
 

Regularized calculation of the retarded Green function
in a Schwarzschild spacetime

Marc Casals ,1,2,* Brien C. Nolan ,3,† Adrian C. Ottewill ,2,‡ and Barry Wardell 2,§

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, CEP 22290-180, Brazil
2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

3School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland

(Received 14 October 2019; published 19 November 2019)

The retarded Green function for linear field perturbations of black hole spacetimes is notoriously
difficult to calculate. One of the difficulties is due to a Dirac-δ divergence that the Green function possesses
when the two spacetime points are connected by a “direct” null geodesic. We present a procedure which
notably aids its calculation in the case of Schwarzschild spacetime by separating this direct δ divergence
from the remainder of the retarded Green function. More precisely, the method consists of calculating the
multipolar l modes of the direct δ divergence and subtracting them from the corresponding modes of
the retarded Green function. We illustrate the usefulness of the method with some specific calculations in
the case of the scalar Green function and self-field for a point scalar charge in Schwarzschild spacetime.
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I. INTRODUCTION

Linear field perturbations of black hole spacetimes obey
a wave equation. The retarded Green function (GF) of this
equation is an important function of two spacetime points,
as it serves to evolve any initial field data to its future.
Certain problems require knowing the retarded Green
function globally, i.e., for points arbitrarily separated.
For example, the self-field on a point particle moving on
a background black hole spacetime can be expressed in
terms of an integral of the GF over the past worldline of the
particle. The self-force can then be obtained as a derivative
of the self-field (see Refs. [1,2] for reviews). Also, within
the different setting of relativistic quantum information, the
probability of a particle detector being excited by a field
emitted by another detector moving on a curved back-
ground can be expressed as a (double) integral of the GF1

(see, e.g., Refs. [3,4]).
Calculating the GF on a black hole background is no

easy endeavor. One of the difficulties lies in the fact that the
GF diverges when the two spacetime points are connected
via a null geodesic [5,6]. The so-called Hadamard form
shows that, for the case of “direct” null geodesics (i.e., for

null geodesics which have not orbited around the black hole
and so, in particular, have not encountered a caustic), this
divergence is of a Dirac-δ type [1,7,8]. The term in the
Hadamard form which contains this direct divergence is
called the direct part. In a practical calculation, where the
GF is only calculated approximately to within a desired
accuracy, this direct divergence is typically smeared out and
“contaminates” the evaluation of the GF even when the
spacetime points are timelike separated.
In this paper, we present a simple but very useful idea for

facilitating the practical evaluation of the GF on a static and
spherically symmetric spacetime (including, for example,
the Schwarzschild black hole spacetime) via a multipolar l-
mode decomposition (as used, e.g., in Refs. [9,10]). Within
such a decomposition, the divergences of the GF when the
spacetime points are null separated manifest as divergences
of the infinite sum over l modes [11]. Since, in a practical
calculation, one must truncate the sum at a finite number of
modes, the divergences of the computed GF are inevitably
spread out. This implies, in particular, that when the points
are close to being connected by a direct null geodesic, a
large number of lmodes are required in the sum in order to
avoid contamination from the direct part. Our proposal is to
obtain the l modes of the direct part in the Hadamard form
and subtract them from the l modes of the full GF, prior to
carrying out the l sum. The resulting object is, thus,
essentially, the full GF minus the direct part. Since this
object does not diverge when the points are connected by a
direct null geodesic, its l sum converges much faster for
points close to being connected by such a geodesic.
The contribution from the direct part is, in fact, not

needed for certain problems such as the self-force problem
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1Even though in this setting of relativistic quantum informa-

tion the field is quantized to leading order in the coupling
between the detectors and the field, the signal strength depends
only on the retarded Green function, and so it does not depend on
the quantum state of the field.
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(in this case, the direct part is “regularized away”). For
problems where this contribution is needed, such as in the
relativistic quantum information setting, it can be calcu-
lated separately using an alternative method which does not
involve an l-mode decomposition. Although we present
the method explicitly for the case of a massless scalar field
on Schwarzschild spacetime, it can readily be extended to
fields of nonzero spin. We illustrate the usefulness of our
proposal with a practical calculation of the scalar GF and
self-field in Schwarzschild spacetime. Our example shows
that significantly fewer l modes are required to achieve a
certain accuracy when our proposal of subtracting the l
modes of the direct part is used, thus greatly facilitating the
evaluation of the l sum.
This paper is organized as follows: In Sec. II, we present

the GF for the wave equation in curved spacetimes and the
difficulties with its practical evaluation in Schwarzschild
spacetime. In Sec. III, we present our proposal for facilitating
the evaluation of the GF. We implement this proposal
specifically in the case of the calculation of the scalar GF
and self-field in Sec. IV. We finish in Sec. V with possible
extensions of the application of our method. In the
Appendixes, we derive small-coordinate expansions of the
lmodes of the retarded Green function and of its direct part.
We use geometric units c ¼ G ¼ 1 and metric signature

ð−;þ;þ;þÞ throughout this work.

II. GREEN FUNCTION

Let us consider a massless scalar field propagating on a
curved background spacetime, with the field satisfying the
Klein-Gordon equation. The corresponding retarded Green
function (GF) satisfies the Klein-Gordon equation with a
four-dimensional (invariant) Dirac-δ distribution as the
source:

□xGretðx; x0Þ ¼ −4π
δ4ðx − x0Þffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp ; ð1Þ

where x0 and x are two spacetime points,2 and □x is the
D’Alembertian with respect to x. The GF obeys causal
boundary conditions: it is equal to zero if x0 does not lie in
the causal past of x.
There exists an analytical expression for the GF, the so-

called Hadamard form, which is valid when x0 is in a local
neighborhood of x. More precisely, x0 must lie in a normal
neighborhood N ðxÞ of x: a region N ðxÞ containing x such
that every x0 ∈ N ðxÞ is connected to x by a unique
geodesic which lies inN ðxÞ. The Hadamard form is [1,7,8]

Gretðx; x0Þ ¼ ½Uðx; x0ÞδðσÞ þ Vðx; x0Þθð−σÞ�θðΔtÞ; ð2Þ

where Uðx; x0Þ and Vðx; x0Þ are regular, real-valued bisca-
lars, Δt≡ t − t0, and t is a time coordinate. Here, σ ¼
σðx; x0Þ is Synge’s world function [12], which is equal to
one half of the squared distance along the (unique) geodesic
connecting x and x0. This means that σ is negative/zero/
positive whenever that geodesic is timelike/null/spacelike.
Equation (2) exhibits a Dirac-δ divergence at σ ¼ 0; i.e.,
when the spacetime points are connected by a “direct” null
geodesic, or else when they coincide (i.e., x0 ¼ x). We thus
refer to Gdðx; x0Þ≡UδðσÞθðΔtÞ, which only has support
when the points are null separated, as the “direct part”,
and to Vθð−σÞθðΔtÞ, which also has support when the
points are timelike separated, as the “tail part”. The
“direct biscalar” Uðx; x0Þ is related to the so-called van
Vleck determinantΔ [13–15] byUðx; x0Þ ¼ Δ1=2ðx; x0Þ and
satisfies a transport equation along the unique geodesic
joining x and x0. In turn, the “tail biscalar” Vðx; x0Þ satisfies
the homogeneous Klein-Gordon equation.
As mentioned, the Hadamard form is only valid in a local

neighborhood, while one may need the GF for arbitrarily
separated points in the spacetime. When the background
spacetime is spherically symmetric, it is useful to carry out
a multipolar decomposition of the GF, which is valid
globally, as

Gretðx; x0Þ ¼
1

rr0
X∞
l¼0

ð2lþ 1ÞPlðcos γÞGret
l ðr; r0;ΔtÞ; ð3Þ

where γ ∈ ½0; π� is the angle separation between x and x0, and
r is a radial coordinate. The multipolar modes Gret

l satisfy a
Green function equation in (1þ 1) dimensions. These
modes can be calculated in a variety of ways—for example,
as a Fourier integral over real frequencies [16], as a sum over
quasinormal modes plus a branch cut integral [9,17], or via a
numerical integration of the (1þ 1)-dimensional Green
function equation that they satisfy [10,18].
When calculating the GF via Eq. (3), the Dirac-δ

divergence at σ ¼ 0 arises from a divergence in the infinite
l-mode sum [11]. In a practical calculation, however, it is
not possible to include an infinite number of l modes, and
so the infinite sum must be truncated at some finite upper
cutoff. As a consequence of this finite cutoff, spurious
oscillations appear, but these can be smoothed out via the
introduction of a factor which decays rapidly for large l
[9,19]. The finite cutoff, including a smoothing factor,
effectively means that the sharp δðσÞ divergence is not
exactly captured, and instead, one obtains an element of a
δ-convergent sequence. For example, in this paper, we
chose e−l

2=ð2l2cutÞ, for some choice of lcut ∈ R, as the
smoothing factor, and then the δ-convergent sequence is
a Gaussian distribution centered at σ ¼ 0; we shall hence-
forth refer to the δ-convergent sequence as a Gaussian
distribution for simplicity. This means that the approximate
GF resulting from the finite cutoff and smoothing factor is
highly “contaminated” by the Gaussian distribution at

2As is common, we blur the distinction between points (e.g.,
x and x0) and their coordinates given a global coordinate system
on the exterior Schwarzschild spacetime under consideration.
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points near σ ¼ 0. Therefore, in a normal neighborhood
x0 ∈ N ðxÞ, even though the exact Gretðx; x0Þ is equal to
Vðx; x0Þ for points x0 timelike separated from x, the
approximate Gretðx; x0Þ may differ considerably from the
correct value given by Vðx; x0Þ for points near σ ¼ 0. This
approximation to the GF becomes worse the closer the
points are to σ ¼ 0.
In previous work [9,10,20–22], the above problem of

obtaining the GF for points “near” σ ¼ 0 was addressed by
calculating the GF in that regime, not via Eq. (3), but rather
via a direct evaluation of Vðx; x0Þ. Such evaluation can be
achieved, for example, using the following multiple power
series [23]:

Vðx; x0Þ ¼
X∞
i;j;k¼0

vijkðrÞðt − t0Þ2ið1 − cos γÞjðr − r0Þk; ð4Þ

for some coefficients vijk that can be determined. Again, in
a practical calculation, one must stop the sums in Eq. (4) at
some finite upper limits, thus yielding an approximation to
the regular bitensor Vðx; x0Þ. The approximation becomes
worse the further the points are from each other in the sense
of large coordinate increments (i.e., large jt − t0j, jr − r0j,
and/or γ).3 The aim is to match the calculation of Vðx; x0Þ
via Eq. (4), with the sums truncated, to the mode sum
calculation via Eq. (3), also with the sum truncated, in a
region where both approximations are accurate enough
(i.e., the truncation error is smaller than a desired accuracy).
The region where the approximation to Vðx; x0Þ is accurate
enough is called the quasilocal (QL) region, and the region
where the approximation to the mode sum [Eq. (3)] is
accurate enough is called the “distant past” (DP).
This approach encounters a fundamental challenge,

namely that the existence of an overlap between the QL
and the DP regions is not guaranteed. In Ref. [9,10], it was
shown that, by using a Padé resummation of the QL
approximation, the two regions do overlap for many cases
of relevance to the self-force problem in Schwarzschild
spacetime. However, the overlapping region was found to
be often quite small, and ultimately the matching between
the QL and DP regions was found to be the dominant
limitation in achieving robust (i.e., valid in a wide variety of
scenarios) and accurate results. In order to increase the
chances of having a region of overlap, or to improve
agreement in an overlapping region, one has two options:
(i) to improve the calculation of Vðx; x0Þ so that the QL
approximation becomes more accurate in a larger region; or
(ii) to improve the calculation via Eq. (3) so that the DP
approximation becomes more accurate in a larger region.
The former has a fundamental limitation, which is that
Vðx; x0Þ diverges at the edge of the normal neighborhood,

and so any power series approximation will struggle to
accurately represent it near this divergence. The latter saw
some improvement by going from a quasinormal mode sum
approximation [9], which is known to have very poor
convergence when the points are close together, to a time
domain method for computing Gret

l [10]. However, this
improvement did not address the problem of poor con-
vergence of the l sum in the DP contribution. In this paper,
we present a method for addressing this problem, largely
eliminating it.

III. REGULARIZED CALCULATION
OF THE GREEN FUNCTION

As mentioned, the calculation of the GF via Eq. (3)
encounters problems for points near σ ¼ 0 because the
truncation of the sum (in combination with the introduction
of a smoothing factor) effectively turns the Dirac-δ diver-
gence exhibited in Eq. (2) into a widespread Gaussian
distribution. One might expect that the approximation will
improve if we calculate a multipolar decomposition of the
result of subtracting the direct partGdðx; x0Þ≡UδðσÞθðΔtÞ
from the GF. The reason is that the quantity resulting from
such subtraction [which is equal to Vθð−σÞθðΔtÞ when
x0 ∈ N ðxÞ] is finite at σ ¼ 0. In order to achieve this, in this
section we shall subtract the multipolar modes of the direct
part Gd from the multipolar modes Gret

l of the full GF. For
this purpose, it is very convenient to follow Ref. [11].
From now on, we focus on Schwarzschild spacetime

with mass M, and will work in Schwarzschild coordinates
ft; r; θ;φg. First, we make the conformal transformation

dŝ2 ≡ r−2ds2 ¼ ds22 þ dΩ2
2; ð5Þ

where ds2 and dΩ2
2 are the line elements in Schwarzschild

spacetime and the unit 2-sphere S2, respectively, and we
have defined

ds22 ≡ f
r2
ð−dt2 þ f−2dr2Þ; ð6Þ

with f ≡ 1–2M=r. We call the 4D spacetime with the
metric in Eq. (5) the conformal Schwarzschild spacetime,
M×, and we call the spacetime with the metric in Eq. (6)
the 2D conformal spacetime, M2. This 2D spacetime was
studied in Ref. [24], where it was proven to be a causal
domain (i.e., M2 is geodesically convex, and it obeys a
certain causality condition) [8]. As a consequence, both the
world function and the Hadamard form for the Green
function in M2 are valid globally in this 2D spacetime [8].
Since Eq. (5) is a conformal transformation, if we

consider a conformally coupled scalar field, we have that
the GF in Schwarzschild spacetime is [8,25]

Gretðx; x0Þ ¼
1

r · r0
ĜRðx; x0Þ; ð7Þ

3We note that such points where the truncated approximation
to Eq. (4) becomes worse may still be close to σ ¼ 0, as well as
including points for which σðx; x0Þ is large.
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where ĜRðx; x0Þ is the GF for the Klein-Gordon equation in
conformal Schwarzschild spacetime. Both of the GFs, Gret

and ĜR, admit the Hadamard form [Eq. (2)]; we denote the
biscalars in Schwarzshild spacetime as in Eq. (2), whereas
we denote the biscalars in the conformal Schwarzshild
spacetime with the corresponding hatted symbols, so that,
in particular, Δ̂ðx; x0Þ and σ̂ denote, respectively, the van
Vleck determinant and the world function in M×. By
comparing the direct parts of the Hadamard forms for the
two GFs, we have that

Gdðx; x0Þ ¼ Δ1=2ðx; x0ÞδðσÞθðΔtÞ

¼ Δ̂1=2ðx; x0Þδðσ̂ÞθðΔtÞ
r · r0

: ð8Þ

Equation (8) holds because σðx; x0Þ ¼ 0 if and only if
σ̂ðx; x0Þ ¼ 0, which follows from the invariance properties
of null geodesics under conformal transformations.
As mentioned, the Hadamard form in Eq. (2) is only

valid in normal neighborhoods [we will later explicitly
determine the (maximal) normal neighborhood of an
arbitrary point in M×: the result is given in Eq. (16)]. A
great advantage of the transformation in Eq. (5) is that the
conformal Schwarzschild spacetime is a direct product: the
manifold has the form M× ¼ M2 × S2, with the line
element given by Eq. (5) with Eq. (6). Writing coordinates
on the 4D spacetime M× as xα ¼ ðxA; xaÞ, where xA,
A ¼ 0, 1 are coordinates on M2 and xa, a ¼ 2, 3 are
coordinates on the 2-sphere S2, we see that the metric
tensor decomposes as4

gαβ ¼
�
gABðxCÞ 0

0 gabðxcÞ

�
; ð9Þ

while the (Levi-Civita) connection coefficients decompose as

ΓA
βγðxδÞ ¼

�
ΓA

BCðxDÞ 0

0 0

�
;

Γa
βγðxδÞ ¼

�
0 0

0 Γa
bcðxdÞ

�
: ð10Þ

It then follows that there is a one-to-one correspondence
between geodesics of the spacetimeM× and “products” of
geodesics on M2 and S2. That is, a parametrized curve
λ∶xα ¼ xαðsÞ ¼ ðxAðsÞ; xaðsÞÞ is a geodesic of the space-
timeM× if and only if μ∶xA ¼ xAðsÞ and ν∶xa ¼ xaðsÞ are
geodesics on M2 and S2, respectively. (We will say that μ
and ν lift to yield λ, which projects to yield μ and ν.)
As noted above, ðM2; gABÞ is geodesically convex: there
is a unique geodesic between any pair of points of M2.

Then the world function σ2 on M2 is defined globally and
may be written as

σ2ðxA; xA0 Þ ¼ ϵ

2
η2; ð11Þ

where ϵ ¼ −1; 0;þ1 for timelike, null, and spacelike
separations in M2 and η is the proper time, zero, and
proper distance, respectively, along the corresponding
timelike, null, and spacelike geodesics. (By convention,
η ≥ 0 along a future-directed causal curve from xA

0
to xA.)

Below Eq. (3), we already defined γ ¼ γðxa; xa0 Þ ∈ ½0; π�,
which we can here understand more explicitly as the
geodesic separation of xa and xa

0
: the proper length of

the shortest geodesic from xa to xa
0
. We distinguish this

from the geodesic distance γνðxa; xa0 Þ, which measures the
length of a geodesic ν from xa to xa

0
. This may be arbitrarily

long (by running around the sphere multiple times) and
may also run in the direction opposite to that of the shortest
geodesic. Note that we must have either

γνðxa; xa0 Þ ¼ γ þ 2nπ ð12Þ

or

γνðxa; xa0 Þ ¼ 2nπ − γ ð13Þ

for some n ∈ N.
The question of the uniqueness of geodesics connecting

points of the 4D spacetime is then easily resolved [11].
Consider two points x ¼ ðxA; xaÞ and x0 ¼ ðxA0

; xa
0 Þ of the

spacetimeM×, where xa and xa
0
are not antipodal points on

S2. There is a unique geodesic μ of M2 connecting xA and
xA

0
, and generically there are two countably infinite

families of geodesics on S2 connecting xa and xa
0
.

Among these, there is a unique shortest geodesic ν0 for
which γν0ðxa; xa

0 Þ ¼ γðxa; xa0 Þ. In the case of a null
geodesic, the pair μ, ν0 lift to what we have referred to
as the direct null geodesic connecting points of
Schwarzschild spacetime (in fact, the conformal trans-
formation from M× to Schwarzschild is also required).
These geodesics onM2 and S2 lift to give geodesics on the
spacetimeM× as noted above, and so spacetime points are
(generically) connected by two countably infinite families
of geodesics. Among these, the geodesic formed by lifting
μ and ν0 is distinguished. We can then define a two-point
function on the spacetime M× by

σ̂ðx; x0Þ ¼ ϵ

2
η2 þ 1

2
γ2: ð14Þ

Care is needed in interpreting this as the world function of
the spacetime, as σ̂ measures one half the square of the
geodesic distance (appropriately signed) along the unique
geodesic whose projection into S2 yields ν0. This is not the

4Greek letters as indices denote indices in the 4D spacetime,
capital latin letters indices on M2, and small latin letters indices
on S2.
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only geodesic from x to x0. However, this situation changes
when we restrict our focus to causal geodesics. So consider
a causal geodesic λ∶xα ¼ xαðsÞ from x to x0 in M×. This
projects to a causal geodesic μ∶xA ¼ xAðsÞ on M2 and a
spacelike geodesic ν∶xa ¼ xaðsÞ on S2. Then, one half
the square of the geodesic distance from x to x0 along λ is
given by

σ̂λðx; x0Þ ¼
ϵ

2
η2ðxA; xA0 Þ þ 1

2
γ2νðxa; xa0 Þ: ð15Þ

This must be nonpositive, and so there is a finite number of
geodesics ν which allow for λ to be causal, among which
must be the shortest spacelike geodesic ν0. This leads us to
a crucial point: Suppose that x ¼ ðxA; xaÞ, x0 ¼ ðxA0

; xa
0 Þ ∈

M× are connected by a causal geodesic which is not a
radial null geodesic ðγðxa; xa0 Þ ≠ 0Þ. (It is easily verified
that spacetime points connected by a radial null geodesic
are connected by a unique causal geodesic.) Then η, the
proper time separation of (necessarily) timelike separated
points xA and xA

0
in M2, is fixed, and we must have

ηðxA; xA0 Þ ≥ γðxa; xa0 Þ ¼ γν0 . The next shortest geodesic ν1
on S2 connecting xa and xa

0
lies on the great circle

connecting these points, running in the direction opposite
to that of ν0, and so has γν1 ¼ 2π − γν0 ¼ 2π − γ. The
corresponding geodesic λ1 ¼ ðμ; ν1Þ is causal if and only if
η ≥ 2π − γ. If λ1 is not causal, then no further spacelike
geodesic ν� of S2 from xa to xa

0
—which would have

γν� > γν1—will yield a causal geodesic λ� ¼ ðμ; ν�Þ of
M×. Hence, the inequalities η ≥ γ and η ≥ 2π − γ are
the necessary and sufficient conditions for the existence of
multiple causal geodesics from x to x0. Note that the
conditions that both λ ¼ ðμ; ν0Þ and λ1 ¼ ðμ; ν1Þ are causal
imply that η ≥ π. For ηðxA; xA0 Þ < 2π − γ and given
x ¼ ðxA; xaÞ, there is a nontrivial open set of points x0
for which x and x0 are connected by a unique causal
geodesic. In order to obtain an open set of points x0
connected to x by a unique geodesic (regardless of causal
character) which remains within that set, we must exclude
the point xa

0 ∈ S2 antipodal to xa, which we did not
consider in the whole argument above. That is, each x ¼
ðxA; xaÞ ∈ M× has a (maximal) normal neighborhood
N ðxÞ of the form

N ðxÞ ¼ fðxA0
; xa

0 Þ ∈ M×∶ηðxA; xA0 Þ < 2π − γðxa; xa0 Þ;
γðxa; xa0 Þ < πg: ð16Þ

Then, for each x ∈ M×, Eq. (14) defines the world
function σ̂ðx; x0Þ on N ðxÞ, the retarded Green function
ĜRðx; x0Þ assumes the Hadamard form corresponding to
Eq. (2), and the direct part takes the form given in Eq. (8).
Existence, uniqueness, and the corresponding form to

Eq. (2) for ĜR follow from Theorem 4.5.1 and Corollary
5.1.1 of Ref. [8].5

Another advantage of conformal Schwarzschild space-
time being a direct product is that its van Vleck determinant
may be factorized as (e.g., Ref. [26])

Δ̂ðx; x0Þ ¼ Δ2dðxA; xA0 ÞΔS2ðγÞ; ð17Þ

where Δ2d and

ΔS2 ≡ γ

sin γ
ð18Þ

are the van Vleck determinants inM2 and S2, respectively.
After determining normal neighborhoods inM× and the

explicit γ dependence of the direct part Gd ¼ UδðσÞθðΔtÞ
in Schwarzschild spacetime, we can now proceed to
calculate the multipolar modes of this direct part. From
Eqs. (8), (17), and (18), these multipolar modes are given by

Gd
lðr; r0;ΔtÞ≡ rr0

2

Z þ1

−1
dðcos γÞPlðcos γÞ

× Δ1=2ðx; x0ÞδðσÞθðΔtÞ

¼ θðΔtÞ
2

Δ1=2
2d ðxA; xA0 Þ

Z þ1

−1
dðcos γÞ

× Plðcos γÞ
�

γ

sin γ

�
1=2

δðσ̂Þ: ð19Þ

Using Eq. (14), we have that

Gd
lðr; r0;ΔtÞ ¼

θðΔtÞ
2

θðπ − ηÞΔ1=2
2d ðxA; xA0 Þ

× Plðcos ηÞ
�
sin η
η

�
1=2

: ð20Þ

In evaluating Eq. (19), we note that η ≥ 0 sinceΔt ≥ 0. The
presence of the Heaviside function θðπ − ηÞ can be under-
stood as follows: For a fixed x ∈ M×, Gd

l is defined only
for x0 ∈ N ðxÞ [see Eq. (16)] and has support only when
σ̂ ¼ 0. But for η > π and x0 ∈ N ðxÞ, we have σ̂ðx; x0Þ < 0,
and so Gd

l ¼ 0. It is worth noting that Gd
l has compact

support in η due to the presence of the two Heaviside θ’s in
Eq. (20). It is trivial to check that the original direct part,
Eq. (8), is recovered by summing these modes as in

5The relevant results require that ðx; x0Þ lie in a causal domain
Ω of the spacetime, for which all pairs of points ofΩ are joined by
a unique geodesic which lies in Ω. We can construct the required
geodesically convex regions by excluding a semigreat circle of
points from S2 rather than a single point. Since the base point x is
fixed throughout, we can keep the discussion in terms of normal
neighborhoods rather than causal domains.
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Gdðx; x0Þ ¼
1

rr0
X∞
l¼0

ð2lþ 1ÞPlðcos γÞGd
lðr; r0;ΔtÞ: ð21Þ

It is worth pointing out thatGdðx; x0Þ is defined [via Eq. (8)]
only for x0 ∈ N ðxÞ. However, using the expression for Gd

l
in Eq. (20), the sum on the right-hand side of Eq. (21)
yields a quantity defined everywhere on M×, which is
identically zero for x0 outside N ðxÞ.
Via Eq. (20), we have thus reduced the calculation of the

direct multipolar modes Gd
l in Schwarzschild spacetime to

the calculation of the distance η and the van Vleck
determinant Δ2d in M2. Unfortunately, closed form
expressions for these quantities are not known, and so
they must be calculated with either of two methods:
(i) numerically, as was done in Ref. [24], by solving

transport equations [27] along the unique geodesic that
joins the two points in M2; or (ii) using series approx-
imations valid for small separations of the points (see
Appendix A).6

Summarizing, our method replaces the calculation of the
retarded Green function in Eq. (3) by that of the following
“nondirect” part of the retarded Green function:

Gndðx; x0Þ≡ 1

rr0
X∞
l¼0

ð2lþ 1ÞPlðcos γÞðGret
l ðr; r0;ΔtÞ

−Gd
lðr; r0;ΔtÞÞ: ð22Þ

By construction, it is

Gndðx; x0Þ ¼ Gretðx; x0Þ −Gdðx; x0Þ

¼
�
Gretðx; x0Þ −Uðx; x0ÞδðσÞθðΔtÞ ¼ Vðx; x0Þθð−σÞθðΔtÞ; x0 ∈ N ðxÞ;
Gretðx; x0Þ; x0 ∉ N ðxÞ: ð23Þ

Therefore, Gndðx; x0Þ is equal to Gretðx; x0Þ unless x0 ∈
N ðxÞ and σ ¼ 0. The advantage is that for σ ≠ 0, Eq. (22)
with the sum truncated at a given upper value l ¼ lmax
approximates the exact Green function better than Eq. (3)
with the sum truncated at the same upper value. In an abuse
of language, we refer to Gnd as the “regularized Green
function”.

IV. DEMONSTRATION OF THE METHOD

We now present an explicit application of our method.
For demonstration purposes, we focus on the case of a
fixed point x with radial coordinate r ¼ 6M connected to
points x0 by a circular timelike geodesic. We emphasize,
however, that the method works for any pair of points in
Schwarzschild spacetime.
We approximate (away from σ ¼ 0) the GF via Eq. (22)

with a truncated sum. Specifically, we truncate the l sum
at lmax ¼ 100 and, except where otherwise specified, we
include a smoothing factor e−l

2=ð2l2
cutÞ in the summands,

with lcut ¼ 20. We evaluate Gret
l numerically using a

surrogate model [28,29] generated from numerical data
produced with the method described in Ref. [10]. We also
evaluate Gd

l numerically by solving transport equations, as
was done in Ref. [24]. At early times, 0 < t≲ 6M in this
particular case, we encounter two problems:

(1) The time-domain numerical approach used to pro-
duce the data for the surrogate model for Gret

l works
very well almost everywhere, but it breaks down
very near coincidence in the 2D spacetime (which
corresponds to r ¼ r0 and Δt ¼ 0, but not neces-
sarily γ ¼ 0), where the numerical surrogate model
used (which essentially uses a 2D Gaussian approxi-
mation) causes Gret

l to tend to 0 rather than the true
nonzero constant value at coincidence [as given in
Eq. (24) below]. This could be overcome by using a
characteristic initial value formulation [18,30,31] in
place of the Gaussian approximation.

(2) There is significant cancellation betweenGret
l andGd

l:
both tend to the same nonzero, l-independent con-
stant as Δt → 0 [see Eqs. (24) and (25) below]. In
order to achieve the expected result that Gret

l − Gd
l ¼

OðΔtÞ6 as Δt → 0 [see Eq. (26) below], we require
increasing cancellation between Gret

l and Gd
l as Δt

decreases. At sufficiently small Δt, the numerical
accuracy ofGret

l andGd
l is insufficient to achieve this

cancellation.
We overcome both problems by using analytic, small-Δt
approximations to Gret

l and Gd
l in place of numerics at early

times. These approximations, while only valid for small Δt,
have the advantage that they accurately reproduce the near-
coincidence behavior and can be canceled analytically
without any concerns about numerical accuracy. The details
of these approximations are given in Appendixes A and B.
In the particular case studied here, we found the best results
when using the analytic approximations for Gret

l in the
region Δt < 6M and for Gd

l in the region Δt < 3M.

6In the simpler cases of flat and Nariai spacetimes, the
equivalent of these quantities in their corresponding 2D con-
formal spacetimes are known in closed form, and so the
multipolar modes can also be obtained in closed form—see
Appendix A in Ref. [11].
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A. Green function

We first study the behavior of the regularized Green
function. In Fig. 1 we plot the modes Gret

l , Gd
l, and

Gret
l −Gd

l. The left plot shows that Gd
l approximately

agrees with Gret
l throughout much of the region where

Gd
l is nonzero. The right plot shows the form—including a

breakdown in smoothness due to the compact support of
Gd

l—of the last factor in the summand in Eq. (22).
In Fig. 2, we plot the full Gret [Eq. (3)], the Gnd

[Eq. (22)], and the Hadamard biscalar Vðx; x0Þ [a Padé
resummation of Eq. (4)—see Ref. [32] for details]. The
earliest time where the solid orange line—which corre-
sponds to the calculation of Gnd—spikes is where the first
non-direct null geodesic connects x to another point x0 on
the worldline. Since x and this x0 are connected by more
than one causal geodesic (namely, the timelike worldline
and the first nondirect null geodesic) and this does not
happen at earlier times, this time, which is Δt=M ≈ 27.62,
marks the end ofN ðxÞ in this scenario. The other spikes in
the GF, which are located at Δt=M ≈ 51.84, 58.05, 75.96,
and 100.09, correspond to later nondirect null geodesics
connecting x and other points x0. The GF also diverges at
these points, but they are clearly outsideN ðxÞ and are of no
relevance for the specific purposes here. What is of
relevance here is that the plot shows that, near x,
Eq. (22) performs much better than Eq. (3), as expected.
We end this subsection by making a comment about the

behavior at early times. Although not visible in Fig. 2, Gnd
does not agree with Vðx; x0Þ as well at early times
(Δt≲ 6M) as it does at later times. The reason for this
slight disagreement can be understood as follows: For
x0 ∈ N ðxÞ, the nondirect part Gnd is equal to
Vðx; x0Þθð−σÞθðΔtÞ [see Eq. (23)], not Vðx; x0Þ. One
may expect this to make no difference at early times

(where σ < 0 and Δt > 0), but the fact is that we are
not computing the exact Gnd, but an approximation to it,
obtained by truncating the l sum at finite l ¼ lcut and by
including a smoothing factor in Eq. (22). This approxima-
tion ends up “contaminating” Gnd at early times. This can
be seen explicitly when carrying out a small-Δt expansion
in the case of the timelike circular geodesic at r ¼ 6M that
concerns us. Making use of Eqs. (A1) and (A2) and
expanding Eqs. (20) and (B2) in a Taylor series about
Δt ¼ 0, we find (see Appendixes A and B)

G3
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FIG. 1. Green function lmodes for a scalar field on Schwarzschild spacetime as a function of time. The point x is fixed at r ¼ 6M, and
we vary the points x0 along a circular geodesic at r ¼ 6M. Left: The red curve isGret

l via the method in Ref. [10], and the blue curve isGd
l

from Eq. (20) for l ¼ 3. Right: Gret
l − Gd

l for various l values.

Gret(x,x')
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FIG. 2. Retarded Green function Gretðx; x0Þ for a scalar field on
Schwarzschild spacetime as a function of time. The point x is fixed
at r ¼ 6M, and we vary the points x0 along a circular geodesic at
r ¼ 6M. The solid blue line showsGret, Eq. (3), computed using a
truncated and smoothed multipolar mode sum. The solid orange
line shows Gndðx; x0Þ, Eq. (22), also computed using a truncated
and smoothed multipolar mode sum. In both cases, smooth-sum
parameters of lmax ¼ 100 and lcut ¼ 20 were used. The dashed
red line shows the Hadamard bitensor Vðx; x0Þ computed from a
short-distance Padé-resummed Taylor series [32].
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Gret
l ¼ 1

2
−
3l2 þ 3lþ 1

1296
Δt2 þ 18l4 þ 36l3 þ 21l2 þ 3l − 7

6718464
Δt4

−
120l6 þ 360l5 þ 210l4 − 180l3 − 591l2 − 441l − 67

87071293440
Δt6 þ � � � ; ð24Þ

Gd
l ¼ 1

2
−
3l2 þ 3lþ 1

1296
Δt2 þ 18l4 þ 36l3 þ 21l2 þ 3l − 7

6718464
Δt4

−
840l6 þ 2520l5 þ 1470l4 − 1260l3 − 4137l2 − 3087l − 109

609499054080
Δt6 þ � � � : ð25Þ

We thus find that these perfectly cancel through OðΔt5Þ,
leaving a residual contribution proportional to Δt6,

Gret
l −Gd

l ¼ 1

1693052928
Δt6 þ � � � : ð26Þ

Comparing against the small-Δt expansion of Vðx; x0Þ
[using Eq. (4)], which in this case is given by

Vðx; x0Þ ¼ −
31

13544423424
Δt4 þ � � � ; ð27Þ

we find an apparent contradiction: an approximation to
Gnd ¼ Gret −Gd obtained from a Legendre l sum of the
modes Gret

l −Gd
l in Eq. (26), whether including the

smoothing factor or not, will not yield a result that is
OðΔt4Þ as might be expected from Eq. (27). However, there
is no reason why it should be the same order as V, since
strictly, the sum over l is not uniformly convergent [in a
normal neighborhood, it yields a distribution containing
θð−σÞ]. Indeed, if one first calculates the l modes of a
small-coordinate-separation expansion of Vðx; x0Þ [prior
to evaluating it along the circular geodesic, so not
Eq. (27)] and then evaluates them along our timelike
circular geodesic, one finds them to be of OðΔt0Þ, so
not OðΔt6Þ as Gret

l −Gd
l in Eq. (26).

The resolution of the apparent contradiction, then, is that
Gnd and V are not the exact same quantity; in a normal
neighborhood they differ by a factor of θð−σÞθðΔtÞ. If one
first calculates the l modes of θð−σÞθðΔtÞ times a small-
coordinate-separation expansion of Vðx; x0Þ and then eval-
uates them along our timelike circular geodesic, the result
agrees exactly with Eq. (26). That is, the extra factor
θð−σÞθðΔtÞ accounts for the difference of two orders in Δt
between the two expressions. If we were to calculate the
exact Legendre l sum of Gret

l −Gd
l (with neither truncation

nor smoothing), the result would agree with Vðx; x0Þ in a
normal neighborhood where σ < 0 and Δt > 0. Thus, the
failure of our approximation to Gnd to coincide with
Vðx; x0Þ (and so with the GF) at early times can be
attributed to the smooth and truncated sum approximating

the step function by a mollified version. Fortunately, this
quirk has negligible effect on the results.

B. Self-field

A better approximation of the GF leads to a better
approximation of the self-force and the self-field. The self-
force acting on a scalar charge q moving on a worldline
zðτÞ on a background spacetime (with τ proper time along
the geodesic) is given by fμ ¼ q∇μΦR, where

ΦRðτÞ≡ lim
ϵ→0þ

Z
τ−ϵ

−∞
dτ0GretðzðτÞ; zðτ0ÞÞ ð28Þ

is the regularized self-field (the ϵ > 0 in the upper limit
excludes the coincidence x0 ¼ x, and so it excludes σ ¼ 0
inside normal neighborhoods). One way of carrying out the
integral is to match the calculation of the GF via the
multiple power series [Eq. (4)] in the QL region to that via
the l-mode sum [either Eq. (22) or Eq. (3)] in the DP. This
requires a region of overlap and a choice of matching
proper time τm:

ΦRðτÞ ¼
Z

τm

−∞
dτ0VðzðτÞ; zðτ0ÞÞ

þ 1

r
lim
ϵ→0þ

Z
τ−ϵ

τm

dτ0

r0
X∞
l¼0

ð2lþ 1ÞPlðcos γÞ

×Gret
l ðr; r0;ΔtÞ; ð29Þ

where r0 ¼ r0ðτ0Þ, t0 ¼ t0ðτ0Þ, γ ¼ γðτ0Þ; and similarly with
Gret

l replaced by Gret
l −Gd

l. The first integral in Eq. (29)
corresponds to the DP contribution, and the second integral
to the QL contribution.
Figure 3 shows ΦR for the case considered above of a

scalar charge on a circular geodesic at r ¼ 6M. We plot it as
a function of the coordinate time tm corresponding to the
matching proper time τm, and compare the result to a highly
accurate reference value computed using the mode sum
regularization method [33]. Similarly, in Fig. 4 we plot ΦR
as a function of the parameter lcut in the smoothing factor
in the l sum (see Sec. II). Both figures show that the
calculation of ΦR via Eq. (29) is much better when
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replacing Gret
l with Gret

l −Gd
l than without the replacement.

In fact, from Fig. 3 it is apparent that by using Gret
l − Gd

l,
we have entirely removed the need for matching to the
power series approximation to Vðx; x0Þ.

V. DISCUSSION

In this paper, we have presented a proposal for facili-
tating the calculation of the retarded Green function in
Schwarzschild spacetime. The proposal essentially consists

of decomposing the Green function into multipolar l
modes and significantly improving the convergence of
the sum by subtracting the modes of the direct part in
the Hadamard form. We have applied this method to the
case of a scalar charge and its self-field. We next discuss
various interesting extensions of this proposal and its
applications.
First of all, we have applied this proposal to the

calculation of the self-field, but the calculation could be
extended to the calculation of the self- force. This requires
calculating directly derivatives of the Green function, and
so—from Eq. (20)—derivatives of the van Vleck determi-
nant and the world function in the 2D conformal spacetime
M2. A transport equation prescription for obtaining deriv-
atives of both the world function and the van Vleck
determinant are provided in Ref. [27].
Second, the proposal is readily generalizable from the

zero-spin field considered here to higher-spin fields, such
as the electromagnetic field or the linear gravitational field.
These higher-spin fields in Schwarzschild spacetime can be
shown to satisfy a similar wave equation to the (scalar)
Klein-Gordon equation, merely with a change in the
potential (but not in the derivative terms). This implies
that the retarded Green functions for these higher-spin wave
equations also admit the Hadamard form [Eq. (2)], with just
a change in the biscalar Vðx; x0Þ, but with the same world
function σ and biscalar Uðx; x0Þ. It also implies that a
conformal relationship similar to Eq. (7) between the Green
functions in Schwarzschild and conformal Schwarzschild
spacetimes is satisfied for these higher-spin fields.
Therefore, our proposed Eq. (22) also holds for these
higher-spin cases, with the modes Gret

l and Gd
l satifying

similar (1þ 1)-dimensional wave equations as in the scalar
case, but with different potentials.
Finally, in this paper we have focused on dealing with the

singularity which the Green function possesses at σ ¼ 0,
i.e., due to the “direct” null geodesic or at coincidence.
However, as mentioned, the Green function diverges when
the points are connected by any null geodesic, even if it is
not the direct one. In Ref. [11], the full (i.e., including
leading and subleading orders) global singularity structure
of the Green function in Schwarzschild spacetime was
provided (the leading order had been previously provided
in Refs. [34–37]). When multipole-decomposing the Green
function, these nondirect singularities also arise as diver-
gences in the multipolar l sum. Similarly to what we have
done in Eq. (22) for the direct singularity, one could carry
out l-mode decompositions of the nondirect singularities
and subtract those from the l modes of the full Green
function. One should note, however, that the nondirect
divergences alternate between Dirac-δ distributions (such
as for the direct divergence) and principal value distribu-
tions. For obtaining the l modes, one would therefore have
to perform angular integrals of the principal value distri-
bution instead of the Dirac-δ distribution. It is expected that

10 12 14 16 18 20
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Without Gd(x,x') subtracted
With Gd(x,x') subtracted
With Gd(x,x') subtracted and without matching to V(x',x')

FIG. 4. The regularized self-field ΦR for a scalar charge on a
circular geodesic at r ¼ 6M as a function of the parameter lcut in
the smoothing factor in the l sum (see Sec. II). Blue curve: ΦR is
calculated via Eq. (29) with τm ¼ 18M. Red curve: ΦR is
calculated via Eq. (29) with τm ¼ 18M and with Gret

l replaced
by Gret

l − Gd
l. Green curve: ΦR is calculated via Eq. (29) with

τm ¼ 0 and with Gret
l replaced by Gret

l − Gd
l.
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–0.005490

–0.005485
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FIG. 3. Plot of the regularized self-field ΦR [calculated via
Eq. (29)] as a function of matching coordinate time tm for a scalar
charge on a circular geodesic at r ¼ 6M. The solid blue line is
obtained using Eq. (29) as it is (i.e., with Gret

l in the summand);
the solid orange line is obtained using Eq. (29) with Gret

l replaced
by Gret

l − Gd
l in the summand. In both cases, the numerical

integration was truncated at t ¼ 200M, with the contribution for
t > 200M accounted for by a late-time approximation which
assumes the branch-cut contribution to the GF dominates (see,
e.g., Refs. [9,10]). The dashed black line is a highly accurate
reference value computed using the mode sum regularization
method [33].

REGULARIZED CALCULATION OF THE RETARDED GREEN … PHYS. REV. D 100, 104037 (2019)

104037-9



the resulting l sum would then converge everywhere, thus
greatly facilitating further the calculation of the Green
function. Regarding the subtracted nondirect divergences,
one could include them separately by calculating them
using, e.g., the expressions in Ref. [11]. Alternatively, if
one is mainly interested in the calculation of the self-field/
force, which involves worldline integrals of the Green
function, one could subtract only the part of the divergences
which integrates to zero (i.e., with the coefficients of the
diverging functions, such as the principal value, evaluated
at the times of the divergences), instead of the full
divergences (where the coefficients depend on time, and
so it would not integrate out to zero).
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APPENDIX A: SERIES EXPANSIONS OF
GEOMETRIC QUANTITIES IN M2

Equation (25) was obtained by substituting the expan-
sion of the geometrical quantities ϵη2 and Δ1=2

2d through
order ðΔxaÞ6 into Eq. (20). For completeness, we present
these below; higher terms through ðΔxaÞ20 are provided
electronically as Supplemental Material to this paper [39].

ϵη2 ¼ −
Δt2ðr − 2MÞ

r3
þ Δr2

rðr − 2MÞ þ
ΔrΔt2ðr − 3MÞ

r4
þ Δr3ðr −MÞ
r2ðr − 2MÞ2 −

Δt4ðr − 2MÞðr − 3MÞ2
12r7

−
Δr2Δt2ð5r2 − 28Mrþ 33M2Þ

6r5ðr − 2MÞ þ Δr4ð11r2 − 22Mrþ 15M2Þ
12r3ðr − 2MÞ3 þ ΔrΔt4ð2r3 − 20Mr2 þ 63M2r − 63M3Þ

12r8

þ Δr3Δt2ð4r3 − 31Mr2 þ 67M2r − 45M3Þ
6r6ðr − 2MÞ2 −

Δr5ð10r3 − 30Mr2 þ 41M2r − 21M3Þ
12r4ðr − 2MÞ4

−
Δt6ðr − 3MÞ2ðr − 2MÞð4r2 − 30Mrþ 45M2Þ

360r11
−
Δt4Δr2ð78r4 − 1072Mr3 þ 5087M2r2 − 10050M3rþ 7065M4Þ

360r9ðr − 2MÞ

−
Δt2Δr4ð64r4 − 606Mr3 þ 1781M2r2 − 2160M3rþ 945M4Þ

120r7ðr − 2MÞ3

þ Δr6ð274r4 − 1096Mr3 þ 2251M2r2 − 2310M3rþ 945M4Þ
360r5ðr − 2MÞ5 þOððΔxaÞ7Þ; ðA1Þ

Δ1=2
2d ¼ 1þ Δt2ð21M2 − 11Mrþ r2Þ

6r4
þ Δr2ð15M2 − 11Mrþ r2Þ

6r2ðr − 2MÞ2 −
ΔrΔt2ð4r3 − 69Mr2 þ 290M2r − 342M3Þ

24ðr − 2MÞr5

þ Δr3ð4r3 − 69Mr2 þ 194M2r − 162M3Þ
24r3ðr − 2MÞ3 þ Δt4ðr − 2MÞð118r3 − 2111Mr2 þ 9915M2r − 13680M3Þ

2160r8

þ Δr2Δt2ð17r4 − 368Mr3 þ 2246M2r2 − 5064M3rþ 3798M4Þ
108r6ðr − 2MÞ2

þ Δr4ð38r4 − 897Mr3 þ 3887M2r2 − 6610M3rþ 3960M4Þ
240r4ðr − 2MÞ4

−
Δt4Δrð1016r4 − 24575Mr3 þ 178346M2r2 − 500670M3rþ 477180M4Þ

8640r9

þ Δt2Δr3ð644r5 − 16251Mr4 þ 125706M2r3 − 402955M3r2 þ 571830M4r − 298890M5Þ
4320r7ðr − 2MÞ3

þ Δr5ð432r5 − 12973Mr4 þ 76588M2r3 − 198220M3r2 þ 240300M4r − 112140M5Þ
2880r5ðr − 2MÞ5

þ Δt6

1814400r12
ð29784r6 − 873125Mr5 þ 9135623M2r4 − 46052780M3r3

þ 121262184M4r2 − 160751520M5rþ 84741660M6Þ
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þ Δt4Δr2

1814400r10ðr − 2MÞ2 ð304256r
6 − 9729943Mr5 þ 106098469M2r4 − 541361342M3r3

þ 1415223126M4r2 − 1839339360M5rþ 942984720M6Þ

þ Δt2Δr4

1814400r8ðr − 2MÞ4 ð258392r
6 − 7409415Mr5 þ 68633901M2r4 − 281552428M3r3

þ 576945480M4r2 − 582918120M5rþ 232438140M6Þ

þ Δr6

201600r6ðr − 2MÞ6 ð28752r
6 − 1049773Mr5 þ 7880183M2r4 − 27503250M3r3

þ 50452170M4r2 − 47416440M5rþ 18078120M6Þ þOððΔxaÞ7Þ: ðA2Þ

In order to obtain Eq. (25), we evaluated Eqs. (A1) and
(A2) for ϵ ¼ −1, r ¼ 6M, and Δr ¼ 0, inserted them in
Eq. (20), and reexpanded for small Δt.

APPENDIX B: BESSEL FUNCTION
EXPANSION OF Gret

l

At early times, it is useful to have an analytic approxi-
mation to Gret

l . This is easily obtained using a small
modification of the method described in Ref. [32]. In
particular, we start from the quantity Bðr; r0Þ [which also
depends on ω and l defined in Eq. (2.13) of Ref. [32] ].
Starting from the expansion of Bðr; r0Þ in powers of r0 − r
and χðrÞ≡ ½ω2r4 þ r2fðrÞðlþ 1

2
Þ2�1=2 derived in that

paper, we skip the sum over l and proceed directly to
the inverse Fourier transform. This amounts to computing
integrals over frequency ω of the form

Z
∞

0

χ−n−
1
2 cos ðωΔtÞdω ¼ −

ð−1Þn ffiffiffi
π

p ðiΔtÞn
r3nþ2fn=2ð2lþ 1ÞnΓðnþ 1

2
Þ

× In

� ffiffiffi
f

p ð2lþ 1Þ
2r

iΔt
�
; ðB1Þ

where n is a non-negative integer and InðxÞ is the modified
Bessel function of the first kind. The result is an expression
for Bðr; r0Þ (and thus Gret

l ) as an infinite series of Bessel
functions. Including a given number, n, of terms in the
series yields a result which is accurate through OðΔt2nÞ.
(Note, however, that it is better to keep the Bessel function
form, as that gives a more accurate result over a larger range
of values for Δt.) Explicitly, in the case r ¼ r0 the first few
terms are

Gret
l ¼1

2
I0−

iΔtI1
8ð2lþ1Þr2

ffiffiffi
f

p
ðr−8MÞþ Δt2I2

192ð2lþ1Þ2r5 ½32ð30l
2þ30l−79ÞM2r−2ð320l2þ320l−219ÞMr2

þ3ð32l2þ32l−1Þr3þ3456M3�− iΔt3I3
3840

ffiffiffi
f

p ð2lþ1Þ3r8 ½11520ð54l
2þ54l−281ÞM4rþ160ð72l4þ144l3

−5044l2−5116lþ10191ÞM3r2−4ð3360l4þ6720l3−91280l2−94640lþ86013ÞM2r3þ4ð1280l4

þ2560l3−16464l2−17744lþ6275ÞMr4−5ð128l4þ256l3−736l2−864lþ1Þr5þ2304000M5�þ��� ; ðB2Þ

where the argument of all the Bessel functions is the same
as that of In in Eq. (B1). In this work, we make use of an
expansion through n ¼ 20; the higher terms are provided

electronically as Supplemental Material to this paper [39].
In order to obtain Eq. (24), we evaluated Eq. (B2) for
r ¼ 6M and expanded for small Δt.
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