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Binary black holes (BBH) emit gravitational radiation with net linear momentum leading to a retreat of
the final remnant black hole that can reach up to ∼5; 000 km=s. Full numerical relativity simulations are the
only tool to accurately compute these recoils since they are largely produced when the black hole horizons
are about to merge and they are strongly dependent on their spin orientations at that moment. We present
eight new numerical simulations of BBH in the hangup-kick configuration family, leading to the maximum

recoil. Black holes are equal mass and near maximally spinning (jS⃗1;2j=m2
1;2 ¼ 0.97). Depending on their

phase at merger, this family leads to ∼� 4; 700 km=s and all intermediate values of the recoil along the
orbital angular momentum of the binary system. We introduce a new invariant method to evaluate the recoil
dependence on the merger phase via the waveform peak amplitude used as a reference phase angle and
compare it with previous definitions. We also compute the mismatch between these hangup-kick
waveforms to infer their observable differentiability by gravitational wave detectors, such as advanced
LIGO, finding currently reachable signal-to-noise ratios, hence allowing for the identification of highly
recoiling black holes having otherwise essentially the same binary parameters.
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I. INTRODUCTION

Soon after numerical relativity simulations [1,2] neatly
revealed that astrophysical binary black holes may
impart speeds of thousands of kilometers per seconds after
merger on the final black hole through gravitational recoil,
a search for them intensified in the astronomical com-
munity. These searches ranged from dynamical effects of
their host galaxies [3–7] leading to displacements from
galaxy cores, to specific objects displaying features that
could be interpreted as differential velocities of thousand
of kilometers per second between narrow and broad
emission lines, like CID-42 [8–10], J0927þ 2943 [11–15],
J1225þ 1415 [16], J1050þ3456 [17], and NGC1277 [18].
A systematic search was carried out and described in
[19–22]. A particularly promising study of 3C186 [23–25]
is currently underway. Early reviews on this field are given
in Refs. [26,27].
Systematic numerical relativity simulations provided a

method to model the recoil of the final merged black hole as
a function of the precursor binary [28,29], and to determine
that the maximum recoil is about 5; 000 km=s for max-
imally spinning, equal mass, holes in the hangup kick
configuration [30]. Aligned spins, on the other hand, can
only reach a maximum of just above 500 km=s, in an
antialigned configuration with mass ratio q ∼ 2=3 [31,32].
While nonspinning holes only contribute about one third of
this value [33,34]. See a review of the field in [35].
Numerical studies can also include accreting mater to

determine electromagnetic counterparts of the recoil
[36–38].
Interestingly, the observability of these recoils with gra-

vitationalwave detectors [39,40] has been explored recently.
Here we test this question in the most favorable scenario,
that of the hangup-kick recoil with explicit simulations
of nearly maximal spins (α ¼ jα⃗1;2j ¼ jS⃗1;2j=m2

1;2 ¼ 0.97).
We compare waveforms for configurations within the
hangup-kick family (See Fig. 1) leading to nearly maxi-
mally but opposed recoils and passing through essentially
vanishing recoil to see the required signal-to-noise ratio to
distinguish between them with the analytic advanced LIGO
sensitivity curve [41].
This paper is organized as follows, in the next Sec. II we

describe the numerical relativity techniques that we will use
in the evolutions of the binary black holes. In Sec. III we
describe the results of the simulations within the hangup
family with equal mass black holes and spin magnitudes
α ¼ 0.97 for eight different spin orientations. This system-
atic study provides a method to fit a sinusoidal dependence
of the recoil velocity of the final black hole as a function of
the spin orientation. A new technique to identify this relative
spin orientation at merger from the waveform phase is
described in Sec. III A. We also analyze in Sec. III C the
finite difference errors of our simulations by studying one
member of the family with three resolutions and assess the
differences with respect to its extrapolated value.We end the
paper with a discussion, in Sec. IV, of the potentially
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observable recoil effects on these waveforms. We evaluate
the matching of our simulations with each other, taking as a
reference the one with the lowest recoil velocity, to see the
signal-to-noise (SNR) requirements to distinguish one from
the other by advanced LIGO.We also come back to the first
gravitational wave event GW150914, that we recently
reanalyzed in Ref. [42], to evaluate the likelihood of recoils
within a different simulation family, involving one single
spinning black hole.

II. NUMERICAL TECHNIQUES

The late orbital dynamics of spinning binary black holes
remain a fascinating area of research since the numerical
breakthroughs [43–45] solved the binary black hole prob-
lem via supercomputer simulations. Among the notable
spin effects (without Newtonian analogs) observed in
supercomputer simulations are the hangup effect [46],
which prompts or delays the merger of binary black holes
depending on the spin-orbit coupling, S⃗ · L⃗, being positive
or negative (aligned spins or antialigned spins with the
orbital angular momentum L⃗); the flip-flop of individual
black hole spins passing from aligned to antialigned
periods with respect to the orbital angular momentum
[47] the alignment instability [48] as a case of imaginary
flip-flop frequencies [49]; and the total flip of the orbital
angular momentum [50] under generic retrograde orbits for
intermediate mass ratio binaries ðq < 1=4Þ.
Perhaps one of the most notable predictions of numerical

relativity are the large recoils (thousands of km=s) of the
final black hole remnant [1], and up to 5; 000 km=s [30].
Those results have been obtained from simulations with
spinning black holes of α ¼ S=m2 ¼ 0.7, 0.8, 0.9 and
extrapolated to maximally spinning holes. More recently,

we introduced a version of highly-spinning initial data,
based on the superposition of two Kerr black holes [51,52],
in a puncture gauge that can easily be incorporated into
moving-punctures codes. In Refs. [51,53], we were able to
evolve an equal-mass binary with aligned spins, and spin
magnitudes of α ¼ 0.95 and α ¼ 0.99 respectively, using
this new data and compare with the SXS results of
Ref. [54], finding excellent agreement.
In order to verify the extrapolation to near maximally

spinning black holes and its evolution for a precessing
system (in particular here the binary has a bobbing motion),
we designed a set of 8 simulations in the hangup-kick
configuration with spins α ¼ 0.97. These simulations in
turn will allow us to single out the effect of recoil as a
function of its merger phase and their observability with
gravitational wave detectors.
In Table I we provide the 8 configurations spanning

different initial orientations of the spin projection onto the
orbital plane S⊥, with respect to the line joining each hole as
described by the angle φ, and are chosen to include near

maximum recoil in both z-directions (L⃗) and near zero
recoil. Here φ ¼ ϕðt ¼ 0Þ and at that initial time Sx ¼
S⊥ cosφ and Sy ¼ S⊥ sinφ for one black hole and reversed
signs for the other. The polar angle θ of the spin with respect
to the orbital angular momentum L⃗ has been chosen to
maximize the recoil according to the predictions inRef. [28],
i.e., reproduced here in Eqs. (2), (3); and evaluated for
α ¼ 0.97 give the value θmax ¼ 50.98 degrees.
We have chosen the initial separations of the binaries to

guarantee around 7 orbits before merger and in order to
estimate the accuracy of the finite resolution used in those
simulations we perform three simulations for a member
of the family (that with φ ¼ 291°), at increasing resolutions
by a factor 1.2 in order to study the convergence of the
relevant quantities for our studies. Those results are
reported later in Sec. III C.

TABLE I. Initial simple proper distance and spins of the BHs.
The initial coordinate separation in all cases is D=m ¼ 9 and
mass ratio q ¼ 1. ADM masses are between 0.9880 and 0.9884.
Each simulation in the series can be uniquely described by the
azimuthal spin angle, φ. Both spins have magnitude 0.97 and
polar angle θ of 50.98°, and the angle Δφ between α⃗1 and α⃗2 is
180°. In terms of the spin components α⃗1 ¼ ðα1x; α1y; α1zÞ ¼
ð−α2x;−α2y; α2zÞ.
φ mΩ22 d=m α2x α2y α2z

0 0.01032 12.5183 0.7536 0.0000 0.6107
30 0.01044 12.4045 0.6527 0.3768 0.6107
60 0.01053 12.2011 0.3768 0.6527 0.6107
90 0.01055 12.2128 0.0000 0.7536 0.6107
120 0.01051 12.3744 −0.3768 0.6527 0.6107
150 0.01046 12.4913 −0.6527 0.3768 0.6107
203 0.01046 12.4455 −0.6953 −0.2908 0.6107
291 0.01029 12.3250 0.2663 −0.7050 0.6107
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FIG. 1. The hangup-kick configurations to maximize the
merger recoils. In our case spin magnitudes S1;2=m2

1;2 ¼ 0.97,
polar angle θ of 50.98° and m1 ¼ m2. Simulations start at an
initial coordinate separation d=m ¼ 9 and different angles φ
between the line connecting the BHs and the projection of the
spin onto the orbital plane.
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We evolve the binary black hole data sets using the LAZEV
[55] implementation of the moving puncture approach [44]
with the conformal function W ¼ ffiffiffi

χ
p ¼ expð−2ϕÞ sug-

gested by Ref. [56]. For the runs presented here, we use
centered, eighth-order finite differencing in space [57], a
fourth-order Runge Kutta time integrator, and a 7th-order
Kreiss-Oliger dissipation operator. We use a Courant factor
of 0.25 in the CCZ4 formulation of the evolution equations
[58]. Our code uses the EINSTEINTOOLKIT [59,60] / CACTUS
[61] / CARPET [62] infrastructure. The CARPET mesh refine-
ment driver provides a “moving boxes” style of mesh
refinement. In this approach, refined grids of fixed size
are arranged about the coordinate centers of both holes. The
evolution code then moves these fine grids about the
computational domain by following the trajectories of
the two black holes. At the outer boundary (located at
400M for this paper’s simulations) we set Sommerfeld
boundary conditions. The first points in from the boundary
are updated using standard second-order stencils, the second
points using the standard fourth-order scheme (See [55]), the
third points using the standard sixth-order stencils (See
Ref. [63]), and the fourth points using the proposed eighth-
order scheme. We use 6 buffer points and the standard
seventh-order Kreiss-Oliger dissipation operator. We use
AHFINDERDIRECT [64] to locate apparent horizons. We
measure at it the mass and the magnitude of the horizon
spin using the isolated horizon (IH) algorithm detailed in
Ref. [65] and as implemented in Ref. [66]. We measure
radiated energy, linear momentum, and angular momentum,
in terms of the radiative Weyl scalar Ψ4, using the formulas
provided in Refs. [67,68]. We extract the radiated energy-
momentumat finite radius and extrapolate to r ¼ ∞with the
perturbative extrapolation described in Ref. [69]. For
the radiated quantities, we use all modes up to and inclu-
ding lmax ¼ 6. Quasicircular (low eccentricity) initial
orbital parameters are computed using the 3rd order post-
Newtonian techniques described in [70].

III. RESULTS

We summarize the results of our BBH evolutions in
Table II where the final black hole remnant properties and

peak waveform luminosity values are reported. The mod-
eling of remnant mass and spin for precessing binaries is
given in Ref. [29,71] with both quantities bearing a cos 2ϕ-
dependence for the current family of simulations. Here, we
will particularly focus on the analysis of the recoil
velocities with regards to the predictions for those simu-
lations with high spin (α ¼ 0.97) from the extrapolation of
previous fitting formulae cfr. in Eqs. (2) or (3).
In order to analyze the results of the present simulations,

We can fit the recoil to the form

Vrec ¼ V1 cosðΔϕþ ϕ1Þ þ V3 cosð3Δϕþ 3ϕ3Þ; ð1Þ
where V1, V3, ϕ1, and ϕ3 are fitting parameters and Δϕ is
the initial phase of the spin with respect to a reference
direction (in our case the y-axis).
Based on [30], we expected that the recoil would have

the form

V1¼ðV1;1þVAαcosθþVBα
2cos2θþVCα

3cos3θÞαsinθ;
ð2Þ

where V1 is the component of the recoil proportional to
cosϕ, V1;1 arises from the “superkick” formula, and the
remaining terms are proportional to linear, quadratic, and
higher orders in Sz=m2 ¼ α cos θ (the spin component in
the direction of the orbital angular momentum).
A fit of the simulations reported in [28] to this ansatz (2)

showed that the truncated series appears to convergevery slo-
wly with coefficients V1;1¼ð3677.76�15.17Þkms−1, VA¼
ð2481.21�67.09Þkms−1, VB¼ð1792.45�92.98Þkms−1,
VC¼ð1506.52�286.61Þ kms−1 that have relatively large
uncertainties. Inwhat followswewill neglect the contribution
of V3 ∼ 100 km=s; see [28] for more details.
In addition, we proposed the alternative modeling

Ṽ1 ¼
�
1þ Eα cos θ
1þ Fα cos θ

�
Dα sin θ ð3Þ

which can be thought of as a resummation of Eq. (2) with
an additional term Eα cos θ, and fit to D, E, F (where we
used the prediction of [72] to model the Ṽ1 for θ ¼ 90°)

TABLE II. Final properties of the remnant BH. The final mass Mf=m, final spin αf, recoil velocity in km=s, and
peak luminosity in ergs=s are given. The number of orbits before merger and time of peak luminosity are also given.
Δϕ representing the relative phases with respect to the φ ¼ 0 case.

φ Δϕpeak Δϕtraj 2Norbits Mf=m αf Vrecoil Peak Lum. tHpeak

0 0 0 14.0095 0.9251 0.8525 −4014 5.603 × 1056 860.5
30 33.05 29.85 13.9915 0.9217 0.8461 −4622 6.076 × 1056 860.1
60 65.99 77.16 13.9859 0.9200 0.8446 −3882 6.228 × 1056 859.2
90 86.17 120.87 13.9689 0.9215 0.8496 −1846 5.811 × 1056 859.8
120 106.44 143.48 13.9685 0.9244 0.8550 531 5.390 × 1056 851.4
150 142.53 160.00 14.0011 0.9260 0.8565 2553 5.326 × 1056 857.3
203 203.51 201.85 13.9950 0.9225 0.8475 4579 5.965 × 1056 860.4
291 264.09 320.23 13.9673 0.9245 0.8536 186 5.487 × 1056 861.3
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and found D ¼ ð3684.73� 5.67Þ km s−1, E ¼ 0.0705�
0.0127, and F ¼ −0.6238� 0.0098. Note that E is appro-
ximately 1=9 of F, indicating that coefficients in this series
get progressively smaller in a faster sequence than in Eq. (2).
We can fit to the recoil dependence on the initial angle ϕ

between the spin and the y-axis. Alternatively, one can seek
a reference frame, closer to merger, when most of the net
recoil appears to be generated. In Refs. [29,73] we have
described in a totally coordinate based frame (punctures
trajectories) the way to extract an instantaneous orbital
plane and spin projections as displayed in Fig. 3 of
Ref. [73] or Fig. 1 of [29]. We implement here a new
measure of this angle about merger with respect to the
φ ¼ 0 case as a reference. We introduce the notion of using
the peak amplitude phase of the waveform ϕpeak, as a
measure for the reference phase of the recoil modeling and
provide more detail in Sec. III A.

These fits are displayed in Fig. 2 giving rise to an
estimate of the maximum recoil for these configurations in
the form of the fitted amplitude of the sinusoidal depend-
ence on Δϕ as given by Eq. (1) to extract the leading
cosΔϕ-dependence and have a control of the nonleading
cos 3Δϕ term. The three different evaluations of Δϕ ¼
φ ¼ initial angle (in red circles), Δϕtraj ¼ trajectory angle
as defined in [73] (in magenta triangles), and Δϕpeak from
the waveform phase at the peak amplitude (in blue squares),
as defined in Sec. III A below.
Table III displays the measured fitting parameters and its

statistical asymptotic standard errors with 4 degrees of
freedom. Evaluating Eqs. (2) and (3) with the parameters
for the series studied here (α ¼ 0.97 andθ ¼ 50.98°),we find
V1 ¼ 4675.97� 64.71 and Ṽ1 ¼ 4678.90� 57.52 km=s
respectively. Comparing to the three fits given in Table III,
we see excellent agreement when using Δϕtraj (4678.96�
40.82 km=s) and Δϕpeak (4678.90� 57.52 km=s).

A. Reference frame at peak waveform amplitude

The peak amplitude h22peak and peak waveform frequency
Ω22

peak modeling in aligned binaries simulations was intro-
duced in Ref. [74]. Here we use its definition to determine a
reference time and hence phase of the waveform at which
we can assign a recoil dependence of the form (1) and as
represented in Fig. 3. We compare this gauge invariant
method to determine the differential (near merger) phase
dependence to the coordinate based method of [29,73] that
was used in the original hangup-kick work [30] and to
determine the numerical coefficients in Eqs. (2) and (3).
Note that the two methods defined using a (near merger)
measure as reference lead to very similar results. The
statistical errors of those methods appear much larger than
those measured from the initial angle ϕ given the diffi-
culties in measuring directions in the strong dynamical
regime of the merger phase.
The notion that the phase of the waveform at peak

luminosity as a reference in the strong field regime, near the
merger of the two black holes, is a very interesting one,
since it is amenable to be generalized in the fully precessing
case. In that case one has to determine the orbital plane
orientation from the direction of the maximum power of
gravitational waves at the peak luminosity. Also measure
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FIG. 2. The plots show the fits for the three different evalu-
ations of Δϕ ¼ φ ¼ initial angle (in red circles), Δϕtraj ¼
trajectory angle as defined in [73] (in magenta triangles), and
Δϕpeak from the waveform phase at the peak amplitude (in blue
squares), as defined in this paper.

TABLE III. A fit A1 cosðΔϕ − ϕ1Þ þ A3 cosð3½Δϕ − ϕ3�Þ to the Vrecoil with 4 degrees of freedom. For the three different evaluations of
Δϕ ¼ φ ¼ initial angle (in red circles), Δϕtraj ¼ trajectory angle as defined in [73] (in magenta triangles), and Δϕpeak from the
waveform phase at the peak amplitude (in blue squares), as defined in this paper.

Parameters Initial angle Standard Error Trajectory angle Standard Error Waveform phase Standard Error

A1 4569.47 �3.825 (0.083%) 4678.96 �408.2 (8.724%) 4678.88 �513.0 (10.96%)
ϕ1 0.4353 �0.0008 (0.074%) 0.7960 �0.0731 (9.432%) 0.2447 �0.1094 (8.253%)
A3 152.22 �3.822 (2.511%) 10.0268 �388.4 (3873%) 9.96288 �551.1 (5531%)
ϕ3 0.8814 �0.00840 (0.147%) 0.0617 �12.1 (741%) 0.7434 �16.55 (883%)
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the phase of the waveform along that privileged direction.
Appropriate families of simulations to extract modeling
parameters should then be designed. This will be the
subject of a future research by the authors.

B. Recoil generation

These systems provide an illustrative example of how
the recoil is cumulated during late inspiral, merger, and
ringdown. Due to the symmetry of these systems, the recoil
of the remnant BH is solely in the z-direction, which
is aligned with the gravitational wave extraction frame.
The recoil can be calculated from individual modes of
Ψ4 ¼

P∞
l¼2

P
l
m¼−l A

l;mð−2Yl;mðθ;ϕÞÞ by Eqs. (3.15),
(3.18), and (3.19) in [75]:

dPz

dt
¼ lim

r→∞

r2

16π

X
l;m

Z
t

−∞
dt0Al;m

×
Z

t

−∞
dt0ðcl;mĀl;m þ dl;mĀl−1;m þ dlþ1;mĀlþ1;mÞ;

cl;m ¼ 2m
lðlþ 1Þ ;

dl;m ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þðlþ 2Þðl −mÞðlþmÞ

ð2l − 1Þð2lþ 1Þ

s
: ð4Þ

Table IV shows the contributions to the recoil from the
mode pairs of Eq. (5) that contribute more than 10 km=s for
the three simulations that appear in Fig. 4. These three
simulations are the ones with the near maximal, near zero,
and near minimal recoil velocities (top to bottom). To good
approximation, when the amplitude of the (2,2) mode is
larger than the amplitude of the (2;−2) mode, the recoil
velocity will increase. This is easiest to see near merger, as
in the top panel of Fig. 4, but is true throughout. In this

panel, the red (2,2) dominates from late inspiral through
ringdown, resulting in a near maximal recoil for these
configurations. In the bottom panel, the opposite is true, the
blue (2;−2) dominates over the same range, and the recoil
is approximately the same, but in the opposite direction
(note the y-axis on the right is reversed). The middle panel
is interesting, in that it exhibits a late-time continuation of
the orbital wobbling leading to an in-phase cancellation or
anti-kick, where at first we obtain a large recoil (around
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TABLE IV. Mode pair contributions to the recoil velocity in the
z-direction as in Eq. (5) for the near maximal, near zero, and near
minimal recoil configurations. Only pairs with contributions >
10 km=s are included here.

l1 m1 l2 m2 Vðφ ¼ 30°Þ Vðφ ¼ 291°Þ Vðφ ¼ 203°Þ
2 2 2 2 9122.37 6779.79 4818.65
2 −2 2 −2 −4893.59 −6865.65 −9019.23
2 −2 3 −2 −228.74 −435.80 −507.18
2 2 3 2 521.46 334.62 227.70
3 2 3 2 26.51 14.06 10.35
3 −2 3 −2 −10.09 −25.43 −25.50
4 4 4 4 85.99 47.51 20.80
4 −4 4 −4 −21.93 −32.93 −84.98
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1; 000 km=s) followed by another large recoil which
cancels the original, resulting in a final recoil close to 0.
This anti-kick can be explained again by which mode is
dominating near merger. At first, the blue (2;−2) is
dominating in the late inspiral, but as we approach the
peak, red (2,2) dominates, producing the large positive
recoil. However, during ringdown, blue (2;−2) dominates
again producing the large negative recoil cancellation.
Table IV shows that the contributions of the (2,2) and
(2;−2) mode with themselves produce the largest contri-
butions to the recoil, but will always carry an opposite sign
(because of the clm coefficient.) For the near maximal and
near minimal configurations, these two modes account
for approximately 90% of the kick, leaving the remaining
approximately 400 km=s to the other mode pairs.
Interestingly in the near zero configuration, the (2,2) and
(2;−2) mode pairs only contribute 85 km=s after the
cancellation, leaving the bulk of the recoil (an additional
100 km=s) to the higher mode pairs. If the same analysis
were applied to an aligned system, where the spins are
aligned with the orbital angular momentum, we would still
obtain very large recoil contributions from the (2,2) and
(2;−2) mode pairs. However, due to the symmetry, these
would cancel completely (and all other mode pairs), to give
a net-zero recoil in the z-direction.

C. Convergence of the numerical simulations

Numerous convergence studies of our past simulations
have been performed. In Appendix A of Ref. [31], in
Appendix B of Ref. [76], and for nonspinning binaries are
reported in Ref. [34]. For very highly spinning black holes
(s=m2 ¼ 0.99) convergence of evolutions was studied in
Ref. [53] and for (s=m2 ¼ 0.95) in Ref. [32] for unequal
mass binaries. For our current simulations we studied in
detail one member of the hangup kick family, that with the
lowest recoil, at an initial spin orientation angle φ ¼ 291°.
With three resolutions, lowering our standard resolution for
the whole family by factors of 1.2. Resolutions are denoted
by “NXXX,” where XXX is a number related to the
resolution in the wavezone. For example, “N144,” the
standard resolution for these simulations, has a wavezone
resolution of M=1.44, and “N100,” has a resolution of
M=1.00. We then assume that a quantity Ψ behaves with
resolution h in the range of low hL to high hH as
ΨðhÞ ¼ ΨðexactÞ þ Ahn, where we compute ΨðhÞ at the
three resolutions hL, hM, hH.
Figure 5 displays the medium minus high resolutions

rescaled by a power 1.2n to match the low minus medium
waveform phase and amplitudes. This provides a simple
way to display the 6th order convergence as expected due to
the combination of our 4th order Runge-Kutta integration
in time and the 8th order finite differences algorithm
implemented in our evolution code.
We evaluate the extrapolation to infinite resolution

ΨðexactÞ → Ψ∞ as

Ψ∞ ¼ ΨHΨL −ΨM
2

ΨH − 2ΨM þ ΨL
ð5aÞ

hAi ¼ ΨL
2 − 2ΨLΨM þ ΨM

2

ΨH − 2ΨM þΨL
; ð5bÞ

n ¼ −
1

lnðfÞ ln
����ΨH − ΨM

ΨL − ΨM

����; ð5cÞ

where we also determine the constant A → hAi and the
convergence rate n. We have also assumed that the low,
medium, and high resolutions are related by a common
factor f as hM ¼ hL=f and hH ¼ hL=f2, as is the case
presented here with f ¼ 1.2. Note that the extrapolated
waveform is independent of this common factor f or the
convergence power n and only depends on the combination
of computed waveforms (or other quantity under study).
Pointwise convergence on waveforms is hard to achieve

(still we see some merit in showing our 6th order conver-
gence at later times in Fig. 5), but it is strictly not necessary to
produce accurate results. We verified that the differences of
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phase and amplitude of Ψ4 for the φ ¼ 291° case study. Insets in
each panel show a moving average of the convergence order.
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our waveform with their extrapolations to infinite resolution
are well below the requirements of, for instance, Numerical
Relativity Analytic Relativity collaboration (NRAR) stan-
dards [77]. The NRAR reference frequency is Mω22 ¼ 0.2
and the allowed values are dA=A ≤ 1% and dPhase < 0.25.
For the N144 simulations we achieve dA=A ¼ 0.031% and
dPhase ¼ −0.0069 with respect to its extrapolation to
infinite resolution and infinite observer location.
We found roughly the expected 4th-8th order conver-

gence as displayed in Table V for the values of the recoil
velocity and peak luminosity (measured from waveforms)
as well as the final black hole mass and spin (as measured
on the apparent horizon and independently by a quasi-
normal mode fitting [78,79]). The results of an extrapola-
tion to infinite resolution and the differences with respect to
the standard resolution (labeled as N144) are displayed in
Tables Vand VI to provide a measure of the expected errors
for the whole family of simulations. Generically, for other
simulations, we monitor the accuracy by measuring the
conservation of the individual horizon masses and spins
during evolution as well as the level of satisfaction of the
Hamiltonian and momentum constraints. All eight N144
configurations show comparable behavior in these quan-
tities indicating that numerical errors are under control.

IV. DISCUSSION

We compute the waveforms a and b matching as the
inner product in frequency f-domain

M ¼ hajbik ≡ 2

Z
jfj>fmin

df
½ãðfÞ��b̃ðfÞ
Sh;kðjfjÞ

: ð6Þ

where the kth detector’s noise power spectrum is Sh;kðfÞ
and we adopt a low-frequency cutoff fmin. By construction,
we maximize over both a time and phase shift between
waveforms. For our analysis of GW150914, we adopt the
same noise power spectrum employed in previous work
[80,81], the advanced LIGO design sensitivity noise curve.
We use a reference total mass of Mtotal ¼ 74 M⊙ and
fmin ¼ 30 Hz. This choice of Mtotal starts our waveform
frequencies just below 30 Hz after an initial windowing
function is applied. The minimal SNR needed to distin-
guish between the two waveforms, given the mismatch
is SNR2 ≥ 1

1−M.
To determine if waveforms from within this family of

configurations can be distinguished between different
members of the family, we perform a series of matches
between configurations. That is, we choose a simulation

TABLE V. Convergence of key quantities for the φ ¼ 291° system with three resolutions. Richardson extrapolation is used to
determine the convergence order and infinitely extrapolated values. Recoil velocities are given in km/s and peak luminosities are ergs/s.
The final mass and spin are calculated two ways, from the apparent horizon (labeled “AH”) and from a ringdown analysis of the 2,2
mode [78,79] (labeled “rd”). The fifth row shows the difference between the extrapolated and N144 values, and the sixth row shows the
percent difference between the two. There is an exception for the quantity in the last column, ϕh22;peak. If we were to take the phase at a
fixed time near peak for each resolution, we would observe an order of convergence between 5 and 6. However, since we take the phase
at the peak for each resolution, and the time of peak is already convergent at an order of 5.5, we observe higher than normal convergence
for the phase when measured this way.

Vrecoil αAHf αrdf MAH
f =m Mrd

f =m 10−56 · Lpeak jrh22jpeak th22;peak ϕh22;peak

N100 227.41 0.853399 0.852138 0.923310 0.919861 5.4062 0.475254 962.804 89.793
N120 193.35 0.853569 0.852581 0.923599 0.920597 5.4578 0.476050 962.595 89.800
N144 186.03 0.853642 0.852786 0.923705 0.920937 5.4867 0.476328 962.519 89.801
Inf. extrap. 184.03 0.853697 0.852963 0.923766 0.921230 5.5235 0.476476 962.476 *

Inf.—N144 −2.00 0.000055 0.000177 0.000061 0.000293 0.0368 0.000148 −0.043 *
% difference −1.09 0.0065 0.0208 0.0066 0.0318 0.6673 0.0311 −0.005 *

Conv. Order 8.4 4.6 4.2 5.5 4.2 3.2 5.8 5.5 *

TABLE VI. Convergence of radiated energy and angular momentum for the φ ¼ 291° system with three resolutions with the same
format as Table V. Each column is extrapolated independently. In addition, we also calculate the convergence order, labeled “AH Order”
in the last row, using the Richardson extrapolated value from the horizon quantity (thus the “AH”) as the extrapolated value and
resolving for the order using the N120 and N144 resolution.

Erad
gw Erad

AH Erad
gw − Erad

AH Jradgw JradAH Jradgw − JradAH

N100 0.06376 0.06513 −0.00137 −0.46213 −0.46564 0.00351
N120 0.06419 0.06484 −0.00064 −0.46355 −0.46504 0.00148
N144 0.06443 0.06473 −0.00030 −0.46429 −0.46481 0.00052
Inf. Extrap. 0.06471 0.06467 0.00000 −0.46508 −0.46467 −0.00003

Conv. Order 3.3 5.5 4.1 3.6 5.3 4.1
AH Order 4.4 4.9 7.0 6.8
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and reconstruct the gravitational wave at a given polar and
azimuthal angle and use this as our reference waveform.
For each of the other configurations in the series, we can
then calculate the match against our reference waveform
and produce a “world map” of matches. We calculate the
match

Miðξ;ψÞ ¼ hφref ½ξref ;ψ ref �jφi½ξ;ψ �i; ð7Þ

where i runs over each configuration, and where ξ and ψ
are the angles used to reconstruct the second waveform at a
given point in the skymap: 0 ≤ ξ ≤ π, and −π < ψ ≤ π. In
Fig. 6, we chose φref ¼ 291° reconstructed at ξref ¼ 0° ¼
ψ ref and calculate the SNR from the minimum, maximum,
and mean matches over the world map. We show that the
last few cycles of gravitational waveforms from black holes
in the hangup-kick configuration, leading to a large recoil
of the final remnant of the BBH merger, is potentially
measurable by LIGO with reasonable SNR, i.e., around
approximately 30. For comparison, the matching between
different resolutions of the reference case, φ ¼ 291°, gives
us SNR of the order of 96 and 25 for N120 and N100
respectively. Extrapolation to infinite resolution of the
simulations N∞ leads to a SNR of over 100 in order to
differentiate the N144 from the N∞ result.
Given the spin misalignments of comparable masses

BBH observed in the current detections [82], these kind of
configurations seems not so unlikely to occur in nature.
While the search for detecting very highly spinning black
holes with gravitational wave observations continues, it is
important to search for them with the appropriated highly
spinning templates and our simulations can contribute to

fill in this gap near maximally spinning holes and properly
cover this region of BBH parameter space. Parameter
estimation techniques directly using numerical relativity
waveforms from catalogs have been applied success-
fully for GW150914 [42] and GW170104 [83] and will
be the subject of further applications for O2 LIGO-Virgo
observations.
Phenomenological modeling of waveforms, such as the

PhenomP [84] mimicking precession from rotating aligned
cases leads to misevaluations of the recoil. See however
new attempts to take recoil into account in other waveform
models [85,86] and an improved analysis of GW150914
using a two spins effective one body model in [87], and a
two spin precessing phenomenological model in [88].
In Ref. [42] we have been able to use a different family of

simulations of binary black holes with one single spinning
hole with amplitude α ¼ 0.8 at all different orientations
covering the two dimensional space of initial (θ;φ). Those
lead to a “world heat map” as shown in the Fig. 8 of [42] for
the likelihood lnL to represent the signal GW150914. Bit-
equivalent data to the frames used for this study is available
through GWOSC (Gravitational Wave Open Science
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Center) [89], and the likelihood, lnL, is calculated using
the RIFT framework [90,81] (an algorithm to perform rapid
parameter inference on gravitational wave sources via
iterative fitting). In addition to this 3-parameter space
estimation, we can consider the subfamily with the mass
ratio q and inclination angle θ leading to the highest log-
likelihood lnL and use this one remaining ϕ-parametrized
subfamily to parametrize the ϕ-dependence of the recoil.
The resulting “orbits” from the interpolation of the data are
displayed in Fig. 7, showing the top three lnL families and
the preference for recoils of about −1, 500 km=s. For each
of the curves in Fig. 7 corresponding to a mass ratio, we
select the θ-angle with the highest likelihood lnL as
displayed in Fig. 8.
Ultimately, determining accurately the recoil of the final

hole from a binary system is paramount to determine (given
a mass ratio) the spin orientations at merger. Being able to
determine the “phase” of the spin relative to the linear
momentum of the holes at the merger (as determined by the
maximum amplitude of radiation) allows us to predict the
recoil of the remnant black hole. Such determination has
been performed for GW150914 [42] leading to estimated
recoils of around 1; 500 km=s as displayed in Fig. 7–8. The
differences this induces on the merger and ringdown phases
can be estimated as well, as a consistency check and a test
of the theory of gravitation.
For the source of GW150914 we were also able to

estimate the inclination of the orbit from purely numerical

waveforms, as displayed in Fig. 9 of Ref. [42]. The ability
to find a single maximum, not bimodal, orientation of the
binary, is somewhat related to the measure of precession
and this in turn is related to the spin misalignment with the
orbital angular momentum that may induce large recoil
velocities, those depending on the merger phase that we
model in this paper for the maximum recoil configurations.
The application of this techniques that we tested in the

case of the first gravitational wave signal GW150914, can
be used in other detections of BBH mergers, as GW170104
and others in O2 [82] and forthcoming observations and
will be the subject of a future paper by the authors.
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