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Maxwell-dilaton dynamics
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The dynamics of the Maxwell-dilaton theory in Minkowski spacetime are studied using fully
nonlinear, numerical evolutions. This model represents the flat-space sector of the Einstein-Maxwell-
dilaton theory which has attracted interest recently because it is a well-posed alternative to general
relativity, and it also represents the Abelian sector of the Yang-Mills-dilaton. As such, understanding its
dynamics may shed light on the dynamics of the respective larger systems. In particular, we study
electric, magnetic, and dyonic monopoles as well as the flux tubes studied previously by Gibbons and
Wells. Some scenarios produce large gradients that an increasing adaptive mesh refinement fails to
resolve. This behavior is suggestive, although far from conclusive, that the growth leads to singularity
formation. No sharp transition between singularity formation and either dispersion or stationarity is
found, unlike other nonlinear systems that have demonstrated a behavior similar to the black hole

critical behavior at such transitions.
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I. INTRODUCTION

The Maxwell-dilaton system contains an electromag-
netic field coupled nonminimally to a scalar field. The
dilaton acts as something of a scalar, attractive “gravity”
allowing for compact solutions such as those found by
Morris [1] and Gibbons and Wells [2].

This system also represents a particular sector of the
more general Einstein-Yang-Mills-dilaton model. The
model studied here results from restricting to flat-space
and the U(1) Abelian gauge field [3]. If one instead allows
for curved space, one has the Einstein-Maxwell-dilaton
model studied recently [4—12]. Understanding the dynam-
ics of this simpler system may help elucidate aspects of the
more general system.

This nonlinear system is also interesting in its own
right. The monopole and flux tube solutions, as
found by Gibbons and Wells [2], can be used as initial
data to study their stability properties. The instability
found in the fully relativistic model of Ref. [4],
because its analysis relied on the equation of motion
for the dilaton without relying on a particular form for
the metric, is expected to remain in this restricted
model. Some nonlinear systems have demonstrated a
type of critical behavior similar to that found in
gravitational scalar collapse [13], such as Refs. [14—
19], and so we look for such threshold behavior here.
Most of the behavior observed has been spherical and
the hope with this model is that such behavior at
the threshold may be less symmetric since the dynam-
ics of vacuum Maxwell only occurs outside spherical
symmetry.
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II. EQUATIONS OF MOTION

We begin by varying the appropriate action in flatspace,
5= [ @lan(02 + e FuF. (1)

where ¢ is the dilaton, F% is the Faraday tensor for the
electromagnetic field, and ay, a;, and « are coupling
constants. The resulting system of equations consists of
the evolution equations,

V., Vigp = —ﬂke_z’“/’FabF“b (2)
do
e bR =0 ®)

and the constraints,
v[anc] =0. <4)

Consistent with Ref. [2], we choose ay=1/2 and

a; = 1/4. Adopting Cartesian coordinates, we define I1 =

% so that we can reexpress the evolution equations in first-

order differential form as
Ex,t = Bz,y - By,z + 2K(HEx - ¢,sz + ¢,ZBy) (5)
Ey,t = Bx,z - Bz,x + 2K(HEy + ¢,sz - ¢.sz) (6)

Ez,z = By,x - Bx,y + ZK(HEZ - ¢,xBy + ¢.yBx) (7)
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B, ,=E,.—E., (8)
By, =E.x—Ey; ©)
B.,=E,, —E,, (10)

¢, =11 (11)

H,t = ¢,xx + ¢,yy + ¢,ZZ + Kke 27
x[B*+B?+B?—-E*-E’-E?. (12
Commas within a subscript indicate partial derivatives with
respect to the subsequent coordinate so that ¢, is equiv-
alent to d¢p/0y.

We can compute the energy as an integral over the space

of the energy density p,
p =Py +Pe+Pp (13)

where the contributions have been separated individually as

1
po =5+ %+ 4% +¢7%)
_ e
PE 2 (EX+E)' +Ez)
—2k¢
PB = 3 (Bf + B,\z* + B?) (14)

The dilaton differentiates this model from electrovacuum
and provides for the conserved charge,

Q = %/ dxdydz[¢,xEx + ¢~)’Ey + ¢'ZEZ]' (15)

Initial data must be solutions of the two constraint
equations,

(16)

z
<

0=(eE,) , + (e*E,)) , + (e™*7E,)
0=B,,+B,,+B_.. (17)

The evolution equations preserve the constraints in the
sense that the solution at a given time generated from
integrating the evolution equations will also solve the
constraint equations. However, numerically any deviations
from the constraints could in principle grow. This is called a
free evolution and contrasts with a constrained evolution in
which the constraints equations are used in place of an
equal number of evolution equations. As such, we can
monitor the constraint residual which is an absolute, but
generally arbitrary, measure of the extent to which the
solution at a given time fails to solve the constraint
equations. Numerical data presented below suggests that
residuals do not grow significantly for the time scales
considered here. It should be noted that methods from the

t

FIG. 1. Demonstration of convergence for the Gaussian initial
data in Egs. (18)—(20) with five levels of FMR refinement. (top:)
The convergence order is computed over just the finest level and
demonstrates convergence of the x-component of B. (middle:)
The norm of the divergence of the magnetic field decreases with
resolution. (bottom:) The fractional energy change similarly
decreases with resolution. All these indications suggest that
the code is convergent and consistent.

field of computational magnetohydrodynamics such as a
divergence cleaning or constrained transport could be used
to control such growth.

We study the evolution of different initial data and
describe that data in the following sections describing
the results. The constant « is equivalent to the o of Ref. [4],
and the results below adopt k =1 (see Ref. [2] for a
discussion explaining why a change to its numerical value
has no physical significance).

1. IMPLEMENTATION

We solve these equations using the distributive, adaptive
mesh infrastructure for finite differences HAD [20]. We use
fourth-order accurate, center differences in a method of
lines scheme with a third-order accurate Runge-Kutta time
integrator. We use Kreiss-Oliger-like dissipation but with
high order derivatives as a mild low-pass filter to mitigate
noise, as is fairly common in numerical relativity codes.

We present the results of a particular numerical test in
Fig. 1. For these tests, we evolve what we call Gaussian
initial data which is smooth everywhere and satisfies the
constraints. Here, we set ¢) =0 = B, and

E, =0 (18)

E, = <62>Afz_xz/’s%e_yz/‘s%e‘zz/‘sg (19)
4

E,=- (%)Ae"‘z/‘ﬁe‘yz/‘s«%e‘zz/‘3<g (20)
v
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FIG. 2. Dynamics of the magnetic monopole. Shown are
snapshots of the x-component of the magnetic field and the
dilaton on the x-axis for a magnetic monopole with P = 0.1 and
radial cutoff ry equal to either 0.1 or 0.4. The magnetic field
settles more quickly than the dilaton which “sheds” some excess
field, but the overall solution settles quickly to a stationary
solution that depends on r.

for real parameters A, d,yy.. In the figure, we compare three
different resolutions and demonstrate that the convergence
order is consistent with third order. Note that these
evolutions use fixed mesh refinement (FMR) and the order
is computed only by comparing the finest levels. Also
shown are the total divergence of the magnetic field and
change in total energy versus time. Both of these represent
errors and that the measures of error decrease with
increasing resolution represents a test of consistency for
the numerical solution.

IV. RESULTS
A. Monopoles

Another description of initial data are the monopoles of
Ref. [2]. The magnetic monopole can be expressed in terms
of a monopole charge P such that

b= C{) In {Px(}ﬁkﬂ (21)
B, =—. (22)

Because the monopole is singular at the origin, a cutoff ry is
instituted such that for r < r(, the radius used in the above
equations is instead r, so that near the origin, for exam-
ple, B, = Pxx/r}.

The dynamics observed for magnetic monopoles is
demonstrated in Fig. 2. The magnetic monopole appears
stable for all charges tried. The effect of the cutoff appears
to be that the solution ““sees” a charge that depends on the
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FIG. 3. Three regimes of dynamics for the electric monopole.

The solution at three different times is shown for three different
charges. For small charges, the monopole appears dynamically
stable (see the P = 0.1 case shown in blue). For large charges, the
dilaton grows at the center until the code no longer resolves the
solution (see the P = 0.35 case shown in green). Instead of a
sharp transition, there appears to be a regime in which the dilaton
grows but saturates or otherwise stops growing (see the P = 0.27
case shown in red). Here the cutoff value, r, is equal to 0.1 and
note that the spatial extent of the simulation extends much further
than what is shown.

cutoff. In particular, the dilaton settles into different
solutions dependent on ry. A small value of r, demands
a higher resolution to capture the gradients, particularly in
the magnetic field (as opposed to the dilaton).

We can define an electric monopole similarly,

o= () m[ee(te)] (23)

E =5 (24)

Again, P is the monopole charge and ry is the length scale
at which the solution is cutoff. Three representative
evolutions are shown in Fig. 3. For a small monopole
charge, the solution appears stable, similar to the magnetic
case. For large monopole charge, however, the solution
appears unstable with the dilaton becoming more and more
negative in time.

One may expect critical behavior to appear in between
these two regimes as has been observed in gravitational
scalar collapse [13] and in certain nongravitating nonlinear
theories [14—19]. However, instead there appears to be a
third regime intermediate between small and large charge in
which the dilaton becomes more negative at early times and
then saturates.

104040-3



STEVEN L. LIEBLING

PHYS. REV. D 100, 104040 (2019)

¢

WNNEPHOO
obouwouo

|
w
U

-0.5 0.0 0.5 1.0

|
Iy
=}

FIG. 4. Demonstration of instability in the dyonic monopole.
The solution at a few different times is shown for two charges,
P = 0.25 (stable) and P = 0.373 (unstable).

Likewise, we define a dyonic monopole as

$»=0 (25)
B =1 (26)
E,:é?. (27)

Here P is both the electric and magnetic monopole charge
and rg is the length scale at which the solution is cutoff.
Because we consider here only dyonic monopoles with
equal electric and magnetic charges, the natural choice is
for the dilaton to vanish.

The dynamics of these monopoles is represented in
Fig. 4. Two regimes are observed depending on the charge
P. For a small charge, the solution appears stable whereas
for large charge, the evolution indicates instability. In
particular, the dilaton becomes more and more negative
while the electric field grows larger than the magnetic field.
Both these behaviors suggest that the instability found for
electric monopoles dominates the dynamics in this regime.

B. Flux tubes

Another type of solution, namely the flux tube as
discussed in Refs. [1,2], describes a “string” of confined
magnetic flux. Here, we consider the dynamics and stability
of such tubes with generalized initial data given by

f(z) = Ae™®/7 (28)

p=1/(x+ feoska) + (y + fsinks)?  (29)

1 4q?
=—1 - 30
P 5 Og[K2H2<1+a2p2>2] (30)
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FIG. 5. Evolutions of a perturbed (blue circles) and an
unperturbed (red triangles) flux tube. Shown are 1D slices of
the energy density p at the times indicated for x = 0 = z. Also
shown is the known, static solution (black solid line) although it is
hardly visible because the other solutions overlay it. The
unperturbed solution remains quite close to the static solution
for the duration of the evolution. The wiggly flux tube oscillates
around the static solution with the oscillation damped quickly by
outgoing radiation visible in the frames r = 3.0 and t =4.1.
Noisy boundary effects are becoming apparent in the last frame.
Here H = 1 and a = 1 for both solutions, and the perturbation is
described by parameters: A = 1, k = 2z/5, and § = 4.

B, = He™?. (31)

Here, the real function f(z) serves to introduce a wiggle
with a wave number k, amplitude A, and width ¢ to the
original flux tube described by real constants a and H
where H describes the magnetic strength of the tube. For
the parameter A = 0, one has a vertically oriented flux tube.

The dynamics of certain solutions are shown in Fig. 5.
An unperturbed, straight tube appears stable. Note that the
tube necessarily hits the boundaries of the computational
domain, and thus stability is suspected based on short
evolutions before boundary effects become significant
throughout the domain. Likewise, for nonvanishing A,
the “wiggled” string also appears stable with the perturba-
tion quickly propagating away, leaving what appears to be
the unperturbed, stationary string.

C. Evidence for singularity formation

Our final comment concerns whether this model permits
singularity formation or whether the large growth observed
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FIG. 6. Evolution of initial data of the form found in Egs. (18)—
(20) towards apparent singularity. Slices along the x- and y- axes
of the different contributions to the energy density for a particular
evolution with Gaussian initial data. The energy concentrates
along the x-axis, shrinking to roughly a line with thickness of
order the grid spacing. Note: (i) the much smaller spatial bounds
of the right column of plots versus the left, and (ii) a plot over z-
would be similar to that of y-. Increasing the number of AMR
levels resolves the concentration of energy better and delays
slightly the point at which the code cannot handle the large
gradients. That increasing resolution demonstrates this same
concentration is suggestive of singularity formation. Shown is
the highest resolution case with seven levels of AMR.

in the previously mentioned unstable cases ultimately
saturates. Numerics likely cannot fully answer this question
of global existence, but it can suggest an answer. And so
instead of considering initial data which itself needs to be
regularized, such as the introduction of a cutoff scale r
with the monopoles, we instead return to the initial data
found in Egs. (18)—(20) and for which convergence was
demonstrated in Fig. 1. This initial data are smooth
everywhere.

We characterize the dynamics in Fig. 6 for large amplitude
by showing snapshots of the various contributions to the

energy density as defined in Eq. (14). The initial data quickly
evolves such that the energy concentrates along the x-axis.
The adaptivity places refined grids in this vicinity. However,
runs with increasing number of allowed levels of adaptive
mesh refinement (AMR) all show dynamics in which the
concentration reaches the grid resolution. This behavior
suggests that the concentration occurs without limit, but of
course such an extrapolation is a guess because the con-
tinuum equations could dictate saturation at a scale beyond
the reach of these runs.

V. CONCLUSION

Numerical evolutions of various forms of initial data in
the Maxwell-dilaton system indicate various regimes of
stability and instability. In particular, an instability for
certain electric dominated scenarios seen in the gravitating
case appears to carryover to this flatspace model [4].

A particular case which demonstrated unstable growth
was studied with increasing adaptive refinement that was
unable to fully resolve the growth. This behavior was
suggestive that the growth is unbounded and will ultimately
form a singularity, although the numerics here cannot be
conclusive.

Certain systems that demonstrate two disparate dynami-
cal regimes such as singularity formation and stationarity or
singularity versus dispersion have also demonstrated criti-
cal behavior at the threshold similar to black hole critical
behavior [13]. However, no such behavior is found in
this model.
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