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A number of theories of gravity have been proposed as proxies for dark matter in the regime of galaxies
and cosmology. The recent observations of gravitational waves (GW170817) from the merger of two
neutron stars, followed by an electromagnetic counterpart (GRB170817a) have placed stringent constraints
on the difference between the speeds of gravity and light, severely restricting the phenomenological
viability of such theories. We revisit the impact of these observations on the tensor-vector-scalar paradigm
of relativistic modified Newtonian dynamics (MOND) and demonstrate the existence of a previously
unknown class of this paradigm where the speed of gravity always equals the speed of light. We show that
this holds without altering the usual (bimetric) MOND phenomenology in galaxies.
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I. INTRODUCTION

In the absence of the direct detection of a particle with
the right properties to account for the entirety of dark
matter, it remains a possibility that the effects attributed to
dark matter represent a shortcoming in our understanding
of the nature of gravity, that is, general relativity (GR) may
not describe gravity correctly in all curvature regimes.
Attempts to account for this [1–5] introduced additional
fields into the gravitational sector whose influence on the
visible matter produces dark-matter-like effects. In all
metric theories of gravity including the ones with additional
fields, spacetime is a dynamical entity leading to the
generation and propagation of gravitational waves. Any
additional fields coupled nontrivially to the spacetime
curvature, however, generally lead to gravitational-wave
speeds different than that in GR.
Gravitational waves (GWs) from the merger of a binary

neutron star system have been observed by the Advanced
Laser Interferometer Gravitational-wave Observatory
(aLIGO) and the VIRGO interferometer [6]. Within sec-
onds of this event (GW170817) being detected, a gamma-
ray burst was independently observed from the same
location [7,8]. Given the high likelihood that these re-
present signals from the same event, the specific small time
difference—given the large distance from the location of
emission (the galaxy NGC 4993)—implies that (in units
where the speed of light is unity), the speed of propagation
of GWs cT obeys

jc2T − 1j ≲ 10−15: ð1Þ

This is a remarkably stringent constraint1 and has excluded
many modified theories of gravity proposed in order to
explain the phenomenon of dark energy [9–13]. Equally
important is the impact of these observations on gravita-
tional theories functioning as effective dark matter proxies.
This stringent constraint was also used in Ref. [14] to place
constraints on the Einstein-Aether theory [15].
Early evidence for dark matter came in the form of

observations of the motion of stars within galaxies [16],
where it was found that stars toward the outer regions of
galaxies had orbital velocities significantly higher than
expected due to the Newtonian gravitational field produced
by visible matter. In 1983, Milgrom showed [17] that this
motion of stars could instead result from a modification to
the inertia/dynamics of stars at low Newtonian acceler-
ations. Shortly afterwards it was found that these same
effects could alternatively result from a nonlinear modifi-
cation to the Poisson equation of Newtonian gravity [18].
These models are referred to as modified Newtonian
dynamics (MOND).
A great deal of work has gone into deducing the

astrophysical consequences of MOND, and whether
MOND is consistent with data [19–29]. The inherently
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1This constraint may be seen as an optimistic bound. It
assumes the standard model of gamma-ray burst emissions with
time delays of the order of 10 seconds between the emission of
gravitational waves and photons. More exotic scenarios with
100–1000 s delays may alter the order of magnitude of this effect
but constraints on the difference between the speeds of gravity
and light will likely remain stringent. We thank an anonymous
referee for this clarification.
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nonrelativistic nature of this modification renders it difficult
to test as its realm of validity is unclear. As a result,
there have been a number of proposals for relativistic
theories that yield MONDian behavior on galactic scales
[4,5,30–36]. Constructing a relativistic MOND theory
presents a particular challenge as a great deal of contem-
porary evidence for dark matter arises from cosmological
scales, particularly via the cosmic microwave background
(CMB). Interestingly, the cold nature of dark matter has
been thoroughly tested with the result [37–40] that any new
gravitational degree of freedom that functions as a proxy
for dark matter, must lead to a background cosmology that
is very close to the ΛCDM model.
Perhaps the most widely known relativistic theory

leading to MOND-like behavior is the Bekenstein-
Sanders tensor-vector-scalar (TeVeS) theory [1,2] which
depends on a metric ĝμν, a unit timelike vector field Aμ,
and a scalar field ϕ. All types of matter are taken to
couple universally to the metric gμν via

gμν ¼ e−2ϕĝμν − 2 sinhð2ϕÞAμAν; ð2Þ

and as such the Einstein equivalence principle is obeyed.
Since its inception, there have been many studies of

TeVeS theory in various situations: spherically symmetric
solutions such as black holes [2,41–43] and neutron stars
[44,45], the stability of spherically symmetric perturbations
[46] and gravitational collapse [43], Hamiltonian analysis
and the nonexistence of ghosts [47], parametrized post-
Newtonian constraints [41,48] and Solar System saddle
points [23,49–51], gravitational lensing [52–61], super-
luminality [62], gravitational redshift [63] and gravitational
waves [64–68]. The cosmology of TeVeS theory was
extensively investigated in Refs. [69–72]. It is reasonable
to conclude that the versions of TeVeS that have been
studied so far yield good fits to CMB data only following
the introduction of additional gravitating matter, such as
sterile neutrinos.
Due to the algebraic relation (2), the presence of two

metrics does not imply the existence of additional spin-2
modes beyond those present in single-metric theories of
gravity; however, the presence of dynamical fields ϕ and Aμ

in the theory implies the existence of additional spin-1 and
spin-0 gravitational waves, leading to a total of six propa-
gating degrees of freedom in the gravitational sector [65].
Here we focus only on the spin-2 (tensor mode) gravitational
waves as this is the type observed by LIGO [6].
The speed of the tensor mode GWs in TeVeS theory is in

general different than the speed of light [65], and it is then
natural to ask what is the status of the TeVeS paradigm after
GW170817. Using a variety of methods, a number of
articles [66–68] have tackled this question. The authors of
Ref. [66] compared the Shapiro time delay of gravitational
versus electromagnetic waves, as they pass through the
potential wells of galaxies, proposed earlier as a generic test

of TeVeS theory [64]. Such a test is superior to testing
the propagation speed on a Friedman-Robertson-Walker
(FRW) background considered in Refs. [9–12,14] in the
case of other theories. The delay was calculated there by
comparing the geodesics of ĝμν to the geodesics of gμν;
however, as the metric is not an observable the generality of
their result is unclear. For instance, the authors of Ref. [73]
reformulated TeVeS theory using a single metric (gμν) so
that no geodesic comparisons are possible in that formu-
lation.2 A different method is necessary.
In Refs. [67,68] the speeds of all six polarizations of

GWs present in TeVeS theory [65] were considered on a
Minkowski background and after imposing Eq. (1), the
analysis of the remaining parameter space led to the
conclusion that TeVeS theory is ruled out.
In this article we investigate the propagation of GWs on

perturbed FRW spacetimes, which includes the Shapiro
time delay effect. We find that the original TeVeS theory
[2] and its generalization [3,74] are ruled out by the
GW170817/GRB170817a events, in agreement with pre-
vious studies [66–68]. We present, however, the existence
of a previously unknown class of relativistic MOND theories
also based on the tensor-(timelike)vector-scalar paradigm,
where the speed of gravity always equals the speed of light
while retaining the effective bimetric description leading to
the usual MOND phenomenology in galaxies.
The article is organized as follows. In Sec. II we present

the fundamentals of TeVeS theory in order to pave the way
for the study of gravitational waves on arbitrary back-
grounds. We do so in Sec. III in steps. First we consider
GWs propagating on a FRW background in Sec. III A and
show how a specific choice of functions leads to a new
theory with cT ¼ 1. We repeat the calculation in Sec. III B
where we consider the effects of inhomogeneities and show
that the same functions again lead to cT ¼ 1. We explain
that this phenomenon holds on arbitrary backgrounds in
Sec. III C. We discuss our result and conclude in Sec. IV.

II. RUDIMENTS OF TeVeS THEORY

A slight generalization of TeVeS theory is given by the
following action [3,74] which depends on the three above
fields and the two auxiliary fields λA and μ:

Ŝ ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
½R̂ − K̂ þ λAðAρAρ þ 1Þ

− μĝαβ∇̂αϕ∇̂βϕ − V̂ðμÞ� þ SM½g�: ð3Þ

2Other single-metric theories such as the Horndeski theory
studied in Refs. [9–13] and Einstein-Aether theory studied in
Ref. [14] may also yield a Shapiro time delay different than the
one in GR. However, a proper study of such theories exhibiting
screening mechanisms, including TeVeS theory, warrants a more
precise determination of the screening effects inside the screening
radius, introducing further complications and making the prob-
lem even more difficult to tackle.
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Here G is the bare gravitational constant, ĝ and R̂ are the
determinant and scalar curvature of ĝμν respectively, V̂ is a
free function of μ, SM½g� is the action for all matter fields,
and K̂ ¼ K̂μναβ∇̂μAν∇̂αAβ is obtained using

K̂μναβ ¼ c1ĝμαĝνβ þ c2ĝμνĝαβ þ c3ĝμβĝνα þ c4ĝνβAμAα:

ð4Þ

The indices of Aμ are always raised using ĝμν, the inverse
metric of ĝμν (i.e., ĝμρĝρν ¼ δμν). We emphasize that in
contrast to Refs. [3,74] we allow here the cI (I ¼ 1…4) to
be functions of the scalar field ϕ and this turns out to
be very important when analyzing the speed of GWs. The
original TeVeS theory is obtained when cI ¼ f2KB − 1

4
;

− 1
2
;−2KB þ 3

4
; KB − 1

4
g, for a constant KB [74]. For nota-

tional compactness we define cIJ… ≡ cI þ cJ þ � � �
The emergence of MOND behavior in the quasistatic

weak-field limit in the constant cI case was analyzed
extensively in Ref. [74]. We revisit that analysis here in
order to show that it remains unchanged even when cI
are functions of ϕ. In particular, one expands the scalar
field as ϕ ¼ ϕ0 þ φ where ϕ0 is a constant and φ is time
independent. The quasistatic metric is such that ĝ00 ¼
−e−2ϕ0ð1 − 2Ψ̂Þ and ĝij ¼ e2ϕ0ð1 − 2Φ̂Þγij. In this coor-
dinate system the vector field has components A0 ¼
−e−ϕ0ð1þ Ψ̂Þ and Ai ¼ 0. Using the metric transformation
(2) we find the components of the metric gμν so that

ds2 ¼ −ð1þ 2ΨÞdt2 þ ð1 − 2ΦÞγijdxidxj ð5Þ

where

Ψ̂ ¼ Ψ − φ; Φ̂ ¼ Φ − φ: ð6Þ

With this ansatz, the vector field equations are identically
satisfied while the Einstein and scalar field equations
reduce to

∇⃗2Ψ̂ ¼ 8πG
2 − c1 þ c4

ρ; ð7Þ

∇⃗iðμ∇⃗i
φÞ ¼ 8πGρ; ð8Þ

Φ̂ ¼ Ψ̂; ð9Þ

where ρ is the matter-energy density and the cI’s are
evaluated at ϕ ¼ ϕ0 in Eq. (7). The nondynamical field μ
is obtained via a constraint equation found from the action
upon variation with respect to μ and this equation depends
on the form of V̂ðμÞ. Not all functions V̂ðμÞ lead to either
Newtonian or MONDian limiting behaviors, and the
ones that do must have appropriate properties (discussed
in Ref. [74]).

III. TENSOR MODE PROPAGATION IN TeVeS
THEORY AND GENERALIZATIONS

A. Tensor mode propagation on FRW backgrounds

In order to determine the speed of propagation of GWs,
we need the tensor mode equation on an FRW background.
We assume a metric gμν such that

ds2 ¼ −dt2 þ a2ðγij þ χijÞdxidxj; ð10Þ

where a is the scale factor, γij is the spatial metric of
constant curvature κ, and χij is the tensor mode GW which

is traceless (γijχij ¼ 0) and transverse (∇⃗iχ
i
j ¼ 0, where

∇⃗i is the spatial covariant derivative compatible with γij).
As we are only interested in the tensor mode, we set the
perturbations of ϕ and Aμ to zero so that ϕ ¼ ϕ̄ðtÞ and

A0 ¼ −e−ϕ̄, with Ai ¼ 0. The perturbed Einstein equations
for the tensor mode were obtained for constant cI in
Ref. [3]. In the case where cI ¼ cIðϕÞ, an additional term
is present such that

e2ϕ̄ð1 − c13Þ½χ̈ij þ ð3H þ 4 _̄ϕÞ_χij� − e2ϕ̄
dc13
dϕ

_̄ϕ_χij

−
1

a2
e−2ϕ̄ð∇⃗2 − 2κÞχij ¼ 16πGe−2ϕ̄ΣðgÞi

j; ð11Þ

where ΣðgÞi
j is a traceless source term due to matter. The

only difference from the constant cI case is the appearance
of the dc13

dϕ term multiplying _χij.
Now in the original and generalized TeVeS theories it is

clear that the speed of propagation of the tensor mode is
given by

c2T ¼ e−4ϕ̄

1 − c13
: ð12Þ

Thus, in general c2T will differ from unity, putting this
theory in conflict with the observations that require
c2T ≈ 1 unless some mechanism forces ϕ̄ to have an
approximately constant value at very low redshift and
equal to ϕ̄ ¼ − 1

4
lnð1 − c13Þ. This is highly unlikely, and

even though it is possible we show below that the Shapiro
time delay rules this case out.
If cI are functions of ϕ, however, there seems to be

enough freedom to change this fact. In particular, the
unique choice of

c13ðϕÞ ¼ 1 − e−4ϕ ð13Þ

transforms Eq. (11) into

χ̈ij þ 3H _χij −
1

a2
ð∇⃗2 − 2κÞχij ¼ 16πGΣðgÞi

j; ð14Þ
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which is identical to the tensor mode equation in GR, and
thus with this choice c2T ¼ 1.

B. Beyond FRW

We have shown above that the choice (13) leads to GW
tensor mode propagation as in GR while maintaining
MONDian behavior. When gravitational and electromag-
netic waves pass through potential wells generated by
matter, however, they incur an additional (Shapiro) time
delay, and (as proposed in Ref. [64]) this may be used to put
strong constraints on such theories. We thus examine
whether the condition (13) is sufficient to ensure tensor
mode propagation with c2T ¼ 1 even when including the
effect of inhomogeneities. We note that the effect of
inhomogeneities on the speed of gravity in some other
theories of gravity has studied in Refs. [10,13,75]. In these
situations the physical metric gμν takes the form

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞðγij þ χijÞdxidxj;
ð15Þ

where the hierarchy χij ≪ Φ;Ψ ∼ 10−5 has been assumed.
Furthermore, TeVeS theory’s scalar field ϕ takes the form
ϕ ¼ ϕ̄þ φ (with φ≲Φ;Ψ), while the vector field has

components A0 ¼ −e−ϕ̄ð1þ Ψ̂Þ and Ai ¼ −aeϕ̄∇⃗iα. The
expressions (6) relate the potentials between the two
frames. Given Eq. (15), the metric ĝμν will not be in
diagonal form but will contain terms coming from the
vector perturbation α. In general, the potentials are assumed
to be space and time dependent.

Defining T ik
j ¼ ∇⃗i

χkj þ ∇⃗jχ
ki − 2

3
∇⃗l

χklδ
i
j, after a

lengthy and tedious calculation the tensor mode equation
for χij is found to be

e2ϕ̄
�
ð1 − c13Þð1 − 2Ψ̂Þ − dc13

dϕ
φ

�
χ̈ij þ e2ϕ̄A_χij −

�
1

a2
e−2ϕ̄½ð1þ 2Φ̂Þð∇⃗2 − 2κÞ þ ∇⃗kðΨ̂ − Φ̂Þ∇⃗k� − 1

a
Bk∇⃗k

�
χij

þ 1

a2
e−2ϕ̄ð1þ 2Φ̂Þ

�
∇⃗i∇⃗kχ

k
j þ ∇⃗j∇⃗k

χik −
2

3
∇⃗l∇⃗kχ

k
lδ

i
j

�
þ 1

a2
e−2ϕ̄

�
∇⃗kðΨ̂ − Φ̂ÞT ik

j

− 2

�
∇⃗k∇⃗jðΦ̂ − Ψ̂Þχik − 1

3
∇⃗k∇⃗lðΦ̂ − Ψ̂Þχlkδij

��
þ 1

a
Cij ¼ 16πGe−2ϕ̄ð1 − 2φÞΣðgÞi

j ð16Þ

where the terms A, Bi, and Cij are shown in the Appendix
for clarity of presentation. Allowing all potentials as well as
φ and α to vanish reduces Eq. (16) to Eq. (11).
Consider first the reduction of Eq. (16) to quasistatic

backgrounds (also ignoring the source term) for the fine-
tuned case where c13 ¼ 1 − e−4ϕ0 (so that c2T ¼ 1 on the
background). We obtain this by setting a ¼ 1, ϕ̄ ¼ ϕ0, and
Ψ̂ ¼ Φ̂ from Eq. (9). Then, A, Bk, and Cij all vanish. In
addition, considering LIGO wavelengths ∼1000 km which
are far smaller than the scale of the potential wells, we may
drop the terms containing derivatives of Ψ and φ, i.e.,
∂Φ ≪ ∂χ, even with χ ≪ Φ [13]. Finally, by further

imposing the gauge condition ∇⃗iχ
i
j ¼ 0, Eq. (16) leads to

ð1 − 2Φ̂Þχ̈ij − ð1þ 2Φ̂Þ∇⃗2
χij ¼ 0: ð17Þ

Thus, in this case we expect a Shapiro time delay dictated
by Φ̂, the potential formed by baryons alone. This is not
the same as Φ which is the potential seen by photons;
hence, this fine-tuned case is ruled out by the analysis
of Ref. [66].
Let us turn now to the case where Eq. (13) holds so

that c2T ¼ 1 on a FRW background. Imposing Eq. (13),
we find Bk ¼ 0 and Cij ¼ 0. Further, by using Eq. (6) we

find e2ϕ̄A ¼ e−2ϕ̄½3Hð1 − 2Ψ − 2φÞ − _Ψ − 3 _Φ�, and after

choosing the gauge condition ∇⃗iχ
i
j ¼ ∇⃗iðΦ −ΨÞχij,

Eq. (16) turns into

ð1 − 2ΨÞ½χ̈ij þ ð3H − _Ψ − 3 _ΦÞ_χij�

−
1

a2
ð1þ 2ΦÞ½ð∇⃗2 − 2κÞχij þ ∇⃗j∇⃗kðΦ −ΨÞχik

− ∇⃗i∇⃗kðΦ −ΨÞχkj − ∇⃗kðΦ −ΨÞ∇⃗k
χij� ¼ 16πGΣðgÞi

j;

ð18Þ

which is the same equation as in GR. Thus, with the choice
(13) the tensor mode propagates at the speed of light even
when including inhomogeneities and gives the same
Shapiro time delay as for photons.

C. Tensor mode propagation on general backgrounds

Our results in Sec. III B are not an accident. To gain
further insight as to why this behavior emerges, we con-
sider the single-metric (physically equivalent) formulation
of TeVeS theory. As shown in Ref. [73], one introduces a
new field Bμ ¼ Aμ which leads to Bμ ¼ e−2ϕAμ, and writes
the Lagrange constraint as gμνBμBν ≡ B2 ¼ −e−2ϕ. This
enables us to solve for ϕ and thus remove both ϕ and ĝμν
from the action. The d.o.f. remain unchanged as now Bμ

contains four d.o.f. rather than the three of Aμ. The action
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S½g; B; μ� of this physically equivalent vector-tensor for-
mulation is

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − K −U� þ Sm½g�; ð19Þ

where U ¼ V̂ðμÞ=B2 and K is given by

K ¼ ðd1 − d3ÞFμνFμν þ d13MμνMμν þ d2J2 þ d4JνJν

þ 1

2
d5Jμ∇μB2 þ d6

4
ð∇B2Þ2 þ d7

2
QJ þ d8

4
Q2; ð20Þ

and we have also defined Fμν ¼ 2∇½μBν�, Mμν ¼ 2∇ðμBνÞ,
J ¼ ∇μBμ, Jμ ¼ Bα∇αBμ, and Q ¼ Bα∇αB2. The func-
tions for the generalized TeVeS theory dI (I ¼ 1…8) may
be found in the appendix of Ref. [74].
Some of the dI coefficients depend on μ so that MOND

behavior may emerge upon choosing an appropriate V̂.
Allowing for a general dependence dIðB2; μÞ in Eq. (19)
represents a slight generalization of Eq. (3). Interestingly,
the dynamical tendency towards Bμ having a nonvanishing
norm in this picture arises from the presence of inverse
powers of the norm B2 in the Lagrangian, rather than via a
Lagrangian constraint as in Eq. (3). In this formulation, the
modification to the speed of propagation of GWs is entirely
due to the coupling of gravity to the field Bμ through that
field’s kinetic term. A straightforward way to see this is by
considering the case where Bμ is hypersurface orthogonal,
in which case we can decompose the metric gμν as

gμν ¼ hμν − nμnν, where nμ ≡ Bμ=
ffiffiffiffiffiffiffiffiffi
−B2

p
¼ N∇μt for

some global time function t and hμν (hμνnν ¼ 0) is the
spatial metric on surfaces of constant time. Then,

K ¼ −d13B2KμνKμν − d2B2K2 þ…; ð21Þ

where we have defined the extrinsic curvature tensor
Kμν ≡ 1

2
Lnhμν, and … denotes terms of linear order or

lower inKμν. As tensor mode perturbations reside in “trace-
free” small perturbations to hμν, only the first term in

Eq. (21) (schematically of the form ∼d13B2 _hμν _hμν) will
affect the speed of the tensor mode. There will be no
deviation from general relativity if

d13 ¼ 0 ⇒ d1 ¼ −d3: ð22Þ

The transformation of Eq. (3) into Eq. (19) gives d13 ¼
1−c13
B6 − 1

B2, so that d13 ¼ 0 iff c13 ¼ 1 − B4 ¼ 1 − e−4ϕ,
which is the condition (13).

IV. DISCUSSION AND CONCLUSIONS

We have demonstrated the existence of a generic class of
relativistic theories of MOND based on the tensor-(time-
like)vector-scalar paradigm which retain the property that
GWs in this class propagate as in general relativity. The
original TeVeS theory is not part of this class and therefore
not consistent with gravitational-wave constraints. Hence,
actions of the form (19) are sufficiently general that they
encompass both phenomenologically viable and nonviable
models. Viable models are those for which d3 ¼ −d1 so
that the Mμν term is absent while all remaining dI’s can in
general be functions of both B2 and μ. However, not all
such viable actions lead to MOND behavior, but specific
functional forms of dI do. Indeed, it is possible to
sufficiently simplify the viable subset of Eq. (19) while
retaining a MOND limit and at the same time obtaining a
realistic cosmology. It is expected that doing so will lead to
a theory in harmony with the CMB observations. This is
beyond the scope of this article and will be investigated
elsewhere. The health of the remaining subclass of theories,
e.g., the absence of ghosts, tachyons, and gradient insta-
bilities is also another important topic to be investigated
elsewhere.
The viable theory presented here has in general six types

of GW polarizations. The speed of the other four modes
depends on the dI coefficients and the form of U. It would
be interesting in a future work to determine the propagation
of these other modes as well as their generation by
astrophysical sources in more specific setups, particularly
since it has been conjectured that they will not be generated
in the regime of large potential gradients [76].
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APPENDIX: COEFFICIENTS OF THE
GRAVITATIONAL-WAVE EQUATION

Defining Ei
j ¼ ∇⃗i

α∇⃗k _χ
k
j − 1

3
∇⃗l

α∇⃗k _χ
k
lδ

i
j, the tensors

A, Bi, and Cij are given by
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A ¼ ð1 − c13Þ½ð3H þ 4 _̄ϕÞð1 − 2Ψ̂Þ − _̂Ψ − 3 _̂Φ� − dc13
dϕ

½ð3H þ 4 _̄ϕÞφþ _̄ϕð1 − 2Ψ̂Þ þ _φ� − d2c13
dϕ2

_̄ϕφ

þ 1

a
e−2ϕ̄ð1 − e4ϕ̄ þ e4ϕ̄c13Þ∇⃗2

α − 2ðe4ϕ̄ − 1 − e4ϕ̄c13Þ∇⃗kα∇⃗k; ðA1Þ

Bi ¼ −ðe4ϕ̄ − 1 − e4ϕ̄c13Þ∇⃗i _α − 2

�
½e4ϕ̄ð1 − c13Þ − 1�H þ

�
3e4ϕ̄ð1 − c13Þ − 1 −

1

2
e4ϕ̄

dc13
dϕ

�
_̄ϕ

�
∇⃗iα; ðA2Þ

Cij ¼ ðe4ϕ̄ − 1 − e4ϕ̄c13Þ
�
∇⃗k∇⃗jα_χ

ik þ ∇⃗k∇⃗i
α_χkj −
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