
the above expression reduces to:

∂ lnT ffiffiffi
g

p
00

∂xi þ μ

Tσ

∂ ln μ ffiffiffi
g

p
00

∂xi ¼ 0: ð15Þ

It thus follows that a more general relation uniting the
pair of thermodynamic variables (T, μ) holds regardless of
the equation of state satisfied by the medium. It also implies
that the original Tolman-Ehrenfest thermodynamic theorem
is valid only if the chemical potential vanishes identically
or even whether the extended thermodynamic relation for
the chemical potential μ

ffiffiffi
g

p
00

¼ constant is assumed. In the
general case of equilibrium, the temperature and the
chemical potential are entertained in such a way that only
a definite (position dependent) relation uniting both quan-
tities is obeyed. Naturally, the above result is also valid in
the particular case of special relativity.
At this point, it is interesting to comment on the proof of a

related theorem derived long ago by Klein [10]. In his paper,
the following shortcut approach was adopted under the same
starting conditions, namely: the specific entropy was elim-
inated from Gibbs law (7) in order to recover the Gibbs-
Duhemrelation,nσdT ¼ dp − ndμ. Further, this differential
expression was combined with the energy conservation law
(8) thereby obtaining (see Eq. (16) in [10]).4

n

�∂μ
∂xi −

μ

T
∂T
∂xi

�
þ ðρþ pÞ

�
1

T
∂T
∂xi þ

∂ ln ffiffiffi
g

p
00

∂xi
�
¼ 0: ð16Þ

From the above expression it was observed that the
temperature and the chemical potential are curiously
interrelated. However, Klein took for granted the general
validity of the Tolman result (effectively valid only for
μ ¼ 0) and concluded that the above expression (now
reduced to the first term) leads to the universal relations:
μ=T ¼ constant, and, subsequently (by using the Tolman
law again), to the equally celebrated Klein’s law:

μ
ffiffiffi
g

p
00ðxiÞ ¼ constant: ð17Þ

Note that our viewpoint is different by the following
reason. We consider that both terms in the brackets are in
principle different from zero, unless some extra simplifying
condition is assumed (as the general validity of the TE law).
As a matter of fact, under more general conditions, the
relation μ=T also does not need to be constant. In general,
this happens for an ideal gas of noninteracting particles, a
very particular case of the perfect fluid description assumed
here. If the fluid obeys a more general equation of state than
the one valid for an ideal gas (p ¼ nkBT), as in the van der

Walls case, the ratio μ=T is different from a constant. This
means that the constancy of the fugacity is by no means a
general thermodynamic law. Even kinetically, it fails when
interactions or even quantum effects are included in the
ideal gas description. For instance, for a degenerate
relativistic Fermi gas, the exact kinetic result involves
special functions, but more enlightening approximate
expressions can be obtained for some limits. In particular,
in the almost complete degeneracy regime, T=TF ≪ 1
where TF is the Fermi temperature, the chemical potential
can be written as:

μ ¼ EF

�
1 −

π2

12

�
T
TF

�
2

þ � � �
�
þmc2; ð18Þ

where EF is the Fermi energy and TF ¼ EF=kB (see, for
instance, [25]).
The above considerations lead us to conclude that the

standard TE and Klein’s thermodynamic relations laws are
generically valid only for the restricted class of perfect
fluids satisfying the relation μ=T ¼ constant. Basically,
noninteracting (ideal) relativistic gas when quantum effects
are not considered [in this connection see also comment on
fugacity just above Eq. (11)].

III. THE CASE OF MIXTURES

In the present work all calculations are restricted to
one-component self-gravitating relativistic simple fluids,
either with vanishing or with finite chemical potentials.
Naturally, such results cannot be generically applied to
mixtures without careful further considerations on the
thermodynamic variables, as well as on the specific proper-
ties of each of the component comprising the mixture.
In general, even when locally the temperature is the

same for each substance in the mixture, there are P different
chemical potentials μi, i ¼ 1; 2;…P, for P independent
substances. This means that the Gibbs, Euler, and the
remaining relations, including the energy-momentum
tensor must now be written as a sum involving all
components.
In the case of a static mixture of matter and radiation, for

instance, the results may also depend on the value of local
temperature within the system. The local equilibrium
radiation has null chemical potential and the same happens
with the material component when the mass of the particles
(in natural units) is much smaller than the tempera-
ture (T ≫ m).
Naturally, our results may be extended to more complex

situations by taking into account the proper extensions of
the basic equations. Nevertheless, a detailed treatment
involving several substances is out of the scope of the
present paper and will be discussed in a forthcoming
communication.

4Note that in Klein’s notation n≡ C, μ≡ α, g00 ≡ g44 ¼ eν,
and ∂

∂xi ≡∇i.
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IV. TOLMAN-EHRENFEST LAW IN IDEAL
GASES AND NEUTRON STARS

The previous calculations showed a general proof of the
Tolman-Ehrenfest effect. In this section we want to show
how this effect manifests itself in thermal equilibrium ideal
gases (isothermal spheres, in spherical, bounded, static
configurations), and in neutron stars. To this goal, we will
follow [16,18].

A. Ideal gases

In GR the equation of state of the relativistic ideal gas, in
a sphere of radius R, can be expressed as [16,26]

PðrÞ ¼ 1

T invðrÞ½1þ LðT invðrÞÞ�
ρðrÞc2; ð19Þ

where T inv ¼ mc2
kT and LðT invÞ is given by

LðT invÞ ¼
K1ðT invÞ
K2ðT invÞ

þ 3

T inv
− 1; ð20Þ

and Kn are the modified Bessel functions:

KnðT invÞ ¼
Z

∞

0

e−T inv cosh θ coshðnθÞdθ: ð21Þ

The thermal and dynamic equilibrium is given by the
following four equations: TOV equation [9,27]

ðiÞ dP
dr

¼ −
�
P
c2

þ ρ

��
GM
r2

þ 4πG
P
c2

r

��
1 −

2GM
rc2

�
−1
;

ð22Þ

the mass equation

ðiiÞ dM
dr

¼ 4πρr2; ð23Þ

whereM is the total mass (namely the sum of the rest mass,
the thermal energy, and gravitational field’s energy) the
Tolman-Ehrenfest relation [28,29]

ðiiiÞ TðrÞ ffiffiffiffiffiffi
g00

p ¼ constant; ð24Þ

that can be written in differential form as [14,30]

ðivÞ dT inv

dr
¼ −

T inv

Pþ ρc2
dP
dr

; ð25Þ

and to close the system we use Eq. (19). We then solve
Eqs. (22), (23), (25), and (19).
The system of differential equation must be solved with

the initial conditions: ρð0Þ ¼ ρ0, T invð0Þ ¼ T0, Mð0Þ ¼ 0,
with r ∈ ½0; R�. The equilibrium equations can be expressed
in adimensional form as shown in Eqs. (58–60) of [16], and
the relative initial conditions.
In Fig. 1, we plot the result of the integration, namely the

Tolman-Ehrenfest effect: the proper temperature versus the
radius. The quantity b0 ¼ mc2

kT0
, is fundamentally the inverse

of the temperature, while the normalizing factor on x axis,
r� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0mkT0

p
, where ρ0 is the central density. The

red line represents the solution in the case b0 ¼ 1, while the
black line, green, and yellow lines the case b0 ¼ 2,
b0 ¼ 3.23, and b0 ¼ 350 respectively. The plot shows that
the larger is the central temperature the larger is the TE
effect, and that the temperature gradient decreases with
distance from the system center. One can also define a rest
mass as

Mrest ¼
Z

R

0

mnðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM

rc2

q 4πr2dr; ð26Þ

FIG. 1. The Tolman-Ehrenfest effect. The plot shows the proper temperature for different central temperature, T0 ¼ mc2
kb0

. Left panel:
the red line represents the solution in the case b0 ¼ 1, while the black line, green, and yellow lines the case b0 ¼ 2, b0 ¼ 3.23, and
b0 ¼ 350 respectively. The quantity b0 ¼ mc2

kT0
, is fundamentally the inverse of the temperature, while the normalizing factor on the x axis,

r� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0mkT0

p
, where ρ0 is the central density. Right panel: the case b0 ¼ 350 using a different scale.
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where nðrÞ is the particle density, that can be expressed
as [17]

nðrÞ ¼ n0
K2ðT invÞ

K2ðT invð0ÞÞ
T invð0Þ
T inv

; ð27Þ

which is given, for the four cases considered, by 0.78MS,
0.66MS, 0.56MS, and 0.011MS, with MS ¼ Rc2

2G .

B. Neutron stars

In this section, we discuss how the TE effect changes the
inner temperature of neutron stars (NSs).
NSs are important laboratories in which extreme con-

ditions of matter can be studied. Their equation of state
(EoS) and composition are unknown at density larger than
ρ0 ¼ 2.8 × 104 g=cm3 [31], and different models predict
different composition and EoS. Cooling is a powerful
method to have insight on the inner structure of NSs [32].
NSs are very hot immediately after the supernovae

explosion. Their temperatures is T ≃ 1011 K large gradient
temperatures are present. In a conduction timescale, the
heat flows inward, generating a cooling wave propagation
from the NS center to its surface. In usual calculations [33],
the TE effect is not taken into account, while in others, [34],
it is claimed that the NS become isothermal in times of the
order of 50–100 yrs.
In reality, neutron stars are not isothermal at all. In

their Figs. 6–7, [34] are not plotting the local temperature
TðrÞ, but the so called redshifted temperature T̃ ¼
Tðr; tÞ expϕðrÞ, where ϕðrÞ is the potential. Locally the

temperature changes from one point to the other, and the
system is not isothermal.
In order to find the gradients of temperature in the NS

due to the TE effect, we will solve Eqs. (22), (23), and (25),
coupled with an EoS. The EoS that we use is that of [35]
constrained by using info coming from the high-density
limit from perturbative QCD, from low-energy nuclear
physics, and pulsars data. For ρ < 3.3 × 103 g=cm3 the
EoS used is that of [36], while for the inner and outer crust
we use [37,38]. Solving the quoted equations, we get the
results plotted in Fig. 2, in which the colors correspond to
that of Fig. 1. In Fig. 2 the temperature falls in a steeper
way than in Fig. 1, however the temperature gradient is
always present, as predicted by the TE effect. The changes
from 5 km to the crust of the NS becomes very small and
the behavior tend to become more isothermal.

V. CONCLUSIONS

In the present paper, we advance a proof of the TE
theorem that is more general than the ones proposed in
[2,3,10], or than proofs based on a maximum entropy
principle, such as those reported in [12] or in [13,14]. In our
analysis the idea of a radiation thermometer is not neces-
sary. The derivation presented here is as independent as
possible of the properties of specific media. In that sense, it
has a generality consubstantial with the robustness that a
fundamental thermodynamic principle is expected to have.
Other derivations of the TE law, such as the simplified ones
based on gravitational redshift [39], in spite of their
considerable heuristic and pedagogical values, lack the
above mentioned kind of generality.
The main aspects of our proof are: (i) the fluid is not

restricted to blackbody radiation, and the result within the
approach followed here can be naturally extended for fluid
mixtures (ii) the radiation thermometer connecting two
parts of the medium is not a necessary device, and (iii) the
proof is independent from the equation of state and, as
such, it was also possible to provide a more general proof
including a non-null chemical potential. Finally, we have
solved the thermal and dynamic equilibrium equations
(TOV, mass equation, TE relation) to find the relation
between the temperature and radius, in the case of an
isothermal gas, and neutron stars. The result shows that the
temperature gradients are larger for larger central temper-
atures, and are larger for the NS case with respect to the
isothermal gas case.
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FIG. 2. The Tolman-Ehrenfest effect. The red line represents
the solution in the case b0 ¼ 1, while the black line and green line
the case b0 ¼ 2, and b0 ¼ 3.23 respectively. The quantity
b0 ¼ mc2

kT0
, is fundamentally the inverse of the temperature, while

the normalizing factor on x axis, r� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0mkT0

p
, where ρ0

is the central density.
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[12] R. Sorkin, R. Wald, and Z. Jiu, Gen. Relativ. Gravit. 13,

1127 (1981).
[13] S. Gao, Phys. Rev. D 84, 104023 (2011).
[14] S. Gao, Phys. Rev. D 85, 027503 (2012).
[15] Z. Roupas, Classical Quantum Gravity 30, 115018 (2013);

32, 119501(E) (2015).
[16] Z. Roupas, Classical Quantum Gravity 32, 135023 (2015).
[17] Z. Roupas, arXiv:1809.04408.
[18] Z. Roupas, Phys. Rev D. 91, 023001 (2015).
[19] C. Rovelli and M. Smerlak, Classical Quantum Gravity 28,

075007 (2011).
[20] W. G. Dixon, Special Relativity, The foundations of Macro-

scopic Physics (Cambridge University Press, Cambridge,
England, 1978).

[21] S. Weinberg, Gravitation and Cosmology, Principles
and Applications of the General Theory of Relativity (John
Wiley & Sons, New York, 1972).

[22] R. Silva, J. A. S. Lima, and M. O. Calvão, Gen. Relativ.
Gravit. 34, 865 (2002).

[23] S. R. De Groot, Van Leeuwen, and Van Weert, Relativistic
Kinetic Theory (North-Holland Publishing Company,
Amsterdam, 1980).

[24] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211
(1939).

[25] C. Cergnani and G. M. Kremer, The Relativistic Boltzmann
Eqauations and Applications (Birkhauser Verlag, Berlin,
2002), p. 88.

[26] W. Israel, J. Math. Phys. (N.Y.) 4, 1163 (1963).
[27] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[28] R. Tolman, Phys. Rev. 35, 904 (1930).
[29] R. C. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791

(1930).
[30] Z. Roupas, Classical Quantum Gravity 32, 119501

(2015).
[31] J. Lattimer and M. Prakash, Astrophys. J. 550, 426

(2001).
[32] D. Page, in Neutron Stars and Pulsars, edited by N.

Shibazaki, N. Kawai, S. Shibata, and T. Kifune (Universal
Academy Press, Tokyo, 1998), p. 183.

[33] M. Prakash et al., Phys. Rep. 280, 1 (1997).
[34] O. Y. Gnedin, D. G. Yakovlev, and A. Y. Potekhin, Mon.

Not. R. Astron. Soc. 324, 725 (2001).
[35] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A.

Vuorinen, Astrophys. J. 789, 127 (2014).
[36] B. K. Harrison, K. S. Thorne, M. Wakano, and J. A.

Wheeler, Gravitation Theory and Gravitational Collapse
(University of Chicago Press, Chicago, 1965).

[37] J. W. Negele and D. Vautherin, Nucl. Phys. A207, 298
(1973).

[38] S. B. Ruester, M. Hempel, and J. Schaner-Bielich, Phys.
Rev. C 73, 035804 (2006).

[39] A. Lightman, W. H. Press, R. H. Price, and S. Teukolsky,
Problem Book in Relativity and Gravitation (Princeton
University Press, Princeton, NJ, 1975).

Correction: The affiliation indicators for the first two authors
were misarranged and have been fixed.

THERMODYNAMIC EQUILIBRIUM IN GENERAL RELATIVITY PHYS. REV. D 100, 104042 (2019)

104042-7

https://doi.org/10.1103/PhysRev.35.904
https://doi.org/10.1103/PhysRev.36.1791
https://doi.org/10.1007/s10714-016-2029-2
https://doi.org/10.1103/PhysRevD.98.064001
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/RevModPhys.21.531
https://doi.org/10.1007/BF00759862
https://doi.org/10.1007/BF00759862
https://doi.org/10.1103/PhysRevD.84.104023
https://doi.org/10.1103/PhysRevD.85.027503
https://doi.org/10.1088/0264-9381/30/11/115018
https://doi.org/10.1088/0264-9381/32/11/119501
https://doi.org/10.1088/0264-9381/32/13/135023
https://arXiv.org/abs/1809.04408
https://doi.org/10.1103/PhysRevD.91.023001
https://doi.org/10.1088/0264-9381/28/7/075007
https://doi.org/10.1088/0264-9381/28/7/075007
https://doi.org/10.1023/A:1016317914912
https://doi.org/10.1023/A:1016317914912
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1063/1.1704047
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.35.904
https://doi.org/10.1103/PhysRev.36.1791
https://doi.org/10.1103/PhysRev.36.1791
https://doi.org/10.1088/0264-9381/32/11/119501
https://doi.org/10.1088/0264-9381/32/11/119501
https://doi.org/10.1086/319702
https://doi.org/10.1086/319702
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1046/j.1365-8711.2001.04359.x
https://doi.org/10.1046/j.1365-8711.2001.04359.x
https://doi.org/10.1088/0004-637X/789/2/127
https://doi.org/10.1016/0375-9474(73)90349-7
https://doi.org/10.1016/0375-9474(73)90349-7
https://doi.org/10.1103/PhysRevC.73.035804
https://doi.org/10.1103/PhysRevC.73.035804

