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Spin 1=2 fields localization on an asymmetric dS4 scenario, where the brane interpolates between two
spacetimes dS5 and AdS5, is determined. The bulk spinor is coupled to scalar field of the brane by a
nonminimal Yukawa term compatible with the scenario’s geometry. We show that, independently of wall’s
thickness, only one massless chiral mode is localized on the wall. The massive chiral modes follow a
Schrödinger equation, whose potential has a mass gap determined by Yukawa constant, which is a generic
property of this system. The fermions spectrum is defined bellow the gap, by bound states of both chiralities
with the same mass, and above the gap, by a continuous spectrum with local and global resonant modes of
both chiralities and different mass.
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I. INTRODUCTION

A de-Sitter (dS4) brane corresponds to a dynamic
hypersurface with positive curvature embedded in a higher
dimensional spacetime, e.g., five dimensions. This con-
figuration is phenomenologically interesting because it is
similar to Friedmann-Robertson-Walker metric [1,2].
In general, the energy density of a brane divides the

spacetime into two sectors with different cosmological
constants. In the static case, the curvature of the bulk needs
to be AdS5 to confine gravity in four dimensions [3–5];
while, in the dynamic case, the zero mode of gravitational
fluctuations is localized on the brane independently of bulk
curvature [6–10]. The cosmological constant on the dS4
brane generates, in the effective potential of the bulk
fluctuations, a massive gap that always favors the capture
of massless graviton.
The brane can be obtained as a pair vacuum solutions to

the Einstein equations rigidly connected on a slice of the
bulk [1,11] or as the thin-wall limit of a domain wall, which
is a solution to the coupled Einstein-Klein Gordon system,
where the scalar field interpolates between the minima of
a self-interaction potential [12–14]. While in the first case a
fine-tuning in the tension of the brane is required to obtain a
stable scenario; in the second one the stability is determined
by the topological charge of the domain wall even in the
thin-wall limit. We will use the second approach to generate

a dS4 brane from the domain wall reported in [15] which
interpolates asymptotically between a dS5 and AdS5
spacetimes.
Now, if our Universe is to be realized on a brane, the

Standard Model fields should be confined on it, as is the
case with the gravity. In particular, fermions localization
requires of a nongravitational mechanism because the brane
gravity expelled them toward the extra dimension [16].
The matter field localization on a thick domain wall is a

topic that has been studied in several opportunities assum-
ing that fermions interact with scalar field via a Yukawa
term, λΨ̄ΦðϕÞΨ [16–19].
In the static scenario, the minimal Yukawa coupling,

Φ ¼ ϕ, leads to a fermions spectrum determined by a zero
mode localized in four dimensions and a tower of massive
states moving freely in the bulk. However, in the thin wall
limit, the scalar field vanishes and, in consequence, the
Yukawa constant, λ, diverges [19].
In the dynamic case, and independently of wall thick-

ness, the minimal Yukawa coupling is insufficient to find a
normalizable solution for the fermions [19]. To trap
fermions on a thick dS4 scenario, nonminimal Yukawa
coupling is an option that, to our knowledge, has only been
considered numerically in two papers: in [20], with
Φ ¼ ϕk, a set of resonant massive fermions on the dynamic
Z2 wall of [21] is found; and in [22], a Yukawa term given
by Φ ¼ sinðϕ=ϕ0Þcos−δðϕ=ϕ0Þ is considered to obtain a
discrete spectrum of bound fermions on the asymmetric
wall reported in [15], which are expelled progressively
toward extra dimensions as the asymmetry increases.
Under conditions indicated in [22], it is possible to

estimate what happens to the bound fermions when the wall
thickness is reduced until to obtained the brane. In this case,
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the effective potential of the fermions is reduced to a like-
delta potential, in such a way that all the bound states,
except zero mode, migrate out of the brane, independently
of the wall asymmetry. Hence, in the thin-wall limit, the
chosen coupling fails to keep the massive states that were
confined when the wall had thickness.
In [23], a proposal to construct a nonminimal Yukawa

coupling in compatibility with the scenario’s geometry was
presented. Remarkably, under this mechanism, the fer-
mions localization takes place via the warp factor of
scenario, as happens with the gravitational fluctuations,
and as a consequence it is possible to keep the matter field
coupled to the wall even in the limit of zero thickness.
In this paper, we apply the mechanisms reported in [23]

for coupling fermions on the dS4 brane obtained from the
asymmetric domain wall of [15]. We analytically find the
spinors spectrum, which is determined by a doubly
degenerated set of bound and quasibound modes whose
number and mass increase as the asymmetry of the brane
increases.
The paper is organized as follows: in Sec. II, the

fermions’s localization mechanism is implemented. In
particular, we show that in the fermionic spectrum exists
a mass gap between the zero mode and the continuous of
the massive modes, which is defined by the Yukawa
coupling constant. The constraint on the Yukawa constant
to obtain a normalizable solution for the zero mode is also
determined. In Sec. III, we consider the asymmetric
scenario of [15] in order to find the Yukawa coupling
compatible with the model; also we show that in the thin
wall limit it does not vanish. In Sec. IV, the fermionic
spectrum is analyzed following the approach of [5].
Because the coupling is preserved in the zero thickness
limit, we analytically find the full spectrum of fermions on
the brane. Finally, a summary of our results is presented
in Sec. V.

II. SETUP

Consider the embedding of a dS brane into a five-
dimensional bulk described by a metric with planar-parallel
symmetry

ds2 ¼ e2AðzÞð−dt2 þ e2βtdxidxi þ dz2Þ; ð1Þ

with i ¼ 1, 2, 3, where β is a positive parameter that
determines the vacuum energy of the four-dimensional
spacetime, Λ4 ¼ 2β2.
The domain wall can be obtained as a solution to the

coupled Einstein-scalar field system,

Rab −
1

2
Rgab ¼ Tab; ð2Þ

Tab ¼ ∇aϕ∇bϕ − gab

�
1

2
∇cϕ∇cϕþ VðϕÞ

�
; ð3Þ

∇a∇aϕ ¼ dVðϕÞ
dϕ

; ð4Þ

with a; b ¼ 0;…; 4, where the scalar field ϕ, which only
depends on the perpendicular coordinate to the wall z,
interpolates between the minima of the self-interaction
potential VðϕÞ, i.e.,

lim
z→�∞

ϕðzÞ ¼ ϕ�; lim
ϕ→ϕ�

dVðϕÞ
dϕ

¼ 0: ð5Þ

Following the usual strategy, we find the scalar field and
the potential

ϕ0ðzÞ2 ¼ −3ðA00 − A02 þ β2Þ; ð6Þ

VðϕðzÞÞ ¼ −
3

2
ðA00 þ 3A02 − 3β2Þe−2AðzÞ; ð7Þ

and the energy density and pressure

ρðzÞ ¼ 1

2
ϕ0ðzÞ2e−2AðzÞ þ VðϕðzÞÞ; ð8Þ

PðzÞ ¼ −
1

2
ϕ0ðzÞ2e−2AðzÞ þ VðϕðzÞÞ; ð9Þ

where prime denotes derivative with respect to z.
For a domain wall solution, eA is an integrable and

asymptotically vanishing function, such that, ϕ0e−A → 0
as jzj → ∞. Hence, (8) and (9) asymptotically tend to
Vðϕ�Þ ¼ Λ�, the cosmological constants at each side of
the wall.
We are interested to include fermions on this scenario,

and as usual, a Yukawa coupling, λΦðϕÞΨ̄Ψ, must be
considered between the spinors and the scalar field of the
wall [19], with λ the coupling constant and ΦðϕÞ a suitable
function of ϕ.
The behavior of five-dimensional spinor field in the

background (1) is determined by Dirac equation

Γa∇aΨðx; zÞ ¼ λΦðϕÞΨðx; zÞ: ð10Þ

To obtain the coordinate representation of the motion
equation, we factor the spinor field as follows:

Ψðx; zÞ ¼ ΨLðxÞuLðzÞ þΨRðxÞuRðzÞ; ð11Þ

where ΨL
RðxÞ≡�γ5ΨL

RðxÞ are the chiral states, left (L) and
right (R), which satisfy the massive Dirac equation,

iγμ∂μΨL
RðxÞ ¼ mΨR

LðxÞ: ð12Þ

Thus, for the chiral modes along with additional dimension,
we find
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ð∂z þ 2A0ðzÞ � λΦðϕÞeAðzÞÞuLRðzÞ ¼ �muRLðzÞ: ð13Þ

If additionally, we consider uðzÞ ¼ ûðzÞe−2AðzÞ, a
Schrödinger equation for û can be obtained,

½−∂2
z þ VL

RðzÞ�ûLRðzÞ ¼ m2ûLRðzÞ; ð14Þ

where

VL
RðzÞ ¼ ½λΦðϕðzÞÞeA�2 � ½λΦðϕðzÞÞeA�0 ð15Þ

is the stationary quantum mechanics potential. The sol-
utions of (14) correspond to a spectrum of eigenfunctions
ûLRðzÞ of Schrödinger operator, with eigenvalues m2.
Let us consider the massless modes, i.e., the states for

m ¼ 0. In this case, we find

ûLRðzÞ ∼ e∓λ
R

ΦðϕðzÞÞeAðzÞdz; ð16Þ

where we can observe that the confinement of the zero
mode is strongly dependent on the Yukawa coupling. In
particular, the minimal coupling case, ΦðϕÞ ¼ ϕ, has been
widely discussed in several opportunities and for a dS4
scenario it has been proved insufficient to find normalizable
solutions for the zero mode [19], because asymptotically
the metric factor and scalar field behave like eAðzÞ → 0 and
ϕ → ϕ�, respectively, which implies that û ∼ 1 as jzj → ∞,
in agreement with (16).
In the literature, there are few proposals forΦðϕÞ [20,22]

that have allowed to obtain chiral spectra of bound states
on the wall. Here, we consider the following coupling
function:

eAðϕÞΦðϕÞ ¼ Φ0sgn

�
ϕ

ϕ0

��
Λ4 −

1

3
e2AðϕÞPðϕÞ

�
1=2

; ð17Þ

where Φ0 ¼ 1=ð ffiffiffi
2

p
βÞ is a proportionality constant. The

coupling depends on universal wall properties, such as the
pressure and the four-dimensional cosmological constant.
Under this coupling, the chiral symmetry is broken for
m ¼ 0 and only one of the chiral states is normalizable, as
shown below.
In the coordinate representation, the coupling function

(17) is reduced to [23]

ΦðzÞ ¼ 1

β
ðe−AðzÞÞ0; ð18Þ

and, according to (16), the zero mode is determined by

ûLRðzÞ ∼ e�ðλ=βÞAðzÞ: ð19Þ

Thus, if one of the chiral modes indicated in (19) is a
square-integrable function,

Z þ∞

−∞
jûLðzÞj2dz ¼

Z þ∞

−∞
e2ðλ=βÞAðzÞdz < ∞; ð20Þ

necessarily λ > β=2. Therefore, the coupling (18), unlike
the minimal Yukawa coupling, ensures the localization of
one of massless chiral state of fermion independently of the
dS4 domain wall solution.
Regarding the massive modes, three aspects should be

highlighted. First, as was discussed in [23], (18) leads to

VL
RðzÞ ¼ ðλ=βÞ2A02 � ðλ=βÞA00; ð21Þ

where VL is similar to the potential obtained for the
gravitational fluctuations, in such a way that the zero mode
of gravitation as fermions can coexist simultaneously on
the wall.
Second, (21) has a mass gap that separates the con-

tinuous modes of the massless state. For a VðϕÞ given by
(7), the effective potential can be written as VL

RðzÞ ¼
λ2 ∓ ðλ=βÞe2A½2ρ� ðλ=β ∓ 1ÞP�=6. Thus, as jzj → ∞,
the second term of VL

RðzÞ goes to zero and the effective
potential takes the value λ2.
Finally, notice that (14), (15) have the form

Q†QûL ¼ m2ûL; QQ†ûR ¼ m2ûR; ð22Þ

where Q ¼ ∂z þ λΦðϕÞeA and Q† ¼ −∂z þ λΦðϕÞeA, i.e.,
(14), (15) can be seen as a SUSY quantum mechanics
problem [24,25] and, hence, the eigenvalues are positives
and the eigenfunctions come in pairs for each eigenvalue,

ûRðzÞ ¼
1

m
ð∂z þ λΦðϕÞeAÞûLðzÞ; ð23Þ

except for the massless modes. Indeed, this pairing of the
mass eigenmodes is required for the existence of massive
fermions satisfying (12).

III. FROM THICK TO THIN DS DOMAIN WALLS

A three-parametric domain wall with positive curvature
in four dimensions can be obtained from (2), (4) where the
metric factor, scalar field, and self-interaction potential are
determined, respectively, by [26]

e−AðzÞ ¼ coshδ
�
βz
δ

�
þ sgnðzÞ αδ

βð1−2δÞcosh
1−δ

�
βz
δ

�

×Re
�
i2F1

�
1

2
−δ;

1

2
;
3

2
−δ;cosh2

�
βz
δ

���
; ð24Þ

ϕðzÞ ¼ ϕ0 arctan sinh

�
βz
δ

�
; ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3δð1 − δÞ

p
ð25Þ

and
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VðϕÞ ¼ 3β2

2e2AðϕÞ

�
4þ 1 − δ

δ
cos2

�
ϕ

ϕ0

��

− 6β2cos2δ
�
ϕ

ϕ0

�"
α

β
þ
cos−δð ϕϕ0

Þ sinð ϕϕ0
Þ

eAðϕÞ

#
2

; ð26Þ

with eAðϕÞ defined as

e−AðϕÞ ¼ cos−δ
�
ϕ

ϕ0

�
þ sgn

�
ϕ

ϕ0

�
αδ

βð1−2δÞcos
δ−1

�
ϕ

ϕ0

�

×Re

�
i2F1

�
1

2
−δ;

1

2
;
3

2
−δ;cos−2

�
ϕ

ϕ0

���
: ð27Þ

To avoid coordinate singularities in the sense of [15,26],
the following constrain on asymmetry parameter, α, must
be considered:

jαj <
ffiffiffi
π

p
βð1 − 2δÞ

δΓðδÞΓð3=2 − δÞRe½ð−1Þδ� : ð28Þ

In agreement with (28), the Z2 symmetry is relaxed and the
scalar field interpolates between two 5-dimensional space-
times with different cosmological constants; indeed, the
wall is the transition region between an AdS5 space with
cosmological constant

Λþ ¼ −12α
�
β þ αδRe½ð−1Þδ�ffiffiffi

π
p ð1 − 2δÞ ΓðδÞΓð3=2 − δÞ

�
; ð29Þ

and other dS5 with cosmological constant

Λ− ¼ þ12α

�
β −

αδRe½ð−1Þδ�ffiffiffi
π

p ð1 − 2δÞ ΓðδÞΓð3=2 − δÞ
�
: ð30Þ

With regard to Yukawa coupling, from (17) or (18), we
find

ΦðϕÞ¼ cos−δ
�
ϕ

ϕ0

�
sin

�
ϕ

ϕ0

�
þα

β
cosδ

�
ϕ

ϕ0

�

þ sgn

�
ϕ

ϕ0

�
αδ

2βð1−2δÞcos
δ

�
ϕ

ϕ0

�
sin

�
ϕ

ϕ0

�

×Re

�
i2F1

�
1

2
−δ;

1

2
;
3

2
−δ;cos−2

�
ϕ

ϕ0

���
; ð31Þ

which for α ¼ 0 (when Z2 symmetry is recovered and the
bulk curvature is null) is reduced to

ΦðϕÞ ¼ cos−δ
�
ϕ

ϕ0

�
sin

�
ϕ

ϕ0

�
: ð32Þ

So, (31) and (32) are compatible, respectively, with the
absence and presence of the Z2 symmetry of spacetime.

In [22], a Yukawa term supported on (32) is used to
couple fermions on the dS4 wall (24), (25), (26) for any
value of α, and as a result the number of fermions captured
by the coupling decreases with the increase of α. In our
opinion, this effect is generated by the incompatibility
between the Yukawa coupling (32) and the asymmetry of
the spacetime.
According to the Yukawa coupling defined by (31) and

from (15), an asymmetric volcano potential is obtained. In
Fig. 1, the effective potentials VL (top panel) and VR
(bottom panel) are shown for different α. In both cases, the
eigenfunctions are determined, below the gap (m < λ), by a
set of chiral partners of bound states and, above the gap
(m > λ), by a set of the chiral partner of continuous modes,
which propagate freely for the bulk. Additionally, due to
the absence of Z2 symmetry in the potentials, resonance
modes in the spectrum of fluctuations are expected [4,5,10].
Notice that Fig. 1 also shows how the area of the well

increases with the increase of the asymmetry; thus, it is
expected that the number of the bound states to the well
also increases with the asymmetry, unlike the effect
reported in [22].
For a domain wall to be a realization of our Universe, the

thickness of the wall must be infinitely thin. So, we will

FIG. 1. Plots of potentials VL (top panel) and VR (bottom panel)
in the dS thick wall, for α ¼ 0 (gray line), α ¼ 3 (dashed line),
and α ¼ 6 (black line).
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analytically determine the full spectrum of the chiral
fermions in the thin wall limit of scenario (24)–(26).
By taking δ → 0, the warp factor (24) is reduced to

e−AðzÞ ¼ eβjzj þ α

β
sinhðβzÞ; jαj < 2β; ð33Þ

and the spacetime behaves asymptotically as two subspaces
with different cosmological constants at either side of the
branes

Λ− ¼ 6αð2β − αÞ; Λþ ¼ −6αð2β þ αÞ ð34Þ

in correspondence with the energy density

ρðzÞ ¼ Λ−Θð−zÞ þ 6βδðzÞ þ ΛþΘðzÞ: ð35Þ

We leave in the Appendix the technical details associated
to (33).
Now, it should be noticed that as δ → 0, the scalar field ϕ

vanishes everywhere while

ΦðzÞ ¼ sgnðzÞeβjzj þ α

β
coshðβzÞ: ð36Þ

Hence, confined fermions on the brane are expected.

IV. FERMIONS SPECTRUM

In the zero thickness limit, (21) takes the form

VL
RðzÞ ¼∓ 2λδðzÞ þ λ2

− 4ðλ=βÞðλ=β � 1Þ
�

C−βeβz

1þ C2
−e2βz

�
2

Θð−zÞ

− 4ðλ=βÞðλ=β � 1Þ
�

Cþβe−βz

1þ C2þe−2βz

�
2

ΘðzÞ; ð37Þ

with

C� ¼
ffiffiffiffiffiffiffiffiffiffiffi
β2

Λ�=6

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

Λ�=6
− 1

s
; ð38Þ

where the δðzÞ function is associated with either an infinite
well for VL or an infinite barrier for VR. In addition, for
z < 0, the potentials exhibit a smooth well where it is
possible to find bound massive states for both chirality
modes. Figure 2 shows a regularized version of VL

R
as δ → 0.
The eigenvalue problems (14), (37) are similar to those

considered in [5,10] where two wave functions are iden-
tified for each m2, such that, while one is transparent to the
brane, ûcm, the other one, ûdm, is scattered for it. We have

ûcm−ð0Þ ¼ ûcmþð0Þ ¼ 0; ð39Þ

d
dz

ûcm−ð0Þ −
d
dz

ûcmþð0Þ ¼ 0 ð40Þ

for the transparent states to the brane and the following
conditions for the modes sensible to the brane:

ûdm−ð0Þ ¼ ûdmþð0Þ; ð41Þ

d
dz

ûLdm−ð0Þ −
d
dz

ûLdmþð0Þ ¼ 2λ ûLdm ð0Þ; ð42Þ

d
dz

ûRdm−ð0Þ −
d
dz

ûRdmþð0Þ ¼ −2λ ûRdm ð0Þ: ð43Þ

Regarding orthogonality relationship, for m ≤ λ, the
bound states satisfyZ

û�im0 ðzÞûjmðzÞdz ¼ δijδmm0 ; i; j ¼ c; d; ð44Þ

and for m > λ, a similar relationship is obtained changing
δmm0 by δðm −m0Þ for continuous modes. In this last case, a
procedure to regularize the eigenfunctions must be done;
see [27] for details.

A. Bound states: m ≤ λ

Below the gap, 0 < m ≤ λ, the eigenfunctions of (14),
(37) are determined by a discrete tower of massive modes
constrained for the boundary conditions ûLmð�∞Þ ¼
ûRmð�∞Þ ¼ 0. Defining

μ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 −m2

p
ð45Þ

and

FL
� ≡ 2F1

�
λ

β
þ 1;−

λ

β
; 1þ μ

β
;

�
1þ 1

C2
�
e�2βz

�
−1
�
; ð46Þ

FIG. 2. Plots of potentials VL (solid line) and VR (dashed line)
in the dS4 thin wall.
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FR
� ≡ 2F1

�
−
λ

β
þ 1;

λ

β
; 1þ μ

β
;

�
1þ 1

C2
�
e�2βz

�
−1
�

ð47Þ

in concordance with asymptotic conditions, we have

ûmðzÞ ¼ Nm½AeμzF−Θð−zÞ þ e−μzFþΘðzÞ�; ð48Þ

where Nm and A are the normalization and integration
constants to be determined from the integrability condi-
tions. Notice that, for ûcm the trivial solution is obtained
while for ûdm the corresponding constants can be found
from (41) and (44). Furthermore, (42), (43) lead to a
restriction on the values of m=λ determined by the
transcendental equation y1 ¼ y2, where

y1L ¼ 2ðλþ μÞ þ
λðα − 2βÞ2F1½1 − λ

β ; 1þ λ
β ; 1þ μ

β ;
α
2β�

2F1½− λ
β ; 1þ λ

β ; 1þ μ
β ;

α
2β�β

;

ð49Þ

y2L ¼
λðαþ 2βÞ2F1½1 − λ

β ; 1þ λ
β ; 1þ μ

β ;−
α
2β�

2F1½− λ
β ; 1þ λ

β ; 1þ μ
β ;−

α
2β�β

ð50Þ

for the left modes, and

y1R ¼ 2ð−2β þ 3λþ μÞ

þ
ðλ − βÞðα − 2βÞ2F1½2 − λ

β ;
λ
β ; 1þ μ

β ;
α
2β�

2F1½1 − λ
β ;

λ
β ; 1þ μ

β ;
α
2β�β

; ð51Þ

y2R ¼
ðλ − βÞðαþ 2βÞ2F1½2 − λ

β ;
λ
β ; 1þ μ

β ;−
α
2β�

2F1½1 − λ
β ;

λ
β ; 1þ μ

β ;−
α
2β�β

ð52Þ

for the right modes.
In Fig. 3, a numerical solution for the transcendental

equations is shown; it is observed that both equations have
the same solution, the interception of y1 and y2, in each
mode, occurs for the same values of mass. Thus, the bound
modes supported for VL and VR share the same eigenval-
ues. In agreement with (22), VL and VR are supersymmetric
partner potentials [24,25]; therefore, the result showed in
the graphic for the eigenvalues is to be expected.
This tower of discrete mass is determined between the

minimum of VR and the gap associated to VL
R, i.e.,

λ2 > m2 > λβ; in fact, applying the harmonic oscillator
approximation around the minimum of VL, we found

m2
n ≃ ð2nþ 1Þβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − βÞ

p
þ λβ; ð53Þ

with n ¼ 0; 1; 2;… such that n < ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − βÞp

− βÞ=2β. On
the other hand, the number of bound modes in good
approximation can be estimated by

N ≃ 1þ E

�
2

5

�
1þ

ffiffiffiffiffiffiffiffiffiffi
z20V0

q �
ð1 − e−α=ð2βÞÞ

�
; ð54Þ

where E½ξ� is the integer part of ξ, and z0 and V0 are
given by

z0 ¼
1

4β
ln
19λþ 20β þ 2

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ βÞð9λþ 10βÞp
19λþ 20β − 2

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ βÞð9λþ 10βÞp ð55Þ

and

V0 ¼ 2λ2 þ λαðλþ βÞð2β − αÞ=β2: ð56Þ

Notice that for α ¼ 0, when the scenario exhibits Z2

symmetry, the potential is like delta and consistently
N ¼ 1. When the asymmetry increases, α → 2β, the
number of bound states increases until it reaches the
saturation value which is given by

N ≃ 1þ E

�
2

5
ð1þ

ffiffiffi
2

p
z0λÞð1 − e−1Þ

�
: ð57Þ

Furthermore, from (54)–(56), we can see, consistently, that
the amount of bound states increases as the Yukawa
coupling increases.

B. Resonant states: m > λ

Above the gap, m > λ, we find a continuous tower
of massive modes confronting to the potential (37).
Considering

μ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − λ2

p
ð58Þ

and

FIG. 3. A graphical solution of equations y1L ¼ y2L (black) and
y1R ¼ y2R (gray) for the mass of seven bound states of chiral
fermion in a dS spacetime with parameters β ¼ α ¼ 5 and
Yukawa constant λ ¼ 15β.
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FL
�≡ 2F1

�
λ

β
þ1;−

λ

β
;1− i

μ

β
;

�
1þ 1

C2
�
e�2βz

�
−1
�
; ð59Þ

FR
�≡ 2F1

�
−
λ

β
þ1;

λ

β
;1− i

μ

β
;

�
1þ 1

C2
�
e�2βz

�
−1
�
; ð60Þ

the modes can be written, for z < 0, as

ûm−ðzÞ ¼ Nm½A−ðe−iμzF− þ eiμzF�
−Þ

− iB−ðe−iμzF− − eiμzF�
−Þ�; ð61Þ

and for z > 0, as

ûmþðzÞ ¼ Nm½AþðeiμzFþ þ e−iμzF�þÞ
− iðeiμzFþ − e−iμzF�þÞ�; ð62Þ

where Nm and A�, B− are constants which can be fixed
using the integrability conditions listed previously.
In this case, nontrivial solutions for (14), (37), ûcm and

ûdm, are obtained, in such a way that for each chiral state
there are two eigenfuntions sharing the same eigenvalue;
that is, the Kaluza-Klein tower is determined by chiral
states, each of them doubly degenerated.
The existence of resonant massive modes should be

highlighted at z ¼ 0. The behavior of jûdmð0Þj2 for different
values of jΛ−=Λþj ≤ 1 is shown in Figs. 4 and 5 for the left
and right modes, respectively. In any case, notice that the
resonant mass increases as the asymmetry increases.
Figure 4, in contrast to Fig. 5, shows local resonant

states for ûL which appear when the asymmetry is in
correspondence with 3=5 > jΛ−=Λþj ≥ 2=5. In particular,
jΛ−=Λþj ∼ 2=5 is a critical case where the state resonant is
a light state with the same probability as heavy ones. Global
resonant modes are meaningful for jΛ−=Λþj < 2=5.
The mass of the resonant states can be roughly estimated.

For the left mode, we have

mL
res ∼

��
λ2 þ jΛþj

6β2
ðλþ βÞ2

��
λ2 −

Λ−

6

��
1=4

; ð63Þ

while for the right mode, as long as jΛ−=Λþj ∼ 0, it is
given by

mR
res ∼ 3λ: ð64Þ

Comparing both results,

mL
res ∼

1

3

�
9þ 8β

λ

�
2þ β

λ

��
1=4

mR
res; ð65Þ

it is deduced that the left and right modes resonate for
different mass. Therefore, for the resonant modes, the chiral
symmetry of the fermions is quasibroken.

V. SUMMARY

We determined the fermions spectrum on a dS4 brane
embedded in a spacetime without reflection symmetry,
from matter fields coupled to the dynamic domain wall
of [15]: we coupled the spinors to the scalar field of the
wall by the nonminimal Yukawa term (17), the tower of
fermions was obtained in the thin-wall limit where the
Yukawa interaction considered does not vanish and the
domain wall becomes a dS4 brane.
We showed that in the dS4 brane the nonminimal

Yukawa coupling leads an effective potential that supports
a spectrum of fermions determined by: a massless broken
chiral fermion localized in four dimensions, a set of
massive bound states, and a continuum tower of massive
bulk states.
The zero mode of the spectrum is separated from the

continuous one by a mass gap which it is defined by the
coupling constant in such a way that the number of massive
modes increases with intensity of coupling. On the other
hand, the number of the bound states also increases when

FIG. 4. Plots of left resonant modes for different asymmetric
scenarios for fixed Yukawa constant and jΛ−=Λþj ¼ 1 (gray
line), jΛ−=Λþj ¼ 1=2 (gray dashed line), jΛ−=Λþj ¼ 2=5 (black
dashed line), 3=10 (black line).

FIG. 5. Plots of right resonant modes for different asymmetric
scenarios for fixed Yukawa constant and jΛ−=Λþj¼1 (gray line),
jΛ−=Λþj ¼ 1=5 (dashed line), and jΛ−=Λþj ∼ 0 (black line).
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the asymmetry parameter of scenario increments as a
consequence of compatibility between the nonconventional
Yukawa coupling and the spacetime geometry.
With regard to the continuous modes, each chiral state is

doubly degenerate: while one of them is transparent to the
brane, the other one is scattered by it. Among scattered
ones, chiral resonant modes with different mass can be
found, i.e., one of chiral states of resonant fermion is more
likely to be on the brane. Therefore, for a four-dimensional
observer, the chiral symmetry of the resonant spinor is
broken.
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APPENDIX: THE THIN WALL LIMIT

Consider the spacetime (R5, g), with the metric

gab ¼ e2AðzÞð−dtadtb þ e2βtdxiadxib þ dzadzbÞ; ðA1Þ

where the metric factor

e−AðzÞ ¼ e−A−ðzÞΘð−zÞ þ e−AþðzÞΘðzÞ ðA2Þ

and

e−A�ðzÞ ¼ coshδ
�
βz
δ

�
� αδ

βð1 − 2δÞ cosh
1−δ

�
βz
δ

�

× Re

�
i2F1

�
1

2
− δ;

1

2
;
3

2
− δ; cosh2

�
βz
δ

���
ðA3Þ

being 2F1 the Gauss hypergeometric function defined
under the following restrictions:

(i) If c ∉ Z− and jξj < 1, the function 2F1 is given by

2F1ða; b; c; ξÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

ξn

n!
; ðA4Þ

with ðaÞn ¼ Γðaþ nÞ=ΓðaÞ the Pochhammer’s
symbol.

(ii) If a − b ∉ Z and jξj > 1, the function 2F1 is
given by

2F1ða; b; c; ξÞ ¼
ΓðcÞΓðb − aÞ
Γðc − aÞΓðbÞ ð−ξÞ

−a

× 2F1

�
a; c − b; a − bþ 1;

1

ξ

�

þ ΓðcÞΓða − bÞ
ΓðaÞΓðc − bÞ ð−ξÞ

−b

× 2F1

�
b; c − a; b − aþ 1;

1

ξ

�
:

ðA5Þ

The solution (A1)–(A3) represents a five-dimensional
dynamic domain wall with δ playing the role of the wall’s
thickness. Next, we will examine the thin-wall limit δ → 0
of this solution.
We first consider in (A3) the linear transformation

2F1ða; b; c; ξÞ ¼ ð1 − ξÞ−a2F1

�
a; c − b; c;

ξ

ξ − 1

�
; ðA6Þ

where ξ ¼ cosh2ðβz=δÞ, a ¼ 1=2 − δ, b ¼ 1=2, and
c ¼ 3=2 − δ. On the other hand, in this case 2F1ða; c −
b; c; ξ=ðξ − 1ÞÞ is given by (A5) and, therefore, Eq. (A6)
can be written as

2F1ða; b; c; ξÞ ¼
ΓðcÞΓðb − aÞ
Γðc − aÞΓðbÞ ð1 − ξÞ−a

× 2F1

�
a; c − b; a − bþ 1;

1

1 − ξ

�

þ ΓðcÞΓða − bÞ
ΓðaÞΓðc − bÞ ð1 − ξÞ−b

× 2F1

�
b; c − a; b − aþ 1;

1

1 − ξ

�
:

ðA7Þ
In this representation, it is easy to check the convergence of
the metric factor for a small thickness of the wall, because
jð1 − ξÞ−1j ¼ csch2ðβz=δÞ ∼ 0 as δ ∼ 0, and in conse-
quence, the hypergeometric functions in (A7) are defined
by the power series (A4). Thus, for δ ∼ 0, the function e−A

is given by

e−A�ðzÞ ≃
α

2β
½2∓δeβz ∓ ð−2Þ�δe−βz�

þ 2−δe�βz þOðcsch2βz=δÞ: ðA8Þ

Therefore, in the thin-wall limit,

lim
δ→0

e−AðzÞ ¼ eβjzj þ α

β
sinhðβzÞ; ðA9Þ

Notice that for z < 0 and z > 0, (A9) is a vacuum
solution of the Einstein field equations, and
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lim
δ→0

Gb
a ¼ 6βδðzÞð∂tadtb þ ∂xai dxibÞ

þ ½6αð2β − αÞΘð−zÞ − 6αð2β þ αÞΘðzÞ�
× ð∂tadtb þ ∂xai dxib þ ∂zadzbÞ: ðA10Þ

This means that the spacetime ðR5; gÞ, where g is given by
(A1)–(A3), can be identified in the limit δ → 0 with the
spacetime ðR5; gÞ, with g given by (A9), generated by a thin
domain wall with energy-momentum tensor given by

Tb
a ¼ 6βδðzÞð∂tadtb þ ∂xai dxibÞ

þ ½6αð2β − αÞΘð−zÞ − 6αð2β þ αÞΘðzÞ�
× ð∂tadtb þ ∂xai dxib þ ∂zadzbÞ: ðA11Þ

Finally, to be rigorous, one should prove that the metric
(A1)–(A3) provides a sequence of metrics that satisfies the
convergence condition required in [28] in order to relate the
limit of the curvature tensor distributions with the limit of
the metric tensor, but it is not our concern here.
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