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Spin 1/2 fields localization on an asymmetric dS, scenario, where the brane interpolates between two
spacetimes dSs and AdSs, is determined. The bulk spinor is coupled to scalar field of the brane by a
nonminimal Yukawa term compatible with the scenario’s geometry. We show that, independently of wall’s
thickness, only one massless chiral mode is localized on the wall. The massive chiral modes follow a
Schrodinger equation, whose potential has a mass gap determined by Yukawa constant, which is a generic
property of this system. The fermions spectrum is defined bellow the gap, by bound states of both chiralities
with the same mass, and above the gap, by a continuous spectrum with local and global resonant modes of

both chiralities and different mass.
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I. INTRODUCTION

A de-Sitter (dS4) brane corresponds to a dynamic
hypersurface with positive curvature embedded in a higher
dimensional spacetime, e.g., five dimensions. This con-
figuration is phenomenologically interesting because it is
similar to Friedmann-Robertson-Walker metric [1,2].

In general, the energy density of a brane divides the
spacetime into two sectors with different cosmological
constants. In the static case, the curvature of the bulk needs
to be AdSs to confine gravity in four dimensions [3-5];
while, in the dynamic case, the zero mode of gravitational
fluctuations is localized on the brane independently of bulk
curvature [6—10]. The cosmological constant on the dS,
brane generates, in the effective potential of the bulk
fluctuations, a massive gap that always favors the capture
of massless graviton.

The brane can be obtained as a pair vacuum solutions to
the Einstein equations rigidly connected on a slice of the
bulk [1,11] or as the thin-wall limit of a domain wall, which
is a solution to the coupled Einstein-Klein Gordon system,
where the scalar field interpolates between the minima of
a self-interaction potential [12—14]. While in the first case a
fine-tuning in the tension of the brane is required to obtain a
stable scenario; in the second one the stability is determined
by the topological charge of the domain wall even in the
thin-wall limit. We will use the second approach to generate
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a dS, brane from the domain wall reported in [15] which
interpolates asymptotically between a dSs; and AdSs
spacetimes.

Now, if our Universe is to be realized on a brane, the
Standard Model fields should be confined on it, as is the
case with the gravity. In particular, fermions localization
requires of a nongravitational mechanism because the brane
gravity expelled them toward the extra dimension [16].

The matter field localization on a thick domain wall is a
topic that has been studied in several opportunities assum-
ing that fermions interact with scalar field via a Yukawa
term, AP®(p)¥ [16-19].

In the static scenario, the minimal Yukawa coupling,
O = ¢, leads to a fermions spectrum determined by a zero
mode localized in four dimensions and a tower of massive
states moving freely in the bulk. However, in the thin wall
limit, the scalar field vanishes and, in consequence, the
Yukawa constant, A, diverges [19].

In the dynamic case, and independently of wall thick-
ness, the minimal Yukawa coupling is insufficient to find a
normalizable solution for the fermions [19]. To trap
fermions on a thick dS, scenario, nonminimal Yukawa
coupling is an option that, to our knowledge, has only been
considered numerically in two papers: in [20], with
® = ¢F, a set of resonant massive fermions on the dynamic
Z, wall of [21] is found; and in [22], a Yukawa term given
by @ = sin(¢p/¢y)cos™°(p/ ) is considered to obtain a
discrete spectrum of bound fermions on the asymmetric
wall reported in [15], which are expelled progressively
toward extra dimensions as the asymmetry increases.

Under conditions indicated in [22], it is possible to
estimate what happens to the bound fermions when the wall
thickness is reduced until to obtained the brane. In this case,
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the effective potential of the fermions is reduced to a like-
delta potential, in such a way that all the bound states,
except zero mode, migrate out of the brane, independently
of the wall asymmetry. Hence, in the thin-wall limit, the
chosen coupling fails to keep the massive states that were
confined when the wall had thickness.

In [23], a proposal to construct a nonminimal Yukawa
coupling in compatibility with the scenario’s geometry was
presented. Remarkably, under this mechanism, the fer-
mions localization takes place via the warp factor of
scenario, as happens with the gravitational fluctuations,
and as a consequence it is possible to keep the matter field
coupled to the wall even in the limit of zero thickness.

In this paper, we apply the mechanisms reported in [23]
for coupling fermions on the dS, brane obtained from the
asymmetric domain wall of [15]. We analytically find the
spinors spectrum, which is determined by a doubly
degenerated set of bound and quasibound modes whose
number and mass increase as the asymmetry of the brane
increases.

The paper is organized as follows: in Sec. II, the
fermions’s localization mechanism is implemented. In
particular, we show that in the fermionic spectrum exists
a mass gap between the zero mode and the continuous of
the massive modes, which is defined by the Yukawa
coupling constant. The constraint on the Yukawa constant
to obtain a normalizable solution for the zero mode is also
determined. In Sec. III, we consider the asymmetric
scenario of [15] in order to find the Yukawa coupling
compatible with the model; also we show that in the thin
wall limit it does not vanish. In Sec. IV, the fermionic
spectrum is analyzed following the approach of [5].
Because the coupling is preserved in the zero thickness
limit, we analytically find the full spectrum of fermions on
the brane. Finally, a summary of our results is presented
in Sec. V.

II. SETUP

Consider the embedding of a dS brane into a five-
dimensional bulk described by a metric with planar-parallel
symmetry

ds? = ¥ (—d> + e*P'dx'dx’ + dz?), (1)
with i =1, 2, 3, where f is a positive parameter that
determines the vacuum energy of the four-dimensional
spacetime, A, = 2/°.

The domain wall can be obtained as a solution to the
coupled Einstein-scalar field system,

1
Ry — ERgab = Tap» (2)

1
Tah = va¢vh¢ ~ Yab Evc(ﬁvcfﬁ + V(¢) ’ (3)

av(¢)
vV, Vip =——=, 4
V= )
with a,b =0, ..., 4, where the scalar field ¢, which only
depends on the perpendicular coordinate to the wall z,

interpolates between the minima of the self-interaction
potential V(¢), i.e.,

dv
lim ¢(2) = . Jim % =0. (5)

Following the usual strategy, we find the scalar field and
the potential

¢/(Z)2 — _3<A// _A/2 +ﬂ2), (6)
V(g(2)) = —%(A” + 3472 = 32) 7240, (7)

and the energy density and pressure

pQ) =3 H B L VGE), @)

PR) = —3# (P 4 V(GR), )

where prime denotes derivative with respect to z.

For a domain wall solution, ¢? is an integrable and
asymptotically vanishing function, such that, ¢'e™* — 0
as |z| & oo. Hence, (8) and (9) asymptotically tend to
V(¢.) = AL, the cosmological constants at each side of
the wall.

We are interested to include fermions on this scenario,
and as usual, a Yukawa coupling, /1d>(¢)§"11, must be
considered between the spinors and the scalar field of the
wall [19], with A the coupling constant and ®(¢) a suitable
function of ¢.

The behavior of five-dimensional spinor field in the
background (1) is determined by Dirac equation

*vV,¥(x,z) = 10(¢)¥(x, z). (10)

To obtain the coordinate representation of the motion
equation, we factor the spinor field as follows:

W(x,z) = Wp(x)up(2) + Yr(x)ur (2), (11)

where Wk (x) = +y>Wk(x) are the chiral states, left (L) and
right (R), which satisfy the massive Dirac equation,

ir0, Wk (x) = m¥R(x). (12)

Thus, for the chiral modes along with additional dimension,
we find
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(9. +24/(2) + J0($)AO)uk(2) = +muk(z).  (13)
If additionally, we consider u(z) = ii(z)e >, a
Schrodinger equation for it can be obtained,

(=02 + Vi(2)]itg () = m*iig (2). (14)

where

Vi(2) = [1D(g(2)) e £ [10(h(2))e")  (15)
is the stationary quantum mechanics potential. The sol-
utions of (14) correspond to a spectrum of eigenfunctions
21k (z) of Schrodinger operator, with eigenvalues m?.

Let us consider the massless modes, i.e., the states for

m = 0. In this case, we find
i\lk(Z) ~ e:F}L f®(¢(z))eA(Z)dZ’ (16)

where we can observe that the confinement of the zero
mode is strongly dependent on the Yukawa coupling. In
particular, the minimal coupling case, ®(¢) = ¢, has been
widely discussed in several opportunities and for a dS,
scenario it has been proved insufficient to find normalizable
solutions for the zero mode [19], because asymptotically
the metric factor and scalar field behave like ¢4(?) — 0 and
¢ — ¢, respectively, which implies that it ~ 1 as |z| — oo,
in agreement with (16).

In the literature, there are few proposals for ®(¢) [20,22]
that have allowed to obtain chiral spectra of bound states
on the wall. Here, we consider the following coupling
function:

¢ 1 1/2
eA(¢)(I)(¢) = ®sgn <¢—> <A4 - §e2A(¢)P(¢)> ., (17)
0

where @, = 1/(1/23) is a proportionality constant. The
coupling depends on universal wall properties, such as the
pressure and the four-dimensional cosmological constant.
Under this coupling, the chiral symmetry is broken for
m = 0 and only one of the chiral states is normalizable, as
shown below.

In the coordinate representation, the coupling function
(17) is reduced to [23]

(18)

and, according to (16), the zero mode is determined by

ﬁlﬁ(Z) ~ ei(i/ﬁ)A(z).

(19)

Thus, if one of the chiral modes indicated in (19) is a
square-integrable function,

+o00 +o00
/ | (2))?dz = / P2WPAR 47 < 00, (20)

(5]

necessarily A > /2. Therefore, the coupling (18), unlike
the minimal Yukawa coupling, ensures the localization of
one of massless chiral state of fermion independently of the
dS, domain wall solution.

Regarding the massive modes, three aspects should be
highlighted. First, as was discussed in [23], (18) leads to

Vk(2) = (3/B)A” £ (A/p)A", (21)
where Vi is similar to the potential obtained for the
gravitational fluctuations, in such a way that the zero mode
of gravitation as fermions can coexist simultaneously on
the wall.

Second, (21) has a mass gap that separates the con-
tinuous modes of the massless state. For a V(¢) given by
(7), the effective potential can be written as Vk(z) =
2 F (A/B)e* 2p £ (A/B F 1)P]/6. Thus, as |z| — oo,
the second term of Vk(z) goes to zero and the effective
potential takes the value 4°.

Finally, notice that (14), (15) have the form

Q' Qi = m*y, 00" g = m?iig, (22)
where Q = 0, + A®(¢p)e? and O = -0, + 1D(p)e?, ie.,
(14), (15) can be seen as a SUSY quantum mechanics
problem [24,25] and, hence, the eigenvalues are positives
and the eigenfunctions come in pairs for each eigenvalue,

(D) = (0. AP, ()

except for the massless modes. Indeed, this pairing of the
mass eigenmodes is required for the existence of massive
fermions satisfying (12).

III. FROM THICK TO THIN DS DOMAIN WALLS

A three-parametric domain wall with positive curvature
in four dimensions can be obtained from (2), (4) where the
metric factor, scalar field, and self-interaction potential are
determined, respectively, by [26]

e4() = cosh® <'66Z) +sgn(z) ﬂ(la_ézé)coshl“s <ﬁ;>
1 13
xRe|:i2F1 (E_E’E’E_(S’COShz(ﬂgz))]’ (24)

¢(z) = ¢ arctan sinh (%), do=/35(1-6) (25)

and
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332 1-6
V(¢):262€(¢) [4+ F; COSZ(%)]
(D in(P\]2
- () WW] s

with eA(®) defined as

) Ny ¢ ad (P
p) — —_— o 181928 bo
e=A#) = cos™? <¢0> +sgn <¢0> p(1-26) cos”™ <¢o)

x Re [izFl (%—5,%,%—5,(:0{2 (%))} (27)

To avoid coordinate singularities in the sense of [15,26],
the following constrain on asymmetry parameter, &, must
be considered:

Vap(l - 25)
ST(5)[(3/2 — 6)Re[(=1)7]°

laf < (28)

In agreement with (28), the Z, symmetry is relaxed and the
scalar field interpolates between two 5-dimensional space-
times with different cosmological constants; indeed, the
wall is the transition region between an AdSs space with
cosmological constant

adRe[(—1)%]
V(= 25)

and other dSs with cosmological constant

A, =-12a (ﬁ + r(5)r(3/2 - 5)), (29)

asRe[(~1)7]
V(1 = 26)

With regard to Yukawa coupling, from (17) or (18), we
find

- (o) 32
+Sgn<£) _ W e (ﬂ) sin<£>
b0/ 2B(1-26) bo b0
1 13
XRe{izFl <§_5’§’5_5’COS_2<%>>}’ (31)

which for @ = 0 (when Z, symmetry is recovered and the
bulk curvature is null) is reduced to

@(p) = cos?( £ ) sin( ). (32)

A= +12a< - r(6)(3/2 - 5)). (30)

So, (31) and (32) are compatible, respectively, with the
absence and presence of the Z, symmetry of spacetime.

0 -0.5 0.0 0.5
Z
FIG. 1. Plots of potentials V| (top panel) and V (bottom panel)

in the dS thick wall, for @ = 0 (gray line), @ = 3 (dashed line),
and a = 6 (black line).

In [22], a Yukawa term supported on (32) is used to
couple fermions on the dS; wall (24), (25), (26) for any
value of @, and as a result the number of fermions captured
by the coupling decreases with the increase of a. In our
opinion, this effect is generated by the incompatibility
between the Yukawa coupling (32) and the asymmetry of
the spacetime.

According to the Yukawa coupling defined by (31) and
from (15), an asymmetric volcano potential is obtained. In
Fig. 1, the effective potentials Vi (top panel) and Vg
(bottom panel) are shown for different a. In both cases, the
eigenfunctions are determined, below the gap (m < 1), by a
set of chiral partners of bound states and, above the gap
(m > A), by a set of the chiral partner of continuous modes,
which propagate freely for the bulk. Additionally, due to
the absence of Z, symmetry in the potentials, resonance
modes in the spectrum of fluctuations are expected [4,5,10].

Notice that Fig. 1 also shows how the area of the well
increases with the increase of the asymmetry; thus, it is
expected that the number of the bound states to the well
also increases with the asymmetry, unlike the effect
reported in [22].

For a domain wall to be a realization of our Universe, the
thickness of the wall must be infinitely thin. So, we will
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analytically determine the full spectrum of the chiral
fermions in the thin wall limit of scenario (24)—(26).

By taking 6 — 0, the warp factor (24) is reduced to
|a| <25,

e~AR) — Pl +%sinh(ﬁz), (33)

and the spacetime behaves asymptotically as two subspaces
with different cosmological constants at either side of the
branes

A_=6a(2f - a), AL =—6a(2f+a) (34)
in correspondence with the energy density
p(z) = A_B(=z) + 6p5(z) + A, O(z). (35)

We leave in the Appendix the technical details associated
to (33).

Now, it should be noticed that as 6 — 0, the scalar field ¢
vanishes everywhere while

®(z) = sgn(z)ef + %cosh(ﬂz). (36)

Hence, confined fermions on the brane are expected.

IV. FERMIONS SPECTRUM

In the zero thickness limit, (21) takes the form

Vk(z) =F 248(z) + 4%

fz 2
40P (1 L) 02

—Bz
4GP (15
z

e
A6 A6

where the §(z) function is associated with either an infinite
well for Vi or an infinite barrier for V. In addition, for
7 < 0, the potentials exhibit a smooth well where it is
possible to find bound massive states for both chirality
modes. Figure 2 shows a regularized version of Vk
as 6 — 0.

The eigenvalue problems (14), (37) are similar to those
considered in [5,10] where two wave functions are iden-
tified for each m?2, such that, while one is transparent to the
brane, i5,, the other one, 1§, is scattered for it. We have

2
) 0@, (37)

with

C. = (38)

fty,-(0) = 15,4 (0) = 0, (39)

-0.4

-0.2 0.0

z

0.2 0.4

FIG. 2. Plots of potentials V} (solid line) and V (dashed line)
in the dS, thin wall.

d d

i-(0) -0

i,(0) =0 (40)

for the transparent states to the brane and the following
conditions for the modes sensible to the brane:

ad_(0) = a2, (0), (41)
dim;ﬂuo) —5%(0) =2n0).  (42)
z Z
d ARd d '\Rd "Rd
a _“ —) . 4
dz ity (0) dz it (0) Aty (0) (43)

Regarding orthogonality relationship, for m < A, the
bound states satisfy

/ 0 Qi (2)dz = 898,y 0= c.d, (44)
and for m > 4, a similar relationship is obtained changing
Sy Y 8(m — m”) for continuous modes. In this last case, a
procedure to regularize the eigenfunctions must be done;
see [27] for details.

A. Bound states: m < A

Below the gap, 0 < m < A, the eigenfunctions of (14),
(37) are determined by a discrete tower of massive modes
constrained for the boundary conditions iy, (+o0) =
fig;m (£00) = 0. Defining

(45)

and

A A 1 -1
F: =,F, [ﬁ+1,——,1+’—" <1+—eﬁﬁZ> ] (40)

g (051
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Ao A 1 -1
FR=F ——+1,—,1+—;<1+—eﬂ/’Z> ] 47
+ 241 ﬂ ﬁ ﬂ Czi ( )

in concordance with asymptotic conditions, we have
fiyy(2) = Nu[Ae“F_O(=2) + e7°F,0(z)],  (48)

where N,, and A are the normalization and integration
constants to be determined from the integrability condi-
tions. Notice that, for &5, the trivial solution is obtained
while for #§, the corresponding constants can be found
from (41) and (44). Furthermore, (42), (43) lead to a
restriction on the values of m/A determined by the

transcendental equation y; = y,, where

Ma=2p),F\[1 =5, 1+5,1+5:7]

yiL=2(A+u) +
Fi[=5 1+ 51+ 5508

’

(49)
C Ma+ 28, Fil =5 1+ 5 1+ =5 5
oL Fi[-2, 1441 +4,—alp (50)
241 B’ B’ 5> 2
for the left modes, and
ViR = 2(=28 + 34+ p)
(A=P)a=20),F 2 =44, 1+5: 4] -
Pl =55, 1+5:5p
OGP 2 RR G g
YR = Fill A 4 1 K. _ «a ( )
P =5. 5. 1+ 5 —51p

for the right modes.

In Fig. 3, a numerical solution for the transcendental
equations is shown; it is observed that both equations have
the same solution, the interception of y; and y,, in each
mode, occurs for the same values of mass. Thus, the bound
modes supported for V; and Vi share the same eigenval-
ues. In agreement with (22), V1 and V are supersymmetric
partner potentials [24,25]; therefore, the result showed in
the graphic for the eigenvalues is to be expected.

This tower of discrete mass is determined between the
minimum of Vg and the gap associated to Vk, i.e.,
?> > m? > AB; in fact, applying the harmonic oscillator
approximation around the minimum of V|, we found

m? ~ (2n + 1)/ A4 = B) + 48, (53)
withn =0,1,2, ... suchthatn < (\/A(A =) — f)/26.On

the other hand, the number of bound modes in good
approximation can be estimated by

20

1.5 | meeme—
\
B

1.0f

0.5¢

00955 02 0.4 0.6 0.8 1.0

m/A
FIG. 3. A graphical solution of equations y;;. = y, (black) and

Yir = Yor (gray) for the mass of seven bound states of chiral
fermion in a dS spacetime with parameters f =a =35 and
Yukawa constant 1 = 15p.

N~1+E E (1 n \/z%)TO) (1- e—a/@ﬂ))] . (54)

where E[£] is the integer part of & and zy and V, are
given by

1, 1924205+ 2V/10/(2 + $)(91 + 10p)

74" 192 1 205 - 2102 1 §)(97 + 10§) (53)
and
Vo =222+ da(A+B)(2p - a)/ (56)

Notice that for ¢ = 0, when the scenario exhibits Z,
symmetry, the potential is like delta and consistently
N = 1. When the asymmetry increases, a — 28, the
number of bound states increases until it reaches the
saturation value which is given by

N=~1+E %(I—F\/Ezoﬂ)(l—e_l) : (57)

Furthermore, from (54)—(56), we can see, consistently, that
the amount of bound states increases as the Yukawa
coupling increases.

B. Resonant states: m > A

Above the gap, m > 4, we find a continuous tower
of massive modes confronting to the potential (37).
Considering

p=m -2 (58)

and
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0.3

PAOIR

1 2 3 4 5
m/A

FIG. 4. Plots of left resonant modes for different asymmetric
scenarios for fixed Yukawa constant and |[A_/A,| =1 (gray
line), |[A_/A,| = 1/2 (gray dashed line), |A_/A, | = 2/5 (black
dashed line), 3/10 (black line).

) A H 1 -
Fi=,F [ﬁ+ L=l —iz (1 +—eﬁf’z> ] (59)
152 B B Cc
A Ao ! -
FR=,F, [——+ Losl—its (1 +—eﬁﬂz> ] (60)
=2 5 g B Cc
the modes can be written, for z < 0, as
- (2) = Np[A- (€7 F_ + e#°F2)
— iB_(e7 M F_ — ¢MF*)), (61)
and for z > 0, as
ly i (2) = NplAy(e"F, + e " FY)
_ l-(ei/tzF+ _ e_i”ZFj.)]’ (62)

where N,, and A,, B_ are constants which can be fixed
using the integrability conditions listed previously.

In this case, nontrivial solutions for (14), (37), &, and
aé, are obtained, in such a way that for each chiral state
there are two eigenfuntions sharing the same eigenvalue;
that is, the Kaluza-Klein tower is determined by chiral
states, each of them doubly degenerated.

The existence of resonant massive modes should be
highlighted at z = 0. The behavior of |2¢,(0)|* for different
values of [A_/A | < 1is shown in Figs. 4 and 5 for the left
and right modes, respectively. In any case, notice that the
resonant mass increases as the asymmetry increases.

Figure 4, in contrast to Fig. 5, shows local resonant
states for #1; which appear when the asymmetry is in
correspondence with 3/5 > |A_/A.| > 2/5. In particular,
|A_/A,|~2/5is a critical case where the state resonant is
a light state with the same probability as heavy ones. Global
resonant modes are meaningful for |[A_/A | < 2/5.

The mass of the resonant states can be roughly estimated.
For the left mode, we have

| 0r(0) 2

m/A

FIG. 5. Plots of right resonant modes for different asymmetric
scenarios for fixed Yukawa constant and |A_/A | =1 (gray line),
|A_/A,|=1/5 (dashed line), and |A_/A, |~ 0 (black line).

A4 ]
65>

o) (7-%)]" o

while for the right mode, as long as |A_/A,|~0, it is
given by

mk ~ K/F +

mR, ~ 3. (64)
Comparing both results,
1 8p AN R
m!gs Ng |:9+7 <2+E>:| mﬁs, (65)

it is deduced that the left and right modes resonate for
different mass. Therefore, for the resonant modes, the chiral
symmetry of the fermions is quasibroken.

V. SUMMARY

We determined the fermions spectrum on a dS, brane
embedded in a spacetime without reflection symmetry,
from matter fields coupled to the dynamic domain wall
of [15]: we coupled the spinors to the scalar field of the
wall by the nonminimal Yukawa term (17), the tower of
fermions was obtained in the thin-wall limit where the
Yukawa interaction considered does not vanish and the
domain wall becomes a dS, brane.

We showed that in the dS, brane the nonminimal
Yukawa coupling leads an effective potential that supports
a spectrum of fermions determined by: a massless broken
chiral fermion localized in four dimensions, a set of
massive bound states, and a continuum tower of massive
bulk states.

The zero mode of the spectrum is separated from the
continuous one by a mass gap which it is defined by the
coupling constant in such a way that the number of massive
modes increases with intensity of coupling. On the other
hand, the number of the bound states also increases when
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the asymmetry parameter of scenario increments as a
consequence of compatibility between the nonconventional
Yukawa coupling and the spacetime geometry.

With regard to the continuous modes, each chiral state is
doubly degenerate: while one of them is transparent to the
brane, the other one is scattered by it. Among scattered
ones, chiral resonant modes with different mass can be
found, i.e., one of chiral states of resonant fermion is more
likely to be on the brane. Therefore, for a four-dimensional
observer, the chiral symmetry of the resonant spinor is
broken.
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APPENDIX: THE THIN WALL LIMIT

Consider the spacetime (R, g), with the metric

Gap = 240 (=dt,dt, + e?'dxidxi + dz,dz;), (Al)
where the metric factor
e = e 4-DQ(~z) + e 1+90(z) (A2)
and
e~4+(2) = cosh? (’%) + ﬂ—(la—éZ(S) cosh!= <EZ>
x Re{izFl (%—5,%,%—6,00%2(%))}
(A3)

being ,F; the Gauss hypergeometric function defined
under the following restrictions:
(i) If c ¢ Z~ and || < 1, the function ,F| is given by

[c] b) gn
b; )u(D)s A4
(a,b;c; &) = ; ERET (A4)
with (a), =T(a+n)/T'(a) the Pochhammer’s
symbol.
() If a—b¢Z and |£| > 1, the function ,F; is
given by

Fi(a,bic;&) = ;Ez)f(ab);(g (&)™
1
X ,F <a,c b;a—b+ 1,E>
['(c)I'(a—Db) B
T rare—p "
x ,F (b,c—a;b—cH— 1;%).

(AS)

The solution (A1)-(A3) represents a five-dimensional
dynamic domain wall with ¢ playing the role of the wall’s
thickness. Next, we will examine the thin-wall limit 6 — 0
of this solution.

We first consider in (A3) the linear transformation

2F1(Cl,b;c;~f)—(1—5)_02F1<0,C bcé§1> (A6)

where & = cosh?(fz/8), a=1/2-6, b=1/2, and
¢ =3/2—46. On the other hand, in this case ,F(a,c —
b;c;E/(E—1)) is given by (A5) and, therefore, Eq. (A6)
can be written as

['(e)l'(b—a)

Fy(a,b;c;¢) “T(c—a)l(b)

(A7)

In this representation, it is easy to check the convergence of
the metric factor for a small thickness of the wall, because
|(1 =&)7'| = csch?(Bz/8) ~0 as 5~0, and in conse-
quence, the hypergeometric functions in (A7) are defined
by the power series (A4). Thus, for § ~ 0, the function e™
is given by

eA:() o~ ﬁﬁ[ﬁéeﬂz F (=2)*0e ]
+27%e*P* + O(csch?pz/5). (A8)
Therefore, in the thin-wall limit,
lime=4© = e#l2 + % sinh(pz), (A9)

6—0

Notice that for z <0 and z > 0, (A9) is a vacuum
solution of the Einstein field equations, and
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lim G, = 6p8(z)(Dr“dt,, + Ox{dxi)

+ [6a(2f — a)B(—z) — 6a(2f + @)O(z)]
x (Ot1dt, + Oxidxi 4+ 0z°dzy,). (A10)

This means that the spacetime (R, g), where g is given by
(A1)-(A3), can be identified in the limit 6 — 0 with the
spacetime (R, g), with g given by (A9), generated by a thin
domain wall with energy-momentum tensor given by

T, = 65(z)(0rdt, + Ox¢dx)
+ [6a(2f — a)®(—z) — 6a(2f + a)B(z)]

x (Ordty, + ax?dxz + 0z%dz). (A11)

Finally, to be rigorous, one should prove that the metric
(A1)—(A3) provides a sequence of metrics that satisfies the
convergence condition required in [28] in order to relate the
limit of the curvature tensor distributions with the limit of
the metric tensor, but it is not our concern here.
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