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A compact stellar-mass object inspiraling onto a massive black hole deviates from geodesic motion due
to radiation-reaction forces as well as finite-size effects. Such postgeodesic deviations need to be included
with sufficient precision into wave-form models for the upcoming space-based gravitational-wave detector
LISA. I present the formulation and solution of the Hamilton-Jacobi equation of geodesics near Kerr black
holes perturbed by the so-called spin-curvature coupling, the leading-order finite-size effect. In return, this
solution allows one to compute a number of observables such as the turning points of the orbits as well as
the fundamental frequencies of motion. This result provides one of the necessary ingredients for waveform
models for LISA and an important contribution useful for the relativistic two-body problem in general.
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I. INTRODUCTION

The interaction of an astrophysical object with a back-
ground gravitational field is characterized by its physical
size and gravitational radius. If both of these are much
smaller than the curvature radius (variability length) of the
background, the center of mass of the body will follow an
almost geodesic trajectory in the surrounding space-time
[1–3]. The postgeodesic corrections to the motion will
then scale with powers of the ratio of either the physical
size or gravitational radius of the body with respect to the
curvature radius. Technically, the whole object is under-
stood in this approximation as a “particle” carrying mass
multipole moments, and the corrections are expressed as
radiation-reaction forces as well as interactions of the
multipoles of the body with the background field. This
postgeodesic approach is also often called the “self-force
program,” referring to the fact that the additional forces
appear due to the object-specific interaction with the
background rather than only due to the background field
itself.
The mentioned postgeodesic expansion is well suited

to describe gravitational-wave inspirals of stellar-mass
compact objects into massive black holes, which are
one of the key sources of gravitational radiation for the
upcoming space-based detector LISA [4,5]. For these
so-called extreme mass ratio inspirals (EMRIs), both of
the aforementioned expansion parameters become propor-
tional to the ratio q≡ μ=M ∼ 10−4–10−11, where M, μ are
the masses of the primary and secondary of the binary
respectively.

EMRI phasing. Assuming that a geodesic in the field of
the primary is fully determined by some set of constants of
motion (orbital parameters) and phase variables, we can
sort the postgeodesic deviations into two classes based on
their long-term effects [6]. First, the gravitational radiation
will carry away a part of the constants of motion such as
energy and angular momentum, and will thus lead to a
long-term change in their values. These effects are conven-
tionally called dissipative.
Second, the deviations will cause the constants of motion

to oscillate as well as to change the rates at which the
trajectory goes through its phases. In the long term, this can
be characterized as a change of the frequency with which
we see the orbit is passing through its phases or, alter-
natively, as a secular accumulation of a set of postgeodesic
phase shifts. This second type of effect is usually called
conservative.1

It is now generally accepted that wave-form models
that will allow LISA to accurately estimate the parameters
of the sources have to include all dissipative postgeodesic
corrections to the equations of motion up to Oðq2Þ and
conservative corrections up toOðqÞ [1,3,6]. The onlyOðqÞ
correction to the equations of motion due to the finite size
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1Note that the dissipative effects do not correspond to any
transfer of information from the orbit into microscopic degrees of
freedom (d.o.f.); they correspond to the transfer of information
into macroscopic gravitational-wave d.o.f. On the other hand, the
“conservative” effects cannot be completely captured as a
Lagrangian or Hamiltonian perturbation to the original Lagran-
gian or Hamiltonian, so the dissipative/conservative nomencla-
ture should be understood exactly as stated in the text.
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of the body is the so-called spin-curvature coupling and it is
entirely conservative.
Spin-curvature coupling. The spin-curvature coupling

arises due to the fact that different parts of a relativistically
rotating body interact with the background space-time in a
way that ends up exerting a “spin force” on the center of
mass that is proportional to the angular momentum of the
body about its center and the background curvature. The
dissipative Oðq2Þ effects due to the finite size of the body
then currently seem to be only cross-terms of radiation
reaction and spin; the gravitational radiation will gradually
carry away a part of the internal angular momentum of the
body or irreversibly “steer” its direction, and the fluctua-
tions to the orbit due to the spin force will slightly modulate
the power with which the geodesic constants of motion are
radiated away.
There is a long history of works studying the motion of

spinning test bodies in black hole space-times, most of
which was reviewed in Refs. [7,8]. A subset of these studies
then used the spinning test body motion to generate and
study outgoing gravitational waves [9–13]. Yet another
thread of research computed the precession of the spin of
the particle as a gauge invariant probe of the self-force,
which is convenient for comparison with other approaches
to the relativistic two-body problem [14–18]. Various
perturbative formalisms for the computation of postgeo-
desic corrections to orbital motion in black hole space-
times due to the spin-curvature coupling were previously
formulated [19–22], typically focusing on numerical sol-
utions of the equations or on special classes of orbits.
Finally, concrete computations of EMRIs with spin effects
were carried out in Refs. [23–27].
Resonances. It is routinely observed that perturbation-

theory techniques fail in the neighborhood of orbits for
which unperturbed fundamental frequencies reach integer
ratios [28]. Generally, the perturbation of order ϵ then causes
a qualitative change in the behavior of anOð ffiffiffi

ϵ
p Þ volume of

orbits in the neighborhood of these so-called resonant orbits.
This issue has also been identified in the case of perturbative
expansion of EMRIs [29]; the locations of the orbital
resonances were computed by Brink et al. [30,31], the
physical consequences of the passage of an EMRI through a
resonance were studied in Refs. [32–35], and consequences
of resonant effects for LISA science were investigated in
Refs. [36–39]. For the case of the spin perturbation the spin
force could cause resonances of width Oð ffiffiffi

q
p Þ and one can

also have spin-orbital resonances corresponding to an
integer ratio of frequency of the evolution of the spin and
some of the orbital frequencies.
Hidden symmetry. The Kerr black hole has a “hidden

symmetry” (see Sec. IIA) and it was often investigated
whether this implies new conserved quantities along
the motion of spinning particles. Rüdiger [40,41] found
approximate integrals of motion for spinning particles
under the Tulczyjew-Dixon supplementary spin condition

in general space-times with hidden symmetry (see
Sec. IVC), and Apostolatos [42] and Kunst [43] found
such integrals of motion in Schwarzschild space-time under
the Mathisson-Pirani and Newton-Wigner conditions,
respectively. Conserved quantities due to the hidden
symmetry for the motion of semiclassical spinning particles
(particles with supersymmetry on the wordline) were then
studied in Refs. [44–47]. Additionally, it was observed in
the frequency-domain analysis by Ruangsri et al. [48] that
the hidden symmetry seems to “protect” the spin-perturbed
orbits from resonances and chaos.
The purpose of this paper is to present a complete

scheme for the computation of the conservative spin-
curvature corrections to geodesic motion. The core of
the computational scheme is an analytical perturbative
solution of the Hamilton-Jacobi equation for the particle
with spin orbiting a Kerr black hole on a generally inclined
and eccentric trajectory.
The solution to the Hamilton-Jacobi equation is almost,

but not quite separable, in Boyer-Lindquist coordinates and
it leads to two separation constants equivalent to those of
Rüdiger [40,41]. Consequently, the order (or number) of
the equations of motion is reduced to half while not
yielding them fully separable. Nevertheless, this still allows
one to analytically solve for the turning points, and to
obtain actions and shifts of the fundamental frequencies of
motion in terms of simple quadratures. These results
resolve the question of the conservative spin-induced
postgeodesic phase shifts in EMRIs [appearing at OðqÞ
in the equations of motion] and provide interesting pros-
pects for the computation of the dissipative effects [appear-
ing at Oðq2Þ in the equations of motion].
The paper is organized as follows. I startwith stating all the

important relations and definitions for timelike geodesics in
Kerr space-time in Sec. II, and I introduce the Hamiltonian
formalism for spinning particles along with the set of
coordinates and the adapted tetrad I use in Sec. III. Then I
present the perturbative solution to the respective Hamilton-
Jacobi equation along with a discussion of separation
constants in Sec. IV. Finally, the computation of various
properties of the spin-perturbed orbits such as turning points
or frequencies of motion is discussed in Sec. V. Details of the
derivations of Sec. V are discussed in the Appendix.
I use the G ¼ c ¼ 1 geometrized units and the (−þþþ)

signature of the metric. The ordinary derivative with respect
to xμ is denoted by an index μ preceded by a comma, and a
covariant derivative with an index preceded by a semicolon.
My convention for the Riemann tensor Rμ

ναβ is such that
aμ;αβ − aμ;βα ¼ Rν

μαβaν for a generic aμ. ημν with any
indices is the Minkowski tensor, and δμν denotes the
Kronecker delta.

II. KERR GEODESICS

Geodesics in a given space-time are perhaps the most
faithful conveyors of its geometry. Kerr geodesics and their
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properties are important in various different ways in the
upcoming sections; they generate the tetrad used in Sec. III,
and serve as a “zeroth-order” unperturbed or fiducial
system in Secs. IV and V. Hence, I now briefly summarize
the necessary notation and details about them.

A. Kerr metric

The nonzero components of the inverse Kerr metric in
Boyer-Lindquist coordinates t;φ; r;ϑ read [49]

gtt ¼ −
Σðr2 þ a2Þ þ 2Mra2sin2ϑ

ΔΣ
;

gtφ ¼ gφt ¼ −
−2Mra
ΔΣ

;

gφφ ¼ Σ − 2Mr
ΔΣsin2ϑ

;

grr ¼ Δ
Σ
;

gϑϑ ¼ 1

Σ
; ð1Þ

where Σ ¼ r2 þ a2 cos2 ϑ and Δ ¼ r2 − 2Mrþ a2. The
Kerr metric is independent of t;φ, which makes specific
energy E≡ −ut and specific azimuthal angular momentum
L≡ uφ constants of geodesic motion, where uμ ¼ dxμ=dτ,
uμuμ ¼ −1 is the four-velocity.
The Kerr metric possesses a Killing-Yano tensor Yμν ¼

−Yνμ; Yμν;κ ¼ −Yμκ;ν with the components [50,51]

Yrt ¼ −Ytr ¼ a cosϑ;

Yrφ ¼ −Yφr ¼ −a2 cosϑsin2ϑ;

Yϑφ ¼ −Yφϑ ¼ ðr2 þ a2Þr sin ϑ;
Yϑt ¼ −Ytϑ ¼ −ar sin ϑ;

Ytφ ¼ −Yφt ¼ Yrϑ ¼ −Yϑr ¼ 0: ð2Þ

The properties of the Killing-Yano tensor imply parallel
transport of a vector lμ ¼ Yμνuν along geodesics,
lμ;νuν ¼ 0. This also implies the conservation of the square
of this vector dK=dτ ¼ 0, K ≡ lμlμ. It is natural to interpret
lμ as some sort of specific angular momentum vector, and
K, also known as the Carter constant [52], as specific
angular momentum squared. The existence of the tensor
Yμν in the Kerr metric is considered to be a hidden
symmetry of the space-time.

B. Four-velocities

The Hamilton-Jacobi equation for geodesics in Kerr
space-time is separable in Boyer-Lindquist coordinates,
which was shown by Carter [52]. Additionally, if one uses
the Mino time dλ=dτ ¼ 1=Σ [52,53], the equations of
motion in the r, ϑ plane also completely decouple and
we obtain

dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð3aÞ

dϑ
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðϑÞp
sinϑ

; ð3bÞ

RðrÞ ¼ −ðK þ r2ÞΔþ ðEðr2 þ a2Þ − aLÞ2; ð3cÞ

ΘðϑÞ ¼ ðK − a2 cos2 ϑÞ sin2 ϑ − ðL − aE sin2 ϑÞ2; ð3dÞ

where the factor 1= sin ϑ in the ϑ equation comes from the
fact that it is often practical to use the variable ζ ¼ cosϑ in
the integration as well as symbolic manipulation of the
equations. The φ; t motion can be integrated once rðλÞ,
ϑðλÞ is known. Various other formulas and results for the
geodesic motion in Kerr space-time were summarized by
Chandrasekhar [54].

C. Characterization by roots

We saw in the last section that a geodesic in Kerr space-
time is uniquely specified by the set of constants of motion
K, E, L. Nevertheless, it is sometimes useful to instead
specify the geodesics by their turning points. The functions
R, Θ can be rewritten as

RðrÞ¼ ð1−E2Þðr1g− rÞðr− r2gÞðr−r3gÞðr− r4gÞ; ð4aÞ

ΘðϑÞ ¼ a2ð1 − E2Þðzþg − cos2ϑÞðz−g − cos2ϑÞ; ð4bÞ

where r1g; r2g; r3g; r4g are the roots of the function RðrÞ
ordered by magnitude from largest to smallest, and z�g are
the cos2 ϑ roots of Θ. The geodesic itself oscillates in the
“box” cosϑ ∈ ð− ffiffiffiffiffiffiffiz−g

p ; ffiffiffiffiffiffiffiz−g
p Þ; r ∈ ðr2g; r1gÞ. To obtain an

intuitive picture of the orbit, it is useful to parametrize the
radial turning points by eccentricity e and semilatus rectum
p [55],

r1g ¼
p

1 − e
; r2g ¼

p
1þ e

: ð5Þ

The set of orbital parameters p; e; ffiffiffiffiffiffiffiz−g
p specify a geodesic

uniquely, and the relation to the K, E, L specification was
given by Drasco and Hughes [56]. Furthermore, Fujita and
Hikida [57] gave analytical expressions for fundamental
frequencies of motion based on this formalism (for similar
analytical results in space-times generalizing the Kerr
space-time, see Refs. [58–60]). Many of the aforemen-
tioned formulas are implemented in the Kerr geodesics
Mathematica package [61].

III. HAMILTONIAN FORMALISM
FOR SPINNING PARTICLES

The motion of a spinning body expanded to pole-dipole
order is characterized by the position of its center of mass
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xμ, its momentum (stress-energy monopole) Pμ, and
internal angular momentum (stress-energy dipole)
Sμν ¼ −Sνμ. Any body of finite size will, in fact, have
an infinite tower of multipoles, but I neglect the influence
of quadrupole and higher order moments since I am
concerned here only with the leading-order finite-size
effects on the orbital motion.
The Mathisson-Papapetrou-Dixon (MPD) [62–64] equa-

tions that govern the evolution of the body to pole-dipole
order then read [62–64]

DPμ

dλ
¼ −

1

2
Rμ

νκλ
dxν

dλ
Sκλ; ð6aÞ

DSκλ

dλ
¼ Pκ dx

λ

dλ
− Pλ dx

κ

dλ
; ð6bÞ

where D=dλ is a covariant derivative with respect some
parameter λ along the trajectory xμðλÞ (not necessarily the
proper time).
The MPD equations require a specification in which

frame Vμ the center of mass as well as the multipoles are
computed. Consequently, the electric-type dipole SμνVν

vanishes in this frame. I choose this frame as parallel to Pμ,
SμνPν ¼ 0, which is known as the Tulczyjew-Dixon or
covariant supplementary spin condition [65,66] (see [67]
for a review of other choices of Vμ). A concise summary of
the MPD equations under the Tulczyjew-Dixon condition
in Kerr space-time is given in Ref. [7].
I now briefly introduce the Hamiltonian formalism

for the MPD equations, since the knowledge of the
Hamiltonian and canonical coordinates covering the phase
space is a prerequisite for the formulation of the Hamilton-
Jacobi equation in Sec. IV. An important point is the
introduction of a specifically oriented set of coordinates
through an adapted tetrad in Sec. IIIC, the choice of which
ultimately allows for the partial separation of the Hamilton-
Jacobi equation.

A. Hamiltonian for the Tulczyjew-Dixon condition

Under the Tulczyjew-Dixon condition SμνPν ¼ 0 the
Hamiltonian for the motion of the spinning body is given
as [68]

HTD ¼ 1

2
ðgμν − γμνÞUμUν ≅ −1; ð7aÞ

γμν ≡ 4sνγRμ
γκλsκλ

4þ R χηωξs χηsωξ
; ð7bÞ

where the variables are specific momenta defined as
Uμ≡Pμ=M, sμν≡Sμν=M, M2¼−PμPμ. The Hamiltonian
generates the MPD equations (A6) when used along the
Poisson bracket,

fxμ; xνg ¼ 0; ð8aÞ

fxμ; Uνg ¼ δμν ; ð8bÞ

fUμ; Uνg ¼ −
1

2
Rμνκλsκλ; ð8cÞ

fsμν; Uκg ¼ −Γμ
λκsλν − Γν

λκsμλ; ð8dÞ

fsμν; xκg ¼ 0; ð8eÞ

fsμν; sκλg ¼ gμκsνλ − gμλsνκ þ gνλsμκ − gνκsμλ; ð8fÞ
where the parameter λ of the evolution is close to proper
time, dλ ¼ dτ þOðs2Þ, and such that Uμðdxμ=dλÞ ¼
−1 [66,69].
The equality ≅ in (7) is fulfilled under the condition that

the initial data is chosen such that UμUμ ¼ −1 and
sμνUν ¼ 0, and these relations are then also conserved
along the motion. An additional quantity that is conserved
along the motion is the magnitude of the specific angular
momentum s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sμνsμν=2
p

. For more details on the
Hamiltonian formalism for spinning particles see Ref. [68].

B. Canonical coordinates

Consider a tetrad basis eCμ; C ¼ 0; 1; 2; 3; eCμe
μ
D ¼ ηCD

and variables

Uμ ≡ Uμ þ
1

2
eCν;μeνDs

CD; ð9aÞ

sCD ≡ sμνeCμeDν: ð9bÞ
Now the variables xμ, Uμ are canonically conjugate,

fxμ;Uνg ¼ δμν and 0 for any other bracket involving the
variables. The spin sector is covered by two canonically
conjugate pairs of coordinates and momenta ϕ;A and ψ , B,
which parametrize sCD ¼ −sDC as [68]

s01 ¼ C½A cosð2ϕ − ψÞ þ ðAþ 2B þ 2sÞ cosψ �; ð10aÞ

s02 ¼ C½A sinð2ϕ − ψÞ þ ðAþ 2B þ 2sÞ sinψ �; ð10bÞ

s03 ¼ −2CD cosðϕ − ψÞ; ð10cÞ

s12 ¼ Aþ B þ s; ð10dÞ

s23 ¼ D cosϕ; ð10eÞ

s31 ¼ D sinϕ; ð10fÞ

C ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðB þ 2sÞp
2ðB þ sÞ ; ð10gÞ

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−AðAþ 2B þ 2sÞ

p
: ð10hÞ
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The physical ranges of these coordinates are
A ∈ ½−2ðB þ sÞ; 0�;B ∈ ½0;∞Þ, and ϕ;ψ ∈ ½0; 2πÞ. The
inverse transform is given in [68] and one can then verify
by direct computation from the brackets (8) that the
coordinates fulfil fϕ;Ag ¼ fψ ;Bg ¼ 1 and 0 otherwise.

C. Adapted tetrad

One can notice from the previous section that different
choices of the tetrad eCμ correspond to a different covering
of the phase space of the spinning particle by canonical
coordinates. It is well known that choosing the right set of
coordinates is often crucial to the analytical solution of a
problem. I now introduce a special “geodesic-adapted”
tetrad that will provide a useful basis for the computations
in the next parts of the paper.
We start with taking a geodesic congruence with con-

stants of motion Kc; Ec; Lc as the zeroth leg,

urc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr;Kc; Ec; LcÞ

p
Δ

; ð11Þ

uϑc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðϑ;Kc; Ec; LcÞ

p
sinϑ

; ð12Þ

uφc ¼ Lc; ð13Þ

utc ¼ −Ec: ð14Þ

In other words, e0μ ¼ uμc. Now another leg of the tetrad can
be generated by the antisymmetric Killing-Yano tensor
e3μ ¼ Yμνuνc=

ffiffiffiffiffiffi
Kc

p
. The last two legs are also generated by

the Killing-Yano tensor as

e1μ ¼
1

Nð1Þ
ðKμν þ KcgμνÞuνc; ð15Þ

e2μ ¼
1

Nð2Þ

�
Kμν −

Kð2Þ
c

Kc
gμν

�
Yν
κuκc; ð16Þ

Kμν ≡ Yμ
κYνκ; ð17Þ

N2
ð1Þ ≡ Kð2Þ

c þ K2
c ¼ ðKc − r2ÞðKc − a2cos2ϑÞ; ð18Þ

N2
ð2Þ ≡ Kð3Þ

c − ðKð2Þ
c Þ2=Kc

¼ r2a2cos2ϑðKc − r2ÞðKc − a2cos2ϑÞ
Kc

; ð19Þ

Kð2Þ
c ≡ KμνKν

κu
μ
cuκc; ð20Þ

Kð3Þ
c ≡ KμνKν

κKκ
γu

μ
cu

γ
c: ð21Þ

It is then easy to verify that the tetrad is orthonormal
and normalized, eAμe

μ
B ¼ ηAB. Note that apart from the

parameters Kc; Ec; Lc the tetrad also needs to be specified
by the choices of the sign of e0r; e0ϑ, and also that it is
defined only within the turning points of the congruence.
Finally, when we compare our tetrad with that of Marck
[70], we see that they are identical, even though they have
been arrived to by different procedures.
Thanks to the construction of the tetrad we have eκ3;μe

μ
0 ¼

0 and the only nonzero projection of the zeroth leg into the
spin connection components is eκ1;μe2κe

μ
0 ¼ −eκ2;μe1κe

μ
0,

which reads

eκ2;μe1κe
μ
0

¼
ffiffiffiffiffiffi
Kc

p
Σ

�
Ecðr2 þ a2Þ− aLc

r2 þKc
þ a

Lc − aEcsin2ϑ
Kc − a2cos2ϑ

�
: ð22Þ

We see that this separable form of the projections will
be crucial in solving the perturbative Hamilton-Jacobi
equation.

IV. HAMILTON-JACOBI EQUATION

The Hamilton-Jacobi equation is obtained by substitut-
ing canonical momenta in the Hamiltonian by gradients of
the actionWðt;φ; r; ϑ;ϕ;ψÞ with respect to their conjugate
coordinates. Specifically, we have Uμ → W;μ;A → W;ϕ;
B → W;ψ . In the case s ¼ 0 (A ¼ 0;B ¼ 0) the Hamilton-
Jacobi equation corresponding to the Hamiltonian (7) reads

gμνWð0Þ
;μ Wð0Þ

;ν ¼ −1; ð23Þ
which is the Hamilton-Jacobi equation for the geodesic
with the well-known solution by Carter [52] (see Sec. II).
Now we perturb the zeroth-order solution by adding

terms linear in spin to Eq. (23). However, it turns out that
when we use the adapted tetrad presented in the previous
section, the size of the connection terms changes as
we approach the turning points of the background con-
gruence. Thus, I construct the solution in two steps that
correspond to regions with different magnitudes of the
connection terms.

A. Swing-region solution

Let us first assume that we are in the swing region of
the tetrad, that is, far away from the turning points of
the congruence uμc . Formally the swing region is specified
as the range of r, ϑ for which jr − r1;2cj ≫ s and
rðj cosϑj − ffiffiffiffiffiffiffi

z−c
p Þ ≫ s, where r1;2c;

ffiffiffiffiffiffiffi
z−c

p
correspond to

the turning points of the background congruence.
Now we are looking for a swing-region solution to

the action Wð1swÞ
;μ ¼ Wð0Þ

;μ þOðsÞ. The Hamilton-Jacobi
equation obtained from (7) then reads

gμνWð1swÞ
;μ Wð1swÞ

;ν − eκC;νeDκsCDWð0Þ;ν þOðs2Þ ¼ −1; ð24Þ
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where one should always remember that sCD is given by
(10) and A → W;ϕ;B → W;ψ .
When we further choose the signature of the background

tetrad identical to that of Wð0Þ
;μ and the tetrad parameters

Kc; Ec; Lc OðsÞ-close to the constants of motion of Wð0Þ,
we obtain up to higher order terms

ΣgμνWð1swÞ
;μ Wð1swÞ

;ν þ r2 þ 2s12
ffiffiffiffiffiffi
Kc

p Ecðr2 þ a2Þ − aLc

r2 þ Kc

þ a2cos2ϑþ 2as12
ffiffiffiffiffiffi
Kc

p Lc − aEcsin2ϑ
Kc − a2cos2ϑ

¼ 0: ð25Þ

Now we notice that the only appearing component of spin
is s12 ¼ Aþ B þ s → W;ϕ þW;ψ þ s. The phases ϕ;ψ
are thus cyclical coordinates and the initial values of A, B
integrals of motion. Furthermore, the Tulczyjew-Dixon
condition boils down to sC0 ¼ 0þOðs2Þ or W;ψ ¼
0þOðs2Þ [cf. Eq. (10)]. Consequently, the value of the
coordinate ψ has no influence on either the spin tensor or
the orbital motion at given order.
Finally, we can assume a separable action of the form

Wð1swÞ ¼ −EsotþLsoφþ ðsk − sÞϕþwrðrÞ þwϑðϑÞ with
Eso; Lso; sk being some separation constants to obtain

ðw0
ϑÞ2 ¼ Kso −

�
Lso

sinϑ
− aEso sin ϑ

�
2

− a2cos2ϑ

− 2ask
ffiffiffiffiffiffi
Kc

p Lc − aEcsin2ϑ
Kc − a2cos2ϑ

; ð26Þ

Δðw0
rÞ2 ¼ −Kso þ

1

Δ
ðEsoðr2 þ a2Þ − aLsoÞ2 − r2

− 2sk
ffiffiffiffiffiffi
Kc

p Ecðr2 þ a2Þ − aLc

Kc þ r2
; ð27Þ

where Kso is a separation constant analogous to the Carter
constant. I discuss the meaning of the separation constants
Kso; Eso; Lso; sk in Sec. IVC. At this point, I only note
that Kc; Ec; Lc only need to be chosen OðsÞ close to
Kso; Eso; Lso for the Hamilton-Jacobi equation to be fulfiled
up to Oðs2Þ terms in the swing region.

B. Turning region corrections

The swing solution of the perturbative action stays valid
even when we shift Kc; Ec; Lc by anOðsÞ shift, and we can
assume that we can always choose the congruence con-
stants so that the motion corresponding toWð1swÞ avoids the
turning points (and thus singularities) of the tetrad by an
OðsÞ distance.
Nevertheless, the connection terms diverge as 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
y − yt

p
near turning points yt, where either y ¼ r or y ¼ cos ϑ.

Additionally, Wð1swÞ
;y becomes only Oð ffiffiffi

s
p Þ close to the

background congruence in those regions. Hence, at

y − yt ∼OðsÞ several new terms contribute to the OðsÞ
perturbation of the Hamilton-Jacobi equation. Let us write
the equation in the respective y-turning region including all
the OðsÞ terms as

gμνWð1Þ
;μ Wð1Þ

;ν − eκC;νeDκsCDeν0 þ 1�
−eκC;yeDκsCDðWð1Þ

;y − e0yÞ þ
1

4
ðeκC;yeDκsCDÞ2

�
gyy

¼ 0þOðs2Þ: ð28Þ

The first line in (28) corresponds to the swing-region terms,
but the second line is new and makes Wð1swÞ an invalid
solution for the action already at OðsÞ.
I now use the following ansatz in order to derive turning-

region corrections to the action. First, I replace all the
instances of sCD with s̃CD ≡ sCDðA → sk − s;B → 0Þ in
the equations and assume that the solution using this
ansatz is valid at least up to OðsÞ. Next, I assume that
there exist corrections of the form δyWðtÞ such that Wð1Þ ¼
Wð1swÞ þ δrWðtÞ þ δϑWðtÞ and δyWðtÞ ∼ s2=

ffiffiffiffiffiffiffiffiffiffiffiffi
y − yt

p
. As a

result, these corrections are of higher order in the swing
region and contribute to the Hamilton-Jacobi equation at
OðsÞ only in their respective y-turning region. Then the
corrections must fulfil

ðδyWðtÞ
;y Þ2 þ 2w0

yδyW
ðtÞ
;y − eκC;yeDκ s̃CDðw0

y þ δyW
ðtÞ
;y −Wð0Þ

;y Þ

þ 1

4
ðeκC;yeDκ s̃CDÞ2 ¼ 0: ð29Þ

Notice that thanks to the substitution sCD → s̃CD only
derivatives with respect to y appear in the equation. The
equation is solved by

δyW
ðtÞ
;y ¼ −

�
w0
y −

1

2
eκC;yeDκ s̃CD

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0
y
2 − e0yeκC;yeDκ s̃CD

q
; ð30Þ

where I have used the fact that up to higher orders

Wð0Þ
;y ¼ e0y to simplify notation. We now notice that the

expressions for δyW
ðtÞ
;y are not separable, so we have to

write

δrWðtÞ ¼
Z

δrW
ðtÞ
;r drþ Crðϕ; ϑÞ; ð31Þ

δϑWðtÞ ¼
Z

δrW
ðtÞ
;ϑ dϑþ Cϑðϕ; rÞ: ð32Þ

Particular choices of Cy might improve the properties of the
approximation, but I use here Cy ¼ 0.
Finally, by substituting the action including the turning-

region corrections back in the full Hamilton-Jacobi
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equation we see that the error terms are Oðs2Þ terms in the
swing regions, and Oðs3=2Þ in the turning regions. Finding
necessary turning-point corrections even for these Oðs3=2Þ
terms is necessary before terms quadratic in spin can be
included. However, I leave this task for further work.
In summary, the action valid both in the turning and

swing regions up to OðsÞ terms reads

Wð1Þðt;φ; r; ϑ;ϕÞ ¼ ðsk − sÞϕ − Esotþ Lsoφ

þ
X
y¼r;ϑ

Z �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w02
y − e0yeκC;yeDκ s̃CD

q

þ 1

2
eκC;yeDκ s̃CD

�
dy; ð33Þ

where sk; Kso; Eso; Lso are to be understood as parameters
of the family of solutions, w0

r; w0
ϑ are given in Eqs. (27) and

(26), and s̃CD¼−s̃DC is explicitly given as s̃0D¼0, s̃12¼sk,

s̃23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s2k

q
sinϕ, s̃31 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s2k

q
cosϕ.

C. Interpretation of separation constants

Let us define the following orbital functions correspond-
ing to orbital Carter constant, specific energy, and specific
angular momentum

Ko ≡ u2ϑ þ
�

uφ
sinϑ

þ aut sinϑ

�
2

þ a2 cos2 ϑ; ð34Þ

Eo ≡ −ut; ð35Þ

Lo ≡ uφ: ð36Þ

For geodesics, these orbital functions are constant, whereas
for the spin-perturbed orbit they are not. To show that, I use
the fact that

uμ ¼ W;μ −
1

2
eκC;μeDκsCD: ð37Þ

Now one can relate the spin-orbital constants of motion
Kso; Eso; Lso to the orbital functions defined above as

Eso ¼ Eo þ
1

2
ΓCDts̃CD þOðs2; s3=2Þ; ð38Þ

Lso ¼ Lo −
1

2
ΓCDφs̃CD þOðs2; s3=2Þ; ð39Þ

Kso ¼ Ko − e0ϑeCκeκD;ϑs̃
CD

þ
�

Lo

sin ϑ
− aEo sin ϑ

��
ΓCDφ

sin ϑ
þ a sinϑΓCDt

�
s̃CD

þ 2a
ffiffiffiffiffiffi
Ko

p Lo − aEosin2ϑ
Ko − a2cos2ϑ

sk þOðs2; s3=2Þ; ð40Þ

whereOðs2; s3=2Þ denotes error terms of order Oðs2Þ in the
swing regions and Oðs3=2Þ in the turning regions.
Furthermore, ΓCDκ ≡ Γμνκe

μ
De

ν
D are the Christoffel symbols

projected into the tetrad (I used the fact that the tetrad is
independent of t;φ).
Now we see that the left-hand sides of Eqs. (38)–(40) are

constant and the right-hand sides contain Ko; Eo; Lo and
fluctuating terms, which makes the orbital energy, angular
momentum, and “orbital Carter constant” time variable.
Furthermore, it is easy to see that the spin-orbital constants
of motion are generally not equal even to average values of
the orbital functions and that there is a persistent OðsÞ shift
between the two.
Constants of motion of spinning particles under the

Tulczyjew-Dixon condition were studied by Rüdiger
[40,41]. He found exact integrals of motion in space-times
with an explicit symmetry and a corresponding Killing
vector ξμ given as

Cξ ¼ uμξμ −
1

2
ξμ;νsμν: ð41Þ

By comparing these integrals of motion corresponding to
the t and φ symmetry of Kerr space-time, we find that they
are exactly equal to the constants −Eso; Lso, respectively.
Additionally, Rüdiger found approximately conserved

quantities associated with the existence of a Killing-Yano
tensor Yμν, which can be written as

CY ¼ 1

2
Yμνuνεμκλγuκsλγ; ð42Þ

KR ¼ Yμ χYν
χuμuν − 2uμsρσðYμρ;κYκ

σ þ Yρσ;κYκ
μÞ; ð43Þ

where _KR ¼ Oðs2Þ; _CY ¼ Oðs2Þ. The interpretation of Cy

is that of the projection of the specific spin vector sμ ¼
ϵμνκλsνκuλ=2 into the specific angular momentum vector
lμ ¼ Yμνuν, CY ¼ sμlμ. The constant KR can be loosely
interpreted as some sort of “spin-orbital angular momentum
squared.” However, notice that KR is not the square of the
vector lμ þ sμ.
Now we can compare with the separation constants such

as sk; Kso. Let us compute

sk ¼ s̃12 ¼ 1

2
ε30CDs̃CD ¼ 1

2
e3μe0κεμκλγ s̃λγ

¼ CYffiffiffiffiffiffi
Kc

p þOðs2; s3=2Þ: ð44Þ

In other words, CY ¼ ffiffiffiffiffiffi
Kc

p
sk þOðs2; s3=2Þ. Notice that it

is exactly this factor that appears in w0
y and we can thus

say that the correction to the action in the swing region
is proportional to lμsμ. Furthermore, the cases sk ¼ �s
correspond to s̃23 ¼ s̃31 ¼ 0 and the spin completely
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aligned or counteraligned with the orbital angular momen-
tum, respectively.
To compare KR with Kso, one simply needs to substitute

the spin-perturbed four-velocity into (43), and a somewhat
involved computation yields

KR ¼ Kso þOðs2; s3=2Þ: ð45Þ

In summary, the separation constants of motion are in a
straightforward relation with those of Rüdiger [40,41],
which is an important consistency check for the
solution (33).

V. ORBITAL MOTION

In many problems in classical mechanics, orbital motion
turns out to be separable and solvable by a finite set of
quadratures (closed-form integrals) once the Hamilton-
Jacobi equation has been separated. However, we see that
the perturbative construction of the action from the last
section does not allow for such a separation of orbital
equations of motion.
Nevertheless, in Sec. V B I show that it is still possible to

analytically determine the corrections to the turning points
of the motion, and, in return, this is used in Sec. V D to
determine the corrections to the fundamental frequencies of
motion by a finite set of quadratures.

A. Equations of motion

The equations of motion for the spin-perturbed trajectory
in Mino time read

dr
dλ

¼ �Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w02
r − e0reκC;reκBs̃

CD
q

; ð46aÞ

dϑ
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w02
ϑ − e0ϑeκC;ϑeκBs̃

CD
q

; ð46bÞ

dϕ
dλ

¼ −
ffiffiffiffiffiffi
Kc

p �
Ecðr2 þ a2Þ − aLc

Kc þ r2
þ a

Lc − aEcsin2ϑ
Kc − a2cos2ϑ

�
;

ð46cÞ

where I have discarded Oðs2; s3=2Þ terms in the r, ϑ
equations, and Oðs; ffiffiffi

s
p Þ terms in the ϕ equation. Such a

term-discarding scheme is consistent with the accuracy to
which the Hamilton-Jacobi equation was solved as well as
with the goal to acquire rðλÞ, ϑðλÞ orbital shape at
OðsÞ precision. We immediately see that the equations
of motion are not separable, since the connection terms
are mixed and since s̃CD involves trigonometric functions
of ϕ.
One interesting feature of the equations of motion is the

change in the symmetries as compared to geodesic motion.
For instance, jdϑ=dλj is not symmetric with respect to

reflections about the equatorial plane ϑ → π − ϑ; it is only
symmetric with respect to the combined transformation
consisting of a reflection ϑ → π − ϑ coupled with either
s̃CD → −s̃CD or dϑ=dλ → −dϑ=dλ. In other words, when
the particle is at a given distance jϑ − π=2j from the
equatorial plane, it moves at a slightly different dϑ=dλ
when it is moving towards the equatorial plane than when it
is moving away from the equatorial plane.

B. Turning points

The condition for the turning points can be written as

ðw0
yÞ2 − e0yeκC;yeDκsCD ¼ 0; ð47Þ

where again y ¼ r, ϑ. Now it might be tempting to discard
the connection term since e0y ∼Oð ffiffiffi

s
p Þ near the turning

point, but the eκC;y counters it by becoming Oð1= ffiffiffi
s

p Þ in the
turning region. Thus, the whole connection term staysOðsÞ
and needs to be included in the computation.
I express the turning points in terms of shifts with

respect to turning points of fiducial geodesics. It is
important to note that these fiducial geodesics will not
be the same geodesics as the ones generating the tetrad
congruence. Specifically, I choose the fiducial geodesic to
have constants of motion K ¼ Kso − 2asksgnðLso − aEsoÞ,
L ¼ Lso, and E ¼ Eso. Then I assume that the turning
point is OðsÞ-shifted away from the turning point of the
geodesic, yt ¼ ygt þ δyt; δyt ∼OðsÞ. When the dust settles,
I obtain

δrt ¼
2skGþ ΔðK þ r2ÞX ðrÞ

κCe
κ
Ds̃

CD

I ðrÞðK þ r2Þ
����
r¼rgt

; ð48aÞ

δϑt ¼
2askHþ ðK − a2cos2ϑÞX ðϑÞ

κC e
κ
Ds̃

CD

I ðϑÞðK − a2cos2ϑÞ
����
ϑ¼ϑgt

; ð48bÞ

G≡ ffiffiffiffi
K

p
ðEðr2þa2Þ−aLÞþaðKþr2ÞsgnðL−aEÞ;

ð48cÞ

I ðrÞ ≡ d
dr

ðΔ−1½Eðr2 þ a2Þ − aL�2 − r2Þ; ð48dÞ

H≡ ffiffiffiffi
K

p
ðL − aEsin2ϑÞ − ðK − a2cos2ϑÞsgnðL − aEÞ;

ð48eÞ

I ðϑÞ ≡ −
d
dϑ

½ðL − aE sin2 ϑÞ2 sin−2 ϑþ a2 cos2 ϑ�; ð48fÞ

where X ðyÞ
κD ≡ limy→ygt e0yeDκ;y. The coefficients X ðyÞ

κD are
then easy to compute as
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X ðrÞ
κ0 dx

κ ¼ I ðrÞ
2Δ

dr; ð49aÞ

X ðrÞ
κ1 dx

κ ¼ αI ðrÞ
2Δ

dr; ð49bÞ

X ðrÞ
κ2 dx

κ ¼ −
αrI ðrÞ
2Σ

ffiffiffiffi
K

p ðdt − a sin2 ϑdφÞ; ð49cÞ

X ðrÞ
κ3 dx

κ ¼ −
a cosϑI ðrÞ
2Σ

ffiffiffiffi
K

p ðdt − a sin2 ϑdφÞ; ð49dÞ

X ðϑÞ
κ0 dx

κ ¼ I ðϑÞ
2

dϑ; ð49eÞ

X ðϑÞ
κ1 dx

κ ¼ 1

α

I ðϑÞ
2

dϑ; ð49fÞ

X ðϑÞ
κ2 dx

κ ¼−
1

α

acosϑsinϑI ðϑÞ
2Σ

ffiffiffiffi
K

p ðadt− ðr2þa2ÞdφÞ; ð49gÞ

X ðϑÞ
κ3 dx

κ ¼ r sin ϑI ðϑÞ
2Σ

ffiffiffiffi
K

p ðadt − ðr2 þ a2ÞdφÞ; ð49hÞ

α≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − a2 cos2 ϑ

K þ r2

s
; ð49iÞ

where the expressions for X ðyÞ
κD are evaluated at the

respective y ¼ ygt. Note that I have discarded Oðs3=2Þ
terms that come from the fact that the tetrad-congruence
constants Kc; Ec; Lc are generally OðsÞ-shifted with
respect to the fiducial-geodesic constants K, E, L. In the
Appendix I do not discard such terms for technical reasons

and the term X ðyÞ
κCe

κ
D is then simply replaced by

e0yeCκ;yeκDjy¼ygt .
To perform a consistency check of the results, I have

taken the effective potentials of spinning particles with
aligned spin in the equatorial plane as given by Tod et al.
[71] or Hackmann et al. [72], and found its turning points to
linear order in spin to obtain the exact same results as
in (48).
One should notice that the formulas (48) are finite for

motion in the equatorial plane (K ¼ ðL − aEÞ2) only
thanks to the choice K ¼ Kso − 2asksgnðLso − aEsoÞ.
For other choices of the fiducial mapping, the ϑ turning
points of spin-perturbed near-equatorial motion are Oð ffiffiffi

s
p Þ

far from the turning points of the fiducial geodesic.
However, the choice of the fiducial geodesics that I give

here does not yet avoid similar singularities in δrt as the
motion becomes near circular. To regularize this case, one
must choose EðEso; LsoÞ; LðEso; LsoÞ so that the fiducial
geodesic circularizes at an OðsÞ-close radius and for the
same values of Eso; Lso as the spin-perturbed orbit itself.
Such a construction is somewhat involved and I leave it for
future work.
Let us now shortly discuss the qualitative features of the

spin-perturbed turning points. The first thing to notice is
the fact that the turning points are not separable any more,
the connection terms are functions of both r, ϑ, and s̃CD is
generally a function of ϕ whenever sk ≠ �s. The shape of
the “turning box” in the r, ϑ plane is illustrated in Fig. 1.
One last thing to notice is the fact that in the aligned/
counteraligned case sk ¼ �s the spin tensor does not
depend on ϕ and the turning box is symmetric about the
equatorial plane. In general, however, the shifts of the
turning points are invariant with respect to transformations

FIG. 1. The turning points of particles near a Kerr black hole with a ¼ 0.9M and with various choices of particle spin. The fiducial
geodesic is always with constants K ¼ 2.9M2, E ¼ 0.87, L ¼ 2.0M (or semilatus rectum p ¼ 3M, eccentricity e ¼ 0.1, and inclinationffiffiffiffiffiffiffiz−g
p ¼ 0.5). On the left we plot the turning points of the fiducial geodesic (dotted black) and the turning points of a spin-perturbed orbit
with completely aligned spin, sk ¼ s ¼ 10−3M (full dark red). On the right we show the turning points of an orbit with a completely
oscillating spin sk ¼ 0, s ¼ 5 × 10−2M for the values of spin angle ϕ ¼ 0; π=2; 3π=2.
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ϑ → π − ϑ only in combinations with either ϕ → −ϕ
or ϕ → ϕþ π.

C. Spin-orbital actions and resonances

The relations Uy ¼ ∂Wð1Þðx; y; ϕ;…Þ=∂y, A ¼
∂Wð1Þðx; y; ϕ;…Þ=∂ϕ define a three-torus T3 to which
the motion is identified in the dynamical part of the phase
space ðr; ϑ;ϕ;Ur;Uϑ;AÞ, at least in the case of bound
motion that is of interest here. Whenever such a torus is
identified in a dynamical system with canonical coordinates
pi, qi, it is possible to define the action Iγ over a loop γ on
the torus as

Iγ ≡ 1

2π

I
γ
pidqi; ð50Þ

where the generalized Stokes theorem implies that this
integral is only dependent on the homotopy equivalence
class of the loop (the class of loops that can be deformed
into each other without discontinuing the loop). When,
furthermore, the actions are defined over n homotopically
inequivalent loops over an n-torus Tn, they can always be
completed in an action-angle system of coordinates [28].
I now define the set of actions

Iy ¼
1

π

Z
yt2

yt1

∂Wð1Þ

∂y dy

����
x;ϕ¼const:

; ð51aÞ

Iϕ ¼ 1

2π

Z
2π

0

∂Wð1Þ

∂ϕ dϕ

����
x;y¼const:

; ð51bÞ

where the integration bounds yt1;2 are the turning points
computed in the last subsection. The value of the
actions Iy, Iϕ is dependent only on the constants of motion
Kso; Eso; Lso; sk and not on the constant values of the
coordinates we are not integrating over (different values of
these coordinates represent homotopy-equivalent integration
loops). It is now simple to show that the actions fulfil

dIy;ϕ
dλ

¼ 0þOðs2Þ: ð52Þ

This also proves that, to linear order in spin, the spin
perturbation will not cause any topological changes in the
action foliation of the phase space around resonant orbits
(in contrast to generic perturbed integrable systems). The
recent numerical study of Ref. [73] has examined several
resonances caused by the spin and only found those caused
by second order in spin.

D. Fundamental frequencies

One of the main issues with the computation of funda-
mental frequencies and various averages over the spin-
perturbed motion is the inseparability of the turning points.

Consequently, it is not even clear which integration bounds
should be chosen in the computations. I resolve this issue
by transforming to a set of angle-type coordinates
ð χr; χϑÞ ∈ ð0; 2π�2 such that

rð χr; χϑ;ϕÞ ¼ r0 þ δr; ð53aÞ

cos ½ϑð χr; χϑ;ϕÞ� ¼ cos ϑ0 − δϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z−g

q
; ð53bÞ

r0 ≡ r1g þ r2g
2

þ r1g − r2g
2

sin χr; ð53cÞ

δr≡ δr1 þ δr2
2

þ δr1 − δr2
2

sin χr; ð53dÞ

cosϑ0 ≡ ffiffiffiffiffiffiffi
z−g

p
sin χϑ; ð53eÞ

δϑ≡ δϑ1 þ δϑ2
2

þ δϑ1 − δϑ2
2

sin χϑ; ð53fÞ

δyið χx;ϕÞ≡ δytðygi; x0ð χxÞ;ϕÞ; ð53gÞ

where i ¼ 1, 2 and fx; yg ¼ fr; ϑg; fϑ; rg. All the details
of the computations using this transformation are discussed
in the Appendix. When the dust settles, the equations of
motion reduce to

d χy
dλ

¼ fyð χyÞ þ δfyð χr; χϑ;ϕÞ; ð54Þ

dϕ
dλ

¼ hð χr; χϑÞ: ð55Þ

The functions fy are Oð1Þ, nonzero, and regular for all χy.
On the other hand, δfy are OðsÞ and mostly regular with
ignorable singular terms at turning points.
Any state of the spin-perturbed trajectory can now be

specified by some point in the compact phase space
ð χr; χϑ;ϕÞ ∈ ð0; 2π�3 and one can apply usual perturbation
and averaging procedures accordingly. When the dust
settles, the fundamental Mino angular frequencies of the
system of equations turn out to be

ϒr ¼ ϒrg

�
1þ

�
δfr
fr

	
g

�
; ð56aÞ

ϒϑ ¼ ϒϑg

�
1þ

�
δfϑ
fϑ

	
g

�
; ð56bÞ

hjð χr; χϑ;ϕÞig ≡ϒrgϒϑg

ð2πÞ3
Z
ð0;2π�3

j
frfϑ

d χrd χϑdϕ; ð56cÞ

where hjig means averaging the function j over the fiducial
geodesic. Note that since all the relevant expressions are
linear in spin and since all the other components of the spin
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tensor are fully oscillating or 0, only the s̃12 ¼ −s̃21 ¼ sk
aligned component of spin survives in any geodesic
average. In other words, only the value of sk (and not of
s) is important in the long-term effects of the spin
perturbation.
I have computed the relative frequency shifts hδfy=fig

for a sample of geodesics and plotted them in Fig. 2. There
is nothing particularly unexpected about the qualitative
behavior of the shifts; they are a factor of a few times the
spin and the radial corrections diverge as the motion
becomes radially unstable near the black hole.
One can also use this formalism to compute the average

azimuthal angular frequency ϒ̄φ and average rate of
coordinate time with respect to Mino time Ξ to obtain

Ξ≡
�
dt
dλ

	
sp

¼
�ðr2 þ a2ÞJ

Δ

	
sp
− aEsohsin2ϑisp þ aLso

− hΓt
CDs̃

CDig; ð57Þ

ϒ̄φ ≡
�
dφ
dλ

	
sp

¼
�
aJ
Δ

	
sp
þ
�

Lso

sin2ϑ

	
sp
− aEso − hΓφ

CDs̃
CDig; ð58Þ

J ≡ Esoðr2 þ a2Þ − aLso; ð59Þ

where hisp means averaging over the spin-perturbed orbit.
In general, one needs to know the shape of the spin-
perturbed orbit for such averaging. However, all the sp
averages we need to compute above are of separable
functions, for which we can use (see Sec. IV in the
Appendix)

hnðyÞisp ¼
�
1þ

�
δfy
fy

	
g

�
hnðy0Þig þ hn0ðy0Þδyig

−
�
nðy0Þ

δfy
fy

	
g

: ð60Þ

Finally, the average coordinate-time angular frequencies
are Ω̄y ¼ ϒy=Ξ, Ω̄φ ¼ ϒ̄φ=Ξ. It is also possible to compute
the average angular frequency of the spin phase ϕ by the
same methods as above, but this frequency is not observ-
able in any signal at leading order.

VI. DISCUSSION AND OUTLOOKS

Hidden symmetry and multipole particles. The separa-
tion of variables of the Hamilton-Jacobi equation in the
swing region is a consequence of the hidden symmetry of
the Kerr space-time and so is the conservation of Kso.
However, this result may be puzzling for the following
reason. On one hand, the pole-dipole MPD equations
describe the motion of systems that are keeping in balance
by internal exchange of momentum (e.g., neutron stars),
and on the other hand, it was shown that the conservation of
the sum of Carter constants is violated for any system with
components that exchange momentum [74,75].
This apparent discrepancy is easily explained; the pole-

dipole system of equations is universal in the sense that it
represents and evolves any body of the given value of the
mass multipoles in the same way. In other words, an
initially compact rotating cloud of noninteracting free test
particles can be described in a multipolar expansion, and
the equations of motion truncated at the pole-dipole level
are the same as the ones we use for an astrophysical
compact body—apart from the fact that the cloud will
spread and the higher order multipoles quickly become
non-negligible. Since the free-streaming cloud does con-
serve the sum of its particles’ Carter constants, an approxi-
mate “total Carter constant” such as KR; Kso must exist for
the pole-dipole system of equations.
Nevertheless, the pole-dipole order is the only order

where we can replace an astrophysical body with a cloud of
dust and obtain the same equations of motion; the pole-
dipole-quadrupole equations are not universal anymore
since the quadrupole dynamics include the composition-
specific response of the body [76,77]. While the cloud of
free-streaming particles should still conserve a total Carter
constant in the multipolar formalism, there is no reason to
believe this will be the case for the astrophysical body
described by different evolution equations. On the contrary,
since the quadrupole dynamics of the astrophysical body
are governed by momentum-exchanging processes in its
interior, one should expect no conservation of the sum of
Carter constants.
Thus, I believe that the description of general classical

bodies to pole-dipole order is precisely the point to which
hidden symmetry is relevant. In other words, I believe it is

FIG. 2. The relative corrections to fundamental frequencies
given in units of the aligned component of spin sk as a function of
semilatus rectum p for fiducial geodesics with e ¼ 0.1, z−g ¼ 0.1,
and a ¼ 0.9M. The corrections to the radial frequency become
large at small p because the motion is becoming unstable.
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not possible to generalize the construction given in this
paper to higher order multipoles and powers of spin, at least
for the motion of objects with sufficiently general tidal
response.
On the other hand, one can speculate that special cases of

interest might still exhibit a conserved Carter-like constant
even at higher (or even all) multipole orders. Isolated black
holes possess a specific tower of Geroch-Hansen mass
multipoles that are all generated by the black hole spin [78].
However, a major obstruction in translating this to the MPD
equations is the fact that there is no established dictionary
between the Geroch-Hansen and MPD multipoles on a
generally curved background (on a near-flat background,
the case seems reasonably clear [79]). Specifically, if we
postulate the multipoles under one supplementary spin
condition and transform to a different one, the multipoles
will transform as well (see, e.g., Ref. [77]). So the question
is: In which frame are the MPD multipoles of a dynamical
black hole the Geroch-Hansen multipoles? Where is the
centroid of a spinning black hole moving in a general
background space-time?
Resonances and chaos. The perturbative solution of the

Hamilton-Jacobi equations as presented in this paper does
not rely on the orbits having noninteger ratios between
frequencies and, thus, there is no reason to believe the
solution is problematic around resonant orbits, as is also
indicated in Sec. V C.
On the other hand, the action Wð1Þ can be fully valid

while still producing resonant effects on the level of the
orbital shapes generated by the equations of motion (46).
For instance, the perturbative computation of the funda-
mental frequencies in (56) is ill defined when the motion is
resonant and δfy=fy has a corresponding nonzero har-
monic. Ruangsri et al. [48] did not observe any resonances
under the spin perturbation in their frequency-domain
analysis, which they attributed to the existence of the
Rüdiger constants (see Sec. IVC). It seems plausible that
the existence of the additional near-conserved quantities
would suppress the resonances, but I have to leave the
question unanswered for a lack of conclusive arguments.
As for the question of chaos—for weakly perturbed

integrable systems it is well known to occur only in a thin
layer of the topological transition between the bulk of the
motion and the resonant layer. The thickness of the chaotic
layer caused by a smooth Hamiltonian perturbation of size
ε is even conjectured to scale as ∼ expð−λ=jεjÞ as ε → 0
[28]. We can thus conclude that chaotic motion caused by
linear-in-spin perturbations is negligible.
Generalizations to other space-times. The construction

given in this paper has some obvious mathematical gen-
eralizations. It is possible to repeat the separation in an
identical manner in the entire class of four-dimensional
Kerr-NUT-(A)dS space-times [80] and for massless spin-
ning particles possibly even in the entire Plebański-
Demiański class of space-times [81]. Similarly, it seems

to be easy to generalize the construction to Kerr-NUT-(A)
dS space-times of dimension 5 by using the tetrad found by
Connell et al. [82]. However, it has to be explicitly verified
whether the growing number of d.o.f. of a classical rotating
body in growing dimension match or outpace the number
of integrals of motion provided by the hidden symmetry
(see [47] for a discussion of this issue for a semiclassical
spinning particle).
Implications for self-forced inspirals. The computation

of the shift to fundamental frequencies the way it is
presented here provides almost all the necessary ingredients
for the implementation of the conservative spin-curvature
coupling into EMRI codes based on the two-timescale
approximation scheme [6,83]. The only issue to resolve is a
mapping of the spin-perturbed orbits to a set of fiducial
geodesic that remains OðsÞ close to identity even for near-
circular and circular orbits.
However, as already discussed in the Introduction, the

non-negligible finite-size effects in EMRIs also include the
dissipative decay of spin and a correction to the dissipation
rates of the orbital constants of motion due to the spin
perturbation to the trajectory.
The two constants of motion in the spin sector are the

aligned component of spin sk ¼ CY=
ffiffiffiffi
K

p
and the total spin

magnitude s. The evolution of the spin tensor can be viewed
as parallel transport in a certain smooth metric gμν þ hRμν
[2,84]. Since the magnitude of spin is conserved in any
metric, we may deduce the immediate magnitude of spin
s2g ≡ sμνsκλgμκgνλ=2 from the conserved value of s2hþg ¼
s2g þ sμνsκλgμκhRνλ and the local value of the metric pertur-
bation hRμν. The only nontrivial computation for the spin
dissipation then reads

h _CYig ¼
�
1

2
Yμνε

μκλγðfνuκsλγ þ uνfκsλγÞ
	

g

þ
�
1

2
Yμνε

μκλγuνuκτλγ

	
g
; ð61Þ

fν ≡ −δΓμ
νκuνuκ; ð62Þ

τμν≡ðδΓμ
λκs

νλ − δΓν
λκs

μλÞuκ; ð63Þ

δΓμ
νκ ≡ 1

2
gμλðhRλν;κ þ hRλκ;ν − hRκν;λÞ; ð64Þ

where fν is the self-force2 on the particle centroid
and τλγ the self-torque [2]. It should then be easy to adapt
mode-sum averaging methods used for monopole particles
such as in Refs. [53,87–89] for the purpose of the h _CYig
computation.

2Here the four-velocity is normalized in the effective metric
gμν þ hRμν and the self-force is thus not projected on the subspace
orthogonal to uμ (see [85,86]).
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On the other hand, the changes in the dissipation rates of
the orbital parameters due to the spin perturbation of the
orbit require the ability to compute averages hisp of various
functions over the spin-perturbed orbit. However, only
averages of functions that are additively separable can be
given in terms of simple geodesic averages such as in
Eq. (60). In contrast, the mode-sum method of computing
the metric perturbations naturally works with multiplica-
tively separable functions. Hence, it seems that one will
need to compute a sufficient number of Fourier coefficients
of δfy=fy in order to construct the shift vector ξ⃗ [from
Eq. (A21)] and use it in the hisp averages. However, this
will also require a careful treatment of the turning-point
singularities that arise in the formalism.
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APPENDIX: ANGULAR VARIABLES
AND AVERAGING

1. Coordinate transformation

Start by reexpressing dr=dλ; dϑ=dλ as

dr
dλ

¼�Yr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr−r1g−δr1Þðr2gþδr2−rÞ

q
; ðA1Þ

dϑ
dλ

¼ ∓ Yϑ

sin ϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ − ζ1Þðζ2 − ζÞ

p
; ðA2Þ

Yrðr; ϑ; s̃CDÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w02
r − e0reκC;reDκ s̃CD

ðr − r1g − δr1Þðr2g þ δr2 − rÞ

s
; ðA3Þ

Yϑðr;ϑ; s̃CDÞ≡ − sin ϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w02
ϑ − e0ϑeκC;ϑeDκ s̃CD

ðζ − ζ1Þðζ2 − ζÞ

s
; ðA4Þ

ζ≡cosϑ; ζi≡cosðϑigþδϑiÞ; i¼1;2: ðA5Þ

The expressions Yr, Yϑ expanded to OðsÞ are now regular
and nonzero for the entire trajectory. However, they
generally have an Oðs2Þ term that diverges as 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
y − yt

p
around the turning point. I assume that one can always
introduce an OðsÞ shift to the background congruence
constants Kc; Lc; Ec so as to cancel this term. In practice, I

simply expand to linear order in s as Yy ¼ Yy0 þ δYy þ
Oðs2Þ and discard higher order terms. The Yy0 are most
practically expressed as

Yr0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − E2Þðr0 − r3gÞðr0 − r4gÞ

q
; ðA6Þ

Yϑ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1 − E2Þðzþg − ζ20Þ

q
; ðA7Þ

where ζ0 ≡ cosϑ0 (compare with Sec. II). The spin-
induced corrections δYy can then be written as

δYr ¼
Kr − ΔJ r

2Yr0ðr2g − r0Þðr0 − r1gÞ
þ ∂Yr0

∂r0 δr; ðA8aÞ

δYϑ ¼
Kϑ − ð1 − ζ20ÞJ ϑ

2Yϑ0ðz−g − ζ20Þ
þ ∂Yϑ0

∂ϑ0 δϑ; ðA8bÞ

J r ≡ 2skGþ ΔðK þ r2Þe0reκC;reDκ s̃CD

K þ r2

����r¼r0
ϑ¼ϑ0

; ðA8cÞ

J ϑ ≡ 2skHþ e0ϑeκC;ϑeDκ s̃CD

K − a2cos2ϑ

����r¼r0
ϑ¼ϑ0

; ðA8dÞ

Kr ≡ ½δr1ðr2g − r0Þ − δr2ðr0 − r1gÞ�Y2
r0; ðA8eÞ

Kϑ ≡ ½δζ1ðζ0 − ffiffiffiffiffiffiffi
z−g

p Þ þ δζ2ðζ0 þ ffiffiffiffiffiffiffi
z−g

p Þ�Y2
ϑ0; ðA8fÞ

∂Yr0

∂r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2=

p
ð2r0 − r3g − r4gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − r3gÞðr0 − r4gÞ

p ; ðA8gÞ

∂Yϑ0

∂ϑ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1 − E2=Þð1 − ζ0Þ

p
ζ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzþg − ζ20Þ
q ; ðA8hÞ

where G, H were defined in (48). Note that I am using the
same fiducial geodesic K ¼ Kso þ 2asksgnðLso − aEsoÞ,
E ¼ Eso, L ¼ Lso as in the computation of the turning-
point shifts. Additionally, one must sew the functions
J yð χr; χϑÞ from parts where the congruence four-
velocity uμc ¼ eμ0 always has the same signature as the
actual four-velocity uμ.
The expressions for δYy avoid 1= cosð χyÞ2 singularities

by the numerators of the first terms vanishing at χy ¼
π=2; 3π=2; this is easily seen by comparing with the
turning-point formulas (48a) and (48b). Nevertheless, we
must still verify that the numerator of the first term
in δYy has a zero derivative with respect to χy at
χy ¼ π=2; 3π=2; otherwise a 1= cosð χyÞ divergence
occurs. It turns out that the derivatives do not vanish only
when Kc; Ec; Lc ¼ K;E; L. I thus choose the congruence
constants so that tetrad turning points occur outside of the
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envelope of the spin-perturbed motion [note that this
also requires inserting an accordingly shifted connection

into the turning-point formulas (48) so that X ðyÞ
κCe

κ
D →

e0yeCκ;yeκDjy¼ygt ].
Let us now use the transformation (53) to express dy=dλ

in terms of d χr=dλ, d χϑ=dλ, and dϕ=dλ, and we finally
obtain the functions fy, δfy so that d χy=dλ ¼ fy þ δfy,

fyð χyÞ ¼ Yy0; ðA9Þ

δfy ¼ δYy −
2σy

ðy1g − y2gÞ cos χy
; ðA10Þ

σy ≡ ðhr þ hϑÞ
∂δy
∂ϕ þ Yx0

∂δy
∂ χx ; ðA11Þ

where x; y ¼ r, ϑ or ϑ, r.
Now we see that the second term in δfy is singular

because the turning points are not separable; furthermore, it
can be shown that no global choice of δy can transform
these singularities away without introducing stronger ones.
However, these terms can be eliminated by holding the
expressions for d χy=dλ nonexpanded in s. In return, one
can then see that the OðsÞ singular terms in δfy correspond
to the regular nonexpanded d χy=dλ receiving a Oð1Þ spin-
correction within an OðsÞ interval near the turning points.
Nevertheless, I find it simpler to keep the formulas in
expanded form since these singular terms end up averaging
out to 0 in any expression of interest (see Sec. V).

2. Homogeneous angles and geodesic averaging

Let us start with the s̃CD ¼ 0 problem. I define the
homogeneous angle coordinates

ψ rð χrÞ≡ϒrg

Z
χr

0

d χ0r
frð χ0rÞ

; ðA12Þ

ψϑð χϑÞ≡ϒϑg

Z
χϑ

0

d χ0ϑ
fϑð χ0ϑÞ

; ðA13Þ

ψϕðϕ; χr; χϑÞ≡ ϕþ
Z

χr

0

hhri − hrð χ0rÞ
fr

d χ0r

þ
Z

χϑ

0

hhϑi − hϑð χ0ϑÞ
fϑ

d χ0ϑ; ðA14Þ

hhyi≡ϒyg

2π

Z
2π

0

hy
fy

d χy; ðA15Þ

ϒyg ≡ 2π

�Z
2π

0

d χy
fy

�
−1
: ðA16Þ

Consequently, the equations of motion for the angles ψ⃗ ¼
ðψ r;ψϑ;ψφÞ read

dψ⃗
dλ

¼ ϒ⃗; ðA17Þ

where ϒ⃗ ¼ ðϒrg;ϒϑg;ϒϕgÞ;ϒϕg ≡ hhri þ hhϑi.
If for every k⃗ ∈ Z3 we have k⃗ · ϒ⃗ ≠ 0 (the motion is not

resonant), then the long-term average of any function
jðψ r;ψϑ;ψφÞ over the trajectory can be written as an
average over angles

hjðψ⃗ðλÞÞig ≡ lim
Λ→∞

1

Λ

Z
Λ

0

jðψ⃗ðλÞÞdλ

¼ 1

ð2πÞ3
Z
ð0;2π�3

jðψ⃗Þd3ψ

¼ ϒrgϒϑg

ð2πÞ3
Z
ð0;2π�3

jð χr; χϑ;ϕÞ
frfϑ

d χrd χϑdϕ;

ðA18Þ
where in the last equality I have used the change of
variables theorem. One of the consequences of the formula
above is the fact that the only components of spin that end
up having any influence in long-term geodesic averages of
quantities linear in spin are s̃12 ¼ −s̃21 ¼ sk.

3. Fundamental frequencies

Now let us consider the equations of motion under the
spin perturbation; in the homogeneous angle variables we
obtain

dψ r

dλ
¼ ϒrg

�
1þ δfr

fr

�
; ðA19aÞ

dψϑ

dλ
¼ ϒϑg

�
1þ δfϑ

fϑ

�
; ðA19bÞ

dψϕ

dλ
¼ ϒϕg: ðA19cÞ

This system of equations can be put back into homo-
geneous form by a near-identity transform Ψ⃗ ¼ ψ⃗ þ ξ⃗,
where the formal solution for ξ⃗ is given as (see, e.g., [28])

ξr ¼
X
k⃗≠0

1

ik⃗ · ϒ⃗
F k⃗

�
δfr
fr

�
expðik⃗ · ψ⃗Þ; ðA20aÞ

ξϑ ¼
X
k⃗≠0

1

ik⃗ · ϒ⃗
F k⃗

�
δfϑ
fϑ

�
expðik⃗ · ψ⃗Þ; ðA20bÞ

ξϕ ¼ 0; ðA20cÞ

F k⃗½j�≡ 1

ð2πÞ3
Z
ð0;2π�3

jðψ⃗Þ expð−ik⃗ · ψ⃗Þd3ψ : ðA20dÞ

This solution does not exist whenever the perturbation has a

nonzero Fourier coefficient for a k⃗ such that k⃗ · ϒ⃗ ¼ 0.
Assuming for now that we are not dealing with such
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resonant cases, the new angle variables fulfil the equations
of motion

dΨr

dλ
¼ ϒrg

�
1þ

�
δfr
fr

	
g

�
; ðA21Þ

dΨr

dλ
¼ ϒϑg

�
1þ

�
δfϑ
fϑ

	
g

�
: ðA22Þ

In other words, by using Eq. (A18) it is possible to compute
the shift to the fundamental frequencies without the knowl-
edge of a closed-form transformation to either of the angle
coordinates ψ⃗ or Ψ⃗.

4. Spin-perturbed averaging

Let us now briefly derive the general formula for
averaging of separable functions over the spin-perturbed
trajectory. Assume that we want to compute the average of
a quantity nðyÞ, where again y is either r or ϑ. We compute
up to Oðs2Þ,

hnðyÞisp ¼
1

ð2πÞ3
Z

nðyðΨ⃗ÞÞd3Ψ

¼ 1

ð2πÞ3
Z

nðy0Þd3Ψþ 1

ð2πÞ3
Z

n0ðy0Þδyd3Ψ:

ðA23Þ

Now, let us write ñðψyÞ ¼ nðy0ð χyðψyÞÞÞ and further
reexpressZ

ñðψyÞd3Ψ¼
Z

ñðΨy−ξyÞd3Ψ

¼
Z

ñðΨyÞd3Ψ−
Z

ñ0ðΨyÞξyd3Ψ

¼
Z

ñðΨyÞd3Ψþ
Z

ñ
∂ξy
∂Ψy

d3Ψ

¼
Z

ñðΨyÞd3Ψ

þ
Z ��

δfy
fy

	
g

−
δfy
fy

�
ñðΨyÞd3Ψ; ðA24Þ

where I have disposed of various boundary terms that
vanish due to the periodicity of the involved functions and
further used the property

∂ξy
∂Ψr

ϒrg þ
∂ξy
∂Ψϑ

ϒϑg ¼
��

δfy
fy

	
g

−
δfy
fy

�
ϒyg: ðA25Þ

One last point to realize is the fact that averaging an
OðsÞ term over the spin-perturbed trajectory can be
replaced by geodesic averages up to Oðs2Þ. Conse-
quently, all of the terms in hnðyÞisp are now expressible
as closed-form averages over the geodesics, which can be
summarized as

hnðyÞisp ¼
�
1þ

�
δfy
fy

	
g

�
hnðy0Þig þ hn0ðy0Þδyig

−
�
nðy0Þ

δfy
fy

	
g

: ðA26Þ

It should be noted that for a nonseparable function of both r
and ϑ additional ξ-dependent terms would emerge in the
average.

5. Averaging singular terms

I showed that the shifts to fundamental frequencies
are extracted from the system by computing geodesic
averages. However, I also have to show that the singular-
ities in δfy do not spoil the finiteness and nonambiguity of
the averages.
All of the averages with δfy we need to compute are of

the type hjð χyÞδfyig. We write

hjðχyÞδfyig≡ϒrgϒϑg

ð2πÞ3
Z

jðχrÞ
frfϑ

−2σy
cos χyðy1g−y2gÞ

dχrdχϑdϕ

þhjδYyig
¼
Z

kðχr; χϑÞ
�Z

2π

0

∂δy
∂ϕ dϕ

�
dχrdχϑ

þ
Z

lðχyÞ
�Z

2π

0

∂δy
∂ χxdχx

�
dχydϕþhjδYyig

¼hjδYyig; ðA27Þ

where k, l are some functions of their variables. In other
words, one can ignore the ∼∂δy=∂ϕ; ∂δy=∂ χx terms in the
average.
If we want to construct the vector ξ⃗, we need to find all

the Fourier coefficients of δfy=fy. It turns out that these
will all be finite and uniquely defined as Cauchy principal-
value integrals. Nevertheless, there still might be issues
with the convergence of the sums given in (A21). In that
case, it is possible to instead hold d χy=dλ in nonexpanded
form and compute the Fourier coefficients of the regular
expression ðd χy=dλÞ=fy − 1.
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