PHYSICAL REVIEW D 100, 104032 (2019)

Effect of the dilaton field and plasma medium on deflection angle
by black holes in Einstein-Maxwell-dilaton-axion theory
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In this paper, we argue that one can calculate the weak deflection angle of light in the background of an
Einstein-Maxwell-Dilaton-axion black hole using the Gauss-Bonnet theorem. To support this, the optical
geometry of the black hole and the Gibbons-Werner method is used to obtain the deflection angle of light in
the weak-field limits. Moreover, we investigate the effect of a plasma medium on the deflection of light for
a given black hole. Because the dilaton and axion are candidates for dark matter, this can give us a hint
about the observation of the dark matter that is supported by the black hole. Hence, we demonstrate the
observational viability by showing the effect of dark matter on the weak deflection angle of light.
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I. INTRODUCTION

Since the first photo of the Messier 87 black hole by
the Event Horizon Telescope, studying black holes has
received quite a lot of attention [1]. On the other hand,
the Laser Interferometer Gravitational-wave Observatory
(LIGO) observed yet another enormous collision in space,
and this one seems to be between a black hole and a neutron
star [2]. As fascinating as it is mysterious, dark matter is
one of the greatest enigmas of astrophysics and cosmology.
Recently, the existence of dark matter was shown by Di
Paolo et al., disproving the empirical relations describing
alternative theories [3]. Moreover, the ongoing estimations
by the WMAP mission [4] continue to describe the relative
abundance of dark and baryonic matter in our Universe
with incredible accuracy. Moreover, most of the matter-
energy content of the Universe consists of cold dark matter,
whose composition is still obscure. The most promising
theoretical particle proposed to solve the enigma of dark
matter is the axion [5,6]. This particle was first described in
1977 by Peccei and Quinn (PQ) [7] in their attempt to
describe the strong-CP problem in QCD theory. In spite of
the fact that the first PQ axion is currently prohibited, other
axion models are still reasonable. The hypothesis that the
axion might be the dark matter particle has been widely
discussed [8-12].

String theory is a candidate for a consistent theory of
quantum gravity, and obviously the attributes of black holes

fwajiha.javed@ue.edu.pk; wajihajaved84 @yahoo.com
'rimsha.babar10@ gmail.com
’Lali.ovgun@pucv.cl; https://www.aovgun.com

2470-0010/2019,/100(10)/ 104032(6)

104032-1

(BHs) in string theory are most intriguing. String theory
differs from general relativity due to the existence of a
scalar field known as the dilaton field, which causes
changes in the characteristics of BH geometries. In spite
of the dilaton, the axion has been accepted as a strong
candidate for dark matter by numerous physicists, and
experiments to distinguish it have been effectively per-
formed [13-15], while the dilaton has not been identified
thus far, despite its theoretical significance. It is important
to mention that the dilaton produces a fifth force which can
influence Finstein’s gravity in a fundamental way [16,17].
Also, in cosmology it can assume the part of the inflation,
furthermore, can be an amazing competitor of the dark
matter [13—18]. There are solid tests and hypothetical
proof for the presence of dark matter in the Universe from
gravitational lensing, galactic revolution curves, and well-
known inflationary models. The study will also offer
new insights into the nature of the dilaton field and axion
dark matter.

It is a well-known fact that gravitational lensing is an
effective method to search for not only dark and massive
objects, but also wormholes and BHs. Gravitational lensing
is a specific effect of light deflection. The gravitational
bending of light by mass prompted the first exploratory
confirmations of the general theory of relativity. The
bending of light has theoretical significance, particularly
for examining the null structure of a spacetime.
Gravitational lensing occurs due to the warping of space-
time by mass, and the light rays observed from a star,
galaxy, or other source are bent accordingly. In recent
years, lensing has become an amazing way to test numer-
ous astrophysical and cosmological theories. Strong
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lensing, or frameworks in which numerous pictures of a
single source are recognizable or in which an Einstein ring
is visible, can inform us about the Hubble constant and
other cosmological parameters [19,20]. Factual estimations
of lensing where the deflection of light is so weak to
distinguish in a single background image, or weak lensing,
gives an effective exploration of the matter distribution
within the universe [21,22]. Weak lensing is an especially
significant probe of dark matter [23,24] and has been
considered as an instrument to distinguish general relativity
from different theories [25,26]. In the literature [27-55],
a lot of researchers have studied the deflection angle of
light for different types of BHs and wormholes using the
following the formula of Gibbons and Werner which was
proposed using the Gauss-Bonnet theorem:

S_—//Amkds, (1)

where K is the Gaussian curvature and A, represents the
infinite region of the surface. Recently, weak gravitational
lensing by wormholes was studied and the deflection angle
via naked singularities was calculated [56].

The main motivation of this paper is to study a
conceivable extension of calculations of the bending angle
of light for an Einstein-Maxwell-Dilaton-axion (EMDA)
BH [57,58]. To do so, we calculate the deflection angle
using the null geodesic technique and then look at a relation
between the Gauss-Bonnet theorem and bending angle of
light. After comparing these results, we investigate the
deflection angle in a plasma medium for the given BH.
The paper is organized as follows. In Sec. II we introduce
the metric for an EMDA BH. In Sec. III we investigate the
deflection angle using the geodesic method. Section IV
contains the calculation of the deflection angle of light by
an EMDA BH without a plasma medium in the weak-field
approximations. Section V provides the deflection angle for
an EMDA BH in the presence of a plasma medium. Finally,
in Sec. VI we present our conclusion.

II. METRIC TENSOR OF A BLACK HOLE IN
EINSTEIN-MAXWELL-DILATON-AXION
THEORY

The EMDA black hole metric in spherical coordinates is
defined as [58]

2

ds®> = —A(r)d* + ~dr

) + C(r)[d9? + sin® 8d¢?], (2)

1/&—2rp)*

2M

r—zry

> and, C(r) =(r— 2r0)2,
(3)

where M represents the mass of the BH and r is the
parameter of the dilaton-axion field with ry ~ a’e™“¢Q?/
4m,, a is a constant free parameter, Q represents the charge
of the BH, and m, ~m + r,.

III. CALCULATION OF THE DEFLECTION
ANGLE USING THE GEODESIC METHOD

In order to find the geodesics of an EMDA BH, the
Lagrangian L can be given by the metric (2) as follows:

<1 2”0 ))iZ(S)

’ <1 ) PO

+ (r(s) 2ro(S)) (8 (s) +sin®3(s)@?(s)).  (4)

By considering 2£ =0 for photons, we have two
constants of motion of the geodesics in the equatorial
plane 9 =

5 _OL

T 2(r(s) = 210 ¢(s) = 2. (5)

- O 2M . .
P=w () ©

Furthermore, we consider a new variable &(¢) which is
related to the old radial coordinate as r = ﬁ, which leads

to the identity

_dr 14
Cdp Ede @)

i

@
For the sake of simplicity, we use the metric conditions
¢=1& Z=>b (note that b is the impact parameter) for
Eqs. (4)—(7), and after some algebraic manipulations we
have the following relation:

1 [dé 21 2M N\ (1/&-
?(%) < _1/5—2ro> S

The above equation implies

2M !
(1—1/(5_%) + (1/€=2ry)* = 0. (8)
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(d_(p) _ +b 1 . )
€] VIZIE 14 (-6 + 2628 ) + 12738 — 813 - BA(E - 2ME)
In order to derive the solution of Eq. (9), we use the following relation [59]:

Ap =7 +38, (10)
where & represents the deflection angle. The deflection angle can be obtained by following the same procedure as in
Ref. [60],

S:2|fﬂ<§=1/b—(/75=0\ - (11)
and
S:‘/Ub(d(”)dg’—n: b ! -z (12)
o \d 0 V=208 14 (=68 + 2628 ry + 12736 838 - B(& - 2HE))

Here we neglect all 73 and rj terms,

1/b b(1+rof)
0 1+ (=6E+2b%8)ry—b* (8 —2M&)

d§|—n'.
(13)

Then we proceed by introducing a new variable y = 1/b
and expand in a Taylor series around y. After we evaluate
the integral for leading-order terms in M and r,, the
deflection angle in the weak deflection limit approximation
is found to be

(14)

The deflection angle depends on the mass M, the parameter
1o, and the impact parameter b. Increasing the value of the
dilaton-axion parameter r increases the deflection angle in
the weak-field limits.

IV. CALCULATION OF THE DEFLECTION
ANGLE USING THE GAUSS-BONNET THEOREM

In order to find the null geodesics (ds*> = 0), the metric
can be written in the following simplified form [49]:

dar*  C(r)d¢?

R (R T

(15)

We consider a new coordinate »* which satisfies the metric
tensor g, as

di* = g, dx'dx’ = dr*® + f*(r*)de?, (16)

where

[

(17)

In order to consider the Gauss-Bonnet theorem, we first
calculate the Gaussian curvature K of the optical spacetime
which is an intrinsic property of spacetime. The Gaussian
curvature can be calculated as [45]

F=_ Rryry

detg,,
1 df(r)
f(}’*) dr*Z
M M M M?

The Gaussian curvature depends on the mass of the BH.
The Gauss-Bonnet theorem (GBT) with boundary

OHg = 7, U Cg can be defined as [28]

[, Rew f, rar =2t

H

where & denotes the geodesic curvature, while 8; represents
the exterior angle at the ith vertex and we consider the
nonsingular domain 7 outside of the light ray with Euler
characteristic 7(7{z) = 1 [45]. When we consider R — co,
the two jump angles (6, 8s) yield Z, and if we consider the
total sum of the jump angles at observer O and source S,
we get (B + 0s) — 7 [28]. So, the GBT can be rewritten
as follows:
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dp ==

(20)

~ ~ n+a
// Kd&—l—%fcdt:R"W// ICd&—i—/
H Cr Heo 0

Now, in order to compute the geodesic curvature &
we follow &(7;,) =0, since 7, represents the geodesic.
Therefore, we get

k(Cg) = ‘VCRCR

, (21)

in which we can choose Cy = r(¢) = R = const, where
Cr represents the circle segment of coordinate radius R.
Thus, the nonzero radial part can be calculated as

(Ve, Cr)" = ChO,CR) + g™ (CR2 (22)
;E;;pt) is the Christoffel symbol related to the optical

geometry. It is clear that the first term in the above equation

cancels the second term, as (C%)2 = 1/f2(r*) and IN“;SZP =

Fr*)f'(r*). When R — oo, the geodesic curvature K
becomes

where "

: 1
lim &(Cg) = Jim V¢, Cr| = & (23)

R—00

and dt becomes

o\ 1/2

By combining Egs.

Now we discuss the deflection angle in the weak-field

limits. It is a well-known fact that in weak-field regions

light rays follow approximately straight lines; therefore, we
b

consider the condition of r = Sng Z€10 order. By using

Egs. (18), (20), and (24), the formula for the deflection
angle is obtained as follows:

5—— /0” /j Kds. (25)

sing

(23) and (24), we can get

After using the above relation, the deflection angle 5 for the
leading order of M can be calculated as

(26)

The deflection angle depends on the mass M, the parameter
1o, and the impact parameter b. Increasing the value of the
dilaton-axion parameter r, increases the deflection angle in
the weak-field limits.

V. WEAK GRAVITATIONAL LENSING OF AN
EMDA BH IN A PLASMA MEDIUM

In this section, we study the effect of a plasma medium
on the weak gravitational lensing by an EMDA BH. The
refractive index for the EMDA BH is given as [41]

= \1-Z (-2 e

where @, and @, denote the electron and photon plasma
frequencies, respectively.

In order to study the application of the Gauss-Bonnet
theorem to the determination of the bending angle proposed
by Gibbons and Werner [28], we consider a two-

dimensional Riemannian manifold (M, o)) with the

optical metric gy, = —ﬁ Jmn- The corresponding optical

metric is defined as follows:

~2 1
d~2: ;’nprtdmdn:ri(r)<~ d2—|—C d2>,
5% = gmndx"dx T(r) Ai(r) r (r)de

where m,n =1,2,3... (28)

This metric preserves the angle between two curves at a
given point and is conformally related to the metric (2),
when we choose the spatial section ¢ = const, § = 7/2.
By inserting Eq. (27) into Eq. (28), the optical metric takes
the form

55 r(@% — &%) — 2rg(@2, — @2) + 2Ma?
52 = _
(r—2ry—2M)a2,
dr?
X <1 —i + r2d¢2>. (29)

r=2ry

The Gaussian curvature can be calculated as follows:

i — _Reprp(9™)

det(g°")
M(w,*r = 20,%r + 4ryw,”> — 670> ) 0>
= (0,2 — 0 2)*r : (30)
Moreover, we have
dé C(R)\'/?
a1y (SR (31)
do Cr A(R)
which implies
. . de 1
I%EIOIOKQ% . ~ E . (32)
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By taking the straight-line approximation r = ﬁ and for
the limit R — oo, the Gauss Bonnet theorem takes the form

+8 de
lim |:K —"] d(p—ﬂ—/ / Kds.  (33)
0

g
R—o0 d(p i

So, the deflection angle is obtained as

(uM

w, MrOJr
O(M?).

o T

+ 4 1 5/4%¢
(34)

The above equation indicates the photon rays’ motion in a
medium of homogeneous plasma. It is worth noting that if
“f — 0, then Eq. (34)
reduces to Eq. (26), and thus we observe that the plasma
effects can be removed. Moreover, the dilaton-axion

parameter r, increases the deflection angle in a homo-
geneous plasma medium in the weak-field limits.

we neglect the plasma effects, i.e.,

VI. CONCLUSION

In this work, we have studied the deflection angle for an
EMDA BH. To do so, by considering the null geodesic
method as well as new geometric techniques (Gauss-
Bonnet theorem and optical geometry) established by
Gibbons and Werner, we have calculated the deflection

angle for an EMDA BH. It is also important to note that
the deflection of a light ray is calculated outside of the
lensing area, which shows that the gravitational lensing
effect is a global and even topological effect, i.e., there is
more than one light ray converging between the source
and observer. Hence, the deflection angle of a photon is
calculated as follows:

~ 4M 37'0M7T
O~ —
b + 2b?

(35)

On the other hand, the deflection angle of a photon is
also obtained as

a)M

w, Mryr
+0O M?
bw,,’ (M),

2b2 +4

4™ S H5/4=
(36)

Hence, we show that the dilaton-axion parameter r
increases the deflection angle in a homogeneous plasma
medium in the weak-field limits.
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