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We derive the details of a new screening mechanismwhere the interactions of baryons and dark matter can
be screened according to the local dark matter density. In this mechanism, the value of Newton’s constant is
dark matter-density dependent, allowing for the possibility that astrophysical phenomena are very different
in galaxies less dense than the Milky Way. The parametrized post-Newtonian parameter γ, which quantifies
the difference between kinematical and lensing probes, also depends on dark matter density. We calculate the
effects of varying G on various stages of stellar evolution, focusing on observables that impact cosmology:
the Cepheid period-luminosity relation and the supernova Ia magnitude-redshift relation. Other potential
tests of the model are also investigated including main-sequence, post-main-sequence, and low-mass dwarf
stars. Finally, we discuss how extragalactic tests of γ could provide complementary constraints.
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I. INTRODUCTION

Screening mechanisms play a paramount role in modern
cosmology. Using nonlinear effects, they act to suppress
potential deviations from the standard Λ cold dark matter
(ΛCDM) cosmological model on small scales by hiding the
new or fifth forces that are ubiquitous in theories of dark
energy that include newdegrees of freedom (d.o.f.) (typically
a light scalar) coupled to matter [1–8]. Typically, they are
efficient in high-density regions such as the Solar System and
the MilkyWay but do not operate at low densities in order to
allow for novel cosmological phenomenologies. Models of
dark energy that do not include screening mechanisms are
typically fine tuned or ruled out (see Refs. [9,10] for some
exceptions). This has made screening mechanisms the focus
of much theoretical study [2], the inspiration for several
laboratory tests [5,6] specifically designed to search for them,
and targets for upcoming cosmological surveys.
Themost commonly studiedmechanisms focus on screen-

ing interactions between a hypothetical new scalar and
matter, although new vectors can also have screening
mechanisms [11], as can theories where the graviton is
massive [12]. Focusing on scalars,1 present screening

mechanisms fall into one of two categories. The chameleon
[13,14], symmetron [15], and dilaton [16] models screen
by suppressing the new scalar charge, which quantifies an
object’s response to a fifth force field. Conversely, Vainshtein
[12,17] and K-mouflage [18] screening suppresses the fifth
force field compared with the Newtonian one.
Any new screening mechanism would have profound

consequences for cosmology and gravitation because it
would allow for the construction of novel nontrivial dark
energy models and modified gravity theories. A new screen-
ing mechanism is apposite now more than ever, since the
binary neutron star merger with optical counterpart has ruled
out a plethora of dark energy models that utilize those
mechanisms [19–22]. Others, in particular chameleon, sym-
metron, and dilaton models, are already constrained to levels
where they cannot explain dark energy [23].
It is widely believed that no new screening mechanism

exists, based on the following argument. Consider a scalar
ϕ coupled to matter represented by an energy-momentum
tensor Tμν, and perturb both about their background values
so that ϕ ¼ ϕ̄þ δϕ, Tμν ¼ T̄μν þ δTμν. The most general
effective action for the perturbations is (ignoring disformal
couplings, which do not give rise to new screening
mechanisms [24,25]),

δS¼
Z

d4x

�
Zμνðϕ̄Þ∂μδϕ∂νδϕ−meffðϕ̄Þδϕ2þβðϕ̄Þ δϕ

Mpl
δT

�
;

ð1Þ

*sakstein@physics.upenn.edu
†harry.desmond@physics.ox.ac.uk
‡bjain@physics.upenn.edu
1The screening mechanisms in vector and massive gravity

theories can be phrased in terms of equivalent scalar screening
mechanisms either by using the Stückelberg trick or by consid-
ering the decoupling limit.
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where δT ¼ ημνδTμν is the trace of the perturbed energy-
momentum tensor. This includes a noncanonical kinetic
term Zμν, an effective mass meffðϕ̄Þ, and a coupling to
matter βðϕ̄Þ, all of which are background dependent. This
action gives rise to a scalar-mediated fifth force

F5 ∼
2β2ðϕ̄ÞGMffiffiffiffi

Z
p

r2
e−meffðϕ̄Þr; ð2Þ

where Z ∼ detðZμνÞ. Upon inspection, one can discern three
possible methods of suppressing this environmentally. One
possibility is that the Compton wavelength λC ∼meffðϕ̄Þ−1
is smaller than a micron so that current laboratory tests are
satisfied [26–28]. This is how the chameleon mechanism
operates. Another is that the coupling to matter is small
enough to evade fifth force searches in the Solar System
[29]. This is how the symmetron and dilaton mechanisms
screen. The final is to have a large kinetic matrix Z, as is the
case with the Vainshtein and K-mouflage mechanisms. The
argument that there are no new screening mechanisms is
that any new scalar interactions (either self or with matter)
will ultimately be encapsulated in Eq. (2).
Recently, the authors of Ref. [30] have devised a dark

energy model where the cosmic acceleration is driven not
by new dynamical d.o.f. but by dark matter-baryon inter-
actions. In particular, the Jordan frame metric, g̃μν, which
baryons couple to, is a combination of the Einstein frame
metric, gμν, which couples to dark matter, and the dark
matter four-velocity uμ:

g̃μν ¼ R2ðρDMÞðgμν þ uμuνÞ −Q2ðρDMÞuμuν: ð3Þ

Here, R and Q are arbitrary functions that are assumed to
tend to unity (so that g̃μν ¼ gμν) at early times, or,
equivalently, when the dark matter density is high, but
become important around the present epoch and drive the
cosmic acceleration without any need for dark energy. The
authors speculated that any deviations from general rela-
tivity (GR) in high dark matter-density environments would
be highly suppressed as a necessary corollary of R and Q
tending to unity at early times/high densities. This circum-
vents the argument that there cannot be new screening
mechanisms because there are no new d.o.f. in this model,
only the standard model, GR, and dark matter.
The reader may recognize the coupling of Eq. (3) as a

disformal transformation of the metric. It is well known that
disformal transformations of this type can give rise to
higher-derivative and nonlinear derivative interactions—
Horndeski and its extensions—when one inverts the trans-
formation to work in the Jordan frame [31–34], so the
reader may wonder if our mechanism is one of the known
mechanisms masquerading in the Einstein frame. This is
not the case. One can see this by noting that Horndeski (and
its extensions) only admit an Einstein frame if the effects
of the nonlinearities can be removed by a disformal

transformation [31]. If one were to construct the Jordan
frame action, then all of the nonlinear terms would cancel
in the equations of motion. Another way to see that our
mechanism is unique is to note that our derivation is linear
in the new field—by which we mean that the screening
does not rely on the solution to a nonlinear equation for the
dark matter field sourced by an object—whereas other
screening mechanisms rely crucially on nonlinearities to
operate.
In this work, we study this theory in detail and verify that

a novel screening mechanism indeed exists. In particular,
we will show that, as a consequence of the interactions:

C.1 Newton’s constant becomes dark matter-density
dependent, i.e., G ¼ GðρDMÞ.

C.2 The parametrized post-Newtonian (PPN) parameter
γ becomes dark matter-density dependent.

Regardless of dark energy—one can always consider
theories with screened fifth forces that are not cosmologi-
cally important, as is the case with a large portion of the
chameleon and symmetron parameter space as well as the
quartic and quintic Galileons and generalizations thereof—
a basic requirement for any theory producing C.1 and C.2 is
that the Solar System is screened; otherwise, stringent tests
of gravity already performed would be violated [29,35]. It
is likely that a vast portion of the Milky Way (MW) is also
screened since several recent tests of gravity aimed at
constraining fifth forces apply here [6,7]. This implies that
tests of the theory should focus on extragalactic observ-
ables, including galaxies in halos less dense than that of the
MW, and voids (including the local void). To this end, in
Secs. IV–VII, we will study the consequences of C.1 for
astrophysical objects that can be observed in other galaxies,
with the ultimate aim of identifying novel astrophysical
probes of this theory. It is possible that some objects could
be unscreened in our own Galaxy in regions where the dark
matter density is smaller than in the solar neighborhood.
For this reason, we also discuss potential probes within the
MW in Sec. VIII. Astrophysical tests have been incredibly
successful for constraining other screening mechanisms
[29,36–50]. In Sec. IX, we discuss how C.2 could be used
to further constrain the theory using extragalactic tests
comparing lensing and kinematical tracers of the gravita-
tional potential.
The layout of the paper is as follows. In Sec. II, we

review the model of Ref. [30] and discuss its salient
features. In Sec. III, we derive the new screening mecha-
nism, in particular C.1 and C.2, and discuss possible tests.
The main astrophysical test we will consider is devised
in Sec. IV. Here, we study the implications of C.1 for
post-main-sequence stars with masses in the range
5 M⊙–13 M⊙. Stars with these masses may undergo
Cepheid pulsations, and we derive the change in the
period-luminosity relation (PLR), which is used to mea-
sure the distance to extragalactic hosts and calibrate the
distance ladder. In Sec. V, we analytically and numerically
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investigate the properties of unscreened main-sequence
stars. As expected, they are more luminous than their
screened counterparts due to the increased rate of nuclear
burning needed to maintain hydrostatic equilibrium when
their self-gravity is stronger. In Sec. VI, we study the tip of
the red giant branch (TRGB), which is used as a distance
indicator. We find that the TRGB distance to unscreened
galaxies is overestimated, and thus comparing TRGB and
Cepheid distances (which underestimate the distance) is a
promising method of constraining our screening mecha-
nism. In Sec. VII, we discuss white dwarfs and type Ia
supernovae in unscreened galaxies. The Chandrasekhar
mass is smaller when the value of G is increased, while
the rescaled supernovae peak luminosity is larger. In
Sec. VIII, we study low-mass dwarf stars which could
potentially be unscreened in the outskirts of the MW
where the dark matter density is lower than it is locally. In
particular, we derive the effects of increasing G on the
minimum mass for hydrogen burning (separating red and
brown dwarfs) and the radius plateau in the brown dwarf
Hertzsprung-Russell diagram. The minimum hydrogen-
burning mass decreases, and the brown dwarf radius is
smaller, as one would expect for more compact objects. In
Sec. IX, we discuss possible tests of C.2 in the form of
mass vs light comparisons. Both strong and weak lensing
of extragalactic sources can be used to probe γ by
comparing with suitable dynamical tracers such as the
x-ray surface brightness or stellar velocity dispersion.
Finally, we summarize our findings, discuss avenues for
future work, and conclude in Sec. X. At times, we will
make reference to polytropic models and the Eddington
standard model; a brief review of these is provided in
Appendix.
Although our tests are framed in terms of the dark

matter-baryon interaction model, they are all designed
simply to look for signatures of varying Newton’s constant
outside the solar system. Thus, they apply equally to any
theory of gravity in which G varies spatially.

A. Conventions

We use the mostly plus convention for the Minkowski
metric, ημν ¼ diagð−1; 1; 1; 1Þ. We use GN to refer to the
value of Newton’s constant measured locally (in the Solar
System) and GðρDMÞ to refer to its value at general ρDM.
The Planck mass, which appears in the Einstein-Hilbert
action, is Mpl

2 ¼ ð8πGÞ−1; i.e., G without any stated
density dependence is a constant. In all cases, logðxÞ≡
log10ðxÞ unless otherwise stated.

II. DARK MATTER-BARYON INTERACTIONS

Here, we briefly review the model proposed by Ref. [30].
In this model, dark matter-baryon interactions give
rise to an effective space-time for the baryons that
depends on the dark matter density. The dark matter is

modeled as an irrotational fluid. The effective field theory
for this is simply a PðXÞ theory2 for a scalar Θ with X ¼
−gμν∂μΘ∂νΘ. [Note that we take Θ to have dimensions of
length and PðXÞ to have dimensions of ½mass�4.] The action
for this sector (including gravity) is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
RðgÞ
16πG

þ PðXÞ
�
; ð4Þ

which gives the energy-momentum tensor for dark matter,

TDM
μν ¼ 2PX∂μΘ∂νΘþ Pgμν; ð5Þ

where PX ≡ dPðXÞ=dX. From this, we can identify the
four-velocity, pressure, and density of the dark matter:

uμ ¼ −
∂μΘffiffiffiffi
X

p ; PDM ¼ PðXÞ;

and ρDM ¼ 2PXX − PðXÞ: ð6Þ
Since we are interested in pressureless nonrelativistic dark
matter, we can take PDM ≪ ρDM, which implies that

ρDM ≈ 2PXX: ð7Þ
The dark matter-baryon interactions arise because the

baryons move on an effective Jordan frame metric g̃μν that
is a combination of the Einstein frame metric gμν and the
dark matter variables. In particular,

g̃μν ¼ R2ðXÞðgμν þ uμuνÞ −Q2ðXÞuμuν
¼ R2ðXÞgμν þ SðXÞ∂μΘ∂νΘ; ð8Þ

where RðXÞ and QðXÞ are free functions and

SðXÞ≡ R2ðXÞ −Q2ðXÞ
X

: ð9Þ

The dark matter-baryon interaction is incorporated in the
model by augmenting the action (4) with a term

Sb½g̃; fψb;ig� ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lbðg̃; fψb;igÞ; ð10Þ

where ψb;i represent the various baryon fields. Cosmic
acceleration is achieved as follows. Considering a flat
Friedmann-Lemaître-Robertson-Walker universe given by

ds2 ¼ −dt2 þ a2ðtÞdx⃗2 ð11Þ

in the Einstein frame, the field Θ is time dependent so that,
using Eq. (7), any factor of X or _Θ can always be replaced

2In general, one needs three scalars ΦI to describe a fluid, but
in the absence of vorticity, there is only one d.o.f., and so the
theory is dual to a PðXÞ theory [51].
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by a function of ρDMðtÞ. This metric is decelerating since at
late times aðtÞ ∼ t2=3 (recall there is no dark energy in this
model). The Jordan frame metric is then

ds̃2 ¼ −Q2ðρDMÞdt2 þ R2ðρDMÞa2ðtÞdx⃗2: ð12Þ

The functions R and Q are chosen such that, at late times,
i.e., ρDM ∼H2

0=GN, the scale factor in this frame,
ãðt̃Þ ¼ RðρDMðtðt̃ÞÞaðtðt̃ÞÞ, is accelerating. [The time coor-
dinate has been changed from t to t̃ by defining
dt̃ ¼ QðρDMÞdt.] Thus, cosmic acceleration is achieved
without the need for any dark energy d.o.f. At early times,
the standard cosmological history is recovered by assuming
that both R and Q tend to unity so that g̃μν → gμν. Since
these functions describe the interaction of dark matter
with baryons, this must be a density-dependent effect that
suppressed deviations from GR when ρDM ≳H2

0=GN. This
observation led the authors of Ref. [30] to speculate that a
similar mechanism would screen the interactions on smaller
scales, inside collapsed objects. In the next section, we
show that this is indeed the case.

III. SCREENING MECHANISM

In this section, we derive C.1 and C.2, namely that
Newton’s constant and the PPN parameter γ are density
dependent in this theory. (The reader interested only in
astrophysical tests can safely skip to the subsequent
sections.) We accomplish this by calculating the weak-
field limit for an isolated star immersed in a background
dark matter density. We assume that the dark matter density
does not vary spatially over length scales shorter than the
radius of the star. This means that we can treat X as constant

and perturb Θ ¼ Θ̄ − θ so that X ¼ _̄Θ2 − 2 _̄Θ _θþOðθ2Þ.
The four-velocity of the dark matter is then (ignoring post-
Newtonian corrections)

uμ ¼
�
1þOð_θ2Þ; ∂

iθ
_̄Θ

�
; ð13Þ

from which we can identify the dark matter velocity

viDM ¼ ∂iθ= _̄Θ. Since the dark matter is nonrelativistic, this
is≪ 1.We assume further that the star itself does not source
an appreciable amount of dark matter (i.e., darkmatter does
not cluster inside the star), so we simply need to solve the
Einstein equations for a baryon source.3 These are

Gμν ¼ 8πGTb;μν; ð14Þ

where Tμν
b ¼ 2=

ffiffiffiffiffiffi−gp
δSb=δgμν. Now, since the baryons

couple to dark matter, this is not covariantly conserved
(∇μT

μν
b ≠ 0). It is the Jordan frame energy-momentum

tensor T̃μν
b ¼ 2=

ffiffiffiffiffiffi
−g̃

p
δSb=δg̃μν (

ffiffiffiffiffiffi
−g̃

p ¼ QR3 ffiffiffiffiffiffi−gp
) that is

covariantly conserved (with respect to the Jordan frame
metric, ∇̃μT̃

μν
b ¼ 0). This means that quantities such as the

baryon pressure and density should be defined in the Jordan
frame using T̃μν

b . They can then be used in Eq. (14) by
converting to the Einstein frame energy-momentum tensor
as follows [30]:

Tbμν ¼ QR3T̃κλ
b

× ½R2gμκgμλ þ ð2RRXgκλ þ SX∂κΘ∂λΘÞ∂μΘ∂νΘ�:
ð15Þ

In order to calculate this for our nonrelativistic setup, we
need to specify a coordinate system. By virtue of our choice
of four-velocity in Eq. (13), we are working in Minkowski
space in Cartesian coordinates, i.e.,

ds2 ¼ −dt2 þ dx2; ð16Þ

at the background level. As we are only interested in
calculating the weak-field limit to Newtonian order
[Oðv2=c2Þ], it is sufficient to calculate the Jordan frame
metric to zeroth order to compute the energy-momentum
tensor. At this order, one has

ds̃2 ¼ −Q2dt2 þ R2dx2: ð17Þ

This implies that

T̃μν
b ¼ diag

�
ρ̃b
Q2

; 0; 0; 0

�
; ð18Þ

where ρ̃b represents the Jordan frame density and we have
assumed that the baryons are pressureless (i.e., the non-
relativistic limit).
Now, we are in a position to calculate the source for

Eq. (14) using Eq. (15):

Tb 00 ¼
R3

Q
½R2 þ _̄Θ2ðSX _̄Θ2 − 2RRXÞ�ρ̃b; ð19Þ

Tb 0i ¼ −
R3

Q
½SX _̄Θ2 − 2RRX�ρ̃b _̄Θ∂iθ; ð20Þ

Tb ij ¼
R3

Q
½SX _̄Θ2 − 2RRX�ρ̃b∂iθ∂jθ: ð21Þ

Since ∂iθ ∼ vi, the 0i- and ij-components are at a higher
post-Newtonian order than the 00-component, and we can

3In fact, this assumption can be relaxed without altering the
results of our derivation. One can see this by noting that for pure
disformal transformations the scalar θ sourced at Newtonian
order only gives post-Newtonian corrections and hence cannot
contribute to any fifth force [25]. Additionally, the conformal
coupling contributes terms of order _̄Θ and θ02 to the Jordan frame
metric, which are both higher order in the post-Newtonian
expansion and therefore does not contribute to any fifth force.
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safely neglect them.4 The important point is that we can

invert Eq. (7) to write X̄ ¼ _̄Θ2
and _̄Θ as a function of ρDM,

which means that the source for the Einstein equations is a
function of the local dark matter density. In particular, we
can expand Einstein’s equations assuming the Newtonian
limit for the metric

gμν ¼ ð−1þ 2ΦÞdt2 þ ð1þ 2ΨÞδijdxidxj; ð22Þ

to find

∇2Φ ¼ ∇2Ψ ¼ −4πGfðρDMÞρ̃b ð23Þ

with

fðρDMÞ ¼
R3

Q
½R2 þ _̄Θ2ðSX _̄Θ2 − 2RRXÞ�: ð24Þ

The solution of Eq. (23) is

Φ ¼ Ψ ¼ fðρDMÞ
G
r

Z
d3x⃗ρ̃b: ð25Þ

Typically, one would identify the integral with the star’s
mass M (or, in the case of the interior, the mass enclosed
within a sphere of radius r), but in our case, there is a
subtlety. Because ρ̃b is defined in the Jordan frame, we
actually have to use the volume element defined using the
Jordan frame metric. For this reason, one has

M ¼
Z

d3x⃗R3ρ̃b; ð26Þ

and therefore Eq. (25) is

Φ ¼ Ψ ¼ fðρDMÞ
R3

GM
r

: ð27Þ

Using this, we can calculate the Jordan frame metric5

ds̃2 ¼ g̃μνdxμdxν

¼ Q2

�
−1þ 2

fðρDMÞ
RQ2

GM
r

�
dt2

þ R2

�
1þ 2

fðρDMÞ
R3

GM
r

�
δijdxidxj: ð28Þ

The simplest way to extract the observable quantities is to
change gauge to quasi-Cartesian coordinates. This can be
accomplished by defining

t̃ ¼ Qt and x̃i ¼ Rxi: ð29Þ
One then finds

ds̃2 ¼
�
−1þ 2

GNðρDMÞM
r̃

�
dt̃2

þ
�
1þ 2γðρDMÞ

GNðρDMÞM
r̃

�
δijdx̃idx̃j; ð30Þ

where the gravitational constant

GðρDMÞ ¼
fðρDMÞ
Q2

G: ð31Þ

We remind the reader that this is solely a function of ρDM
because we can always express _̄Θ in terms of this. We can
also identify the PPN parameter

γðρDMÞ ¼
Q2

R2
; ð32Þ

which controls light bending and the Shapiro time-delay
effect. It is also a function of ρDM. GR predicts that this is
unity, and in the Solar System, deviations are constrained to
be smaller than 2 × 10−5 by the Cassini measurement of the
Shapiro time delay [52]. Since we do not have similar
measurements in lower-density unscreened galaxies, this
bound does not apply in general.
A few comments are in order. First, note that the theory

violates the equivalence principle between baryons and
dark matter; i.e., baryons and dark matter will fall at
different rates in externally sourced gravitational fields if
the external source is baryonic in nature. This breaking of
the equivalence principle indicates the presence of a fifth
force between baryons mediated by a particle with spin
different from 2 (i.e., not a graviton) since the equivalence
principle is a necessary feature of spin-2 theories [53].
Second, note that when the Jordan frame metric is
maximally conformal, i.e., S ¼ 0 (Q ¼ R), one has GN ¼
R2G and γ ¼ 1 as one would expect.6 Third, in the

4Note that there are two velocities here—vi, the dark matter
velocity, and the velocity of the baryon fluid—so really this is a
post-Newtonian expansion in both velocities. The latter velocity
is post-Newtonian by definition, so we are implicitly assuming
that the velocity of the dark matter is of the same order or less
than the baryon fluid velocity.

5Note that there is a contribution to the 0i-component of the
form g̃0i ¼ S _̄Θ2

vDMi. This can be moved to the 00-component by
performing a linearized gauge transformation x0μ ¼ xμ þ ξμ with
ξi ¼ 0 and ξ0 ¼ −S _̄Θ2

vDM ixi [24,25]. This adds a term
−2S _̄Θ2

vDM ivib to the 00-component, which we have neglected.
It would be interesting to investigate the effects of this (non-PPN)
term for the dynamics of test bodies in this space-time. We leave
this for future work.

6One would have γ ≠ 1 if R were a function of Θ rather than X
because the baryon fluid would source the scalar. Since we have
assumed this is not the case, we expect γ ¼ 1. See Ref. [6] for
more details.
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maximally disformal case R ¼ 1, the results are identical to
those derived for pure disformal couplings by Ref. [25].
Finally, one could derive the other PPN parameters by
extending the calculation here. We expect that this will be
significantly more complicated due to the necessity of
including both the dark matter velocity and post-Newtonian
baryon fluid variables. It is also likely that one will need to
perform a complicated gauge transformation once the
Jordan frame metric has been found (see Ref. [25]).
Equations (31) and (32) are the main results of this

section. Reference [30] did not give canonical forms for R
and Q such that they can drive the cosmic acceleration.
Since we wish to remain agnostic, we, too, will not provide
functional forms but, rather, will simply treat Newton’s
constant and γ as functions of ρDM. This allows for the
possibility of model-independent tests of the theory that can
be used to constrain dark energy (or other) models if and
when they are devised. Our only demands will be that
GðρlocÞ ¼ GN and that γðρlocÞ satisfies the Cassini bound,
where ρloc is the dark matter density at the location of the
Solar System in the Milky Way’s halo, approximately
107 M⊙ kpc−3 [54,55]. This ensures that the Solar System
is screened so that any tests of this theory are necessarily
extragalactic and must be performed using galaxies with
dark matter halos that are less dense than the MW.
Depending on the form of GðρDMÞ, it is also possible that
the outskirts of the MW are unscreened.
Having identified the novel screening mechanism, the

rest of this paper is devoted to finding astrophysical probes
of it. We speculate on other potential tests in Sec. X B.
Since we require the MW to be screened, we focus on
objects that are abundantly observed in other galaxies. We
will focus primarily on Cepheid variable stars, both because
they can be modeled numerically and because their use as
distance indicators has previously been successful in
constraining screening mechanisms that only exhibit effects
in other galaxies. We will also discuss white dwarf stars and
type Ia supernovae, as well as main-sequence stars, the tip
of the red giant branch, and low-mass stars (red and brown
dwarfs).
In this work, we will take the threshold for screening

to be the ambient dark matter in the Solar System,

ρloc ¼ 107 M⊙ kpc−3.7 Objects in regions denser than this
haveGðρDMÞ ¼ GN,whereas those in regions less dense than
this haveGðρDMÞ > GN,

8withΔG a constant independent of
ρDM. Since GðρDMÞ does not vary over the objects we
consider, we can then derive the change in these objects
by setting

GðρDMÞ ¼
�
1þ ΔG

GN

�
GN: ð33Þ

It is important to bear in mind that in general the value ofΔG
is likely to vary between objects inhabiting regions of
different dark matter densities.
The reader uninterested in the technical details of the

tests should consult Table I and may then skip to Sec. X.

IV. CEPHEID VARIABLE STARS AND THE
PERIOD-LUMINOSITY RELATION

Cepheid variable stars have proven to be useful tools for
constraining screening mechanisms [4,7,37,42]. In this
section, we introduce Cepheids and the PLR and calculate
the change to both when Newton’s constant is varied. Our
discussion will be agnostic as to the cause of G ≠ GN; in
practice, the precise model for G would be input at a later
stage when comparing the predictions made here with
observations.

A. Cepheid stars

Cepheids are post-main-sequence stars of mass approx-
imately 3–20 M⊙ that pulsate with a period that is
dependent primarily upon their luminosity with a weak
dependence on mass and metallicity. They are composed of

TABLE I. Summary of astrophysical probes of the screening mechanism (Secs. IV–IX).

Probe Effect Tests

Cepheid stars Modification of period-luminosity relation Compare distance indicators
Main-sequence stars Luminosity proportional to GðρDMÞ3 (low mass)

or GðρDMÞ (high mass)
Hertzsprung-Russell diagram,
globular clusters

Tip of the red giant branch Decrease in tip luminosity Compare distance indicators
Red dwarf stars Minimum hydrogen-burning mass proportional

to GðρDMÞ1.398
Hydrogen-burning lines in atmosphere

Brown dwarf stars Decrease in radius proportinal to GðρDMÞ−1=2
at fixed mass

Measurement of radius plateau

Lensing (strong and weak) More lensing per unit mass ðγ > 1Þ Compare dynamical and lensing masses

7This is the cosmological dark matter density at z ≈ 40, which
may imply that this model predicts that deviations from ΛCDM
emerge around this epoch or later since it is possible that the
threshold dark matter density is lower than in the MW.

8Note that we have implicitly assumed that the fundamental
theory functions are such that the strength of gravity is enhanced
in low-density environments. One could instead haveG < GN, in
which case the results of the tests studied in this work would be
opposite. For example, main-sequences stars would be less
luminous.
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a mainly inert convective helium core (there is a small
amount of helium burning at the very center of the core)
surrounded by a thin hydrogen-burning shell that is their
primary power source. Surrounding this is a convective
envelope. The envelope contains a thin layer of partially
ionized helium that drives the pulsations. In particular, a
small contraction of the star will cause a rise in the nuclear
burning rate, which is accompanied by a temperature
increase. This would typically result in an increase in
the outward pressure due to photon absorption in the outer
layers, but in these stars, it instead causes further helium
ionization, which causes an increase in the opacity. This
makes further ionization easier, leading to further contrac-
tions. This ionization zone therefore acts as an energy dam,
storing energy that is eventually released, resulting in the
outward phase of the pulsation. This opacity-driven process
is known as the κ-mechanism [56].
Figure 1 shows the typical evolution of a Cepheid star

from its zero age main sequence (ZAMS) (point A) through
central helium exhaustion (point H); we have chosen a
5 M⊙ star, but any mass will exhibit qualitatively similar
features. The κ-mechanism can only drive pulsations in the
narrow region between the two dashed lines referred to as
the instability strip. This is because the internal stellar
motion must be nonadiabatic in order for the ionization
zone to store energy. If it is not, then the energy losses
above the ionization zone would necessarily balance the
energy gains at its base. The blue edge of the instability
strip corresponds to the stage of stellar evolution where the
ionization zone enters the nonadiabatic region, and the red
edge corresponds to the stages where convective motion
damps the pulsations sufficiently that they are essentially
quenched. Examining the figure, one can see that a star will
cross the instability strip at least three times [it is possible to

have more crossings between (E) and (H)]. The first
crossing occurs between phases (C) and (D) and lasts
for a very short time (approximately 104 yr), making the
probability of observing stars here extremely low. The
second crossing and third crossing occur during phases
(F)–(H) during the so-called blue loop, which lasts approx-
imately 1–100 Myr, and it is on these crossings that
Cepheids are typically observed.
The blue loops are the result of the interplay of several

complex physical processes that are not fully understood
[57–59]. Indeed, Fig. 1 shows the track for a star that has
executed a blue loop, but the size, shape, and even existence
of the loop are highly dependent on the prescription one
employs for these processes. For this reason, it will prove
instructive to understand the salient features governing each
phase of evolution in Fig. 1 to aid us in constructing models
that exhibit blue loops whenGðρDMÞ ≠ GN. We caution that
our review will be far from comprehensive, and we refer the
reader to the exhaustive literature (e.g., Ref. [60]) on this
ongoing field of research for more in-depth discussions.
Point (A) is the ZAMS. At this point, the star begins to

burn hydrogen in its core, depleting its supply and
producing helium. At point (B), the hydrogen core begins
to contract. This is the first place where internal processes
affect the post-main-sequence dynamics. The amount of
contraction and overshooting will determine the final mass
and radius of the core, as well as the hydrogen and helium
gradients above the core. Point (C) corresponds to core
hydrogen depletion. At this point, the core is composed of
inert helium surrounded by a thick hydrogen-burning shell.
A large fraction of the energy generated by this shell is
absorbed by the outer layers of the star, causing a rapid
expansion and cooling of the envelope. This is the reason
for the reddening of the star in the color-magnitude diagram
(CMD). This phase spanning the region between (C) and
(D) lasts approximately 104 yr. This is the second phase
where internal processes are important. The efficiency of
convective mixing and the length scale over which con-
vective mixing occurs plays an important role in determin-
ing the temperature and luminosity of point (D). Smaller
mixing lengths move it to lower temperatures. Point (D) is
the Hayashi track. This is the point where the envelope has
become fully convective. The core temperature during this
phase can exceed the ignition temperature for the triple-
alpha process, so some helium burning occurs in the core,
but the star’s luminosity is primarily due to hydrogen
burning in the thin shell surrounding the core. The star is a
red giant between (D) and (E). Point (E) is referred to as the
dredge-up. The convective envelope has extended into the
region that was formerly the convective core during main-
sequence burning so that material that has been processed
through the Carbon-Nitrogen-Oxygen cycle is mixed
throughout the entire envelope.
The blue loop may begin at point (F), when the envelope

becomes radiative. The blue-loop phase is well studied
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FIG. 1. The evolution of a 5 M⊙ star with Z ¼ 0.0006 in GR
(solid, red). The dashed black lines show the edges of the
instability strip. (A) ZAMS. (B) Core contraction begins.
(C) Central hydrogen exhaustion. (D) Envelope becomes con-
vective. (E) Central hydrogen burning begins. (F) Blue loop
begins. (G) Farthest point on the blue loop. (H) Central helium
exhausted.
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numerically and is a generic feature of many numerical
codes (e.g., Refs. [61–63]), but it is not the result of any one
single simple physical process. Whether or not the star
executes a blue loop depends on the size of the core, the
amount of overshooting (overshooting increases the helium
core mass at the end of hydrogen burning, and outward
overshooting from the core can inhibit the loops, whereas
inward shooting from the base can exacerbate them [57]),
and the amount of convective mixing. Mass loss and
rotation can also be important. One essential requirement
for the execution of the loops is efficient semiconvection
[59]. There are two inequivalent criteria for convection: the
Schwarzschild criterion and the Ledoux criterion (see, e.g.,
Ref. [64]). In homogeneous media, the two are equivalent,
but in the presence of strong gradients in the chemical
composition, it is possible that the Schwarzschild criterion
is violated but the Ledoux criterion is not. In such semi-
convective regions, mixing is slow. For Cepheid stars at
stage (F), the amount of semiconvection determines the
efficiency with which helium is mixed into the core. Point
(G) is the hottest part of the blue loop, and point
(H) indicates the end of core helium burning where the
star rejoins the Hayashi track. All of the processes
described above lack a completely fundamental description
and are typically implemented into stellar structure codes
using phenomenological descriptions controlled by effi-
ciency parameters that are likely mass dependent. These are
used to understand the role and importance of these
processes for various stages of stellar evolution.
For stars with 3–9 M⊙, stellar modeling indicates that

the blue loops are abundant, provided that semiconvection
is included in the model. For heavier stars (10–20 M⊙), the
situation is more complicated [59]. For these stars, core
helium burning can begin before pointD in Fig. 1. Whether
or not this happens depends strongly on the mixing
processes described above, and it is possible that the star
can end up as a red supergiant or a blue supergiant or spend
some time in both phases (blue loops). For these stars, the
existence of blue loops is highly dependent on the choice of
the efficiency parameters for the mixing processes.

B. Period-luminosity relation

When a star crosses the instability strip to become a
Cepheid, it obeys a well-known relationship between
pulsation period, P, and luminosity, L [65],

logðLÞ ¼ A logðPÞ þ ϵ logðTeffÞ þ β; ð34Þ

with A ≃ 1.3 [66]. Heuristically, this relationship comes
about as follows. Using stellar perturbation theory, one can
show that the period of any stellar oscillation satisfies
[42,56,67]

P ∝

ffiffiffiffiffiffiffiffiffiffiffi
R3

GNM

s
: ð35Þ

Using the Stefan-Boltzmann law, L ∝ R2T4
eff , we can

eliminate the radius in favor of the luminosity and the
effective temperature, and we can further eliminate the
massM by assuming a mass-luminosity relation.9 Thus, we
are left with a relation between the period, the effective
temperature, and the luminosity, which can always be
written in the form of Eq. (34). In practice, the coefficients
A, ϵ, and β must be fit to data rather than derived from first
principles.

C. Unscreened period-luminosity relation

We now wish to understand how the PLR changes in
galaxies less dense than the MW that may be unscreened so
that GðρDMÞ > GN. Examining Eqs. (34) and (35), one can
discern two potential effects. First, since P ∝ GðρDMÞ−1=2,
increasing GðρDMÞ > GN reduces the period; i.e., the star
pulsates faster. The second effect is that we expect the
luminosity at fixed mass to be larger. It is well documented
that increasing the strength of gravity makes stars more
luminous at fixed mass due to an increase in the nuclear
burning rate that is necessary to produce the pressure
gradient needed to sustain hydrostatic equilibrium (see
Ref. [7] and references therein). The change to the PLR can
be written as

Δ logðLÞ ¼ A
2
log

�
1þ ΔG

GN

�
þ BðMÞ log

�
1þ ΔG

GN

�
;

ð36Þ

where Δ logðLÞ≡ logðLÞ − logðLGRÞ is the difference
between the true luminosity and that which would be
inferred if one had used the GR relation given in Eq. (34).
The term proportional to A is the effect of changing the
pulsation period [see Eq. (35)], whereas the second is an
ansatz parametrizing the change in the luminosity due to
the increased rate of nuclear burning. We will justify this
post hoc by showing that a power-law relation is a good
approximation. It is possible that the free coefficient B is a
function of the stellar mass, so we have included this
possibility. We will also find the value of B to depend on
whether the Cepheid is observed at the second or third
crossing of the instability strip.
In order to calculate B, we have modified the stellar

structure code MESA [61–63,68] to compute stellar evolu-
tion for general GðρDMÞ. We have evolved a grid of
5 M⊙–13 M⊙ models with Z ¼ 0.0006 from the pre-
main-sequence through the blue loop phase in order to

9There is some residual mass and metallicity dependence since
a core mass-radius relation is more appropriate for shell-burning
stars.
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calculate Δ logðLÞ. We varied ΔG=GN in the range
0 ≤ ΔG=GN ≤ 0.15. For masses 3 M⊙ < M < 9 M⊙, we
found the loops to be generic, provided that semiconvection
and the Ledoux criterion are enabled. This allowed us to
use a fixed set of mixing parameters. We chose the mixing
length parameter to be αMLT ¼ 1.73 (αMLT ≡ λMLT=HP,
where λMLT is the mixing length and HP is the pressure
scale height). The efficiency of semiconvection was
taken to be αSC ¼ 0.1. For overshooting, we adopted the
parameters f ¼ 0.014 and f0 ¼ 0.004 for burning and
nonburning cores of all compositions. See the instrumen-
tation papers [61–63,68] and [69] for the details of the
overshooting parameters. For masses in the range
10 M⊙–13 M⊙, we found the loops to be uncommon (as
expected Ref. [59]), and it was necessary to vary the mixing
parameters as a function of ΔG in order to produce models
that exhibited them.We used 1.1 ≤ αMLT < 1.3 and 10−4 <
αSC < 100 in order to achieve this. Overshooting was as
above. Different parameter choices lead to small variations
in the blue-loop shape and luminosity at fixed mass, which
is part of the scatter in the PLR that is present even in GR.
Ideally, this uncertainty would be included in any statistical
analysis that applies the PLR we derive here to find
observational bounds on ΔG.

The resultant loops for some representative masses are
shown in Fig. 2 (for visual clarity, we do not show the
preloop phase). The loops for other masses not shown are
qualitatively similar. We have calculated the coefficients
BðMÞ given in Eq. (36) at each crossing of the blue edge of
the instability strip (this is a convenient comparison point,
and the physics is better understood here) by performing a
linear fit for each mass. The coefficients are given in
Table II, and visual representations of our models and the
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FIG. 2. The blue loops for representitive stellar models used to derive the coefficients BðMÞ given in Table II, which appear in the PLR
in Eq. (36). The black (lower) lines show GR models (ΔG=GN ¼ 0), and the blue (middle) and red (upper) lines correspond to
ΔG=GN ¼ 0.075 and ΔG=GN ¼ 0.15, respectively. The black dashed lines show the edges of the instability strip. Each panel
corresponds to a different mass, as indicated. Tracks for other masses are qualitatively similar.

TABLE II. Slope BðMÞ of the Δ logðLÞ − logð1þ ΔG=GNÞ
relation given in Eq. (36) for a range of Cepheid masses measured
at second or third crossing of the instability strip.

M=M⊙ B at second crossing B at third crossing

5 4.21 3.67
6 4.52 3.61
7 4.45 3.79
8 4.34 3.58
9 4.18 3.46
10 4.00 3.48
11 3.81 3.58
12 3.67 3.92
13 3.58 3.95
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best-fitting relations are given in Fig. 3. Future observa-
tional tests of this screening mechanism using unscreened
galaxies (with dark matter densities smaller than the MW)
can utilize these coefficients to make the necessary theo-
retical predictions to constrain the theory.

V. MAIN-SEQUENCE STARS

Main-sequence stars have been less successful at con-
straining screening mechanisms than post-main-sequence
stars, primarily because they are subject to degeneracies
that are more difficult to break. For example, fifth force
effects such as luminosity enhancements are degenerate
with the metallicity [39].10 One promising test is that they
may produce novel deviations in the galactic properties
as a whole as a result of their integrated effects [36], so we
briefly study their properties here. We will do this
both analytically and numerically (using MESA). Both
approaches have previously been used in the literature to
derive the properties of main-sequence stars in other
screening models [36,39], and Ref. [71] has studied the
effects of changing the fundamental constants on some
stellar properties.

A. Analytic expectations

The Eddington standard model is a simple analytic
model for main-sequence stars. It is certainly not detailed
enough to produce accurate models for individual objects,
but it has proven useful in the study of screened stars for
discerning the main effects of changing fundamental
physics on the gross stellar properties [36,39]. This is
precisely because the lack of detailed microphysics and
time evolution allows one to isolate the effects of changing

G. Its use in understanding how screening mechanisms
affect main-sequence stars is standard in the literature
[3,36], so we will not reproduce its derivation in detail,
but we do provide a brief review for the unfamiliar reader in
Appendix. There, we introduce polytropic stellar models
and derive the formulas we use in this section.
The main result of the Eddington standard model is an

analytic expression for the luminosity as a function of mass
[Eq. (A19)]

L ¼ 4πð1 − βðMÞÞGNM
κ

; ð37Þ

where κ is the (assumed constant) opacity and βðMÞ is the
ratio of the gas pressure to the total pressure [the ratio of the
radiation pressure to the total pressure is 1 − βðMÞ]. βðMÞ
is found by solving a quartic equation given in Eq. (A16).
Stars that are entirely gas supported have β ¼ 1 so that
there is no luminosity,11 and stars which have β ¼ 0 are
entirely radiation supported, and the luminosity is maxi-
mum (the Eddington luminosity). A careful analysis of
Eq. (A16) reveals that βðMÞ is a decreasing function of
mass so that low-mass stars are primarily gas supported,
whereas high-mass stars are primarily radiation supported.
One can use simple scaling arguments to show that the
luminosity of gas-supported stars scales as G4M3 and the
luminosity of radiation-supported stars scales like GM
[3,36]. In the context of screening mechanisms, this implies
that low-mass stars are more sensitive probes of fifth forces
than high-mass stars.
To investigate this quantitatively, we simply need to

change GN → GNð1þ ΔG=GÞ in Eq. (37).12 There are two
places where this replacement must be made: in Eq. (37)
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FIG. 3. Δ logðLÞ as a function of logð1þ ΔG=GNÞ at the blue edge of the instability strip for the second crossing (left) and the third
crossing (right). The points indicate the results of MESA models, and the lines are the best-fit linear relations, the slopes of which are the
coefficients BðMÞ given in Table II.

10The one exception to all this is the Sun, where we have
precisionmeasurements of quantities such as the solar neutrino flux
and access to thousands of oscillation modes. Constraints from the
Sun at the level of ΔG=GN ∼ 10−2 have been obtained by
considering the effects on the seismic solar model [70], but these
do not apply to theories where the Solar System is screened.

11This is a drawback of the approximations made in Eddington
standard model. Setting β ¼ 1 is tantamount to removing photons
from the star entirely.

12An analysis similar to the one performed here first appeared
in the unpublished lecture notes at http://www.jeremysakstein
.com/astro_grav_2.pdf by one of the authors.
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directly and in Eddington’s quartic equation (A16) [see
Eq. (A17)]. The second replacement results in the follow-
ing quartic equation,

1 − βðM;ΔGÞ
β4ðM;ΔGÞ ¼

�
1þ ΔG

GN

�
3
�

M
MEdd

�
2

; ð38Þ

where the Eddington mass Medd ≈ 18.2μ−2 M⊙ (μ is the
mean molecular weight) is defined in Eq. (A17). The ratio
of the luminosity of unscreened and screened stars is then

Lunscreened

Lscreened
¼

�
1þ ΔG

GN

�
1 − βðM;ΔGÞ
1 − βðM; 0Þ : ð39Þ

We are interested in fifth force models where ΔG=GN > 0.
We therefore expect that unscreened stars are more

luminous than screened stars at fixed mass since these
stars require a faster nuclear burning rate in order to
maintain hydrostatic equilibrium given the greater inward
gravitational force. More photons are therefore produced as
a byproduct. We have solved Eq. (38) numerically for
ΔG=GN in the range 0–0.15 and have used the resulting
function to calculate the luminosity enhancement using
Eq. (39). Our results are plotted in Fig. 4, where it is evident
that unscreening main-sequences stars indeed enhances the
luminosity. Furthermore, in line with our discussion above,
the enhancement is indeed larger in low-mass stars—
tending to the factor of ð1þ ΔG=GNÞ4 that we predicted
above—since these are gas pressure supported and there-
fore more sensitive to G. The factor of approximately 75%
for ΔG=GN ∼ 0.15 is likely a gross overestimate, given that
the many assumptions underlying this model greatly
simplify the internal dynamics of the star and neglect
many important physical processes. This is why it is of
paramount importance to use numerical simulations to
account for these deficiencies, which we do in the next
subsection.

B. Numerical models

In order to verify our expectations above, we have
evolved a grid of solar-mass and two-solar-mass models
with solar metallicity (Z ¼ 0.02) for ΔG=GN in the range
0 ≤ ΔG=GN ≤ 0.15. The evolutionary tracks in the CMD
are shown in Fig. 5. Evidently, the main sequence is indeed
increasingly luminous (at fixed evolutionary point) when
ΔG=GN is increased, as is the red giant phase. In some
cases, increasing ΔG=GN can make the tracks appear to
mimic those that would be exhibited by larger-mass objects
when ΔG=GN ¼ 0 (i.e., GR). For example, comparing the
track for ΔG=GN ¼ 0.15 in the left panel with the track for
ΔG=GN ¼ 0 in the right, its shape is more akin to that of a
2 M⊙ star than a solar mass object. (The star in the left
panel is cooler and less luminous than a 2 M⊙ star, so the
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FIG. 4. Analytical predictions (computed using the Eddington
standard model) for the luminosity enhancement of unscreened
main-sequence stars compared with screened stars of identical
masses. The values of ΔG=GN are indicated below the corre-
sponding curves.

3.603.653.703.753.80
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.63.73.83.9
1.0

1.5

2.0

2.5

FIG. 5. Main-sequence evolution for a 1 M⊙ (left) and 2 M⊙ (right) star of solar metallicity (Z ¼ 0.02) for values of ΔG=GN as
indicated in the figure.
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exact object it is mimicking in GR would have a mass
smaller than 2 M⊙.) This makes modified gravity partially
degenerate with the initial mass function in setting the
overall photometric properties of galaxies.
Unlike the Cepheid PLR, which has only a small scatter

from metallicity effects, the main-sequence luminosity is
very sensitive to the metallicity. This is one reason that
main-sequence stars have been less successful at con-
straining theories that exhibit screening mechanism than
post-main-sequence and dwarf stars. Any observational test
based on the results derived here must mitigate this
degeneracy either by measuring the metallicity or by
marginalizing over it with a suitable prior. To illustrate
this degeneracy, we plot the evolutionary tracks in the
CMD for one- and two-solar-mass stars in GR with Z ¼
0.01 (subsolar) and Z ¼ 0.03 (supersolar) metallicity in
Fig. 6. It is clear that metallicity is an important degeneracy
for the main sequence.

VI. POST-MAIN-SEQUENCE STARS AND
THE TIP OF THE RED GIANT BRANCH

One powerful method for constraining theories where
the strength of gravity varies between galaxies is to
compare different distance estimates to the same galaxy
[37]. Since different indicators are sensitive to G to varying
degrees, the distances will only agree if one has the correct
theory of gravity. We have already derived the change in the
Cepheid PLR, so in this section, we will study another
distance indicator that has previously been used to con-
strain modified gravity theories: the tip of the red giant
branch.
When stars of mass 0.9≲M=M⊙ ≲ 2 exhaust their

central hydrogen, they leave the main sequence and evolve
along the red giant branch. At this point, they are composed
of a degenerate isothermal 4He core surrounded by a thin
shell of hydrogen in hydrostatic equilibrium. Hydrogen
fusion in this shell is solely responsible for the star’s

luminosity. As the helium core contracts, both the core’s
and the shell’s temperatures increase. When the temper-
ature exceeds that necessary to ignite helium burning,
the triple-α process begins, and the star moves onto the
asymptotic giant branch in a very short time. This leaves
a visible discontinuity in the I-band magnitude at
I ¼ 4� 0.1 with a very small scatter due to metallicity
effects [65]. By looking for this discontinuity, the distance
to the star can be calculated since both the magnitude and
flux are known.
The effects of changing G on the TRGB were inves-

tigated by Ref. [37]. Increasing G has the effect of
increasing the rate of hydrogen shell burning around the
core since a faster rate is needed to balance the stronger
gravity. This has the effect of causing the shell and core
temperature to rise at a faster rate, igniting the triple-α
process earlier, which causes the luminosity at the tip to
decrease. Using MESA, we have investigated this effect for
our screening mechanism by evolving 1.3 M⊙ stars of solar
metallicity (Z ¼ 0.02) to the TRGB. Our results are plotted
in Fig. 7. The left panel shows the Hertzsprung-Russell
diagram for some representative values of ΔG=GN. One
can see that low values produce similar tip luminosities,
whereas stronger modifications produce drastic reductions.
This is quantified in the right panel where we plot the ratio
of the tip luminosity to the GR value as a function of
ΔG=GN. This is well fit by the relation

LTRGB

LTRGB;GR
¼ 1.0019

�
1 − 0.00189148

�
1þ ΔG

GN

�
13.4866

�
:

ð40Þ

Using the equation relating flux and luminosity distance,
F ¼ L=d2L, one can see that the lower tip luminosity for
unscreened stars will result in the GR formula overesti-
mating the distance:
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FIG. 6. The evolution of solar mass (left) and 2 M⊙ (right) stars when ΔG=GN ¼ 0 but the metallicity Z is varied as indicated in the
figure.
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dL ¼ dGRL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTRGB

LTRGB;GR

s
: ð41Þ

These results indicate that comparing TRGB distances with
other indicators, in particular Cepheids, which we have
already demonstrated may be unscreened for some param-
eter choices, is a promising test of this mechanism. We
perform this test quantitatively in a companion paper [72].

VII. WHITE DWARFS AND TYPE IA
SUPERNOVAE

Type Ia supernovae are standardizable candles, which
has made them a powerful tool for cosmology. The
progenitors of type Ia supernovae are white dwarf stars
that exceed their Chandrasekhar mass and undergo a
thermonuclear runaway. The primary variable determining
the peak luminosity of the light curve is the mass of nickel-
56 available for the explosion. A simple approximation is
that the white dwarf is composed entirely of 56Ni so that the
mass of nickel is equal to the Chandrasekhar mass MCh.
White dwarfs close to the Chandrasekhar limit are very
accurately described by a gas of relativistic particles, which
have equation of state P ¼ Kρ

4
3; i.e., the equation of state is

polytropic with index n ¼ 3 (see Appendix where we
provide a brief introduction to polytropic stars).
The Chandrasekhar mass is derived in Eq. (A9) where

one can see that MCh ∝ G
−3
2

N . The equivalent expression for
unscreened white dwarfs can be found by rescaling
GN → GNð1þ ΔG=GNÞ. The ratio of the two is

MChðΔGÞ
MCh

¼
�
1þ ΔG

GN

�
−3
2

: ð42Þ

The naive expectation is then that unscreened type
Ia supernovae have lower peak luminosities than

their screened doppelgängers, owing to their lower
Chandrasekhar masses, which implies less 56Ni. This
conclusion is indeed naive. Reference [73] has studied
the effects of changing the strength of gravity on type Ia
supernovae. Using a semianalytic model, they found that
after one accounts for the variation of the mass of 56Ni with
the total mass, and the standardization procedure where the
light curve is stretched to match a standard template,
the ultimate effect of strengthening gravity is to enhance
the peak luminosity. In the context of our model, this
implies that the distance to unscreened supernovae is
underestimated if one does not account for this enhance-
ment. Fitting Fig. 7 (left) of Ref. [73], one finds relation

LpeakðΔGÞ
Lpeak;GR

¼
�
1þ ΔG

GN

�
C

ð43Þ

with C ≃ 1.46. This formula can be used in future obser-
vational probes of (for example) screened dark matter-
baryon interactions involving type Ia supernovae, either
using observations of individual events or by comparing
different distance ladder measurements.

VIII. LOW-MASS STARS

Dwarf stars have proven to be powerful probes of gravity
theories where the gravitational constant varies inside of
extended objects [40,41,74]. Brown dwarf stars are inert
objects that are supported by Coulomb scattering pressure.
They are not heavy enough for their cores to reach the
temperatures and densities necessary for hydrogen fusion.
Red dwarf stars are heavier objects that can achieve the
central conditions necessary to ignite hydrogen burning,
albeit on a chain that results in the net production of 3He
rather than the proton-proton chains (which result in 4He).
The transition mass separating these two objects is known
as the minimum mass for hydrogen burning, MMin, and the
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FIG. 7. Left: The Hertzsprung-Russell diagram for 1.3 M⊙, Z ¼ 0.02 stars for values of ΔG=GN indicated in the figure. Each curve
terminates at the TRGB. Right: The luminosity of the TRGB compared with the GR value, as a function of 1þ ΔG=GN. The red points
are numerical MESA models, and the blue dashed line is the fitting function of Eq. (40).
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relative simplicity of dwarf stars allows for its analytic
calculation with few degeneracies. This has made it a
powerful probe of cosmologically relevant modified gravity
theories [40,41].
The screening mechanism we have derived in this work

allows for the possibility that stars in the outskirts our own
Galaxy are unscreened since the dark matter density falls
below that in the solar neighborhood in these regions. For
this reason, in this section, we will study how changing the
gravitational constant affects the properties of dwarf stars.

A. Red dwarfs and the minimum
mass for hydrogen burning

The derivation of the minimum mass for hydrogen
burning is standard in the literature, so we will not repeat
it here. Instead, we will simply focus on the underlying
physics, referring the reader to Refs. [40,41,74] for the
analytic details. Stable hydrogen burning is achieved when
the luminosity due to nuclear fusion in the stellar core
balances the luminosity losses from the photosphere. If the
gravitational constant increases to values larger than GN,
the star will become more compact, raising the central
temperature and density. One therefore expects the mini-
mum mass for hydrogen burning to be smaller in
unscreened stars than screened stars, or, said another
way, it is possible that brown dwarfs in the solar neighbor-
hood could be red dwarfs in the Galactic outskirts. This
could potentially change the shape of the Hertzsprung-
Russell diagram measured in globular clusters in the
Galactic outskirts.
In order to quantify this effect, we will use the formula

derived by Ref. [74], Appendix B2,

MMin

M⊙
¼ 0.092κ−0.111−2

�
1þ ΔG

GN

�
−1.398

; ð44Þ

where κ−2 is the Rosseland mean opacity measured in units
of 10−2 g cm−2. This is the only source of uncertainty in

this equation, and it is not very significant. We plotMmin as
a function of ΔG=GN in the left panel of Fig. 8. In GR, the
minimum mass for a red dwarf is MMin ∼ 0.08 M⊙. From
the figure, one can see that, depending on the opacity and
ΔG, in unscreened regions of the Galaxy, stars with masses
as low as 0.05 M⊙ could be hydrogen-burning red dwarfs.

B. Brown dwarfs and the radius plateau

Stars with masses smaller than Mmin are brown dwarfs
supported by Coulomb scattering pressure. Objects sup-
ported by Coulomb scattering have a fixed radius that is
independent of their mass [41]. This leads to a distinctive
radius plateau in the Hertzsprung-Russell diagram for low-
mass objects. In GR, the radius is given by R ∼ 0.1R⊙, but
the formula used to derive this contains a factor of G−1=2

N
[41] so that the radius of unscreened stars scales as

R ¼ 0.1

�
1þ ΔG

GN

�
−1
2

R⊙: ð45Þ

Physically, increasing Newton’s constant makes the star
more compact. We plot the radius of brown dwarf stars as a
function of ΔG=GN in the right panel of Fig. 8. The
predicted decrease in radius plateau shown in this figure
can potentially be tested with the brown dwarfs observed
by GAIA, provided one can measure the radius. If this is the
case, one could plot the brown dwarf radius as a function of
distance from the Galactic Center; in our model, one might
expect to see a negative correlation.

IX. DYNAMICAL VS LENSING MASS

In this section, we discuss potential tests of the dark
matter-density dependence of the PPN parameter γðρDMÞ
predicted in Eq. (32), focusing on strong and weak
gravitational lensing. Both of these rely on the fact that
the dynamical mass of an object MDyn (measured using
dynamical or kinematic tracers) differs from the lensing
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FIG. 8. Left: The minimum mass for hydrogen burning as a function of ΔG=GN for two representative opacities given in the figure.
Right: The (mass-independent) radius of brown dwarf stars as a function of ΔG=GN.
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mass MLens (measured using gravitational lensing obser-
vations) according to

MLens ¼
1þ γðρDMÞ

2
MDyn: ð46Þ

A. Strong gravitational lensing

For this test, typically applicable to clusters and massive
elliptical galaxies, the lens mass is determined from the
radius of the Einstein ring or multiple image locations.
(Note that the dark matter density at the Einstein radius and
in galaxy clusters is higher than locally.) The dynamical
mass is determined from the velocity dispersion of stars in
elliptical galaxies and galaxy clusters or from x-ray
emission or the Sunyaev-Zel’dovich signal of the hot gas
assumed to be in hydrostatic equilibrium. The most
stringent extragalactic bound, γ ¼ 0.97� 0.09 in the gal-
axy ESO 325-G004, was reported by Ref. [75]. Similarly,
Ref. [76] reported γ ¼ 1.01� 0.05. This bound is unlikely
to be useful for constraining this screening mechanism
because the dark matter density at the location of the lens is
likely larger than the screening threshold for the Solar
System (the central velocity dispersion of ESO 325-G004,
371 km=s implies a dark matter density a few times that of
the MW), but similar tests in less dense dark matter
environments may be possible.

B. Weak gravitational lensing

Tests using weak lensing may be more fruitful since one
can stack many galaxies to make measurements in less
dense environments. Several variants of this test have
already been performed in the context of testing gravity.
On cluster scales, one can use the x-ray surface brightness
as a probe of the dynamical mass, and 30% bounds on γ
have been obtained [45,77–79]. Other possibilities on
cosmological scales are to cross-correlate weak lensing
measurements with redshift space distortions [80] or
peculiar velocity measurements [81] or to constrain the
EG statistic [82,83]. Applying these to our model would
require deriving the equations for linear cosmological
perturbations, which will depend on the fundamental
theory functions, as well as more precise characterization
of the relevant dark matter densities.

X. CONCLUSIONS

In this section, we summarize our results, discuss
directions for future work, and conclude.

A. Summary of the paper

In this paper, we have demonstrated that dark matter-
baryon interactions can give rise to a new screening
mechanism. While Ref. [30] speculated that such a mecha-
nism exists, we have derived it here in detail. We found that

there are two consequences of the screening mechanism:
the values of both Newton’s constant and the PPN
parameter γ (which describes the relative motion of light
and matter) become functions of the local dark matter
density. The screening mechanism is present whenever the
fundamental functions appearing in the theory are such that
the dark matter-baryon interactions vanish in high dark
matter densities but become important at lower density.
This is what one would expect from any model where dark
energy emerges at late times (low cosmological dark matter
densities) from such interactions.
Lacking canonical forms for these functions, we adopted

a simple approach to understanding the screening mecha-
nism and exploring its observational consequences. The
Milky Way must be screened for the theory to pass local
tests of GR, so we expect that the underlying parameters of
any viable theory are such that objects are only unscreened
[GðρDMÞ > GN] in densities smaller than that at the position
of the Solar System.We also assumed that at densities below
this thresholdGðρDMÞ is larger than in the Solar System by a
constant amount, i.e., GðρDMÞ ¼ ð1þ ΔG=GNÞGN. This
allowed us to understand the observational consequences
using a one-parameter description of unscreened objects. A
more complex dependence on ρDM could lead toΔG=GN for
astrophysical objects varying between different halos or even
within a given halo. It is unlikely that this parameter will vary
over the scale of stellar objects, however, since in conven-
tional darkmattermodels these do not induce largevariations
in ρDM. The results of this work can then be considered
general, provided that one bears in mind that ΔG=G may
need to be varied on an object-by-object basis even within a
single halo.
We next discussed several observational tests. Under our

simple model, this is tantamount to understanding how the
properties of astrophysical object are altered when one
increases Newton’s constant by fixed amount.13 Since the
Solar System must be screened, the most likely tests would
be extragalactic. For this reason, we focused on objects in
other galaxies of which the properties can be measured—
Cepheid variable stars and type Ia supernovae. The Cepheid
period-luminosity relation in particular is a powerful tool
for constraining screening mechanisms [37,67]. By running
a suite of numerical simulations using a version of the
stellar structure code MESA [61–63,68] that was modified to
change the value of Newton’s constant, we derived the
modification to the PLR as a function of ΔG=GN; under a
fifth force, we find a decrease in pulsation period and
overall increase in luminosity. We provide the coefficients
describing the (mass-dependent) luminosity effect in

13A similar phenomenon occurs in degenerate higher-order
scalar tensor (DHOST) theories [74,84]. In this case, the value of
Newton’s constant is altered inside astrophysical bodies due to a
breaking of the Vainshtein mechanism (there is no dependence on
the dark matter density). The phenomena discussed in this work
could therefore also be used to constrain DHOST theories.
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Table II. We found that the distance to unscreened galaxies
would be underestimated if one assumed the GR PLR. We
also discussed how type Ia supernovae, which are stand-
ardizable candles, would behave if they are unscreened,
finding that the light curve peak luminosity (after stretch
correction) is enhanced.
Using analytic and numerical techniques, we demon-

strated that unscreened main-sequence stars are, as
expected, more luminous at fixed mass and metallicity
than Newtonian or screened stars, although degeneracies
with the metallicity will likely make tests using individual
objects difficult. The one exception to this is stars observed
in our own Galaxy. In particular, globular clusters in the
outskirts of the Milky Way may be unscreened due to the
smaller dark matter density. There are fewer degeneracies
associated with these objects since the metallicity and age
can be determined. The luminosity at the tip of the red giant
branch was found to be smaller than the GR value,
implying that the application of the GR formula will
overestimate the true distance. It is thus possible to test
our predictions by comparing the TRGB and Cepheid
distances to unscreened galaxies, as we do in a companion
paper [72].
For ancillary results, we studied how low-mass red and

brown dwarf stars respond to an increased Newton’s
constant. These objects cannot be observed in other
galaxies, but it is possible that Milky Way dwarfs are
unscreened if they are sufficiently far from the solar
neighborhood that the dark matter density is sufficiently
low. We found that the minimum mass for hydrogen
burning, which separates red from brown dwarfs, decreases
for G > GN, so objects with masses as low as 0.05 M⊙
could be red dwarfs, compared with GR where the thresh-
old is 0.08 M⊙. We also found that the radius plateau in the
brown dwarf Hertzsprung-Russell diagram would shift to
smaller radii. Given that GAIA is able to observe these
objects, it is possible for these predictions to be tested in the
near future. In more complicated models than we have
studied here, it is possible that GðρDMÞ < GN in some
galaxies. One can use our results to calculate the observable
consequences of this; e.g., main-sequence stars would be
less luminous than in GR, and the minimum mass for
hydrogen burning would be larger.
Finally, we discussed tests of the predicted dark matter-

density dependence of the PPN parameter γ. Measuring this
in other galaxies requires determining both dynamical and
lensingmass. Suchmass vs light tests has become a standard
probe ofmodified gravity theories, and bothweak and strong
lensing systems could provide interesting bounds.

B. Future directions

We have performed a preliminary study of the dark
matter-baryon screening mechanism. Here, we discuss
future theoretical and observational directions. Since the
threshold for screening corresponds to the dark matter

density at redshift z ≤ 40, we expect that at times earlier
than this the Universe evolves in a matter identical to the
predictions of GR. For this reason, we only discuss late-
time phenomenology.

1. Construction of a canonical model

We have (deliberately) not chosen any specific form for
the free functions describing the dark matter-baryon inter-
actions in this work. Instead, we have treated G and γ as
generic functions of ρDM. Choosing forms for these would
allow for further tests using observables that are not
described simply by a constant shift in G. It would be
convenient if a canonical model could account for dark
energy, but not essential because the screening mechanism
may have interesting and potentially useful consequences
on smaller scales.

2. Gravitational waves

In this theory, gravitational waves move on geodesics of
the Einstein frame metric gμν, but light moves on geodesics
of the Jordan frame metric g̃μν, which implies that they may
move at different speeds in general. The simultaneous
detection of light and gravitational waves from a neutron
star merger event (GW170817 [85]) has constrained any
difference to be at the 10−15 level, which has placed strong
bounds on modified gravity theories [19–22]. This devia-
tion could be used to constrain the free functions of the
present theory. It is highly likely that the combination
of parameters that sets the speed of gravitational waves
is different from the combinations setting GðρDMÞ and
γðρDMÞ, so this strong bound is not necessarily debilitating.
It is also possible to construct theories from first principles
where the speeds of light and gravity are identical [86–89].
One should check the manner in which such bounds apply
and also that the theory is not being applied outside the
range of validity of effective field theory [90].

3. Distance indicator comparisons

Comparing screened and unscreened distance estimates
to the same galaxy has yielded strong bounds on chameleon
(and similar) theories [37]. In this work, we have studied
both Cepheids and TRGB distance indicators, finding that
both are unscreened with the former underestimating the
true distance and the latter overestimating it. A test of this
mechanism along the lines of Ref. [37] could therefore
yield important constraints on ΔG=GN. We perform this
test in a companion paper [72].

4. Binary pulsars

Theories that include disformal couplings may predict
different values of Newton’s constant for nonrelativistic
objects relative to gravitational waves. In particular, the
orbital decay of binary pulsars is sensitive to GGW and
cT=c, the speed of gravitational waves relative to the speed
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of light discussed above [91]. Constraints are at the 10−2

level, so a calculation of GGW once a canonical model is
specified would be highly constraining.

5. Hubble tension

The discrepancy between the Planck central value of the
Hubble constant and the value inferred using the distance
ladder is currently 4.4σ [92], which is strong evidence for
new physics affecting one or both of these probes.
Unscreening galaxies that calibrate the supernova magni-
tude-redshift relation could provide a resolution. This is the
focus of a companion paper [72].

6. Baryon fraction in collapsed objects

The baryon fraction in galaxies and clusters is time
dependent if dark matter and baryons redshift at different
rates [93]. In this theory, baryons redshift as a−3, but dark
matter will redshift at a different rate (in a manner
dependent on the choice of fundamental theory functions)
since it moves on geodesics of a different (Einstein frame)
metric. In other words, dark matter and baryons inhabit
effective space-times that are expanding at different rates.
The theory may therefore be tested by measuring the
baryon fraction as a function of redshift.

7. Cosmological tests

Once a canonical model is specified, one could derive the
equations of motion for the background cosmology and
linear cosmological perturbations and use these to constrain
the theory using current datasets, for example, cosmic
microwave background, baryon acoustic oscillation, and
large scale structure data. The nonstandard redshifting of
dark matter at late times (discussed in the previous
subsection) implies that the amount of dark matter required
in the early Universe may differ from the ΛCDM value.
Thus, further tests using the relic abundance of dark matter
and big bang nucleosynthesis may be possible.

8. Integrated Sachs-Wolfe effect

The theory predicts that photons interact with dark
matter in a manner that causes them to feel the fifth force.
This implies that the integrated Sachs-Wolfe (ISW) effect
will differ from the GR prediction. Other theories that make
similar predictions have been tightly constrained by ISW
observations [94,95].

9. Tests of the weak equivalence principle
between baryons and dark matter

Unscreened baryons feel a fifth force, whereas dark
matter does not, so the weak equivalence principle (WEP)
is violated. Extragalactic tests of the WEP could constrain
this screening mechanism. Indeed, such tests have been
fruitful in the context of chameleon screening [38,48–
50,96,97], although in that case, it is dark matter that is

typically unscreened, so one would need to derive the
predictions for our theory separately.

10. Two-body calculations

The analysis we have performed in this work considered
a single isolated object. It would be interesting to extend
this to two-body systems. In some cases, a violation
of the WEP can emerge [29,98]. The dark matter-baryon
interaction is described by a disformal transformation
[24,99,100], which is known to exhibit novel effects in
many-body systems [101–103].

11. Tests in the strong-field regime

Strong-field tests of gravity are a powerful probe of
alternatives to GR. Once a canonical model is specified, it
would be straightforward to calculate the equivalent of the
Tolman-Oppenheimer-Volkov equations for the theory and
hence derive the properties of neutron stars in unscreened
galaxies.

12. Dark matter detection experiments

The authors of Ref. [30] noted that, similarly to how
Newton’s constant is dark matter-density dependent,
Fermi’s constant is likewise. This may have implications
for dark matter experiments (both direct and indirect),
although it is straightforward to see that modifications are
screened in high-density environments so the bounds are
weak. We refer the reader to Ref. [30] for the details.

C. Conclusion

The new screening mechanism that we have studied in
this work derives from a dark energy model that is not yet
constrained, or even well characterized. The scarcity of
dark energy models that are not ruled out or fine-tuned
makes this model an interesting candidate for future study.
The observational consequences we have derived here
could form the basis for new astrophysical probes of the
mechanism, which should be supplemented with cosmo-
logical tests, tests in the strong-field regime, and other tests
described above. The construction of a canonical model
with which to benchmark constraints would be a useful
first step.
We have suggested several future directions, both theo-

retical and observational, that could lead to a deeper
understanding and further bounds on this screening mecha-
nism. These may ultimately prove too constraining to allow
the theory to account for dark energy, as is the case with
other screening mechanisms. Even if this were to happen,
the screening mechanism would remain of interest in its
own right, and regions of parameter space where G varies
between galaxies but the theory does not behave as dark
energy may still provide interesting intermediate-scale
phenomenology.
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Finally, we note that we have focused on devising novel
probes of the theory’s prediction that Newton’s constant
varies as a function of the local dark matter density. There
are other theories (either fundamental or phenomenologi-
cal) where G is spatially varying in a manner that is
correlated with physical quantities. The tests we have
devised in this work apply equally to these theories,
provided one correlates G correctly with the variables that
govern its variation.
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APPENDIX: STELLAR STRUCTURE MODELS

In this section, we briefly review polytropic equations of
state and spherically symmetric polytropic stars in GR,
which are now standard in the literature relating screening
mechanisms to stellar structure. Further details can be
found in Refs. [4,36,39].14

1. Polytropic stars

A polytropic equation of state is one where the pressure

P ¼ Kργ ¼ Kρ
nþ1
n ; ðA1Þ

where K is a constant and n is referred to as the polytropic
index. When used in conjunction with the hydrostatic
equilibrium equation

dP
dr

¼ −
GNMðrÞρðrÞ

r2
ðA2Þ

and the equation of mass conservation

dMðrÞ
dr2

¼ 4πr2ρðrÞ; ðA3Þ

the equations of stellar structure become self-similar so that
all dimensionful quantities can be scaled out, and the
equations can be written purely in terms of dimensionless
variables. This is achieved as follows. First, define the
dimensionless quantities

ξ ¼ r
rc
; ρ ¼ ρcθðξÞn; rc2 ¼

ðnþ 1ÞPc

4πGρc2
; ðA4Þ

where Pc and ρc are the central pressure and density,
respectively. Using Eq. (A1), one has P ¼ ρcθðξÞnþ1 so
that the function θðξÞ completely characterizes the pressure
and density profiles of the star in terms of the dimensionless
radial coordinate ξ. [In fact, θðξÞ is the dimensionless
temperature because T ¼ TcθðξÞ.] Combining the relations
(A4) with the stellar structure Eqs. (A2) and (A3), one finds
the Lane-Emden equation

1

ξ2
d
dξ

�
ξ2

dθðξÞ
dξ

�
¼ −θðξÞn: ðA5Þ

This can be solved for a given value of n either numerically
or, in the cases n ¼ 0; 1; 5, analytically. The boundary
conditions are θð0Þ ¼ 1 (ρðr ¼ 0Þ ¼ ρc) and θ0ð0Þ ¼ 0 [by
virtue of spherical symmetry dP=drjr¼0 ¼ 0, which can be
seen from Eq. (A2) by settingMð0Þ ¼ 0]. The radius of the
star is the point where PðRÞ ¼ 0. One can find this by
integrating Eq. (A5) to the point ξR such that θðξRÞ ¼ 0.
The radius is then

R ¼ rcξR: ðA6Þ

Substituting Eq. (A5) into Eq. (A3) and integrating from
ξ ¼ 0 to ξ ¼ ξR, one finds an expression for the stellar
mass,

M ¼ 4πrc3ωRρc ¼ 4πωR

�ðnþ 1ÞK
4πGN

�3
2

ρc
3−n
2n ; ðA7Þ

where

ωR ≡ −ξ2R
dθ
dξ

����
ξR

ðA8Þ

and we have used Eq. (A4). The analytic models studied in
this work can all be described by n ¼ 3 polytropic models.
In this case, according to Eq. (A7), the mass is independent
of the central density. For systems comprised of gasses that
are nearly relativistic (γ ¼ 4=3, n ¼ 3), this represents the
limiting, Chandrasekhar mass:

MCh ¼ 4πrc3ωRρc ¼ 4πωR

�
K

πGN

�3
2

: ðA9Þ

2. Eddington standard model

Here, we briefly derive the Eddington standard model
which is used in Sec. VA. This model makes several
simplifying assumptions in order to model main-sequence
stars analytically. The pressure support is assumed to be14See also http://www.jeremysakstein.com/astro_grav_2.pdf.
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due to two different processes: the motion of the gas,
assumed to be ideal

Pgas ¼
kBρT
μmH

; ðA10Þ

where μ is the mean molecular mass, and radiation
pressure,

Prad ¼
1

3
aT4: ðA11Þ

The relative importance of each contribution is
quantified by

β≡ Pgas

P
: ðA12Þ

Using Eqs. (A10) and (A11), one finds

T3

ρ
¼ 3a

kB
μmH

1 − β

β
: ðA13Þ

The quantity T3=ρ is the specific entropy density. The key
assumption of the Eddington standard model is that this is
constant throughout the star. Equation (A13) then implies
that β is constant. With this assumption, the total pressure is

P ¼ Prad þ Pgas ¼ KðβÞρ4
3; ðA14Þ

with

KðβÞ ¼
�
3

a

�1
3

�
kB
μmH

�4
3

�
1 − β

β4

�1
3

: ðA15Þ

We can eliminate K in favor of the mass using Eq. (A7), to
find

1 − β

β4
¼

�
M

MEdd

�
2

; ðA16Þ

where

MEdd ¼
4ωRffiffiffi
π

p
G

3
2

N

�
3

a

�1
2

�
kB
μmH

�
2

ðA17Þ

is the Eddington mass. Equation (A16) is known as
Eddington’s quartic equation. Its solution gives βðMÞ.
The key quantity we are interested in is the stellar lumino-
sity, which can be found by inserting P ¼ ð1 − βðMÞÞPrad
into the hydrostatic equilibrium equation (A2) and sub-
stituting this into the equation of radiative transfer,

dT
dr

¼ −
3

4a
κðρ; TÞ
T3

ρL
4πr2

; ðA18Þ

where κðρ; TÞ is the opacity. Making the further assumption
that κ is constant, one finds

LðMÞ ¼ 4πð1 − βðMÞÞGNM
κ

: ðA19Þ

This relates the luminosity to the mass and GN and is the
equation we use in Sec. VA.
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