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A new evolution algorithm for the characteristic initial value problem based upon an affine parameter
rather than the areal radial coordinate used in the Bondi-Sachs formulation is applied in the spherically
symmetric case to the gravitational collapse of a massless scalar field. The advantages over the Bondi-
Sachs version are discussed, with particular emphasis on the application to critical collapse. Unexpected
quadratures lead to a simple evolution algorithm based upon ordinary differential equations which can be
integrated along the null rays. For collapse to a black hole in a Penrose compactified spacetime, these
equations are regularized throughout the exterior and interior of the horizon up to the final singularity. They
are implemented as a global numerical evolution code based upon the Galerkin method. New results
regarding the global properties of critical collapse are presented.
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I. INTRODUCTION

The Bondi-Sachs formulation of Einstein equations [1,2],
in which the coordinates are adapted to the null geodesics of
the spacetime, provided historic and convincing evidence
that the emission of gravitational waves is accompanied by
mass loss from the system. (For a review see [3].) A
technical limitation in the application of the Bondi-Sachs
formulation arises from the use of an areal radial coordinate
to parametrize the outgoing null geodesics. The areal
coordinate becomes singular on and inside the event horizon
so that the Bondi-Sachs formalism is only applicable in the
exterior of the horizon. An alternative approach [4] replaces
the areal coordinate by an affine parameter.
The difference in behavior between an areal coordinate r

and an affine parameter λ arises from focusing effects on
the null rays. The affine coordinate λ only becomes singular
at points where the null rays intersect, e.g., caustics,
whereas the areal coordinate r also becomes singular at
points where the expansion of the null rays vanish, i.e.,
where ∂λr ¼ 0. The Bondi-Sachs formulation was origi-
nally adopted for developing the PITT null code [5,6] for
simulating gravitational wave production because the
hierarchical structure of its system of equations allows
them to be integrated sequentially for one variable at a time
along the outgoing null geodesics. This hierarchical struc-
ture greatly simplifies the evolution algorithm and is
thought to underly its stability. An affine parameter
coordinate was not adopted because this hierarchical
integration structure was apparently broken. However, by
introducing a (not so obvious) choice of variables, it was
recently shown how the hierarchical structure of the affine-
null system can be regained [4].

An early triumph of numerical relativity was Choptuik’s
discovery of critical phenomena in the spherically sym-
metric gravitational collapse of a massless scalar wave [7].
Critical collapse marks the threshold between a system
collapsing to form a black hole or expanding to form an
asymptotically Minkowskian state. The use of an areal
coordinate for studying critical collapse is an impediment
because of its singular nature at the event horizon. In the
Bondi-Sachs treatment of spherically symmetric gravita-
tional collapse this is not so serious because the event
horizon forms at a single retarded time, i.e., simultaneously
in all radial null directions from the center of symmetry.
However, the ability to penetrate the event horizon, as by
the affine-null system, is critical in attacking the non-
symmetric case, where the event horizon forms at different
retarded times for different angles. Some initial results have
been obtained for the critical collapse of axisymmetric
gravitational waves [8,9] but fundamental questions remain
that have relevance for cosmic censorship and quantum
gravity. See [10,11] for reviews and discussions of how the
critical solution acts as an attractor for this problem. The
affine-null system offers promising potential for attacking
this problem. As a first attempt in this direction we apply it
here to the spherically symmetric Choptuik problem. A
spherically symmetric affine-null system has also been
applied in cosmology [12] and recently to the double null
characteristic initial value problem [13].
Most numerical studies of critical collapse have used

Cauchy evolution codes, with collapse to a black hole
monitored by the formation of an apparent horizon. A
notable exception by Pürrer et al. [14] treats the spherically
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symmetric Choptuik problem by means of the Bondi-Sachs
formulation. Their use of a compactified grid including
future null infinity Iþ allowed them to study how the Bondi
mass and other features of asymptotic flatness behave on
approach to the critical solution, which is not asymptoti-
cally flat. Using mesh refinement, they confirmed the
formation of the discrete self-similarity on approach to
the critical state and resolved the fine structure in the
universal scaling law for the mass. Their investigation using
the Bondi-Sachs formalism was limited to the spacetime
exterior to black hole formation. Other studies of the
Choptuik problem using characteristic evolution codes
based upon double null coordinates were confined to
portions of the spacetime which did not include a com-
pactification of Iþ [15–17]. The afffine-null approach
which we utilize here is applicable to the entire exterior
spacetime extending to (compactified) Iþ and to the
interior of the black hole extending to the final singularity.
For the spherical symmetric Choptuik problem with

gravity coupled to a massless fieldΦ, the affine-null system
has intriguing features. The procedure for organizing the
evolution system into hierarchical form allows two unex-
pected quadratures which lead to a simple evolution algo-
rithm based upon ordinary differential equations which can
be integrated along the outgoing null rays. The details of an
evolution algorithm valid in the exterior of the event horizon
are described in Sec. II. Then, in Sec. III, we introduce
renormalized variables which lead to a well-behaved evo-
lution algorithm for the entire spacetime extending from the
initial null hypersurface to the final singularity.
Our study involves unresolved global aspects of the

Choptuik problem, such as the question whether there is a
Bondi mass gap and the effect of a nonzero Newman-
Penrose constant [18] for the scalar field. The theory
underlying these issues is discussed in Sec. IV.
The affine-null evolution algorithm is implemented as a

numerical evolution code based upon the Galerkin method.
Domain decomposition techniques are developed to
enhance resolution. The numerical methods are described
in Sec. V. New numerical results regarding critical collapse
are presented in Sec. VI.

II. SPHERICAL SYMMETRY:
BASIC EQUATIONS

The affine-null system [4] is based upon a family of
outgoing null hypersurfaces u ¼ const with angular coor-
dinates xA labeling the null rays and an affine parameter λ to
coordinate points along the rays. Here we consider the
spherically symmetric case based upon the null hyper-
surfaces emanating from the central worldline W, with
regularity conditions at the vertex. In affine-null spherical
coordinates xa ¼ ðu; λ; xAÞ, xA ¼ ðθ;ϕÞ, the line element
takes the form

gabdxadxb ¼ −Vdu2 − 2dudλþ r2ðdθ2 þ sin2θdϕ2Þ ð1Þ

where the metric functions (V, r) depend upon u and λ and
r is the areal radius of the null cones. Here the affine
freedom λ → Aðu; xAÞλþ Bðu; xAÞ has been used to pre-
scribe the normalization ð∇auÞ∇aλ ¼ −1 and to set λ ¼ 0
on W.
In order to investigate event horizon formation, we

introduce coupling to a massless scalar field in the form

Rab ¼ Φ;aΦ;b; ð2Þ

where Rab is the Ricci tensor. (We use the shorthand
notation ∂aF ¼ F;a for derivatives.)
In spherical symmetry, a complete system of equations

for the affine-null system [4] then reduces to

r;λλ ¼ −
r
2
Φ;λΦ;λ; ð3Þ

ðVrr;λÞ;λ ¼ 1þ 2ðr2Þ;λu ð4Þ

and the scalar wave equation □gΦ ¼ 0, which takes the
form

ðr2Φ;uÞ;λ þ ðr2Φ;λÞ;u − ðr2VΦ;λÞ;λ ¼ 0: ð5Þ

Following the procedure in [4], we introduce the variables

ρ≡ r;u; ð6Þ

Y ≡ V − 2
ρ

r;λ
; ð7Þ

K ≡ 2ðr;λΦ;u − ρΦ;λÞ: ð8Þ

Then (3)–(5) take the hierarchical form

r;λλ ¼ −
r
2
Φ;λΦ;λ; ð9Þ

ðYðr2Þ;λÞ;λ ¼ 2; ð10Þ

r

�
rK
r;λ

�
;λ
− ðr2YΦ;λÞ;λ ¼ 0: ð11Þ

Given Φðu; λÞ, these equations can be integrated sequen-
tially to determine r, Y, and K, in that order.
An evolution algorithm valid in the exterior of the

horizon can be formulated by taking the u-derivative of (9),

ρ;λλ ¼ −
1

2
ρΦ;λΦ;λ − rΦ;λΦ;uλ; ð12Þ

which can be expressed in the form
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�
ρ

r;λ

�
;λλ

¼ −
rΦ;λ

2r;λ

�
K
r;λ

�
;λ
: ð13Þ

Equations (9)–(11) and (13) are regular in the exterior of
the event horizon where r;λ > 0. They gives rise to the
following evolution algorithm. Specify the initial data

Φð0; λÞ; u ¼ 0; λ ≥ 0 ð14Þ

and impose the regularity conditions at the central geodesic

r ¼ 0; r;λ ¼ 1; Y ¼ 1;

rK ¼ ρ ¼ ρ;λ ¼ 0; u ≥ 0; λ ¼ 0: ð15Þ

Using this initial data, integrate (9)–(11) and (13) in
sequential order to determine the initial values of the
variables ðr;Y; K; ρÞ. Given this initialization and the
vertex regularity conditions, the system can then be evolved
to u ¼ Δu by a finite difference approximation to deter-
mine rðΔu; λÞ algebraically from ρ and to determine
ΦðΔu; λÞ algebraically from K. Then (10), (11) and (13)
can be integrated in sequential order to determine Y, K, and
ρ at u ¼ Δu. Repetition of this process provides the
evolution algorithm.
In fact, this procedure can be simplified since (10)

integrates to give

Y ¼ λ

rr;λ
ð16Þ

so that Y can be eliminated and (11) reduces to

�
rK
r;λ

�
;λ
¼ 1

r

�
λrΦ;λ

r;λ

�
;λ
: ð17Þ

In the exterior of the event horizon, we assume that the
initial data Φðu0; λÞ has an asymptotic 1=λ expansion
Φðu0; λÞ ¼ αðu0Þλ−1 þ βðu0Þλ−2 þ � � � so that it is consis-
tent with asymptotic flatness. This asymptotic behavior is
preserved in the exterior spacetime by the evolution
equations, i.e.,

Φðu; λÞ ¼ αðuÞλ−1 þ βðuÞλ−2 þOðλ−3Þ: ð18Þ

Integration of (9) then leads to the asymptotic expansion

r ¼ HðuÞλþ RðuÞ −Hα2

4λ
þOðλ−2Þ: ð19Þ

III. REGULARIZED EVOLUTION INSIDE
THE HORIZON

The expansion of the outgoing null cones is Θþ¼2r;λ=r.
The regularity conditions at the vertex (15) require rjλ¼0¼0
and r;λjλ¼0 ¼ 1. Integration of (9) then implies r;λ decreases

monotonically with λ, with the behavior near the
vertex

r ¼ λ −
λ3

12
ðΦ;λðu; 0ÞÞ2 þOðλ4Þ: ð20Þ

The radially inward pointing null vector is

na∂a ¼ ∂u −
V
2
∂λ ¼ ∂u −

ðλþ 2rρÞ
2rr;λ

∂λ; ð21Þ

normalized by na∂au ¼ 1. The expansion of the ingoing
null cones is

Θ− ¼ 4

r
na∂ar ¼ −

2λ

r2
; ð22Þ

which is everywhere negative.
In the exterior untrapped region where Θþ > 0, HðuÞ ¼

r;λjλ¼∞ satisfies 1 ≥ HðuÞ > 0, with equality H ¼ 1 only
in the trivial case Φðu; rÞ ¼ const. In the supercritical case,
on approach to the event horizon at u ¼ uE,

lim
u→uE

HðuÞ ¼ 0: ð23Þ

Inside the event horizon there is an apparent horizon traced
out by λ ¼ λAðuÞ, where r;λðu; λAÞ ¼ 0. After formation of
the apparent horizon, the outgoing null cones from the
central worldline recollapse to a singularity at r ¼ 0 at a
finite value of λ. Consequently, terms in the evolution
equations (13) and (17) containing 1=r;λ become singular at
the apparent horizon. This is not a true singularity and there
is a way to regularize the evolution system.
In order to regularize (17), we set

L ¼ rK − λΦ;λ

r;λ
¼ 2rΦ;u −

ð2rρþ λÞΦ;λ

r;λ
: ð24Þ

As a result, (17) becomes

L;λ ¼
λΦ;λ

r
: ð25Þ

The right-hand side of (25) is regular everywhere in the
exterior spacetime, including Iþ, and everywhere regular
inside the event horizon up to the final singularity. Thus, as a
result of the integration of (25),L is also regular everywhere.
In order to regularize the ρ equation (13) we introduce

the variable

P ¼ 2rρþ λ

rr;λ
: ð26Þ

Then, after considerable algebra involving the use of (25),
we rewrite (13) as
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P;λλ ¼
2λr;λ
r3

−
2

r2
þ ðL2Þ;λ

2λ
: ð27Þ

The validity of (27) can be checked by straightforward
calculation.
The right-hand side of (27) is regular everywhere in the

spacetime up to the final singularity. Thus as a result of the
integration of (27), using the vertex regularity conditions
(15), P is also regular throughout the spacetime.
It is remarkable that (27) has a first integral.

Multiplication by λ and use of the vertex regularity
conditions, which require Pðu; 0Þ ¼ 1 and Lðu; 0Þ ¼ 0,
leads after integration to

�
P
λ

�
;λ
¼ −

1

r2
þ L2

2λ2
: ð28Þ

Since P=λ is singular at the vertex, we introduce the
variable

Q ¼ ðP − 1Þ=λ ¼ 2rρþ λ − rr;λ
λrr;λ

: ð29Þ

Then (28) becomes

Q;λ ¼
1

λ2
−

1

r2
þ L2

2λ2
: ð30Þ

In summary, (3), (25) and (30) lead to the evolution
system consisting of the three hypersurface equations

r;λλ ¼ −
r
2
ðΦ;λÞ2; ð31Þ

L;λ ¼
λΦ;λ

r
; ð32Þ

Q;λ ¼
1

λ2
−

1

r2
þ L2

2λ2
; ð33Þ

where the definitions of L andQ, (24) and (29), combine to
give the evolution equation

Φ;u ¼
λQ
2

Φ;λ þ
1

2
Φ;λ þ

L
2r

: ð34Þ

The ordinary differential equations (31)–(33) can be
integrated along the outgoing null rays. The resulting
solution is regular at the vertex, where Qðu; 0Þ ¼ 0 and
Lðu; 0Þ ¼ 0, is regular at Iþ, and is regular inside the
horizon up to the final singularity. The system gives rise to
the following evolution algorithm which covers the entire
spacetime to the future of the initial null hypersurface.
Given the initial data Φðu0; λÞ, integrate (31) to determine
the initial value rðu0; λÞ. Then (32) and (33) can be
integrated in sequential order to determine Lðu0; λÞ, and

Qðu0; λÞ. With these values Φ;uðu0; λÞ is readily obtained
from (34). Thus a finite difference approximation deter-
mines Φðu0 þ Δu; λÞ. The repetition of this process pro-
vides a global evolution algorithm, whose numerical
implementation is described in Sec. V. We integrate the
resulting dynamical system using the Cash-Karp [19]
method with an adaptive step size, where the initial step
size is 10−4.
Note that in the linearized limit, i.e., up to terms linear in

Φ, (32) reduces to the flat space, spherically symmetric
scalar wave equation and (33) implies Q ¼ 0.

IV. PHYSICAL PROPERTIES

Bondi time uB, i.e., the time intrinsic to an inertial
observer at null infinity, is related to the central proper time
by ∂uB=∂u ¼ 1=H, where HðuÞ ¼ r;λðu; λÞjλ¼∞. In the
supercritical case of event horizon formation at u ¼ uE,
HðuÞ → 0 as u → uE. Thus, although the horizon forms at
a finite central time it forms at an infinite Bondi time,
uB → ∞, in accord with the infinite redshift of a distant
observer.

A. No scalar hair

The regularity of the affine-null evolution system implies
that quantities that have finite u-derivatives on the event
horizon, e.g., Φ;uðuE; λÞ, must have vanishing Bondi-time
derivative so that ∂uBΦðuB; λÞ → 0 as uB → ∞. This is
consistent with the results of Christodoulou [20] obtained
by applying the methods of analysis to the Bondi formu-
lation of the Einstein-scalar equations. The scalar monop-
ole moment is defined by

AðuÞ ≔ lim
r→∞

rΦ ð35Þ

so, referring to the asymptotic expansions (18) of Φ and
(19) of r,

AðuÞ ¼ lim
λ→∞

HλΦ ¼ HðuÞαðuÞ: ð36Þ

Of special importance, since HðuEÞ ¼ 0, it follows that
AðuÞ → 0 as u → uE, i.e., as uB → ∞, in accordance with
the “no hair” property of the black hole.

B. Newman-Penrose constant

In Bondi coordinates, Φ has the asymptotic expansion

Φ ¼ A
r
þ cNP

r2
þOðr−2Þ

where cNP is the Newman-Penrose constant [18] for the
scalar field. In order to express cNP in affine-null coor-
dinates we write
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cNP ¼ −r2∂rðrΦÞjr¼∞ ¼ −
r2

r;λ
∂λðrΦÞ

���
r¼∞

:

Then, from the asymptotic expansions (18) ofΦ and (19) of
r, we obtain

cNP ¼ HðβH þ αRÞ: ð37Þ

In order to verify that ∂ucNP ¼ 0 we consider the
asymptotic expansion of the evolution equation (32) for
L. From (24), we have

L ¼ 2ðHαÞ;u þ
1

Hλ
ð2ðRHαþH2βÞ;u þ αÞ þ � � � : ð38Þ

But (32) implies

L;λ ¼ −
α

Hλ2
þ
�
Rα
H

− 2β

�
1

Hλ3
þ � � � : ð39Þ

Comparison of (38) with (39) gives ðRHαþH2βÞ;u ¼ 0, in
agreement with the conservation law ∂ucNP ¼ 0.
As a result, the expansion (38) reduces to

L ¼ 2ðHαÞ;u þ
α

Hλ
þ � � � ; ð40Þ

and, to the next order,

L ¼ 2ðHαÞ;u þ
α

Hλ
−
�
Rα
H

− 2β

�
1

2Hλ2
þ � � � : ð41Þ

In the numerical simulations we consider initial data of
the form

Φð0; λÞ ¼ ϵ

a2 þ λ2
; ð42Þ

for which αju¼0 ¼ 0 and cNP ¼ ϵH2ju¼0 is a nonzero
Newman-Penrose constant. This evolves to form a black
hole for sufficiently large ϵ. The numerical behavior of the
Newman-Penrose constant for slightly subcritical and
slightly supercritical initial data is plotted in Sec. VI.
It might at first seem paradoxical that the Newman-

Penrose constant must be conserved in the subcritical case
where the scalar field vanishes, i.e.,Φ → 0, as u → ∞. This
is explained by the nonuniform behavior of the limits
u → ∞ and λ → ∞, which cannot be interchanged. As an
example, consider Minkowski space where λ ¼ r and
nonsingular solutions of the wave equation take the form

Φ ¼ fðtþ rÞ − fðt − rÞ
r

¼ fðuþ 2rÞ − fðuÞ
r

;

where f is a smooth function. Then the initial data (42)
correspond to the flat space solution

Φ ¼ 2ϵ

r

�
uþ 2r

a2 þ ðuþ 2rÞ2 −
u

a2 þ u2

�

with limit

lim
u→∞

Φ ¼ 0;

so that the scalar field decays to zero but

cNP ¼ − lim
r→∞

r2∂rðrΦÞ ¼ ϵ;

independent of u.

C. The Bondi mass

In spherical symmetry the Misner-Sharp mass function
mðu; λÞ is defined as [21]

1 −
2m
r

¼ gαβr;αr;β: ð43Þ

In affine-null coordinates gαβr;αr;β ¼ ðVr;λ − 2ρÞr;λ ¼
Yðr;λÞ2 ¼ λr;λ=r, where we have used (7) and (16).
Therefore,

mðu; λÞ ¼ 1

2
ðr − λr;λÞ: ð44Þ

The Bondi mass of the system is determined by taking the
asymptotic limit

MBðuÞ ¼ lim
λ→∞

mðu; λÞ ¼ RðuÞ
2

; ð45Þ

where RðuÞ is obtained from the asymptotic expansion of r
according to (19).
In order to recover the mass loss equation due to scalar

radiation we consider the asymptotic behavior of the
evolution equation for Q. From the definition (29) of Q
and the asymptotic expansions (19) and (18), we obtain

Q ¼ 2H;u

H
þ 1 −H2 þ 2HR;u

H2λ
þ � � � : ð46Þ

Using (40), the evolution equation (33) gives

Q;λ ¼
H2 − 1þ 2½ðHHαÞ;u�2

H2λ2
þ � � � : ð47Þ

Comparison with (46) gives the mass loss equation

MB;u ¼
1

2
R;u ¼ −

1

2
H½ðHαÞ;u�2: ð48Þ

In the supercritical case, it follows that

lim
u→uE

MB;u ¼
1

2
lim
u→uE

R;u ¼ 0 ð49Þ
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on approach to the event horizon. The mass loss equa-
tion (48) provides a convenient test of code accuracy, as
presented in Sec. VI.

D. Approach to horizon formation

Nontrivial data Φðu0; λÞ implies 0 ≤ Hðu0Þ < 1. In
general, H;u can either be positive or negative. In the
subcritical case in the limit that the spacetime becomes flat
Hðu ¼ ∞; λÞ ¼ 1, so that H;u > 0 at late times.
In the supercritical case, in the limit of horizon formation

HðuEÞ ¼ 0 so that H;uðuEÞ ≤ 0. As a result, the Bondi
mass loss equation (48) leads to MB;uðuEÞ ¼ 0 and

MB;uuðuEÞ ¼ −
ðH;uÞ3

2
α2ju¼uE ≥ 0:

Unless either H;uðuEÞ ¼ 0 or αðuEÞ ¼ 0, the inequality
MB;uuðuEÞ > 0 would hold in the limit so that MBðuEÞ is a
strong minimum. The numerical results in Sec. VI indicate
that H;uðuEÞ ≪ 0, i.e., that HðuÞ goes to zero at a fast rate.
But, generic numerical results show that H;uðuEÞ ≠ 0 and
αðuEÞ ≠ 0, so that, MBðuEÞ is a strong minimum.
Bondi time uB at null infinity is related to the central

proper time by ∂uB=∂u ¼ 1=H. As a result, since H;uðuEÞ
is negative, on approach to the event horizon, HðuÞ ∼
H;uðuEÞðu − uEÞ and Bondi time goes to infinity as

uB ∼
lnðuE − uÞ
H;uðuEÞ

: ð50Þ

V. NUMERICAL METHOD: THE
GALERKIN-COLLOCATION APPROACH

To integrate the field equations, we have implemented a
code based on the Galerkin-collocation method [22] using
the domain decomposition technique. In general, single
domain spectral methods are very accurate, but if we are to
determine the formation of black holes of infinitesimal
masses, it is necessary to establish a spectral version of
mesh refinement provided by dividing the spatial domain
into several subdomains.
We have implemented a simple version of the domain

decomposition technique dividing the spatial domain
0 ≤ λ < ∞ into two noninterpolating subdomains,D1∶ 0 ≤
λ ≤ λ0 and D2∶ λ0 ≤ λ < ∞, where λ ¼ λ0 denotes the
interface of these subdomains. The innovative part of
implementing the algorithm is the two-step introduction
of the correspondent computational, as indicated in Fig. 1.
In the first step, the physical domain is compactified using
the algebraic map [23]

λ ¼ L0

ð1þ xÞ
1 − x

; ð51Þ

so that the interval 0 ≤ λ < ∞ corresponds to −1 ≤ x ≤ 1,
and L0 is the map parameter. In the second step, the
subdomains −1 ≤ x ≤ x0 and x0 ≤ x ≤ 1 are mapped
into the subdomains characterized by −1 ≤ xð1Þ ≤ 1 and
−1 ≤ xð2Þ ≤ 1, respectively, by linear maps. For simplicity
we have set the location of the interface at x ¼ x0 ¼ 0 in
the intermediate computational domain, which is equiv-
alent to setting λ0 ¼ L0.
We approximate the relevant fields Φ, r, L, and Q as

series with respect to appropriate sets of basis functions.
According to the Galerkin method, each element of the
basis functions must satisfy the boundary conditions of
each subdomain. The approximations are shown in Table I.
In these expressions NA, A ¼ 1, 2, are the truncation orders
at each subdomain that dictate the number of unknown

modes aðAÞk ðuÞ, bðAÞk ðuÞ, cðAÞk ðuÞ, fðAÞk ðuÞ. The basis func-

tions TLðAÞ
k ðλÞ are the rational Chebyshev polynomials

defined at each subdomain by

TLð1Þ
k ðλÞ ¼ Tk

�
xð1Þ ¼ 3λ − L0

λþ L0

�
; ð52Þ

TLð2Þ
k ðλÞ ¼ Tk

�
xð2Þ ¼ λ − 3L0

λþ L0

�
; ð53Þ

where TkðxÞ represents the standard Chebyshev polyno-

mials of order k. The basis functions χð1Þk ðλÞ and ψ ð2Þ
k ðλÞ are

expressed in terms of the rational Chebyshev polynomials
to satisfy the boundary conditions (cf. Table I). The domain
decomposition method requires junction or transmission
conditions for the relevant fields at the interface λ ¼ λ0.
These conditions differ for the hypersurface and evolution
equations. Starting with the hypersurface equations for L
and P, we have

FIG. 1. Scheme showing the subdomains D1, 0 ≤ λ ≤ λ0, and
D2, λ0 ≤ λ < ∞. We also present the corresponding computa-
tional domains −1 ≤ xðAÞ ≤ 1 with A ¼ 1, 2 for each domain.
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Lð1Þðu;λ0Þ¼Lð2Þðu;λ0Þ;
�∂Lð1Þ

∂u
�

λ0

¼
�∂Lð2Þ

∂u
�

λ0

; ð54Þ

Qð1Þðu;λ0Þ¼Qð2Þðu;λ0Þ;
�∂Qð1Þ

∂u
�

λ0

¼
�∂Qð2Þ

∂u
�

λ0

: ð55Þ

The particular form of the hypersurface equation for the
metric function rðu; λÞ demands the conditions

rð1Þðu;λ0Þ¼ rð2Þðu;λ0Þ;
�∂rð1Þ

∂u
�

λ0

¼
�∂rð2Þ

∂u
�

λ0

; ð56Þ

�∂2rð1Þ

∂u2
�

λ0

¼
�∂2rð2Þ

∂u2
�

λ0

: ð57Þ

For the scalar field, it is necessary to guarantee its
continuity at the interface,

Φð1Þðu; λ0Þ ¼ Φð2Þðu; λ0Þ: ð58Þ

Following Canuto et al. [24], we have adopted the
average procedure where both subdomains have the same
weight in the update equation for the interface point. This
interface condition is

ðΦ;uÞλ0 −
1

2

�
Lð1Þ

2rð1Þ
þ 1

2
ð1þ λQð1ÞÞΦð1Þ

;λ

�
λ0

−
1

2

�
Lð2Þ

2rð2Þ
þ 1

2
ð1þ λQð2ÞÞΦð2Þ

;λ

�
λ0

¼ 0: ð59Þ

The final step in establishing the algorithm is to substitute
the approximations of Table I into the field equations to
form the residual equations in each subdomain. We have
followed the collocation method by imposing that the
residual equations vanish at the N1 and N2 þ 1 interior
collocation points in the subdomains D1 and D2, respec-
tively. Therefore, there are N1 þ N2 þ 1 equations that
together with the transmission conditions provide the
same number of unknown coefficients. For the sake of

illustration, consider the residual equation associated to
rðu; λÞ at the second domain,

Resrð2Þ ðu;λjÞ¼
XN2þ2

k¼0

bð2Þk ½ðλTLð2Þ
k Þ;λλ�jþ

1

2
rð2Þj ðΦð2Þ

;λ Þ2j ; ð60Þ

for all j ¼ 1; 2;…; N2 þ 1. Here rð2Þj and ðΦð2Þ
;λ Þj are values

of these fields at the collocation points. Thus, we have
N2 þ 1 equations and N1 equations from the first and
second subdomains, respectively, which together with three
transmission conditions given by (56) and (57) constitute a
set of N1 þ N2 þ 4 algebraic equations for an equal

number of unknown coefficients bð1Þk ðuÞ and bð2Þk ðuÞ.
Repeating a similar procedure for the hypersurface equa-
tions (32) and (33), we obtain sets of algebraic equations

for the modes cðAÞk ðuÞ and fðAÞk ðuÞ, A ¼ 1, 2.
Concerning the evolution equation (34), the vanishing of

the corresponding residual equations at the collocation
points in both subdomains, together with the transmission
conditions, yield a set of ordinary differential equations for
the coefficients aðAÞk ðuÞ.
The hierarchy of the field equations is preserved in the

spectral representation. Specifically, once the coefficients

aðAÞk ðu0Þ are initially fixed, the initial modes bðAÞk ðu0Þ are
determined from the algebraic set described above. In the

sequence, the remaining modes cðAÞk ðu0Þ and fðAÞk ðu0Þ can
be calculated. Then, the set of ordinary differential equa-

tions determine aðAÞk;u ðu0Þ allowing these modes to be
updated to the next time step. Repetition of this process
provides the numerical solution of the field equations.
In order to evolve the self-gravitating scalar we need to

specify the initial data Φ0ðλÞ ¼ Φðu ¼ 0; λÞ that fix the

initial modes aðAÞk ð0Þ in both subdomains. We have chosen
the three initial datasets

r0ðλÞ ¼ ð1 − ϵÞλþ ϵ tanhðλÞ; ð61Þ

for which Φ0ðλÞ is determined from the hypersurface
equation (3),

TABLE I. Spectral approximations of the scalar field and the metric functions rðAÞðu; λÞ, LðAÞðu; λÞ and QðAÞðu; λÞ
in both subdomains together with the corresponding basis functions.

D1∶ 0 ≤ λ ≤ λ0 D2∶ λ0 ≤ λ < ∞

Φð1Þðu; λÞ ¼ PN1

k¼0 a
ð1Þ
k ðuÞTLð1Þ

k ðλÞ Φð2Þðu; λÞ ¼ PN2

k¼0 a
ð2Þ
k ðuÞψ ð2Þ

k ðλÞ
rð1Þðu; λÞ ¼ λþPN1

k¼0 b
ð1Þ
k ðuÞλ3TLð1Þ

k ðλÞ rð2Þðu; λÞ ¼ PN2þ2
k¼0 bð2Þk ðuÞλTLð2Þ

k ðλÞ
Lð1Þðu; λÞ ¼ PN1

k¼0 c
ð1Þ
k ðuÞχð1Þk ðλÞ Lð2Þðu; λÞ ¼ PN2þ1

k¼0 cð2Þk ðuÞTLð2Þ
k ðλÞ

Qð1Þðu; λÞ ¼ PN1

k¼0 f
ð1Þ
k ðuÞχð1Þk ðλÞ Qð2Þðu; λÞ ¼ PN2þ1

k¼0 fð2Þk ðuÞTLð2Þ
k ðλÞ

Radial basis function: Radial basis function:

χð1Þk ðλÞ ¼ 1
2
ðTLð1Þ

kþ1ðλÞ þ TLð1Þ
k ðλÞÞ ψ ð2Þ

k ðλÞ ¼ 1
2
ðTLð2Þ

kþ1ðλÞ − TLð2Þ
k ðλÞÞ
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Φ0ðλÞ ¼
ϵ

1þ λ2
ð62Þ

and

Φ0ðλÞ ¼
ϵ

2
ðTLkþ1ðλÞ − TLkðλÞÞ; ð63Þ

determined from the Chebyshev polynomials by TLkðλÞ ¼
Tkðx ¼ ðλ − L0Þ=ðλþ L0ÞÞ. Here ϵ is the parameter that
plays the role of the amplitude of the initial scalar field.

VI. NUMERICAL RESULTS

We use the Bondi mass loss equation (48) to calibrate the
accuracy and convergence of the code for the affine-null
system. Integration of (48) gives

MðuÞ −M0 ¼ −
1

2

Z
u

u0

H½ðHαÞ;u�2du; ð64Þ

where M0 ¼ Mðu0Þ is the initial Bondi mass and
M0ðuÞ −MðuÞ is the mass loss evaluated at retarded time
u, which equals the energy radiated in this interval
described by the integral. The numerical test consists in
verifying global energy conservation measured by the
quantity CðuÞ [25],

CðuÞ≡ 1 −
MðuÞ
M0

−
1

2M0

Z
u

u0

H½ðHαÞ;u�2du; ð65Þ

where α ¼ limλ→∞ðλΦÞ and H ¼ limλ→∞ r=λ [cf. (18) and
(19)]. We measure the numerical deviation from the exact
result CðuÞ ¼ 0 by computing the maximum value of
CðuÞ for evolutions with increasing truncation order. For
this test, we use the single domain Galerkin-collocation
code. We evolve the initial data (61) with ϵ ¼ 0.5,
corresponding to a subcritical solution, with truncation
orders N ¼ 30; 40; 50;…; 90. The results are presented in
Fig. 2. For comparison, we have included results of the
same test using a similar code based upon the standard
Bondi equations and coordinates. It is clear that the error
for the affine-null scheme decays more rapidly.
Another important feature we have verified is the con-

servation of the Newman-Penrose quantity cNP [cf. (37)] for
both the subcritical and supercritical solutions, using the
initial data (62)) with ϵ ¼ 2.273172 (subcritical) and ϵ ¼
2.273250 (supercritical). In both cases, the log-linear plots
of the relative error

δcNPðuÞ ¼ jcNPð0Þ − cNPðuÞj=cNPð0Þ

shown in Figs. 3(a) and 3(b) confirm that cNP ¼ const. For
the supercritical solution the final Bondi mass is ≈0.0137.
After black hole formation the asymptotic quantity cNP is

FIG. 2. Exponential decay of the maximum values of CðuÞ for
the affine-null code (blue) and the Bondi code (red). Here we
have set ϵ ¼ 0.5 for the initial data (61).

FIG. 3. The panels on the left and right, respectively, show the evolution of the relative variation δcNP of the Newman-Penrose quantity
for subcritical and supercritical solutions. In the corresponding insets, the conservation of cNP is manifest. After black hole formation in
the right panel, cNP is ill defined. These solutions were generated using ϵ ¼ 2.273172, 2.273250 in the initial data (62).

CRESPO, DE OLIVEIRA, and WINICOUR PHYS. REV. D 100, 104017 (2019)

104017-8



not defined. In both simulations, we have used the
domain decomposition algorithm with N1 ¼ N2 ¼ 200,
λ0 ¼ L0 ¼ 1.0.
We identify the formation of a black hole in supercritical

solutions by monitoring the limit HðuÞ → 0 as u → uE on
approach to the event horizon. In terms of the global
behavior of the metric function rðu; λÞ, the asymptotic
function HðuÞ is computed in terms of the coefficients

bð2Þk ðuÞ by evaluating

HðuÞ ¼ lim
λ→∞

rð2Þðu; λÞ
λ

: ð66Þ

As an illustration, we graph HðuÞ in Fig. 4 for the
subcritical (blue) and supercritical (red) solutions consid-
ered in Fig. 3. Note that due to the closeness of the initial
subcritical and supercritical amplitudes, both curves almost
coincide until HðuÞ → 0 abruptly as the event horizon
forms in the supercritical case. For the subcritical case,
r → λ and HðuÞ → 1 as the scalar field disperses. This
rapid divergence in the behavior of HðuÞ for these two
cases is expected from the instability associated with the
attractor underlying critical collapse.
For the supercritical solutions, the behavior of HðuÞ

provides a criterion to determine the final Bondi mass of the
black hole. Recalling that HðuÞ is positive and approaches
zero as the horizon forms, we can numerically determine
the moment when HðuÞ reaches its smallest value and
compute the corresponding value of the Bondi mass. In
Fig. 5 we depict a typical decay of the Bondi mass together
with HðuÞ for the slightly supercritical solution generated
with ϵ ¼ 2.273250 in the initial data (62). The Bondi mass
decreases and reaches MB ≈ 0.01375. The inset shows the
log-linear plot of the interval near the formation of the

horizon whereHðuÞ decays rapidly to ≈10−8 and the Bondi
mass approaches its small but nonzero final value.
In order to reproduce the key features of critical collapse,

we have varied the initial amplitude ϵ to select the
supercritical solution with the smallest final Bondi mass
MBH of the black hole using the above criterion. In this
process, we find an approximate value of the critical
amplitude ϵ� ≈ 0.7393775894 for the initial data (61) using
N1 ¼ N2 ¼ 150 collocation points in each domain. The
numerical results plotted in Fig. 6 give an overall view of
the results for MBH.
The main feature of critical collapse is the Choptuik

scaling law which relates the mass MAH of the apparent
horizon to the critical parameter according toMAH¼ κ̄ðδϵÞγ ,
where δϵ ¼ ϵ − ϵ�, κ̄ is a constant depending upon the
initial data and γ is the critical exponent. This scaling law is

FIG. 4. Evolution of HðuÞ for the subcritical (blue) and
supercritical (red) solutions of Fig. 3. For the subcritical case,
HðuÞ → 1 as the scalar field disperses and r → λ. For the
supercritical case H → 0 signaling the infinite red shift as the
event horizon forms.

FIG. 5. The Bondi mass MBðuÞ (blue) and HðuÞ (red) for the
slightly supercritical solution of Fig. 3. The inset, which zooms
into the interval just before horizon formation, shows that the
Bondi mass approaches a small but nonzero value as HðuÞ
approaches zero.

FIG. 6. Behavior of the final Bondi mass of the black hole as a
function of the initial amplitude ϵ for the initial data (61).
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also reflected in the final Bondi mass, as more clearly
viewed in the log-log plot of Fig. 7(a) constructed with the
numerical data of Fig. 6. The figure shows excellent
agreement with the scaling law until δϵ becomes very
small on approach to the critical solution and the final
Bondi mass cannot be accurately resolved. Furthermore,
Gundlach [11], and Hod and Piran [26] have predicted that
the original Choptuik scaling law is modified due to the
discrete self-similarity (DSS) nature of the type II critical
solution. They have proposed the following scaling law:

lnðMAHÞ ¼ γ lnðδϵÞ þ fðδϵÞ þ κ ð67Þ

where κ is a constant that depends on the initial data family,
f is a oscillatory function with period ϖ ¼ Δ=2γ, and Δ is
the echoing period of the DSS critical solution. Hod and
Piran [26] have verified this scaling law numerically and
obtained γ ≈ 0.37, ϖ ≈ 4.61 and Δ ≈ 3.44. Later Pürrer
et al. [14] showed that this scaling law also closely applies
to the final Bondi mass MBH in the asymptotically flat
treatment of critical collapse. They argue that this result
holds because the final stage of critical collapse is domi-
nated by the small region inside the DSS horizon.
We were able to identify the superposed oscillatory

component in the numerical data for MBH by subtracting
out the γ lnðδϵÞ term in the scaling law. The result is shown
in Fig. 7(b). We obtain the critical exponent γ ≈ 0.37134,
the period of the oscillatory component ϖ ≈ 4.689 and the
echoing period Δ ≈ 3.482. Our results differ by about 1.7%
from those of Pürrer et al. [14], which is accountable since
we obtained them with only 300 grid points, 150 in each
subdomain, while they used 10,000 points together with
mesh refinement. Our results also show that a nonzero
Newman-Penrose constant does not effect universal critical
behavior.

Pürrer et al. [14] found another aspect of the behavior of
the critical solution when described in terms of an adapted
time coordinate

τB ¼ − ln

�
u� − u

u

�
; ð68Þ

where u� is the accumulation time of DSS. They showed
numerically that the Bondi mass decays exponentially in
τB, together with an oscillatory component with period
Δ=2. We have confirmed this feature, as illustrated in
Fig. 8, for the decay of the Bondi mass in the near critical
solution with ϵ ¼ 0.7393775916 for the initial data (61). In
the left plot of Fig. 8, the dotted line describes MB ∝ e−τB
and the superposed oscillations have an approximate period
of Δ=2. The right plot zooms in on the final approach to the
black hole.
We considered the formation of black holes using the

initial data (62) with increased resolution by setting N1 ¼
N2 ¼ 200 collocation points in each subdomain and setting
the map parameter L0 ¼ 0.15. We summarize the results in
Fig. 9 by presenting the scaling law (left panel) and the
oscillatory component (right panel). The numerical param-
eters are the critical exponent γ ≈ 0.3709 and the oscillatory
period ϖ ≈ 4.606, resulting in an echoing period
Δ ≈ 3.417. All these parameters agree with the results in
the work of Pürrer et al. [14].
We repeated this numerical experiment choosing initial

data (63) corresponding to k ¼ 5. The approximate critical
amplitude is ϵ� ≈ 0.458983605 and γ ≈ 0.3706. In this
case, the initial oscillations in the Chebyshev polynomials
lead to a large amount of ingoing radiation, some of which
would cross the horizon in the supercritical case. We
present a graph of the scaling law for the final Bondi
mass using 400 grid points in Fig. 10. Again, as in Fig. 7,

FIG. 7. Left: main scaling law MBH ¼ κ̄ðδϵÞγ. Right: oscillatory component fðδϵÞ, where δMBH ¼ MBH − κ̄ðδϵÞγ .
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there is excellent agreement with the scaling law until δϵ
becomes very small on approach to the critical solution and
the final Bondi mass cannot be accurately resolved.
This result relates to an open issue raised by Pürrer et al.

[14]. They point out that simulations close to critical
collapse prior to their work confirmed that black holes
with arbitrarily small apparent horizons could be formed.
But that left open the question whether black holes with
arbitrarily small Bondi mass could be formed. Their
numerical simulations for near critical collapse gave a
small final Bondi mass but did not resolve whether a Bondi
mass gap might be necessary to correct the scaling law.
Numerically, this is a delicate issue since the exact critical
solution is not known and, in the asymptotically flat

context, might harbor a naked singularity. They conjectured
that radiation crossing the outer region of the event horizon,
outside the influence of the DDS behavior, might restrict
the formation of black holes with arbitrarily small Bondi
mass. If that were the case then the transition between
subcritical and supercritical initial data would be discon-
tinuous, i.e., it would be a transition between subcritical
dispersion with zero final Bondi mass and supercritical
collapse to a black hole with nonzero final Bondi mass.
This leads to an interesting confluence between the

analytical and numerical results for the spherically sym-
metric collapse of a massless scalar field. A theorem of
Christodoulou states that if the final Bondi mass is nonzero
then a black hole with regular event horizon forms [20].

FIG. 8. Left: exponential decay of the Bondi mass represented by MB ∝ e−τB. Right: oscillation of the Bondi mass with respect to τB
with an approximate period Δ=2. Here ϵ� ¼ 0.7393775916 for the initial data (61).

FIG. 9. Left: scaling law MBH ¼ κ̄ðδϵÞγ, where γ ≈ 0.3709 and ϵ� ≈ 2.2731656922 is the approximate critical amplitude. Right:
oscillatory component fðδϵÞ.
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Other analytic results of Christodoulou in the asymptoti-
cally flat context, establish that naked singularities do
occur in this problem, i.e., the outgoing null cone from
the central world line becomes singular, although all prior
outgoing null cones extend nonsingularly to Iþ, with
unbounded curvature as they approach the singularity
[27]. Christodoulou did not directly relate these results
to the Choptuik problem but they suggest that the transition
between the subcritical and supercritical cases takes place
through this type of singular spacetime, as previously found
in the numerical study of the nonasymptotically flat, pure
DSS problem [11]. This scenario is consistent with the
global numerical study by Frolov and Pen [17], although
they do not explicitly compute the Bondi mass. Our results
for the final Bondi mass shown in Fig. 10 show to high
numerical accuracy that, even for initial data with a large
amount of ingoing radiation, there is no Bondi mass gap in
the transition between subcritical and supercritical evolu-
tion. In this simulation, the initial Bondi mass is approx-
imately 0.12108 and falls between 3 and 4 orders of
magnitude in the near critical evolution.

VII. DISCUSSION

In the context of spherically symmetric spacetimes with
a massless scalar field, we applied a new characteristic
evolution algorithm based upon an affine parameter instead

of the areal coordinate of the Bondi-Sachs formulation. The
advantages over the Bondi-Sachs version were discussed.
In particular, the hierarchical structure of the Bondi-Sachs
field equations is maintained by introducing variables
which lead to unexpected quadratures and a system of
equations which are regular throughout the spacetime, up to
the final singularity in the case of gravitational collapse.
Global regularity of the underlying equations heuristically
explains the vanishing of the final scalar monopole
moment, which is a corner stone of the no hair scenario
for black holes. It allows a nonsingular treatment of the
event horizon and black hole formation, as opposed to the
Bondi-Sachs system which degenerates on the event
horizon. In addition, the equations are simpler and are
shown to lead to a more accurate numerical treatment.
We implemented an innovative domain decomposition

evolution algorithm based upon the Galerkin-collocation
method. After validating the code, we reproduced the main
aspects of critical collapse such as the mass scaling law and
its oscillatory component resulting from the discrete self-
similarity of the critical solution. The combination of the
new set of the horizon penetrating equations with spectral
domain decomposition algorithm allows exhibiting these
features in a grid with four hundred collocation points.
This allowed study of previously unexplored global

features of the Choptuik problem for critical collapse of
the scalar field. We showed that the effect of a nonvanishing
Newman-Penrose constant does not affect universal critical
behavior. In addition, to high numerical accuracy, our
results indicate, in the context of an asymptotically flat
exterior, that the final Bondi mass vanishes in the limit of
critical collapse, i.e., the critical case has no Bondi mass
gap. This complements the analogous result for measure-
ments of the size of the apparent horizon for the Choptuik
problem. Our study encourages the application of the
affine-null system to other problems.
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FIG. 10. Scaling law for the final Bondi mass after evolving the
initial data (62) with k ¼ 5. There is no evidence for a Bondi
mass gap in the critical transition.
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