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The time evolution of linear fields of spin s ¼ �1 and s ¼ �2 on Kerr black hole spacetimes are
investigated by solving the homogeneous Teukolsky equation numerically. The applied numerical setup is
based on a combination of conformal compactification and the hyperbolic initial value problem. The
evolved basic variables are expanded in terms of spin-weighted spherical harmonics, which allows
us to evaluate all angular derivatives analytically, whereas the evolution of the expansion coefficients in
the time-radial section is determined by applying the method of lines implemented in a fourth order
accurate finite differencing stencil. Concerning the initialization, in all of our investigations, single mode
excitations—either static or purely dynamical-type initial data—are applied. Within this setup the late-time
tail behavior is investigated. Because of the applied conformal compactification, the asymptotic decay rates
are determined at three characteristic locations—in the domain of outer communication, at the event
horizon, and at future null infinity—simultaneously. A recently introduced new type of “energy” and
“angular momentum” balance relations are also applied in order to demonstrate the feasibility and
robustness of the developed numerical schema and also to verify the proper implementation of the
underlying mathematical model.
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I. INTRODUCTION

The study of the long-time evolution of various linear
fields on given black hole backgrounds has served for
decades as a preparation for the more involved study of
linear and possibly nonlinear stability of the background
black hole solutions themselves. In the last couple of years,
considerable progress has been made concerning the linear
stability of the Kerr solution (see, e.g., [1,2] and references
therein). Notably, even these analytic results rest on various
technical assumptions which apparently all boil down to the
long-time behavior of linear spin s fields satisfying the
Teukolsky master equation [1,2]. This provides immediate
motivation for a thorough investigation of the asymptotic in
time behavior of solutions to the Teukolsky equation on a
Kerr black hole background.
This paper reports our findings concerning numerical

investigations of the dynamics of electromagnetic and
gravitational perturbations on a Kerr background. Our
aim was to carry out comprehensive investigations of the
time evolution of linear spin s fields, in particular, to study
their tail behavior. This is done by solving the homo-
geneous Teukolsky master equation for generic linear spin

s ¼ �1 and s ¼ �2 fields numerically. Since previous
numerical studies focused mostly on axisymmetric con-
figurations, we aimed to provide a more detailed study of
nonaxisymmetric configurations. In doing so, the analytic
framework was chosen such that it incorporates both
techniques of conformal compactification and the hyper-
boloidal initial value problem. The time slices in the latter
were chosen to be horizon penetrating, which allows us to
determine the decay rates at the three characteristic loca-
tions simultaneously: at the black hole event horizon, in the
domain of outer communication, and at future null infinity.
In addition, the applied mathematical setup also makes it
possible to use a spherical spectral representation of all the
basic variables. This is so as they are expanded in terms of
spin-weighted spherical harmonics based on the foliation of
the Kerr background by topological two-spheres, which in
practice are the Boyer-Lindquist t ¼ const and r ¼ const
ellipsoids. As all angular derivatives can be given then
either in terms of the “eth” and “ethbar,” ð and ð̄, operators
or by Lie derivatives with respect to the axial symmetry of
the Kerr background, all angular derivatives are evaluated
analytically. This, in turn, guarantees that the pertinent
multipole expansion coefficients—as elements of a large
set of coupled scalar fields—get to be subject of an
involved but otherwise only (1þ 1)-dimensional time-
evolution problem. Notably, even the case of the most
generic linear spin s fields can be tested within the very
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same mathematical and numerical setup which, in turn,
allows us to treat all the nonaxisymmetric configurations as
well. Though in practice, our attention was restricted to the
range m ¼ 0;�1;�2 of the azimuthal parameter, in prin-
ciple, one could investigate the full spectra of nonaxisym-
metric configurations within the chosen framework.
In checking and interpreting our numerical findings, it

was very informative and supportive to compare them to
both analytic and numerical results prior to our investiga-
tions. On a Kerr background, the first systematic analytic
estimates on the decay exponents were derived by Barack
and Ori [3,4]. They developed a method capable of
studying the evolution of linear spin s ¼ 0, s ¼ �1, and
s ¼ �2 in the time domain. By applying this they dis-
covered an interesting phenomenon. Namely, for axially
symmetric configurations, the decay rates at the event
horizon are larger by 1 for spin s > 0 with respect to those
relevant for s < 0 [5]. By applying the same method, they
could also study the behavior of linear perturbations while
approaching the Cauchy or inner horizon of the Kerr
background [6,7]. The alternative analytic investigations
by Hod were carried out in the frequency domain [8–10].
In [11,12], Casals et al. developed a technique to further
improve on the results of Hod. They presented a method to
include higher order terms in the low-frequency expansion,
which is necessary for computing self-force. Some com-
plementary analytic studies can also be found in the
Appendix of [13]. Note that in Ref. [13], Harms et al.
also report impressive and comprehensive numerical inves-
tigations concerning the long-time evolution of axially
symmetric linear spin s fields on a Kerr background. It is
important to emphasize that the initial data we apply are
always of pure mode excitation, which allows us to study
the long-time behavior of various higher mode excitations.
It is of crucial importance then that the analytic and
numerical investigations carried out in [10,13] are also
based on the use of single-mode-excitation-type initial
data. In this respect, from among all the aforementioned
excellent investigations, the ones reported in [10,13] will
be at the center of our interest. Most of the predictions
made in these studies are confirmed by our investigations.
Nevertheless, as there were some slight disagreements even
between the predictions of these two sets of investigations,
in our studies particular attention was given to clear up
the corresponding cases. Notably, our numerical results
led us to the conclusion that, though only in some very
special subcases, neither of the former predictions was
satisfactory; i.e., they did not give the correct value for the
decay exponents.
In coming up with a firm statement of the above type,

it is extremely important to guarantee the self-consistency
of the underlying numerical results. It is indeed critical
to verify that our findings are not simply numerical
artifacts of the applied method, but they are rooted in
the true nature of the investigated fields. For this reason, we

implemented—in addition to the conventional convergence
rate checks—the recently introduced [14] new type of
“energy” and “angular momentum” balance relations to
verify both the proper implementation of the underlying
mathematical model and the feasibility and robustness of
the developed numerical schema.
Before proceeding in presenting our main results, it

appears to be rewarding to recall that linear spin s ¼ �1 or
s ¼ �2 fields satisfying the homogeneous Teukolsky
master equations arise in a straightforward way in studying
evolution of source-free electromagnetic fields in Maxwell
theory or in that of linear metric perturbations on a Kerr
background [15,16]. To see this, e.g., in the electromag-
netic case, recall first that in applying the Newman-Penrose
formalism [17], one starts by fixing a complex null tetrad
fla; na;ma; m̄ag comprising at each point two real la and na

and two complex ma and m̄a null vectors such that their
only nonzero inner products are lana ¼ −mam̄a ¼ 1. We
fix the remaining gauge freedom by using the Kinnersley
tetrad. The algebraically independent components of the
Faraday tensor Fab can always be represented by the three
complex Maxwell scalar fields

ϕ0 ¼ Fablamb; ð1Þ

ϕ1 ¼
1

2
ðFablanb þ Fabm̄ambÞ; ð2Þ

ϕ2 ¼ Fabm̄anb: ð3Þ

Two of these, ϕ0 and ϕ2, represent the outgoing and
ingoing radiations, respectively, whereas ϕ1 stores the
Coulombic part of the electromagnetic field.
If Fab satisfies the source-free Maxwell equations on a

Kerr black hole background, then some of the one-order-
higher wave equations—which can be deduced for
the individual Maxwell scalar components ϕ0 and ϕ2,
respectively—decouple. In particular, the fields ψ ðþ1Þ and
ψ ð−1Þ defined as

ψ ðþ1Þ ¼ ϕ0; ð4Þ

ψ ð−1Þ ¼ ðΨ2Þ−2=3 · ϕ2 ð5Þ

satisfy the homogeneous Teukolsky master equation (11)
with spin s ¼ þ1 and s ¼ −1, respectively [15]. Here, Ψ2

is the only nonvanishing and gauge invariant Weyl-scalar
component on a Kerr background which has the following
form in Boyer-Lindquist coordinates using the Kinnersley
tetrad:

Ψ2 ¼ −
M

ðr − ia cosϑÞ3 : ð6Þ
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By a completely analogous argument, it can also be
verified [15,16] that in the case of linear metric perturba-
tions, the specific contractions

Ψ0 ¼ −Cabcdlamblcmd and Ψ4 ¼ −Cabcdnam̄bncm̄d

ð7Þ

of the Weyl tensor Cabcd—which is also equal to the
curvature tensor in the case of vacuum spacetimes—and
elements of the complex null tetrad fla; na; ma; m̄ag are
distinguished like ϕ0 and ϕ2 were in the electromagnetic
case. Indeed, the linear wave equations—these can be
deduced from the Bianchi identity, and they are relevant for
the linearly perturbed configurations—really do decouple,
and the fields

ψ ðþ2Þ ¼ Ψ0; ð8Þ

ψ ð−2Þ ¼ ðΨ2Þ−4=3 · Ψ4 ð9Þ

satisfy the homogeneous Teukolsky master equation (11)
relevant for these spin s ¼ þ2 and s ¼ −2 fields,
respectively [15].
This paper is organized as follows. In Sec. II, first the

analytic framework is introduced. This part (see Sec. II B)
is to set up the form of the wave equation to be solved once
the conformal compactification and suitable regularizations
of the basic variables have been carried out. Some of the
details of the new type of energy and angular momentum
balance relations are also discussed in Sec. II C. More
details on the analytic and numerical setup are given in
Sec. III containing the discussion of multipole expansions,
the choice made for the initialization of time evolution, the
determination of the decay rates, and a summary of the
results prior to ours. Section IV presents all of our
numerical findings. We start by discussing axially sym-
metric configurations in Sec. IV B, which is followed by a
detailed investigation of nonaxisymmetric configurations

in Sec. IV C. A thorough discussion of the use of the
energy and angular momentum balance relations, as well
as their use in verifying the convergence properties of the
applied numerical implementation is given in Sec. IV D.
The discussions are completed by our final remarks in
Sec. V. The paper is closed by several appendixes
providing useful details on the applied analytic and
numerical settings.

II. LINEAR FIELDS OF SPIN s
ON A KERR BACKGROUND

This section provides all the details related to the
applied analytic setup. In addition to the various forms
of the Teukolsky master equation, the energy and angular
momentum balance relations will also be discussed briefly.
This section also lays the mathematical groundwork that
will be applied in later papers of this series.

A. Teukolsky equation

The metric of the Kerr background in Boyer-Lindquist
coordinates ðt; r;ϑ;ϕÞ can be given by the line element

ðdsÞ2 ¼
�
1 −

2Mr
Σ

�
ðdtÞ2 þ 4arM

Σ
sin2ϑdtdϕ

−
Σ
Δ
ðdrÞ2 − ΣðdϑÞ2

−
ðr2 þ a2Þ2 − a2Δsin2ϑ

Σ
sin2ϑðdϕÞ2; ð10Þ

where Σ ¼ r2 þ a2cos2ϑ andΔ ¼ r2 − 2Mrþ a2, whereas
M and a are the mass and the angular momentum per unit
mass parameters of the Kerr black hole.
A linear sourceless field of spin s—where s is integer or

half-integer—on a Kerr background using the Kinnersley
tetrad is known to be subject to the homogeneous
Teukolsky master equation [15]

�ðr2 þ a2Þ2
Δ

− a2sin2ϑ

� ∂2ψ ðsÞ

∂t2 þ 4Mar
Δ

∂2ψ ðsÞ

∂t∂ϕ þ
�
a2

Δ
−

1

sin2ϑ

� ∂2ψ ðsÞ

∂ϕ2

− Δ−s ∂
∂r

�
Δsþ1

∂ψ ðsÞ

∂r
�
−

1

sinϑ
∂
∂ϑ

�
sinϑ

∂ψ ðsÞ

∂ϑ
�
− 2s

�
aðr −MÞ

Δ
þ i cosϑ

sin2ϑ

� ∂ψ ðsÞ

∂ϕ
− 2s

�
Mðr2 − a2Þ

Δ
− r − ia cos ϑ

� ∂ψ ðsÞ

∂t þ ðs2cot2ϑ − sÞψ ðsÞ ¼ 0: ð11Þ

A very simple covariant form of the Teukolsky master
equation was introduced by Bini et al. in [18] which allows
us to write (11) in the compact form

½ð∇a þ sΓaÞð∇a þ sΓaÞ − 4s2Ψ2�ψ ðsÞ ¼ 0; ð12Þ

where the components of the “connection vector” Γa

are [18]

Γt ¼ −
1

Σ

�
Mðr2 − a2Þ

Δ
− ðrþ ia cosϑÞ

�
; ð13Þ
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Γr ¼ −
1

Σ
ðr −MÞ; ð14Þ

Γϑ ¼ 0; ð15Þ

Γϕ ¼ −
1

Σ

�
aðr −MÞ

Δ
þ i

cos ϑ
sin2ϑ

�
: ð16Þ

B. Regularization of the basic variables

The solutions to the homogeneous the Teukolsky master
equation are known to get singular either in the Δ → 0 or
r → ∞ limit. In order to regularize by suitable rescaling of
the field variables and also to get the desired conformal
compactification of the Kerr background, new coordinates
are introduced. This is done by following the proposal in [19]
in two succeeding steps. First, the Boyer-Lindquist coordi-
nates ðt; r; ϑ;ϕÞ are replaced by the ingoing Kerr coordinates
ðτ; r; ϑ;φÞ, where the new time and azimuthal coordinates τ
and φ are defined via the relations

τ ¼ t − rþ
Z

dr
r2 þ a2

Δ
; ð17Þ

φ ¼ ϕþ
Z

dr
a
Δ
: ð18Þ

Note that the τ ¼ const hypersurfaces, as indicated in Fig. 1
in [19], are horizon penetrating, whereas they all tend to
spacelike infinity in the r → ∞ limit.
In the second step, new coordinates ðT; RÞ replacing

ðτ; rÞ are introduced by the implicit relations

τ ¼ T þ 1þ R2

1 − R2
− 4M logðj1 − R2jÞ; ð19Þ

r ¼ 2R
1 − R2

: ð20Þ

The most important advantage of the application of these
new coordinates is that they allow the use of a conformal
compactification of the Kerr spacetime such that future null
infinity (Iþ) gets to be represented by the R ¼ 1 hyper-
surface and also that all the T ¼ const hypersurfaces are
such that they are both horizon penetrating and intersecting
Iþ in regular spherical cuts at R ¼ 1.
In order to get the desired suitably regularized basic field

variables on the Kerr background, ψ ðsÞ is replaced by ΦðsÞ
defined as

ΦðsÞðT; R;ϑ;φÞ ¼ ½rðRÞ · ΔsðRÞ� · ψ ðsÞðT; R;ϑ;φÞ: ð21Þ

Once all the foregoing steps have been performed, the
homogeneous Teukolsky master equation (12) can be seen
to take the form

∂TTΦðsÞ ¼ 1

Aþ B · Y0
2

h
cRR · ∂RRΦðsÞ þ cTR · ∂TRΦðsÞ

þ cTφ · ∂TφΦðsÞ þ cRφ · ∂RφΦðsÞ

þ cϑϑ · ð̄ðΦðsÞ þ cT · ∂TΦðsÞ þ icTyY0
1 · ∂TΦðsÞ

þ cR · ∂RΦðsÞ þ cφ · ∂φΦðsÞ þ c0 ·ΦðsÞ
i
; ð22Þ

where Y0
1 and Y0

2 stand for the zero spin-weight spherical
harmonics with l ¼ 1, 2 and m ¼ 0, whereas the explicit
form of the involved R-dependent coefficients is given in
Appendix A. Note also that by making use of the ð and ð̄
operators acting on a spin s field f as

ðf ¼ −sinsϑ
�
∂ϑ þ

i
sin ϑ

∂φ

�
ðsin−sϑ · fÞ; ð23Þ

ð̄f ¼ −sin−sϑ
�
∂ϑ −

i
sin ϑ

∂φ

�
ðsinsϑ · fÞ; ð24Þ

all the ϑ derivatives present in the Laplace-Beltrami
operator can be incorporated into a single operator ð̄ð
via the relation

ð̄ðf ¼ ∂ϑϑf þ cotϑ∂ϑf þ 1

sin2ϑ
∂φφf þ 2is

cotϑ
sinϑ

∂φf

þ sð1 − scot2ϑÞf: ð25Þ

This provides us considerable simplification and enhances
the accuracy of our numerical integrator significantly, as
our approach is based on the use of multipole expansions
of the basic variables in terms of spin-weighted spherical
harmonics, and all the angular derivatives in (22) can be
evaluated analytically. (More details on the use of spin-
weighted spherical harmonics and their relations to the
ð and ð̄ operators can be found in Appendix B.)

C. Conserved currents

It is known that there is no way to construct a Lagrangian
out of a single spin s variable ψ ðsÞ and its first order
derivatives such that one could get (12) as the correspond-
ing Euler-Lagrange equation for ψ ðsÞ. Nevertheless, as
pointed out in [14] recently, it is possible to associate a
meaningful Lagrangian to a pair of spin s and −s fields via
the relation

L ¼ −ð∇a − sΓaÞψ ð−sÞð∇a þ sΓaÞψ ðsÞ − 4s2Ψ2ψ
ðsÞψ ð−sÞ:

ð26Þ

It was also shown in [14] that by making use of some
suitable infinitesimal transformations of the form ψ ð�sÞ →
ψ ð�sÞ − ςha∂aψ

ð�sÞ of the Lagrangian in (26), canonical
conserved Noether currents can also be associated with a
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pair of spin s and −s fields. Note that the involved fields
may be completely independent. The only requirement for
the conservation of the currents is that they both satisfy
their respective Teukolsky master equations. In particular,
as the Lagrangian in (26) is invariant with respect to the
one-parameter group of diffeomorphisms induced by the
Killing vector fields ha ¼ Ta ¼ ð∂TÞa and ha ¼ φa ¼
ð∂φÞa (which are also coordinate basis fields), the corre-
sponding infinitesimal transformations endow us with the
canonical energy- and angular-momentum-type currents
defined as

Ea ¼ ð∇a − sΓaÞψ ð−sÞTb∂bψ
ðsÞ

þ ð∇a þ sΓaÞψ ðsÞTb∂bψ
ð−sÞ þ TaL; ð27Þ

Ja ¼ ð∇a − sΓaÞψ ð−sÞφb∂bψ
ðsÞ

þ ð∇a þ sΓaÞψ ðsÞφb∂bψ
ð−sÞ þ φaL: ð28Þ

Notice that for s ¼ 0, (27) and (28) produce the well-known
energy and angular momentum of the massless complex

scalar field if ψ ð−sÞjs¼0 ¼ ψ ðsÞjs¼0.
As the covariant divergence of these currents vanish, the

balance relations

Z
Ω
∇aEa ¼

Z
∂Ω

naEa ¼ 0; ð29Þ

Z
Ω
∇aJa ¼

Z
∂Ω

naJa ¼ 0 ð30Þ

hold. The spacetime domain of integration Ω in all of our
applications is chosen to be the rectangular coordinate
domain in ðT; RÞ such that it is bounded by some initial and
final time slices T ¼ Ti and T ¼ Tf and by some inner and
outer timelike or null cylinders given by the R ¼ Rin
and R ¼ Rout hypersurfaces, respectively. In particular,

denoting by nðTÞa ¼ðdTÞa=
ffiffiffiffiffiffiffi
gTT

p
and nðRÞa ¼ðdRÞa=

ffiffiffiffiffiffiffiffiffiffiffi
−gRR

p
the respective normals of the T ¼ const and R ¼ const
hypersurfaces and by hT and hR the determinant of the
restriction of the metric to these hypersurfaces, the energy
balance relation can be given as

0 ¼
Z
T¼Ti

nðTÞa Ea
ffiffiffiffiffiffiffiffi
jhT j

p
dRdϑdφ

þ
Z
R¼Rin

nðRÞa Ea
ffiffiffiffiffiffiffiffi
jhRj

p
dTdϑdφ

−
Z
T¼Tf

nðTÞa Ea
ffiffiffiffiffiffiffiffi
jhT j

p
dRdϑdφ

−
Z
R¼Rout

nðRÞa Ea
ffiffiffiffiffiffiffiffi
jhRj

p
dTdϑdφ: ð31Þ

A completely analogous balance relation can be derived
for the angular momentum simply by replacing Ea in (31)

with Ja. The explicit form of the integrands nðTÞa Ea
ffiffiffiffiffiffiffiffijhT j

p
,

nðRÞa Ea
ffiffiffiffiffiffiffiffijhRj

p
, nðTÞa Ja

ffiffiffiffiffiffiffiffijhT j
p

, and nðRÞa Ja
ffiffiffiffiffiffiffiffijhRj

p
involved in

the energy and angular momentum balance relations can be
found in Appendix C.

III. MORE ON THE ANALYTIC AND
NUMERICAL SETUP

The discussions in this section will remain valid for any
linear field of spin s satisfying the homogeneous Teukolsky
master equation on a Kerr black hole background.

A. Multipole expansions

In solving (22), our basic variables ΦðsÞ are expanded in
terms of spin-weight s spherical harmonics sYl

m as

ΦðsÞðT; R;ϑ;φÞ ¼
Xlmax

l¼jsj

Xl
m¼−l

ϕl
mðT; RÞ · sYl

mðϑ;φÞ: ð32Þ

In this way, (22) becomes a set of coupled (1þ 1)-
dimensional linear wave equations for the expansion
coefficients ϕl

mðT; RÞ, whereas all the angular derivatives
are evaluated analytically by making use of the ð and ð̄
operators (more details on spin-weighted spherical har-
monics and the ð, ð̄ operators can be found in Appendix B).
The summation goes from l ¼ jsj to some l ¼ lmax value,
which is chosen to be suitably large in order to keep the
truncation error tolerably small (which, in practice, corre-
sponds to numerical precision).
Note that in the frequency domain analysis, the eigen-

functions of the angular part of Teukolsky master equation
(TME) are spin-weighted spheroidal harmonics instead of
spin-weighted spherical harmonics. In the work of Casals
et al. [12], the authors demonstrated that expanding in
terms of spherical harmonics instead of spheroidal ones
results in branch cuts in the complex Green’s function.
However, in the integral, the contributions of these extra
cuts cancel out, so in the end the Green’s function will
be the same, and it is safe to use spin-weighted spherical
harmonics as a basis. Since the spheroidal harmonics
themselves can be expanded in terms of spherical harmon-
ics, at least the decay rate of the slowest decaying modes is
the same regardless of the basis of expansion.
By applying standard order reduction techniques—by

introducing ðϕTÞlm ¼ ∂Tϕl
m and ðϕRÞlm ¼ ∂Rϕl

m as
additional dependent variables—a first order strongly
hyperbolic system is introduced for a vector variable that
is composed of the multipole expansion coefficients. These
equations were evolved in our numerical code by applying
the method of lines in a fourth order Runge-Kutta integrator
and also using a sixth order dissipation term for suppressing
high-frequency spurious solutions [20].
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B. The applied initial data

In solving (22) in any time-evolution scheme, it is
necessary to initialize ΦðsÞ by specifying, on some T ¼
T0ð∈ RÞ initial data surface, a pair of functions ðϕðsÞ;ϕðsÞ

T Þ
such that ϕðsÞ ¼ ΦðsÞjT¼T0

and ϕðsÞ
T ¼ ð∂TΦðsÞÞjT¼T0

hold.
In order to be able to uncover the coupling between
various modes in (32) characterized by their multipole
indices s;l; m, the applied initial data will always be a
single mode excitation. In addition, they will be either
“static” or “purely dynamical.” Accordingly, for some
fixed values of the s;l; m indices, a single mode

excitation type of initial data ðϕðsÞ;ϕðsÞ
T Þ is called static

(ST) if

ðSTÞ∶
(
ϕðsÞðR;ϑ;φÞ ¼ ϕl

mðT0; RÞ · sYl
mðϑ;φÞ;

ϕðsÞ
T ðR;ϑ;φÞ≡ 0;

ð33Þ

while it will be called purely dynamical (PD) if

ðPDÞ∶
(
ϕðsÞðR;ϑ;φÞ≡0;

ϕðsÞ
T ðR;ϑ;φÞ¼ðϕTÞlmðT0;RÞ · sYl

mðϑ;φÞ
ð34Þ

hold on the T ¼ T0 initial data surface, and no summation
is meant in either (33) or in (34). Because of the linearity of
the TME (22) and the use of single mode excitations, with
multipole indices s;l; m, all the excited modes in (32) will
share the s and m values. In what follows, the l parameter
of the exciting mode will be distinguished by priming it,
i.e., denoting it by l0, while the l parameter of the excited
modes will be referred to without priming.
The R dependence of the nonvanishing part of the initial

data—ϕl0
mðT0; RÞ in the static case or ð∂TϕÞl0mðT0; RÞ in

the purely dynamical case—is restricted by choosing it to
be the “bump” with center c and width w,

BðRÞ ¼
� 2R

1−R2 exp ð− 1
R−cþw=2 þ 1

R−c−w=2 þ 4
wÞ; if c − w=2 < R < cþ w=2;

0; otherwise:
ð35Þ

Note that BðRÞ is a smooth function of compact support,
the parameters of which were fixed in our numerical
simulations as c ¼ 0.7 and w ¼ 0.1.

C. The late-time behavior

Likewise, in the case of spin zero fields—when moni-
tored at certain fixed spatial locations—after an initial
dynamical phase, each of the excited modes ϕl

mðT; RÞ go
through a lasting quasinormal ringing period which is
supplemented by a late-time tail behavior. In particular, this
means that for sufficiently large values of T, the individual
multipole expansion coefficients at any fixed R ¼ R0

spatial location decrease as

ϕl
mðT; R0Þ ∼ T−n; ð36Þ

where n is a positive integer, the value of which may
depend on all the involved parameters; i.e., in general, it has
the functional form n ¼ nðs;l; m;l0Þ.

1. Earlier analytic and numerical results
on the decay rates

In studying the tail behavior, the functional form of the
decay rate n ¼ nðs;l; m;l0Þ is the center of interest. In
interpreting our numerical findings, we may use as our
reference frames two independent investigations prior
to ours. First, we refer to the detailed analytic studies
carried out by Hod [10]. Second, the accurate numerical
investigations carried out in [13] provide us important

clues concerning the functional dependence of the
decay rates.
Both of these investigations have some limitations in

their scopes. For instance, the decay rates determined in
[10] by using some Green’s-function-based analytic argu-
ments apply only to purely dynamical initial data; i.e., no
decay rates are derived therein for static initial data. It is
worth also mentioning that—based on analogous analytic
investigations carried out in [13] (see, in particular,
Appendix B therein)—in certain (though very limited)
subcases, these estimates of Hod were claimed to be
imprecise. The numerical studies in [13] were also some-
what restricted, as apart from a few special cases, they were
limited to axisymmetric configurations.
Despite the slight limitations in their scopes—as the

aforementioned investigations are also complementary to
each other—they provide us important guidance in carrying
out and interpreting our numerical results. Below, we
summarize the most important findings reported in
[10,13]. In particular, for purely dynamical initial data,
the pertinent results obtained by Green’s-function-based
analytic arguments and by numerical simulations can be
summarized as follows:
(1) At the horizon R ¼ Rþ,

njRþ ¼
8<
:

l0 þ lþ 3þ α; if l0 ¼ l0;

l0 þ lþ 3þ α − δ; if l0 ¼ l0 þ 1;

l0 þ lþ 1þ α; if l0 > l0 þ 1;

ð37Þ
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where l0 ¼ maxfjmj; jsjg is the lowest allowed
value of l for given s and m, and α ¼ 0 in all cases
except if s > 0 and m ¼ 0 when α ¼ 1. We find
δ ¼ 1 in the analytic investigations of Hod [10], but
numerical results in [13] suggest that at least in the
case m ¼ 0, the correct value is δ ¼ 0.

(2) At finite intermediate spatial locations with
Rþ < R < 1, the values of n can be deduced from
(37) by the substitution of α ¼ 0, i.e.,

njR ¼
8<
:

l0 þ lþ 3; if l0 ¼ l0;

l0 þ lþ 3 − δ; if l0 ¼ l0 þ 1;

l0 þ lþ 1; if l0 > l0 þ 1:

ð38Þ

Similarly, as in (37) δ ¼ 1 in [10]; however, in this
case, in Appendix B of [13] Harms et al. pointed out
a missed case in the argument of Hod, and as a
result, δ ¼ 0 when m ¼ 0. This correction is also
consistent with the numerical results of [13].

(3) At R ¼ 1, representing future null infinity Iþ,

njR¼1 ¼
�
l − sþ 2þ γ; if l0 ≤ lþ 1;

l0 − s; if l0 > lþ 1;
ð39Þ

where γ ¼ 0 in all cases except if m ¼ 0, l0 ¼
l0 þ 1, and l ¼ l0 when γ ¼ 1. With vanishing γ,
(39) reproduces the result of Hod [10]; nevertheless,
in Appendix B of [13] the authors pointed out a
missed case in the corresponding argument of [10],
necessitating the inclusion of γ in (39). This cor-
rection was also verified numerically in [13].

Although the numerical results presented in [13] are
mostly for axisymmetric configurations, there are two
sets of decay exponents gained from nonaxisymmetric
purely dynamical initial data with s ¼ 0, m ¼ 1 and
s ¼ −2, m ¼ 2, respectively. The exponents for s ¼ 0,
m ¼ 1 and s ¼ −2, m ¼ 2 are in agreement with the
predictions of [9,10].
In the case of static initial data, we may only refer to the

empirical results in [13] where, as mentioned above, the
functional forms are limited to axially symmetric configu-
rations with m ¼ 0. The pertinent findings in [13] can be
summarized as follows:
(1’) At the horizon R ¼ Rþ,

njRþ ¼
�
l0 þ lþ 3þ α; if l0 ¼ jsj;
l0 þ lþ 2þ α; if l0 > jsj; ð40Þ

where now α ¼ 0 for s ¼ 0 and α ¼ 1 otherwise.
(2’) At any finite intermediate spatial location with

Rþ < R < 1, the values of n can be given as in
(40), with the distinction that α ¼ 0 in all possible
cases, i.e.,

njR ¼
�
l0 þ lþ 3; if l0 ¼ jsj;
l0 þ lþ 2; if l0 > jsj: ð41Þ

(3’) At R ¼ 1,

njR¼1 ¼
�
l − sþ 2; if l0 ≤ l;

l0 − sþ 1; if l0 > l:
ð42Þ

As both the analytic and numerical setups outlined in
the previous sections allow us to study nonaxisymmetric
configurations, one of our main motivations in this paper
is, besides verifying (40)–(42), if possible, to deduce the
corresponding generalizations of these relations.

2. The local power index

As mentioned above, the excited modes following a
long-lasting quasinormal ringing phase all end up in a
power-law decay ϕl

m ∼ T−n [10,13,19] as depicted in
Fig. 1. The question is then how to determine the specific
value of n. In practice, the value of the decay rate n—for
each specific mode—is approximated by the local power
index (LPI) μ determined as

μ ¼ ∂ ln jϕj
∂ lnT ¼ T ·

ReðϕÞ ·ReðϕTÞ þImðϕÞ ·ImðϕTÞ
ðReðϕÞÞ2 þ ðImðϕÞÞ2 ;

ð43Þ

where, for simplicity, the multipole indices l and m of ϕl
m

are suppressed. Note that, just as the decay rate n, the local
power index μ also depends on the spatial location as well

FIG. 1. For the specific choice of excitation with multipole
parameters s ¼ −1, l0 ¼ 1, m ¼ 0, the time dependence of the
l ¼ 1 mode is depicted at the outer horizon R ¼ Rþ at the R ¼ 1
line representing future null infinity and at some intermediate
R ¼ const locations. At each fixed spatial location, the initial
long-lasting quasinormal oscillatory phase is supplemented by a
specific power-law decay corresponding to some integer rate n.
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as on the multipole indices s, l; m, and l0 of the involved
modes [13,19].

IV. NUMERICAL RESULTS

The discussions up to this point are valid for any linear
field of spin s satisfying the homogeneous Teukolsky
master equation on a Kerr black hole background. In this
section, considerations will be restricted to the numerical
investigations of linear fields of spin s ¼ �1;�2, and our
numerical findings will be reviewed.

A. More specific settings

1. The input parameters

In most of our numerical simulations, the parameters of
the Kerr background were fixed as M ¼ 1 and a ¼ 0.5. A
cutoff in the multipole expansion (32) at lmax ¼ 8 was
found to be completely satisfactory for achieving the
necessary precision. Some experimentation with doubling
lmax shows that the accuracy of our results is not limited by
this value. This suggests that the error introduced by radial
discretization and numerical arithmetic is still bigger than
the error introduced by this cutoff. In many of the
simulations, the use of 1024 spatial grid points on the
½Rþ; 1� interval was satisfactory (see Fig. 2), though, in
most cases we used 2048, and there were also cases where
the use 4098 spatial grid points was more rewarding. As for
the applied numerical precision, note that in most of our
simulations the use of long double arithmetic was suffi-
cient. Nevertheless, as for negative values of the spin

parameter s, the LPI values were always harder to be
determined, and we used the computationally more expen-
sive quadruple precision in those cases. Unfortunately, for
negative s values, even the use of quadruple precision could
not always guarantee the required level of precision at late
time which, on the other hand, is essential to draw a
conclusive result on the tail behavior. In many cases, the
pertinent LPIs could not even be determined despite that for
positive values of the spin parameter the LPI values are
already sufficiently accurate with the use of long double
precision and, in general, with the use of lower spatial
resolution.

2. Assembling the determined LPIs

In the succeeding subsections, our numerical findings
will be reported. First, the LPIs determined are collected in
tables, and then the implications of the observed phenom-
ena are described briefly.
The tables of LPIs are given for various values of the

relevant parameters. In particular, s ¼ �1;�2 with excit-
ing modes l0 and excited modes l both taking (the allowed)
positive integer values from the interval 1 ≤ l0, l ≤ 5. The
values of m will also be restricted to 0, �1, �2.
In advance of turning to the contents of these tables, note

first that concerning the dependences of the LPIs on the
spin parameter s, the following two cases have significantly
different characters. Whenever s < 0, it suffices to deter-
mine the values of μ at the outer horizon R ¼ Rþ and at the
future null infinity R ¼ 1, as the LPIs relevant for the
intermediate values Rþ < R < 1 are exactly the same as
those at the outer horizon R ¼ Rþ. As opposed to this,
whenever s > 0, the LPIs have a higher variety; i.e., the
value of μ at the intermediate locations Rþ < R < 1 differs
from that at the outer horizon R ¼ Rþ though asymptoti-
cally the LPI takes the same value for any intermediate
finite location Rþ < R < 1. As it is clearly indicated by the
graphs in Fig. 3, for s > 0, the values of μ have to be
monitored not only at the outer horizon (R ¼ Rþ) and at
future null infinity (R ¼ 1) but for several intermediate
R ¼ const locations as well. Remarkably, the closer the
intermediate R value is to R ¼ Rþ or to R ¼ 1, the longer it
takes to settle down to the LPI value that is relevant for
pertinent intermediate locations.
In accordance with the above outlined observations, the

tables will be structured as follows: As for negative s (with
s ¼ −1 or s ¼ −2), the LPI values at the horizon and
intermediate finite locations are the same, and for each slot
labeled by l0 and l, only the values “μRþ” at the horizon
and “μIþ” at future null infinity will be indicated by
separating them with a vertical line in writing “μRþjμIþ .”
As for the positive s (with s ¼ 1 or s ¼ 2), the LPI values at
the intermediate locations with Rþ < R < 1 differ from
that of μRþ and μIþ , and we arrange these three values by
separating them with vertical lines in writing “μRþjμRjμIþ .”

FIG. 2. The T dependence of the LPI of the l ¼ 1 excited mode
is depicted for various resolutions. The multipole indices of
applied static excitation were s ¼ 1, l0 ¼ 1, m ¼ 1. It is visible
that the use of 512 spatial grid points does not even allow us to get
a hint of the correct value of LPI. It is also clearly visible that by
increasing the number of involved grid points the value of μ
becomes more accurate.
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In practice, the LPI value indicated in the middle slot will
always correspond to the one measured along the R ¼ 0.88
timeline.
There is additional information indicated in the suc-

ceeding tables. Note first that in most cases the precise
value of the LPIs could be determined in a clean way by
making use of (43) (see also Figs. 1–3). Nevertheless,
there were some cases where the limited accuracy at the
very late time did not allow us to draw a clear conclusion
this way. In such cases, instead of using (43), a line fitting
on the log-log plots was applied in order to determine the
approximate value of the LPIs relevant for the pertinent
modes. Note that, as the output of this method depends,
for instance, on the choice of the subintervals where the
fitting is carried out, the yielded LPI values have to be
taken with some caveats. To warn the reader, the corre-
sponding LPI values are always indicated by round
brackets around the pertinent numbers, i.e., by writing
(μ) instead of μ. We also have to admit that there were
cases—especially for negative values of s—where neither
of the above-discussed methods could be sufficiently
conclusive. All these cases will be indicated by filling
up the pertinent slot labeled by the l0 and l values with a
question mark “?.”

B. Axially symmetric configurations

Note first that in [13] detailed numerical investigations
of the axisymmetric case were carried out. This gives us the
opportunity to compare the observed LPI values and,

thereby, to check the performance and the reliability of
our code.
The LPIs obtained for the axially symmetric cases with

jsj ¼ �1;�2 and with m ¼ 0 are assembled in Table I for
jsj ¼ �1 and in Table II for jsj ¼ �2.
The most characteristic features which deserve notice are

as follows:
(1) The values of the LPIs at Rþ and at intermediate

locations Rþ < R < 1 are always increased by 1 if
the value of the excited mode l is increased by 1.

(2) The values of the LPIs at Iþ do not necessarily
increase in an analogous, strictly monotonous way,
though they never decrease either while the value of
l is increased.

(3) The above two observations imply that the mode
with the lowest possible l value always decays
at the slowest rate, though at Iþ there may be
some other l modes which are also decaying at the
same rate.

TABLE I. jsj ¼ 1, m ¼ 0.

(a) s ¼ −1, static initial data

l’ l ¼ 1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|8
2 5|4 6|5 7|6 8|(7) 9|?
3 6|5 7|5 8|(5) 9|? 10|?
4 7|6 8|6 9|6 10|? 11|?
5 8|7 9|7 10|7 ?|? ?|?

(b) s ¼ 1, static initial data

l’ l ¼ 1 2 3 4 5

1 6|5|2 7|6|3 8| 7|4 9| 8|5 10| 9 | 6
2 6|5|2 7|6|3 8| 7|4 9| 8|5 10| 9 | 6
3 7|6|3 8|7|3 9| 8|4 10| 9|5 11| 10 |(7)
4 8|7|4 9|8|4 10| 9|4 11|10|? 12| 11 |(7)
5 9|8|5 10|9|5 11|10|5 12|11|5 13|(12)|(7)

(c) s ¼ −1, dynamic initial data

l’ l ¼ 1 2 3 4 5

1 5|4 6|5 7| 6 8 | 7 9|(9)
2 6|5 7|5 8| 6 9 | 7 10|(8)
3 5|4 6|5 7| 6 8 | 7 9| ?
4 6|5 7|5 8|(5) 9 |(7) 10| ?
5 7|6 8|6 9| 6 (10)| ? ?| ?

(d) s ¼ 1, dynamic initial data

l’ l ¼ 1 2 3 4 5

1 6|5|2 7|6|3 8|7|4 9| 8| 5 10| 9 |6
2 7|6|3 8|7|3 9|8|4 10| 9| 5 11| 10 |6
3 6|5|2 7|6|3 8|7|4 9| 8| 5 10| (8)|6
4 7|6|3 8|7|3 9|8|4 10| 9| 5 11| 10 |6
5 8|7|4 9|8|4 10|9|4 11|10|(4) 12|(10)|6

FIG. 3. The R dependence of the LPI values is depicted for a
mode with multipole indices s ¼ 1, l ¼ 1, m ¼ 0 that was
yielded by applying a static initial excitation with l0 ¼ 1. The
value of μ at the outer horizon R ¼ Rþ is −6, while it is −2 at the
R ¼ 1 line representing future null infinity. It is also clearly
indicated that the closer a finite intermediate spatial location with
Rþ < R < 1 is to the outer horizon R ¼ Rþ or to the R ¼ 1 line
representing future null infinity, the longer it takes to settle down
to the pertinent shared LPI value μ ¼ −5.
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(4) For s > 0, the value μRþ is always larger by 1 than
the LPI at intermediate locations Rþ < R < 1.

(5) All observations made in the previous point are in
full agreement with the analytic results and numeri-
cal findings in [10,13], respectively.

(6) For jsj ¼ 2, the most significant distinction is
that the first row and the first column of the tables
signified by l0, l slots are missing, as the corre-
sponding modes are excluded by the fact that all
the spin-weighted spherical harmonics with l <
maxfjsj; jmjg are annihilated by the ð operator.

Note, finally, that in Table I there are seven numerically
determined LPI values—they are indicated by boldface—
that differ from those which can be deduced from the rules
laid down in [10,13]. Notably, the difference is always 1.
Nevertheless, these seven numbers are all in round brackets
indicating that the corresponding estimates have to be taken
with some caveats.

C. Nonaxially symmetric configurations

Note that in the nonaxisymmetric scenarios, due to the
fact that the spin-weighted spherical harmonics with l <
maxfjsj; jmjg are annihilated by the ð operator, the first
row and the first column of the tables signified by the l0, l
slots are always missing if either jmj ¼ 2 or jsj ¼ 2.
Nevertheless, for the sake of easier comparisons between
the axisymmetric and nonaxisymmetric cases, we assemble
the LPI values using the interval 1 ≤ l0;l ≤ 5, as done
previously.

1. jmj= 1, 2 with static initial data

In this subsection, excitations generated by the jmj ¼ 1,
2 modes with static initial data are considered. The relevant
LPIs are collected in Tables III–VI, and the main obser-
vations concerning them are summarized as follows:
(1) Now, even for positive values of s, i.e., for s ¼ 1

and s ¼ 2, the pertinent LPI values at the horizon
and the LPI values at intermediate locations
coincide.

(2) For any fixed value of s, the LPIs are independent of
the sign of m.

(3) The LPI values μRþ at the horizon are also inde-
pendent of the sign of s. As opposed to this, the LPI
values μIþ at future null infinity depend on the sign
of s, such that the values of μIþ relevant for negative
s are always larger by 2jsj than the pertinent LPI
values μIþ for positive s.

(4) The LPI values μRþ and μIþ relevant for the
considered nonaxisymmetric case are pairwise equal
to the LPI values at intermediate locations Rþ <
R < 1 and μIþ relevant for the corresponding axially
symmetric configurations (discussed in the previous
section).

2. jmj= 1, 2 with purely dynamical initial data

The excitations generated by purely dynamical initial data
are visibly more interesting. This gets to be transparent, for
instance, when l0 ¼ l0 þ 1. In this case, the Green’s-
function-based argument of Hod [10] was corrected by
results in [13], though only for m ¼ 0. Nevertheless, our
findings indicate that corrections are needed also for m ≠ 0.
The relevant LPI values are highlighted by boldface char-
acters in Tables VII–X.
(1) As in other cases, the LPI values at the horizon Rþ

are always increased at least by 1 while the value of
l is increased by 1.

(2) The LPI values at future null infinity Iþ do not
necessarily increase, though they never decrease
while the value of l is increased.

(3) For any fixed value of s, the LPIs are independent of
the sign of m.

(4) The LPI values μRþ at the horizon are independent of
the sign of the spin parameter s, with some ex-

TABLE II. jsj ¼ 2, m ¼ 0.

(a) s ¼ −2, static initial data

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|? 9|? 10|?
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(b) s ¼ 2, static initial data

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 8|7|2 9| 8|3 10| 9|4 11|10|5
3 X 8|7|2 9| 8|3 10| 9|4 11|10|5
4 X 9|8|3 10| 9|3 11|10|4 12|11|5
5 X 10|9|4 11|10|4 12|11|4 13|12|5

(c) s ¼ −2, dynamic initial data

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 8|7 ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(d) s ¼ 2, dynamic initial data

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 8|7|2 9|8|3 10| 9|4 11|10|5
3 X 9|8|3 10|9|3 11|10|4 12|11|5
4 X 8|7|2 9|8|? 10| 9|4 11|10|5
5 X 9|8|3 10|9|3 11|10|4 12|11|5
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ceptions when l0 ¼ l0 þ 1, l ≥ l0, jsj ¼ 1, m ¼ 2.
Unfortunately, we do not have the data to check if a
similar effect is present when jsj ¼ 2. Nevertheless,
using also Table 5 of [13], it can be seen that the
effect is not present for jsj ¼ 2, m ¼ 2.

(5) As above, the LPI values μIþ do depend on the sign
of s such that the value of μIþ relevant for negative s
is always larger by 2jsj than the LPI value μIþ

pertinent to the corresponding positive s.
Concerning the two Green’s-function-based arguments, we
draw the following conclusions from our numerical findings:
(6) The LPI values at the horizon μRþ are reassuring that

the modifications in [13] are valid only in the case
m ¼ 0. A notable exception is the row l0 ¼ 3 in
Table VIII(a). There, the data suggest that for l > 2
a similar modification is needed as in the m ¼ 0
case.

(7) For s > 0, apart from l0 ¼ l0 þ 1, the values μRþ
and the LPI values at intermediate locations Rþ <
R < 1 are always equal to each other. Whenever
l0 ¼ l0 þ 1, our LPI values μR at intermediate
locations, with the exception of l ¼ l0, are system-
atically larger by 1 than predicted by (38). Again,
this suggests that a correction similar to the one
presented in [13] is needed whenever s > 0,
l0 ¼ l0 þ 1, and l > l0.

(8) At future null infinity, our numerically determined
values for μIþ are consistent with the results
of [10,13].

All in all, it appears that in the very limited subcase with
l0 ¼ l0 þ 1, there are certain special circumstances where
neither the predictions made in [10] nor those made in [13]
are supported by our numerical findings. The correspond-
ing subcase would definitely desire more thoughtful ana-
lytic inspection.

D. Energy and angular momentum conservation

As it was shown in [14], to any pair of spin s and −s
solutions of the Teukolsky master equations, there always
exist some conserved canonical energy- and angular-
momentum-type currents. Since the corresponding vector
fields Ea and Ja are divergence-free, i.e.,∇aEa ¼ 0 and
∇aJa ¼ 0, and by construction are complex, they provide
us two complex balance relations as formulated by (31)
along with its correspondent yielded by the replacement of
Ea by Ja. All in all, the real and imaginary parts of these
two complex balance relations give us four real ones, and
these four together provide us—in addition to the conven-
tional checks such as the numerical convergence rate—a
very important verification of the correctness and robust-
ness of our numerical results.
In this subsection, first these energy and angular

momentum balance relations will be applied. In particular,
in the panels of Fig. 4, the time dependence of the real and
imaginary parts of the numerical errors

δE ¼
Z
∂Ω

nμEμ and δJ ¼
Z
∂Ω

nμJμ ð44Þ

are plotted against time. The applied rectangular domain of
integrationΩ is bounded by an initial time slice T ¼ Ti and
by a running T slice, and also by the null cylinders at the
horizon R ¼ Rþ and at future null infinity at R ¼ 1,
respectively. Note that on analytic grounds, the integrals
δE and δJ in the balance relations in (44) should vanish
identically. Accordingly, they have to be (and they are
expected to stay) small if the numerical implementation is
correct. It is also important to emphasize that in each panel
of Fig. 4, the aforementioned time dependences are plotted
for three different resolutions, with 1024,2048,4096 spatial
grid points. In this respect, the panels in Fig. 4 are not only
to demonstrate that the real and imaginary parts of the
balance relations (29) and (30) hold at a satisfactorily
accurate level but also to make it transparent that our
numerical implementation has a fourth order convergence
rate—even in the considered highly complicated expres-
sions deduced from the numerically determined basic
variables—as it should happen as a fourth order accurate
Runge-Kutta time integrator is applied in the T − R section.
To make this transparent, the numerical values of δE and δJ
relevant for the resolutions 2048 and 4096 are multiplied by
16 and 256, respectively.
If the numerical values of δE and δJ were exactly

proportional to the fourth power of the grid spacing δR,
then the lines corresponding to the three different reso-
lutions shown in the panels of Fig. 4 would exactly
coincide. The apparent deviation from this prediction,
which is very small in Fig. 4(b) but larger in the other
three panels, can be explained by higher order corrections
to the leading ∝ ðδRÞ4 power law. In particular, the
assumption that the dependence of the numerical values
of δE and δJ on δR has the functional form
c4ðδRÞ4 þ c5ðδRÞ5 þ � � �, where c4 and c5 are suitable
constants, implies that the distance between the lines for
the 2048 and 4096 grid points should be approximately half
the distance between the lines for the 1024 and 2048 grid
points, which can indeed be seen in Fig. 4.
The conserved currents Ea and Ja can also be used to

analyze transport in the energy- and angular-momentum-
type quantities, and we shall do so in the rest of this
subsection. Nevertheless, in advance of doing so it is
important to emphasize that these currents, apart from
the spin-weight s ¼ 0 case, are not defined for individual
fields but only for a pair of spin-weight s and −s solutions
to the Teukolsky master equation. This restriction applies
even though the spin-weight s and −s solutions can be
generic; i.e., they could completely be independent of
each other.
In the panels in Fig. 5, the time dependence of the

real and imaginary parts of the total energy and angular
momentum,
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ET ¼
Z
ΣT

nðTÞa Ea
ffiffiffiffiffiffiffiffi
jhT j

p
dRdϑdφ and

J T ¼
Z
ΣT

nðTÞa Ja
ffiffiffiffiffiffiffiffi
jhT j

p
dRdϑdφ; ð45Þ

where ΣT signifies the T ¼ const slices, as well as the time
dependence of the integrals of the corresponding flows

FE ¼
Z
CylR;T

nðRÞa Ea
ffiffiffiffiffiffiffiffi
jhRj

p
dTdϑdφ and

F J ¼
Z
CylR;T

nðRÞa Ja
ffiffiffiffiffiffiffiffi
jhRj

p
dTdϑdφ; ð46Þ

where the latter integrals are supposed to be evaluated at the
cylinders Rþ × ½Ti; T� at the black hole event horizon and
RIþ × ½Ti; T� at future null infinity, are plotted, respec-
tively. These plots are showing only the initial parts of the
time evolution; nevertheless, as 99% of the transport
processes happens in the corresponding initial intervals,
these plots are informative about the characteristic features.
Even though the spin-weight s and −s solutions to the

Teukolsky master equation may be completely independent
in our simulations, they were yielded by applying exactly
the same R-dependent bumpy profile (35), with exactly the
same parameters as described in Sec. III B. Probably for
this reason, there is a striking similarity between the real

FIG. 4. The time dependence of the real and imaginary parts of the energy and angular momentum balance relations δE and δJ are
shown, respectively. This is done in each panel for three different resolutions with 1024,2048,4096 spatial grid points. In order to make it
transparent that our numerical implementation, as desired, is of fourth order accurate, the numerical values of δE and δJ relevant for the
resolutions 2048 and 4096 are multiplied by 16 and 256, respectively. (a) The time dependence of the real part ReðδEÞ of energy balance
relation δE is plotted for three resolutions. The convergence rate is slightly better than 4. (b) The time dependence of the imaginary part
ImðδEÞ of energy balance relation δE is depicted for three resolutions. The convergence rate is exactly 4. (c) The time dependence of the
real part ReðδJÞ of angular momentum balance relation δJ is shown. The convergence rate is seen to be slightly better than 4. (d) The
time dependence of the real part ImðδJÞ of angular momentum balance relation δJ is shown. The convergence rate remains close to 4.
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parts of the energy- and angular-momentum-type transport
processes, as depicted in Figs. 5(a) and 5(c) and between
the corresponding figures (5) and (7) in [19] depicting the
true energy and angular momentum transport processes
relevant for a single spin-weight zero scalar field inves-
tigated in detail in [19].

In closing this subsection, note that it is obviously
interesting to know what happens with the conserved
currents and with their integrals under the flip a ↦ −a
of the sign of the rotation parameter of the background Kerr
spacetime. Remarkably, only the following two flippings
are induced by this transformation. Notably, a flipping

FIG. 5. The time dependence of the real and imaginary parts of the total energy ET and total angular momentum J T , as well as those of
the corresponding flows FE and F J are depicted. Though only the initial parts of the time evolution are shown in these plots, they make
transparent about 99% of the pertinent transport processes. (a) The time dependence of the real part ReðETÞ of the total energy ET, along
with the real part ReðFEÞ of the integrated energy flow FE, evaluated at Rþ and at Iþ, is plotted. It is visible that first about half of the
energy stored by the initial data is leaving the domain of outer communication via the black hole event horizon. The other half leaves
later through future null infinity Iþ. (b) The imaginary part ImðETÞ of the total energy ET, along with the imaginary part ImðFEÞ of the
integrated energy flow FE, evaluated at Rþ and at Iþ, is plotted against time. Two spikes are visible on this figure which occur exactly
when the pulses go through the event horizon and through future null infinity. Apart from these spikes the transport processes here
remain small scale. (c) The time dependence of the real part ReðJ TÞ of the total angular momentum J T , along with the real part ReðF JÞ
of the integrated energy flow F J, evaluated at Rþ and at Iþ, is plotted. The angular momentum drops significantly by the loss through
the black hole event horizon which is followed by some negative flow through null infinity. Notably, there is more angular momentum in
the system at T ¼ 10 than around T ¼ 5. (d) The imaginary part ImðJ TÞ of the total angular momentum J T , along with the real part
ImðF JÞ of the integrated energy flowF J, evaluated at Rþ and at Iþ, is plotted against time. The losses here are of opposite sign w.r.t. the
real part, i.e. the flow through the black hole event horizon is negative whereas the flow through null infinity is positive. These losses
almost emptying the imaginary part of the total angular momentum.
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happens in the signs of the imaginary part ImðETÞ of the
total energy ET and with the imaginary partImðFEÞ of the
integrated energy flow FE evaluated at Rþ and at Iþ,
whereas a completely analogous flipping happens in the
real part ReðJ TÞ of the total angular momentum J T and
with the real partReðF JÞ of the integrated energy flow F J
evaluated at Rþ and at Iþ. The sign flips in the real part of
the angular momentum integrals seem to be in accordance
with intuition as under the flip a ↦ −a of the rotation
parameter the background Kerr black hole gets to be
counterrotating with respect to the spin s and −s solutions
of the Teukolsky master equation.

V. FINAL REMARKS

The time evolution and the late-time behavior of spin s
fields with s ¼ �1;�2 on a fixed Kerr background was
examined numerically. The applied mathematical setup
incorporated the techniques of conformal compactification
and the hyperbolic initial value formulation of these spin s
fields. A new code was introduced that was developed
based on the two-parameter foliation of the Kerr back-
ground by topological two-spheres as determined by the
Boyer-Lindquist t ¼ const and r ¼ const level surfaces.
The angular dependences along the foliating two-surfaces
were treated by applying multipole expansions of the basic
variables in terms of spin-weighted spherical harmonics, by
which the applied method gets to be fully spectral in these
angular directions. In the complementary time-radial sec-
tion, the method of lines in a fourth order accurate Runge-
Kutta time integration scheme was applied.
The time evolution of purely static and purely dynamical

initial data were investigated. The asymptotic decay rates
were evaluated at the black hole event horizon, in the
domain of outer communication and at future null infinity.
This was done systematically by scanning through a
significantly wide range of the input and output parameters
l0, m; s;l. The deduced decay rates were compared to
those which were deduced prior to our investigation. In
particular, our most important findings can be summarized
as follows by referring to the results covered by [8–10,13].
As noted earlier, in the case of static initial data, we

compared our numerical results with those deduced
also numerically in [13]. The only limitation in doing
so was that (apart from a few exceptions) the decay
exponents were determined in [13] only for axially sym-
metric configurations with m ¼ 0. Remarkably, for purely
static initial data, if jsj is replaced by l0 ¼ maxfjmj; jsjg
everywhere in (40) and (41)—these were deduced
in [13] for the m ¼ 0 case—the yielded relations [see
(47) and (48) below] are automatically valid to the fully
general (not necessarily axially symmetric) configurations.
Accordingly, for static configurations, our findings—
these are collected in Tables I(a), I(b), II(a), and II(b)
for axisymmetric configurations with m ¼ 0 and in

Tables III–VI for nonaxisymmetric configurations with
m ≠ 0—can be summarized as follows:
(ST1) At the horizon R ¼ Rþ

njRþ ¼
�
l0 þ lþ 3þ α; if l0 ¼ l0;

l0 þ lþ 2þ α; if l0 > l0;
ð47Þ

where—now as it was in (37)—l0¼maxfjmj; jsjg
and α ¼ 0 in all cases except if s > 0 and m ¼ 0,
when α ¼ 1.

(ST2) At any finite intermediate spatial location with
Rþ < R < 1,

njR ¼
�
l0 þ lþ 3; if l0 ¼ l0;

l0 þ lþ 2; if l0 > l0:
ð48Þ

TABLE III. jsj ¼ 1, jmj ¼ 1 with static initial data.

(a) s ¼ −1, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|?
2 5|4 6|5 7|6 8|(7) 9|?
3 6|5 7|5 8|6 9|(6) 10|?
4 7|6 8|6 9|6 10|? 11|?
5 8|7 9|7 10|7 ?|? ?|?

(b) s ¼ 1, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 5|5|2 6|6|3 7| 7|4 8| 8|5 9| 9 | 6
2 5|5|2 6|6|3 7| 7|4 8| 8|5 9| 9 | 6
3 6|6|3 7|7|3 8| 8|4 9| 9|5 10| 10 |6
4 7|7|4 8|8|4 9| 9|4 10|10|5 11| 11 |(6)
5 8|8|5 9|9|5 10|10|5 11|11|5 12|(12)|(6)

(c) s ¼ −1, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|?
2 5|4 6|5 7|6 8|? 9|?
3 6|5 7|5 8|6 9|? 10|?
4 7|6 8|6 9|6 10|? 11|?
5 8|7 9|7 10|7 ?|? ?|?

(d) s ¼ 1, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 5|5|2 6|6|3 7|7|4 8|8|5 9|9|6
2 5|5|2 6|6|3 7|7|4 8|8|5 9|9|6
3 6|6|3 7|7|3 8|8|4 9|9|5 10|10|6
4 7|7|4 8|8|4 9|9|4 10|10|5 11|11|(6)
5 8|8|5 9|9|5 10|10|5 11|11|5 12|(12)|(6)
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TABLE IV. jsj ¼ 1, jmj ¼ 2 with static initial data.

(a) s ¼ −1, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 8|6 9|(7) 10|?
4 X 8|6 9|6 10|? 10|?
5 X 9|7 10|7 ?|? ?|?

(b) s ¼ 1, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|3 8| 8|4 9| 9|5 10| 10 | 6
3 X 7|7|3 8| 8|4 9| 9|5 10| 10 | 6
4 X 8|8|4 9| 9|4 10|10|5 11| 11 |6
5 X 9|9|5 10|10|5 11|11|5 12|(12)|6

(c) s ¼ −1, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 8|6 9|(7) 10|?
4 X 8|6 9|6 10|? 11|?
5 X 9|7 10|7 ?|? ?|?

(d) s ¼ 1, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|3 8|8|4 9|9|5 10|10|6
3 X 7|7|3 8|8|4 9|9|5 10|10|6
4 X 8|8|4 9|9|4 10|10|5 11|11|6
5 X 9|9|5 10|10|5 11|11|5 12|(12)|6

TABLE V. jsj ¼ 2, jmj ¼ 1, static initial data.

(a) s ¼ −2, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|?
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(b) s ¼ 2, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 8|3 9| 9|4 10|10|5
4 X 8|8|3 9| 9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5

(Table continued)

(c) s ¼ −2, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|?
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(d) s ¼ 2, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 8|3 9| 9|4 10|10|5
4 X 8|8|3 9| 9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5

TABLE V. (Continued)

TABLE VI. jsj ¼ 2, jmj ¼ 2, static initial data.

(a) s ¼ −2, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(b) s ¼ 2, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|8|3 9|9|4 10|10|5
4 X 8|8|3 9|9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5

(c) s ¼ −2, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(d) s ¼ 2, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|8|3 9|9|4 10|10|5
4 X 8|8|3 9|9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5
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TABLE VII. jsj ¼ 1, jmj ¼ 1with purely dynamical initial data.

(a) s ¼ −1, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|(8)
2 5|4 6|5 7|6 8|7 ?|(8)
3 5|4 6|5 7|6 8|(7) 9|?
4 6|5 7|5 8|6 9|(7) 10|?
5 7|6 8|6 9|6 (9)|? ?|?

(b) s ¼ 1, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 5|5|2 6|6|3 7| 7|4 8| 8|5 9| 9 | 6
2 5|5|2 6|7|3 7|8|4 8|9|5 9|10| 6
3 5|5|2 6|6|3 7|(7)|4 8| ?|5 9| ? |6
4 6|6|3 7|7|3 8| 8|4 9|9|5 10| 10 |6
5 7|7|4 8|8|4 9| 9|4 10|10|(5) 11| 11 |(6)

(c) s ¼ −1, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|(8)
2 5|4 6|5 7|6 8|7 9|(8)
3 5|4 6|5 7|6 8|(7) 9|?
4 6|5 7|5 8|6 9|? 10|?
5 7|6 8|6 9|6 10|? ?|?

(d) s ¼ 1, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 5|5|2 6|6|3 7|7|4 8|8|5 9|9|6
2 5|5|2 6|7|3 7|8|4 8|9|5 9|10|6
3 5|5|2 6|6|3 7|?|4 8|?|5 9|?|6
4 6|6|3 7|7|3 8|8|4 9|9|5 10|10|6
5 7|7|4 8|8|4 9|9|4 10|10|5 11|11|6

TABLE VIII. jsj ¼ 1, jmj ¼ 2with purely dynamical initial data.

(a) s ¼ −1, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 9|6 10|7 11|?
4 X 7|5 8|6 9|? 10|?
5 X 8|6 9|6 10|? 11|?

(b) s ¼ 1, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|3 8| 8|4 9| 9|5 10| 10 | 6
3 X 7|7|3 8| 9|4 9|10|5 10|11 | 6
4 X 7|7|3 8| 8|4 9| ?|5 10| ? |6
5 X 8|8|4 9| 9|4 10|10|5 11|(11)|6

(Table continued)

(c) s ¼ −1, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 ?|6 ?|7 ?|?
4 X 7|5 8|6 9|? 10|?
5 X 8|6 9|6 10|? 11|?

(d) s ¼ 1, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|3 8|8|4 9|9|5 10|10|6
3 X 7|7|3 8|9|4 9|10|5 10|11|6
4 X 7|7|3 8|8|4 9| ?|5 10| ?|6
5 X 8|8|4 9|9|4 10|10|5 11|?|6

TABLE VIII. (Continued)

TABLE IX. jsj ¼ 2, jmj ¼ 1, purely dynamical initial data.

(a) s ¼ −2, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X ?|? ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(b) s ¼ 2, m ¼ 1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 9|3 9|10|4 10|11|5
4 X 7|7|2 8| 8|3 9| 9|4 10|10|5
5 X 8|8|3 9| 9|3 10|10|4 11|11|5

(c) s ¼ −2, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X ?|? ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(d) s ¼ 2, m ¼ −1

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 9|3 9|10|4 10|11|5
4 X 7|7|2 8| 8|3 9| 9|4 10|10|5
5 X 8|8|3 9| 9|3 10|10|4 11|11|5
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(ST3) Finally, at future null infinity signified by R ¼ 1,

njR¼1 ¼
�
l − sþ 2; if l0 ≤ l;

l0 − sþ 1; if l0 > l:
ð49Þ

As for the solutions of the Teukolsky master equation
starting with purely dynamical initial data, as indicated
earlier, the situation gets more involved at least in certain
subcases. The relevant data are collected in Tables I(c), I(d),
II(c), and II(d) for axisymmetric initial data and in
Tables VII–X for nonaxisymmetric initial data.
(PD1) For instance, at the horizon with R ¼ Rþ, for m ≠

0 and l0 ¼ l0 þ 1 the decay rates based on our
numerical findings do not fully agree with the
former predictions. Our results can be described
by the following modification of (37):

njRþ ¼

8>><
>>:

l0 þ lþ 3þ α; if l0 ¼ l0;

l0 þ lþ 3þ α − δ̃; if l0 ¼ l0 þ 1;

l0 þ lþ 1þ α; if l0 > l0 þ 1;

ð50Þ

where l0 ¼ maxfjmj; jsjg, α ¼ 0 in all cases
except if s > 0 and m ¼ 0, when α ¼ 1, and also
δ̃ ¼ 0 ifm ¼ 0 orm ¼ 2 with s ¼ −1 and l > l0,
δ̃ ¼ 1 in all other cases.

(PD2) At finite intermediate spatial locations with
Rþ < R < 1, we also found that there are
differences between (38) and our results if l0 ¼
l0 þ 1 and m ≠ 0. Again, this difference can be
taken into account by a minor modification of δ:

njR¼

8>><
>>:
l0 þlþ3þα; if l0 ¼l0;

l0 þlþ3þα− δ̂; if l0 ¼l0þ1;

l0 þlþ1þα; if l0>l0þ1;

ð51Þ

where l0 and α are as above, and also δ̂ ¼ 0 if
m ¼ 0 or m ≠ 0 but l > l0 and δ̂ ¼ 1 otherwise.

(PD3) At R ¼ 1 representing future null infinity Iþ, all
of our pertinent numerical findings support the
predictions of (39); i.e., the following rules apply

njR¼1 ¼
�
l − sþ 2þ γ; if l0 ≤ lþ 1;

l0 − s; if l0 > lþ 1;
ð52Þ

where γ ¼ 0 in all cases except if m ¼ 0,
l0 ¼ l0 þ 1, and l ¼ l0, when γ ¼ 1.

The apparent dependence of the decay rate on the value
of the azimuthal parameter m at the horizon R ¼ Rþ and
intermediate locations Rþ < R < 1 indicate that there may
be interesting features which will definitely desire further
investigation. To clear this up, along with possibly some
other interesting issues is, however, out of the scope of the
present paper and they are left for future studies.
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APPENDIX A: THE HOMOGENEOUS TME

As mentioned in Sec. II B, after regularization, the
homogeneous Teukolsky master equation takes the form

TABLE X. jsj ¼ 2, jmj ¼ 2, purely dynamical initial data.

(a) s ¼ −2, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(b) s ¼ 2, m ¼ 2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|9|3 9|10|4 10|11|5
4 X 7|7|2 8|8|3 9|9|4 10|10|5
5 X 8|8|3 9|9|3 10|10|4 11|11|5

(c) s ¼ −2, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(d) s ¼ 2, m ¼ −2

l’ l ¼ 1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|9|3 9|10|4 10|11|5
4 X 7|7|2 8|8|3 9|9|4 10|10|5
5 X 8|8|3 9|9|3 10|10|4 11|11|5
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∂TTΦðsÞ ¼ 1

Aþ B · Y0
2

h
cRR · ∂RRΦðsÞ þ cTR · ∂TRΦðsÞ

þ cTφ · ∂TφΦðsÞ þ cRφ · ∂RφΦðsÞ þ cϑϑ · ð̄ðΦðsÞ

þ cT · ∂TΦðsÞ þ icTyY0
1 · ∂TΦðsÞ þ cR · ∂RΦðsÞ

þ cφ · ∂φΦðsÞ þ c0 ·ΦðsÞ
i
:

All the involved R-dependent coefficients are listed below.
In particular, A and B are

A ¼ aþ b=3 and B ¼ 4

3

ffiffiffi
π

5

r
b; where ðA1Þ

a ¼ −4RðA0 þ A1Rþ A2R2 þ A3R3 þ A4R4

þ A5R5 þ A6R6Þ; ðA2Þ

A0 ¼ −M; ðA3Þ

A1 ¼ a2 − 1þ 4a2M − 5M þ 4a2M2 − 8M2; ðA4Þ

A2 ¼ a2 − 1þ 4a2M − 11M þ 4a2M2 − 24M2 − 16M3;

ðA5Þ

A3 ¼ −4a2M þM − 8a2M2 − 8M2 − 16M3; ðA6Þ

A4 ¼ −4a2M − 8a2M2 þ 8M2 þ 16M3; ðA7Þ

A5 ¼ 4a2M2 þ 16M3; ðA8Þ

A6 ¼ 4a2M2; ðA9Þ

b ¼ a2ð1þ RÞðR2 þ 1Þ2: ðA10Þ

The rest of the involved coefficients are

cRR ¼ 1

4
ð1þ RÞðR2 − 1Þ2ðcRR0 þ cRR1R

þ cRR2R2 þ cRR3R3 þ cRR4R4Þ; ðA11Þ

cRR0 ¼ a2; ðA12Þ

cRR1 ¼ −4M; ðA13Þ

cRR2 ¼ −2ða2 − 2Þ; ðA14Þ

cRR3 ¼ 4M; ðA15Þ

cRR4 ¼ a2; ðA16Þ

cTR ¼ 2Rð1þ RÞ½cTR0 þ cTR1Rþ cTR2R2 þ cTR3R3

þ cTR4R4 þ cTR5R5 þ cTR6R6�; ðA17Þ

cTR0 ¼ −a2 − 2a2M þ 2M; ðA18Þ

cTR1 ¼ 4Mð1þ 2MÞ; ðA19Þ

cTR2 ¼ 2ða2 − 2þ 3a2M − 4MÞ; ðA20Þ

cTR3 ¼ −4Mð1þ 4MÞ; ðA21Þ

cTR4 ¼ −a2 − 6a2M þ 6M; ðA22Þ

cTR5 ¼ 8M2; ðA23Þ

cTR6 ¼ 2a2M; ðA24Þ

cTφ ¼ 4aRð1þ RÞð1þ R2Þð−1 − 2M þ 2MR2Þ; ðA25Þ

cRφ ¼ að1þ R2ÞðR − 1Þ2ðRþ 1Þ3; ðA26Þ

cϑϑ ¼ ð1þ RÞðR2 þ 1Þ2; ðA27Þ

cT ¼ 1

1þ R2
ðcT0 þ cT1Rþ cT2R2 þ cT3R3

þ cT4R4 þ cT5R5 þ cT6R6

þ cT7R7 þ cT8R8 þ cT9R9Þ; ðA28Þ

cT0 ¼ a2 þ 2a2M − 2M − 2Ms; ðA29Þ

cT1 ¼ a2 þ 2a2M − 2M − 4s − 6Ms − 8M2s; ðA30Þ

cT2 ¼ 5a2 − 4þ 12a2M − 14M þ 4sþ 6Ms − 8M2s;

ðA31Þ

cT3 ¼ 5a2 − 4þ 12a2M − 30M − 48M2

− 8sþ 2Ms − 8M2s; ðA32Þ

cT4 ¼ −5a2 þ 4 − 24a2M þ 10M − 48M2

þ 8sþ 18Ms − 8M2s; ðA33Þ

cT5 ¼ −5a2 þ 4 − 24a2M þ 26M

þ 32M2 − 4sþ 22Msþ 8M2s; ðA34Þ

cT6 ¼ −a2 þ 4a2M þ 6M þ 32M2 þ 4sþ 10Msþ 8M2s;

ðA35Þ
cT7 ¼ −a2 þ 4a2M þ 6M þ 16M2 þ 14Msþ 8M2s;

ðA36Þ

cT8 ¼ 2Mð3a2 þ 8M þ 4MsÞ; ðA37Þ

cT9 ¼ 6a2M; ðA38Þ
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cTy ¼ −4að1þ RÞðR2 þ 1Þ2s
ffiffiffi
π

3

r
; ðA39Þ

cR ¼ 1

2Rð1þ R2Þ ðR − 1ÞðRþ 1Þ2ðcR0 þ cR1Rþ cR2R2

þ cR3R3 þ cR4R4 þ cR5R5 þ cR6R6

þ cR7R7 þ cR8R8Þ; ðA40Þ

cR0 ¼ a2; ðA41Þ

cR1 ¼ −2Mð1þ sÞ; ðA42Þ

cR2 ¼ 3a2 þ 4s; ðA43Þ

cR3 ¼ −2Mð7þ sÞ; ðA44Þ

cR4 ¼ −7a2 þ 12þ 8s; ðA45Þ

cR5 ¼ 2Mð5þ sÞ; ðA46Þ

cR6 ¼ a2 þ 4þ 4s; ðA47Þ

cR7 ¼ 2Mð3þ sÞ; ðA48Þ

cR8 ¼ 2a2; ðA49Þ

cφ ¼ 1

R
aðR − 1ÞðR2 þ 1Þ2ðRþ 1Þ2; ðA50Þ

c0 ¼
1

2R2
ðR − 1ÞðR2 þ 1Þ2ðRþ 1Þ2

× ð−a2 þ 2MRþ a2R2 þ 2MRsÞ: ðA51Þ

APPENDIX B: SPIN-WEIGHTED
SPHERICAL HARMONICS

One of the advantages of applying the multipole expan-
sion

ΦðsÞðT; R;ϑ;φÞ ¼
X∞
l¼jsj

Xl
m¼−l

ϕl
mðT; RÞ · sYl

mðϑ;φÞ ðB1Þ

in terms of spin-weight s spherical harmonics sYl
m is that

all the angular derivatives in (22) can be evaluated
analytically. This is done by making use of the ð and ð̄
operators which act on a function f of spin-weight s as

ðf ¼ −sinsϑ
�
∂ϑ þ

i
sin ϑ

∂φ

�
ðsin−sϑ · fÞ; ðB2Þ

ð̄f ¼ −sin−sϑ
�
∂ϑ −

i
sin ϑ

∂φ

�
ðsinsϑ · fÞ: ðB3Þ

It is straightforward to check that for their commutator, the
relation

ðð̄ð − ðð̄Þf ¼ 2sf ðB4Þ

holds. It is also important to mention that all the ϑ
derivatives present in the Laplace-Beltrami operator rel-
evant for spin s fields are contained by the operator ð̄ð as
the relation

ð̄ðf ¼ ∂ϑϑf þ cotϑ∂ϑf þ 1

sin2ϑ
∂φφf þ 2is

cotϑ
sinϑ

∂φf

þ sð1 − scot2ϑÞf ðB5Þ

can be seen to hold.
In addition, the spin-weighted spherical harmonics sYl

m

are eigenfunctions of the operators ð̄ð and ∂φ and their spin
weight is shifted by ð and ð̄, as they satisfy

ðsYl
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
· sþ1Yl

m; ðB6Þ

ð̄sYl
m ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
· s−1Yl

m; ðB7Þ

ð̄ðsYl
m ¼ −ðl − sÞðlþ sþ 1Þ · sYl

m; ðB8Þ

∂φsYl
m ¼ im · sYl

m: ðB9Þ

Note that as ðlYl
m ¼ 0 for s ¼ l and ð̄−lYl

m ¼ 0 for
s ¼ −l, all the spin-weighted spherical harmonics sYl

m

with l < jsj vanish.
Using these relations, it is also straightforward to check

that the spin-weighted spherical harmonics can be gener-
ated by the spin-raising ð and the spin-lowering ð̄ operators
starting with the conventional (zero spin-weight) spherical
harmonics Yl

m as

sYl
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞ!
ðlþ sÞ!

s
· ðsYl

m ðB10Þ

if 0 ≤ s ≤ l and

sYl
m ¼ ð−1Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞ!
ðl − sÞ!

s
· ð̄−sYl

m ðB11Þ

if 0 > s ≥ −l. Note finally that the complex conjugation
acts as

sYl
m ¼ ð−1Þsþm

−sYl
−m: ðB12Þ
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In virtue of Eq. (22), one of the coefficients involves a
multiplication by Y1

0, whereas a division by the expression
Aþ B · Y0

2 must also be performed. Concerning multi-
plications, as it was explained in great detail in the
appendixes of [21], once we have the expansion of scalar
variables in terms of spherical harmonics, the products of
these variables can easily be evaluated by making use of
the Gaunt coefficients Gm1m2m3

l1l2l3
¼R

Ym1

l1
Ym2

l2
Ym3

l3
sinϑdϑdφ.

Notably, completely analogous arguments apply when
our spin s variables are expanded in terms of spin-
weighted spherical harmonics. The corresponding Gaunt
coefficients—which now acquire three additional spin
indices—can be given as

s1s2s3G
m1m2m3

l1l2l3
¼
Z

s1Y
m1

l1
· s2Y

m2

l2
· s3Y

m3

l3
sinϑdϑdφ; ðB13Þ

which can also be expressed via the Wigner-3j symbols as

s1s2s3G
m1m2m3

l1l2l3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

−s1 −s2 −s3

��
l1 l2 l3

m1 m2 m3

�
:

ðB14Þ

Then, in particular, the product Yl1
0 · sYl2

m can be
evaluated as

Yl1
0 · sYl2

m ¼
Xl1þl2

l3¼jl1−l2j
ð−1Þsþm · 0s−sG

0m−m
l1l2l3

· sYl3
m:

ðB15Þ

As for the division by the term Aþ B · Y0
2, note that by

following the ideas introduced in [21] (see also [19,22])
the division by this term can also be traced back to
multiplications. The essential observation made in [21]
was that the Neumann series expansion

A−1 ¼
X∞
k¼0

ð1 − AÞk ðB16Þ

can be applied to do so. In particular, by replacing A with
1þ x, where x ¼ B=A · Y0

2, and by choosing the value kmax

sufficiently large—as the term B=A · Y0
2 for any value of ϑ

is much smaller than 1—the approximate relation

½1þ ðB=AÞ · Y0
2�−1 ≈

Xkmax

k¼0

½−ðB=AÞ · Y0
2�k ðB17Þ

holds. Note that in practice, numerical precision with an
error tolerance of 10−20 does not require the use of more
than kmax ¼ 12 terms in this series.

APPENDIX C: THE CONSERVED CURRENTS

In order to evaluate the energy and angular momentum

balance relations, we need the explicit form of
ffiffiffiffiffiffiffiffijhT j

p
nðTÞa Ea,ffiffiffiffiffiffiffiffijhRj

p
nðRÞa Ea,

ffiffiffiffiffiffiffiffijhT j
p

nðTÞa Ja, and
ffiffiffiffiffiffiffiffijhRj

p
nðRÞa Ja. The follow-

ing subsections list the explicit form of the implemented
expressions.

1. Energy density

ffiffiffiffiffiffiffiffi
jhT j

p
nðTÞa Ea ¼ ðcTT þ cTTyY2

0Þ∂TΦðsÞ∂TΦð−sÞ þ cϑϑðΦðsÞð̄ðΦð−sÞ þΦð−sÞð̄ðΦðsÞÞ
þ cRφð∂RΦðsÞ∂φΦð−sÞ þ ∂φΦðsÞ∂RΦð−sÞÞ þ cRR∂RΦðsÞ∂RΦð−sÞ

þ ðcR þ scRsÞΦðsÞ∂RΦð−sÞ þ ðcR − scRsÞΦð−sÞ∂RΦðsÞ

þ cφðΦðsÞ∂φΦð−sÞ þΦð−sÞ∂φΦðsÞÞ þ c0ΦðsÞΦð−sÞ; ðC1Þ

where

cTT ¼ 1

6ð1þ RÞR2ð1þ R2Þ ða
2ð1þ RÞ½−1þ 2ð5þ 24M þ 24M2ÞR2

− ð1þ 48M þ 96M2ÞR4 þ 48M2R6� þ 12R½−ðRð1þ RÞÞ
þMð−1 − 5R − 11R2 þ R3Þ þ 8M2Rð−1 − 3R − R2 þ R3Þ
þ 16M3ð−1þ RÞR2ðRþ 1Þ2�Þ; ðC2Þ
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cTTy ¼ −
2a2ð1þ R2Þ

3R2

ffiffiffi
π

5

r
; ðC3Þ

cϑϑ ¼
1þ R2

4R2
; ðC4Þ

cRφ ¼ −
aðR2 − 1Þ2

4R2
; ðC5Þ

cRR ¼ −
ðR2 − 1Þ2ð4RðRþMðR2 − 1ÞÞ þ a2ðR2 − 1Þ2Þ

8R2ð1þ R2Þ ;

ðC6Þ

cR ¼ −
ðR2 − 1Þða2ðR2 − 1Þ2 þ 2Rð2Rþ 2MðR2 − 1ÞÞÞ

8R3
;

ðC7Þ

cRs ¼ −
ðR2 − 1Þð4R2 − 2MRþ 2MR3Þ

8R3
; ðC8Þ

cφ ¼ −
að−1þ R4Þ

4R3
; ðC9Þ

c0 ¼ −
ð1þ R2Þð4RðRþMðR2 − 1ÞÞ þ a2ðR2 − 1Þ2Þ

8R4
:

ðC10Þ

2. Energy current

ffiffiffiffiffiffiffiffi
jhRj

p
nðRÞa Ea ¼ cTT∂TΦðsÞ∂TΦð−sÞ

þ cTRð∂TΦðsÞ∂RΦð−sÞ þ ∂TΦð−sÞ∂RΦðsÞÞ
þ cTφð∂TΦðsÞ∂φΦð−sÞ þ ∂φΦðsÞ∂TΦð−sÞÞ
þ ðcT þ scTsÞΦðsÞ∂TΦð−sÞ

þ ðcT − scTsÞΦð−sÞ∂TΦðsÞ; ðC11Þ

where

cTT ¼ 1

Rþ R3
ða2ð−1þ 2MðR2 − 1ÞÞðR2 − 1Þ2

þ 2ð−2R2 þ 4M2RðR2 − 1Þ2
þMð1þ 4Rþ 3R2ÞðR − 1Þ2ÞÞ; ðC12Þ

cTR ¼ ðR2 − 1Þ2ð4RðRþMðR2 − 1ÞÞ þ a2ðR2 − 1Þ2ÞÞ
8R2ð1þ R2Þ ;

ðC13Þ

cTφ ¼ aðR2 − 1Þ2
4R2

; ðC14Þ

cT ¼ ðR2 − 1Þða2ðR2 − 1Þ2 þ 2Rð2Rþ 2MðR2 − 1ÞÞÞ
8R3

;

ðC15Þ

cTs ¼
ðR2 − 1Þð4R2 − 2MRþ 2MR3Þ

8R3
: ðC16Þ

3. Angular momentum density

ffiffiffiffiffiffiffiffi
jhT j

p
nðTÞa Ja ¼ ðcTφ þ cTφyY2

0Þð∂TΦðsÞ∂φΦð−sÞ þ ∂φΦðsÞ∂TΦð−sÞÞ þ cRφð∂RΦðsÞ∂φΦð−sÞ þ ∂φΦð−sÞ∂RΦðsÞÞ
þ cφφ∂φΦðsÞ∂φΦð−sÞ þ ðcφ þ sðcφs þ cφyiY1

0ÞÞΦðsÞ∂φΦð−sÞ þ ðcφ − sðcφs þ cφyiY1
0ÞÞΦð−sÞ∂φΦðsÞ;

ðC17Þ

where

cRφ ¼ 1

2ðRþ R3Þ ða
2ð−1þ 2MðR2 − 1ÞÞðR2 − 1Þ2 þ 2ð−2R2 þ 4M2RðR2 − 1Þ2 þMð1þ 4Rþ 3R2ÞðR − 1Þ2ÞÞ; ðC18Þ

cTφ ¼ 1

6ð1þ RÞR2ð1þ R2Þ ða
2ð1þ RÞð−1þ 2ð5þ 24M þ 24M2ÞR2 − ð1þ 48M þ 96M2ÞR4 þ 48M2R6Þ

þ 12R½−Rð1þ RÞ þMð−1 − 5R − 11R2 þ R3Þ þ 8M2Rð−1 − 3R − R2 þ R3Þ þ 16M3ð−1þ RÞR2ðRþ 1Þ2�Þ;
ðC19Þ
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cTφy ¼ −
2a2ð1þ R2Þ

3R2

ffiffiffi
π

5

r
; ðC20Þ

cφφ ¼ 2að−1þ 2MðR2 − 1ÞÞ
R

; ðC21Þ

cφ ¼ 1

2R2ðR2 − 1Þ ða
2ðR2 − 1Þ2ð2MðR2 − 1Þ − 1Þ þ 2ð4M2RðR2 − 1Þ2 − 2R2 þMðR − 1Þ2ð1þ 4Rþ 3R2ÞÞÞ; ðC22Þ

cφs ¼
ð4M2ðR − 1ÞRðRþ 1Þ2 þMð7R3 þ 5R2 − 3R − 1Þ þ 2ðR − 1ÞRÞ

2R2ðRþ 1Þ ; ðC23Þ

cφy ¼ −
aðR2 þ 1Þ

R2

ffiffiffi
π

3

r
: ðC24Þ

4. Angular momentum current

ffiffiffiffiffiffiffiffi
jhRj

p
nðRÞa Ja ¼ cRφð∂RΦðsÞ∂φΦð−sÞ þ ∂RΦð−sÞ∂φΦðsÞÞ þ cφφ∂φΦðsÞ∂φΦð−sÞ þ cTφð∂TΦðsÞ∂φΦð−sÞ þ ∂φΦðsÞ∂TΦð−sÞÞ

þ ðcφ þ scφsÞΦðsÞ∂φΦð−sÞ þ ðcφ − scφsÞΦð−sÞ∂φΦðsÞ; ðC25Þ

where

cRφ ¼ ðR2 − 1Þ2ð4RðRþMðR2 − 1ÞÞ þ a2ðR2 − 1Þ2Þ
8R2ð1þ R2Þ ; ðC26Þ

cTφ ¼ 1

2ðRþ R3Þ ða
2ð−1þ 2MðR2 − 1ÞÞðR2 − 1Þ2 þ 2ð−2R2 þ 4M2RðR2 − 1Þ2 þMð1þ 4Rþ 3R2ÞðR − 1Þ2ÞÞ; ðC27Þ

cφφ ¼ aðR2 − 1Þ2
2R2

; ðC28Þ

cφ ¼ ðR2 − 1Þða2ðR2 − 1Þ2 þ 2Rð2MðR2 − 1Þ þ 2RÞÞ
8R3

; ðC29Þ

cφs ¼
ðR2 − 1Þð2MR3 − 2MRþ 4R2Þ

8R3
: ðC30Þ
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