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Bending of light in a universe filled with quintessential dark energy
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As alocal effect of dynamical dark energy, bending of light in the presence of a spherically symmetric
and static black hole surrounded by quintessence has been studied. Having in mind recent observational
data, we have treated the problem as a deviation from Kottler space-time. This deviation is measured by a
perturbation parameter ¢ included in the equation of state parameter of quintessence as w, = —1 + %8.
Here, the deflection angle is calculated and then the result is compared with [H. Arakida and M. Kasai,
Phys. Rev. D 85, 023006 (2012)] in the limit e — 0 where the quintessence behaves like the cosmological
constant. It is shown that unlike the cosmological constant, the effect of quintessence on the photon energy
equation can not be absorbed into the definition of impact parameter. Moreover in this paper, we generalize
the Kiselev black hole to the case that there is a modified Chaplygin gas as the dark energy component of
the universe and show that the resulted metric can be reduced to the Kiselev metric by adjusting some

arbitrary parameters.
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I. INTRODUCTION

The universe undergoes an accelerated expansion which
is caused by a peculiar relativistic agent, called dark energy
whose presence gives rise to repulsive gravity. The most
famous and simplest candidate of dark energy is the
cosmological constant which has constant energy density
and pressure. There are also some other candidates with
varying energy density, one of which is called quintessence
with an equation of state parameter in the range of
-1 <w, < —1/3. For a comprehensive review on dark
energy dynamics see[1]. The observational supports for the
presence of dark energy are many, see for example [2] for
type Ia supernovae observations and also [3] for a summary
of the current status of dark energy research. Problems
of the cosmological constant, such as the conflict between
the obtained value of the vacuum energy density predicted
by quantum field theory and its cosmological observed
value, lead physicists to consider the dynamical dark
energy models. Recent observational data, see for example
Planck 2018 results [4] and DES Collaboration results [5],
indicate that the value of dark energy state parameter, o lies
in a narrow strip around —1 [6].

Besides the cosmological effects of dark energy, it has
some local consequences. The effect of the cosmological
constant in bending of light is studied in[7,8], although in
some earlier works, it had been argued that the cosmo-
logical constant has nothing to do with the bending of light,
see for example [9].
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On the other hand in 2003 Kiselev introduced an exact
solution of Einstein field equations for a static black hole
surrounded by quintessence [10] which enabled the
investigation of the local consequences of quintessence.
Null geodesics in Kiselev metric has been examined in
detail for special case w, = —2/3 in [11]. For this case,
the effect of quintessence on photon trajectory is exam-
ined in [12]. Also, the study of null geodesics around a
charged black hole immersed in quintessence is done in
[13]. Using the Janis-Newman algorithm, the Kiselve
metric is generalized to Kerr [14] and to Kerr-Newmann-
Ads [15] black holes. Also, the authors of [16] study the
critical values of quintessential and spin parameters, to
distinguish a rotating Kiselev black hole from a naked
singularity. Other works in this topic can be founded in
papers [17,18].

In this paper we are going to treat the bending of
light in Kiselve space-time where the equation of
state parameter of quintessence is w, = —1 + %e in
which || < 1. The coefficient 1 comes for convenience.
This parameter can be considered as a perturbation
parameter. In the limit of ¢ — 0, the results of Kottler
(Schwarzschild-de Sitter) space-time will be obtained [7].
Kiselev metric will be our starting point and after having
a review about it in the next section, we take a glance on
the results of bending of light, obtained in the Kottler
space-time, in Sec. III. Then the photon energy equation
and the deflection angle will be calculated in the Kiselev
space-time perturbatively in Sec. IV. In Sec. V we will
generalize the Kiselev metric for a black hole immersed
in the Chaplygin gas and finally we will give some
conclusions in Sec. VI.
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II. KISELEV SPACE-TIME

In a static spherically symmetric space-time, the most
general form of the line element can be written as:

ds® = e!"di? — 2 dr? — P2 (d6? + sin® 0dg?) (1)

Using Einstein equations, one can obtain the energy-
momentum tensor components as follows (472G = 1):

1 | 1
T/=-Zet5-=)+53 2
rT ¢ <r2 r>+2r2 @)
1 1V 1
T/ =——e*—+2) +— 3
’ 2¢ <r2+r>+2r2 (3)
and
1 1/2 V=) JN
0 _ ¢ — __ - " . -~
Tg T¢ 48 (l/ + 2 + - 2) (4)

where primes denote differentiation with respect to the
radial coordinate. In the case v/ + A/ = 0, we see that the
first two equations lead to

T/ =T, (5)

Substituting A = —In (1 + f), it can be easily seen that
Einstein equations reduce to some linear equations for the
unknown function f(r):

1
T =T == (F+1f) (©)

Ty = Tyh =~ (f +rf") 7)

1
et
and thus the superposition principle would be satisfied [19].

Following [10], for a static spherically symmetric space-

time, the components of the energy-momentum tensor in
Cartesian coordinates are of the form:

= (A(()r) C(r)rri iB(r)a,J)' ®)

Averaging over angles leads to
) 1, 1,
<Tﬂ”) = diag A(r),gr C(r)+ B(r),gr C(r) + B(r),
1
ngC(r) + B(r)). 9)

Comparing this with the energy-momentum tensor of a
perfect fluid

1, = diag(p(r), =p(r), =p(r),=p(r)) ~ (10)

we see that:
A(r) = p(r) (11)
372C() + B(r) = =p(n) (12)

in which p(r) and p(r) are the energy density and pressure,
respectively. Performing a coordinate transformation, it is
straightforward to show that the energy-momentum tensor
in spherical coordinates is given by

T#/”/ = diag(p(r), C(r)r* + B(r), B(r), B(r)). (13)
Applying the condition (5) yields:
C(r)r* + B(r) = p(r). (14)

Equations (11), (12), and (14) specify the energy-
momentum tensor in spherical coordinates as

(p(r) +3p(r)),

| =

1, = ding (). p(0).~
~500) +30(r)) (15)

It is worth noting that the above energy-momentum tensor
is not of the form of a perfect fluid except for the
cosmological constant where p = —p. It presents an
anisotropic fluid with the following radial and transverse
pressures

pr==p(r)  pi=5(p(r)+3p(r)).  (16)

| =

Using (15), the Einstein’s field equations (6) and (7) read
1 !
—W(f+’”f)zp(’”) (17)

e Qf ) = =3 () +3p(). (18

Assuming a linear equation of state, p(r) = wp(r), from
the above two equations, one quickly finds that

B L_ Z 3w+1
=2 (%) (19)

3w rq 3w+1
pr(r) = 52 (7)

p() == 2G0T

457 r
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where r, is the Schwarzschild radius and r, is another
integration constant with length dimension. To find the
order of magnitude of r,, setting w, = —1, the temporal

component of the metric takes the form
r r\2
gtt:]__g_<_> (21)
r r
q
which is Kottler or Schwarzschild-de Sitter space-time with

the cosmological constant

A= (22)

Q‘N| w

This means that r, is of the order of the de Sitter radius.
Using the superposition principle, the solution for different
values of state parameter can be superposed and the
corresponding metric component is

. rg ri‘l 3wn+l
gn‘_l_7_z<7> ) (23)

n

which is known as Kiselev space-time [10].

III. BENDING OF LIGHT IN KOTTLER
SPACE-TIME

In the absence of the cosmological constant and other
types of quintessence, the Kiselev metric reduces to the
Schwarzschild one. Solving the null geodesic equation in
the equatorial plane in Schwarzschild space-time, the
photon trajectory and the deflection angle up to the second
order in r, are [20]:

I 1 r
—=—sing+—%(3+cos2¢p)
.

b 4b?
r2
+6423(37sin<p+30(”—290)005‘/’_35in3‘p) (24)
ol 15m (1)
by =204 (25)

where b is the impact parameter which determines the
shortest spatial distance to the origin. In deriving the above
relations, the integration constants are chosen such that the
radial distance is minimized where ¢ = /2 at any order of
expansion.

The effect of the cosmological constant A on the photon
trajectory and the bending of light is also examined in [7].
In Kottler space-time (21), the geodesic equation in
equatorial space-time can be written as

din\? -4 A
<%> :1—u2+rgu3+§ (26)

where for convenience, we have used the dimensionless
variables 7 =r/b, ii=1/F, A=0b’A and 7, =r,/b.
Comparing with the Schwarzschild case, the effect of
the cosmological constant is equivalent to defining a
new dimensionless impact parameter B which is

1 A

P 1+ 3 (27)
This means that the first order differential equation of the
light path changes when the cosmological constant is
included [7]. Thus to include the cosmological constant,
it is sufficient to replace b and r, with B and 7, in relation
(24) to obtain the following photon trajectory

o1 7,
. :§51n(p+m(3 + cos2¢p)
=2
o
9
"o

(37 sing + 30(x — 2¢) cos ¢ — 3 sin3¢),
(28)

but it is not correct to do so for the deflection angle (25).
To clarify this point more, let us use the method of [8] in
which one should calculate the inner product of two
coordinate directions in curved space-time. The first is the
direction of photon propagation in the two dimensional space
(r, ¢) and the other is the coordinate line corresponding to
the constant azimuth angle. By a simple calculation one can
show that the angle between these two directions is [8]

tany — 3 gtt(7)7 (29)

|dr/d)

and the one-sided deflection angle is defined as 6, = w — ¢
for arbitrary constant ¢. This angle is very small thus
Sp ~tand, = tan(y — ¢). Substituting (27) and (28) into
(29) and expanding the result up to the first order in A and the
second order in Ty, gives

tanw—(tan(p— A >+< : +ACOS('0)?
3sin2¢ cosp  6sin’p ) !

15(w — 2¢ + sin2¢) A
( 32cos%¢p 96 sin psin?2¢

X (33 cos ¢ + 31 cos3¢p — 30(x — 2¢) sin q))) 7
(30)

According to (21) and (22), if the radial coordinate exceeds
from the dimensionless de Sitter horizon, +/3/ A, the
cosmological constant considerably affects on the bending
of light path. Thus, at small enough ¢ angle, in which r can be
compared with the horizon value, the cosmological constant
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can have a significant effect on the y angle and thus on the
deflection angle of photons. One can easily show that
replacing b and r,, with Band 7, inrelation (25) (see relation
(13) in [7]) and then expanding it, the resulted expression
for deflection angle is different from what can be obtained
by (30).

To compare the Kottler bending light with the
Schwarzschild one, one can compute the relative difference
in bending angle, A, = (5, — &5)/8s in two cases up to any
arbitrary order of expansion. Up to the first order in 7, and A,

one gets
T—2¢ -
1 7 A.
+ 2¢ ) ) g

(31)

| R 1 5
A, = — A >
To2A 6sing + <6sin2q0 M) (

IV. BENDING OF LIGHT IN KISELEV
SPACE-TIME

Now let us to consider the deflection of light in Kiselev
space-time given by (19). Using the null geodesic equations
in the equatorial plane, one can write the photon energy
equation as

die’) 2 =2 7 773 - e—2€
<@> =1—u" + 7’ + 7, 0 (32)
where 7, = /3/ A. Equation (32) differs from the photon
geodesic equation in the Schwarzschild space-time in the
last term on its right-hand side which is the quintessential
correction. Here we consider the Kiselev metric as a nearly
Kottler metric if the equation of state parameter of
quintessence is near —1. Hence, we write w, =-1+ %e
in which the small parameter ¢ measures the deviation of
the metric from the Kottler metric. The time-time compo-
nent of metric, (23), up to the first order of ¢ would be

A A 3_
gttzl—ﬁ—rgu—eﬁln\/%u. (33)

This means that if the quintessential dark energy is
considered to be a small deviation from the cosmological
constant, it affects as a perturbation on the Kottler space-
time. This is also true for the null geodesic equation
considered here. Expanding the last term of (32) up to the
first order in ¢ leads
7\ 2

GZ)) =1-i*+ i’ +%+%\ln%u2 (34)
where the last term on the right-hand side of (34) is a
perturbation to the Kottler null geodesic equation (26). In
the following, in addition to 7, we use another expansion
parameter ¢. Then we expand #(¢) in terms of these small
parameters as follows:

i = [(iig + ey + - - -) + Fy(iy + ey +---)
+ P2 (i + ey 4 ) + -] (35)

where, on the right-hand side, any terms in 7, Taylor
expansion, is also expanded in terms of &.

Inserting (35) into (34), we find that the functions i, i,
it,, Wy, Wy, and w, satisfy the following equations:

diiy\ 2 A
<ﬂ) —1-i 43 (36)

diiy\ [ dw, o A 3

() (@) + o= (ze) - 0
du; dw o 4 du dw,
() () +om =3 - () ()

_ u
- —_— 40
ulw0+6 i ( )

diy\ (diy)
—_— —_— Uog W
d(p d(p 0oWw2
o 3 du dw du- dw,
=i+ - () (52) - (G2) (G2)

”12) (41)

o AN
— Uy Wy —ly Wo +— )
0 0

6

The first three equations are exactly those are obtained from
the Kottler space-time in [7] and their solution yields (28).
Substituting (35) into (39)—(41) and assuming the mini-
mum of r occurs at ¢ = x/2 at any order of expansion, we
find the photon trajectory as follows':

"It should be noted that the last parentheses in (42) comes from
simplifying i(7%/6 — ¢?) + 2pIn(1 — €%¢) — iLi,(e*?). A sim-
ple calculation shows that this expression is real. To see this, it is
enough to use: JIn(1—e%#) =@ —7x/2 and RLi,(e*?) =
726 — np + @
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! ! —sing + BA (m—2¢)cosg +singln 5 sin’
—= e—— | (m— i
P |BYe T e T AeIeose P\ A

A 3
432(3+0052¢)+8E( + (1 + cos? (p)ln< B251n q))

-2
—cosg@ln (tan2 %) e N 2(,0)}

—|—r

2

+7 (37 sin g + 30(x — 2¢) cos @ — 3 sin 3¢)

1
643

A 3
2 190529 =32+ 15(x = 29)% — 601n | ==
+81536Bsin¢{ o8 q”( + 150z = 2¢)* n< PASD q’))

3
+3 <64 —10(z —2¢)* +371n < Asm (p>> +128cospIn <tan2 %) sin?¢p

3 \3
+10[ 34(p—|—7r(17—121n2)—|—3ﬂ1n(< 2A> sinzgo)] sin2¢

3
91
o <32A

S sin2¢> (cos 4 — 20¢ sin 2¢) + (18¢ — 9x) sindg
+120'5in 2029 In(1 — €2) + %Liz(eZi‘/’))}] . (42)

Substituting (33) and (42) into (29) gives the y angle. For a more accurate comparison with (30), we expand the result up to
the first order in A

Ty A CosSQ - _
_ 7y

tan tang + : :
y=ane cosg 3sin2¢ 6sin’p

1 2p—= 1 A -1 1 . '
6 - 1 A—— 2Intan? + (2¢ —
3(005(p+1)ln A = 15Qp—x—sin2¢) ,

- 72
cosp 3sin’ep) | ¢ 32cos’g

cos @

8+ cos3
sin?2¢ ( + ot g
1
96 sin ¢ sin 2¢
1

~ 1536sin%2¢

(33cos ¢ + 31 cos 3¢ + 30(2¢ — ) sing)F2A

3sin®

{—478 +340(2¢ — 7) — 360(2¢ — 1) + 1207 1n2 + 1113 1n
sin“g

+ 64 sin 2¢sin’p <16 sing In tan% - 153[,;'2(62@)>

A
+2cos2¢ (—772 + 24029 — 7)* +499In — 5 )
3sin“¢

A
—2cos4g (529 +170(29 = 7) + 60(2¢ — 7)? + 1207102 + 853 In 5 )
sin“¢g

A A
+2cos6¢p| 4+ 2431In + 81 cos 8¢ In
3sin’gp 3

sin?¢

A A
—4sin2go(170— 1877 + 15899 + 2409 In2 + 60(29 — 7) In 5 + 1620p In )
sin“¢g

A A
- 10 sin4¢< —34 -48pIn2+ 192¢p — n) + 129 In— — 336¢ In )
3 3sin’g
+324(7¢ — x) sin 6 — 81(2¢ — ) sin 8(p}?§€/_\ (43)
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This shows how deviation from the cosmological constant affects on the deflection angle. For completeness analysis, one

can find A,, =

(8pe = 6A)/0 up to the first order in r,, A and & as follows

1 (z=2¢ 1 _
A\, = — A
D) ( cos @ + sin @ n3sin2(p)8 *
+ ! 128 + 30(z — 2¢)* + 30(x — 2¢) sin 2¢p ( sin’¢ + In A
- T — T—
384sin22¢) ¢ PSP\ SIP T M3y
+ 128 singsin2¢In tan +791n — 2cos’p <15(7z —2¢)?
3sin’gp
—64—-321In 3sin2(p> —15cos4pIn 3sin2(p} ?gl_\s.
|
V. BLACK HOLES IN THE PRESENCE OF where
CHAPLYGIN GAS 3D
-7 = -1
Although in this paper we have assumed that the dark K= 14+A 1=3(1+4)(1+a) m=(1+a) (48)

energy equation of state is very close to the cosmological
constant, it is known that there are several candidate for
dark energy in addition to the cosmological constant
and the quintessence such as the Chaplygin gas, phantom,
k-essence and so on [1]. Thus, it is of some interest to find
the black hole solutions of general relativity surrounded by
an arbitrary kind of dark energy. Here, for an example, we
are going to do this by accepting the Chaplygin gas [21,22]
as the dark energy component of the universe.

For a modified Chaplygin gas, the pressure p and the
energy density p are related through the following equation
of state:

D

p=Ap——; (44)
p

where A and D are positive constants and « lies within the

range 0 < a < 1. Rewriting Einstein equations (17) and
(18), we thus have

-1
ot 1) = p(r)

1) = 56(r) +3p()

in which f, is used to indicate that we are dealing with a
static spherically symmetric black hole surrounded by
Chaplygin gas. These equations together with (44) form
a closed system of equations for the three unknown
functions f.,, p, and p. After a simple calculation, we

find that
E m
r

F(23
211’

1
=S+ (45)

(46)

)" @

2r2K™
3

3
—m, 1= =
T

E
Kr!

fch:_

where r, is an integration constant and ,F; is hyper-
geometric function. The first term in (47) arises from the
Chaplygin gas and in the second term, a minus sign is
chosen to get the standard term of the Schwarzscild metric.
For a constant equation of state parameter, D = 0, we find
that p ~ r>(1*4) and the first term of £, is proportional to
1/r(1434) which agrees with (23). Another special case is
the pure Chaplygin gas where A = 0 and a = 1. For this
case, we obtain

(49)

ET1/2
p = {DJr ]

75

and

\/E D+ )Arctanh / 1+D’

3VE+Dr°

pure

1/D+ —|—2r

The last interesting case studied here, is the space-time seen
by an observer located far away from the black hole
surrounded by a general Chaplygin gas. In this case, the
second term in (46) is small, one can easily show that

(50)

3(1+4)(1+a)-1

5 14+A\ 1+a[p2 E(14+A)r Ty
fen=- ( D ) {g_D(1+a)3(a+A+aA) T
(51)

in which the first term on the right-hand side corresponds to
the presence of the cosmological constant and the third
term is the usual Schwarzschild term. Thus for a distant
observer who is located far away from the black hole, the
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presence of the Chaplygin gas is distinguishable from the
cosmological constant.

It should be noted that in derivation of expressions (46)
and (47), we have used a nonperfect Chaplygin gas with
anisotropic pressures given by (16). As it is shown in Sec. II,
this is resulted directly from our assumption g,g,, = —1.
However, this is not always true. For example, there are
some solutions of Tolman-Oppenheimer-Volkov equations
in the case of a perfect Chaplygin gas, for which g,,g,, # —1
[23]. This is also true for some other solutions of Tolman-
Oppenheimer-Volkov equations in the presence of a per-
fect fluid.

VI. CONCLUDING REMARKS

In this paper, we have investigated the deflection angle of
light by a quintessential black hole where the quintessence
has extremely small deviation from the cosmological con-
stant, = —1. This allows us to use a perturbative analysis in
which, in addition to the dimensionless Schwarzschild
radius, 7,, a new deviation parameter ¢ is appeared. We
have obtained the usual expansion of the bending light in

Schwarzschild space-time in terms of 7, in which any order
of expansion is corrected by an expansion in terms of &.
The deflection angle is calculated up to the second order in
7, and the first order in € and it can be seen that in photon
trajectory, the contribution of quintessence can not be
absorbed into the definition of impact parameter in contrast
to the cosmological constant [7]. This is also true for light
bending angle both in the case of the cosmological constant
and also quintessence. We also generalized the Kiselev
metric to a black hole immersed in a Chaplygin gas. It is
worth noting that in Kiselev space-time, a nonperfect energy-
momentum tensor acts as the source of Einstein equations.
Therefore, this solution is different from the solutions of
Tolman-Oppenheimer-Volkov equations when a perfect fluid
isincluded with any equation of state (linear, Chaplygin, etc.)
except for the cosmological constant.
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