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We derive the post-Newtonian limit of a general class of teleparallel gravity theories, whose action is
given by a free function of three scalar quantities obtained from the torsion of the teleparallel connection.
This class of theories is chosen to be sufficiently generic in order to include the fðTÞ class of theories as
well as new general relativity as subclasses. To derive its post-Newtonian limit, we first impose the
Weitzenböck gauge, and then introduce a post-Newtonian approximation of the tetrad field around a
Minkowski background solution. Our results show that the class of theories we consider is fully
conservative, with only the parameters β and γ potentially deviating from their general relativity values. In
particular, we find that the post-Newtonian limit of any fðTÞ theory is identical to that of general
relativity, so that these theories cannot be distinguished by measurements of the post-Newtonian
parameters alone.
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I. INTRODUCTION

General relativity is challenged both by observations in
cosmology and by its theoretical tensions with quantum
theory. These challenges have led to the development of a
plethora of modified gravity theories. While most of these
theories take the most well-known formulation of general
relativity in terms of the curvature of a Levi-Civita
connection as their starting point, there exist other for-
mulations which may serve as possible starting points for
modifications [1]. An important class of such modifications
is based on the teleparallel equivalent of general relativity
(TEGR) [2], and thus belongs to the class of teleparallel
gravity theories [2–5]. The characteristic feature of these
theories is to employ a flat, metric-compatible connection,
whose torsion mediates the gravitational interaction.
A large class of modified teleparallel gravity theories is

obtained by assuming a gravitational Lagrangian of the
form fðTÞ [6,7], where T is the torsion scalar appearing in
the TEGR action [2]. Various phenomenological and
theoretical aspects of these theories have been investigated,
including their cosmological dynamics [8–10] and pertur-
bations [11], gravitational waves [12–15], and degrees of
freedom from a Hamiltonian analysis [16–20]. The rich
phenomenology and generality of this class of gravity
theories hence invite further investigations of the class of a
whole, studying further phenomenological aspects.
Another line of studies has been devoted to theories in

which the three scalar quantities, which may be obtained

from contractions of the torsion tensor, are treated sepa-
rately. An early contender of this class is given by new
general relativity [21], whose Lagrangian is simply the
general linear combination of these three terms, and thus
can be understood as derived from a general, local, and
linear constitutive relation [22,23]. Several aspects of these
theories have been studied, such as the equivalence
principle [24], gravitational waves [25], and Hamiltonian
formulation [26]. Further relaxing the condition of linearity
in the three scalar terms leads to an even more general
class of teleparallel theories, whose action is given by a
free function of three scalar quantities [27,28]. This
general class of teleparallel theories, which encompasses
both the new relativity class of theories and the wide class
of fðTÞ theories, will be the subject of our studies in this
article.
While aiming to model the present observations in

cosmology, any viable theory of gravity must of course
also comply with observations on smaller scales, such as
the Solar System, orbiting pulsars, and laboratory experi-
ments. A commonly used framework which was developed
for collectively deriving this local-scale phenomenology
is the parametrized post-Newtonian (PPN) formalism
[29–31]. It characterizes gravity theories by a set of ten
parameters, which have been measured with high precision
in various experiments. Because of its generality and the
availability of numerous observations, the PPN formalism
has become an important tool for assessing the viability of
gravity theories.
In order to calculate the post-Newtonian limit of

teleparallel theories of gravity, an adaptation of the classi-
cal PPN formalism to tetrad-based theories is required.
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A possible adaptation can be derived from a similar
approach to the post-Newtonian limit of scalar-tetrad
theories [32] by omitting the scalar field part. Further, it
needs to be adapted to the covariant formulation of tele-
parallel gravity [20,33–35], which we will use in this
article, and in which also a flat spin connection appears as a
dynamical field. The purpose of this article is thus twofold.
Our main aim is to put forward a general method for
calculating the post-Newtonian limit of teleparallel gravity
theories in their covariant formulation, by expanding the
tetrad components in a pure spacetime basis and expressing
them in terms of the post-Newtonian potentials and a
number of constants, which are then determined by solving
the field equations. The second aim is to use this general
method in order to determine the post-Newtonian limit of a
general class of teleparallel gravity theories [27,28]. This
class is chosen to be very generic, such as to encompass a
large number of theories discussed in the literature, while at
the same time being prototypical for applying our forma-
lism to even more general theories.
Our work is in line with a number of previous studies of

the post-Newtonian limit of the related class of Poincaré
gauge theories. For a more restricted class of teleparallel
theories, which is included in the class of theories we study
here, it has been shown that post-Newtonian effects only
occur at higher perturbation orders than the ones considered
in the PPN formalism [36–39]. More general classes of
quadratic Poincaré gauge theories, in which both curvature
and torsion are present, show deviations already at the PPN
level, and may necessitate the use of additional PPN
potentials and parameters beyond the standard formalism
[40,41]. Note, however, that this will not be the case for the
class of teleparallel gravity theories we consider in this
article, for which the curvature of the considered connec-
tion vanishes identically.
The outline of this article is as follows: In Sec. II, we

briefly review the dynamical variables and fields used in the
covariant formulation of teleparallel gravity and display the
class of theories we consider, together with their action and
field equations. In Sec. III, we review the basic ingredients
of the post-Newtonian (PPN) formalism, and show how it
can be adapted to the field variables relevant for teleparallel
gravity. We employ this formalism in order to solve the
field equations for a general post-Newtonian matter dis-
tribution in Sec. IV. From this solution we obtain the post-
Newtonian metric and PPN parameters in Sec. V, where
we also compare our result with observations. Finally, in
Sec. VI we discuss a number of specific examples. We end
with a conclusion in Sec. VII.
In this article, we use uppercase latin letters A;B;… ¼

0;…; 3 for Lorentz indices, lowercase greek letters
μ; ν;… ¼ 0;…; 3 for spacetime indices, and lowercase
latin letters i; j;… ¼ 1;…; 3 for spatial indices. In our
convention, the Minkowski metric ηAB and ημν has the
signature (−;þ;þ;þ).

II. FIELD VARIABLES AND THEIR DYNAMICS

We start with a brief review of the underlying geometry
and dynamics of the theories we consider in this article.
The fundamental variables in teleparallel theories of
gravity, following their covariant formulation [20,33–35],
are a tetrad θAμ and a curvature-free Lorentz spin con-
nection ωA

Bμ. We denote the inverse tetrad by eAμ, which
satisfies θAμeAν ¼ δνμ and θAμeBμ ¼ δAB. Via these variables,
one defines the metric

gμν ¼ ηABθ
A
μθ

B
ν ð1Þ

and the torsion

Tρ
μν ¼ eAρð∂μθ

A
ν − ∂νθ

A
μ þ ωA

Bμθ
B
ν − ωA

Bνθ
B
μÞ: ð2Þ

To give dynamics to these fundamental field variables, we
consider an action given by two parts:

S½θ;ω; χ� ¼ Sg½θ;ω� þ Sm½θ; χ�; ð3Þ

where Sg is the gravitational part, Sm is the matter part, and
χ denotes an arbitrary set of matter fields. The variation of
the matter action Sm with respect to the tetrad θAμ can be
written in the general form

δθSm ¼ −
Z
M
ΘA

μδθAμθd4x: ð4Þ

Here θ is the determinant of the tetrad. Further,ΘA
μ denotes

the energy-momentum tensor, which we assume to be
symmetric,Θ½μν� ¼ 0, by imposing local Lorentz invariance
on the matter action. For the remainder of this article, we
will treat the matter source as a perfect fluid, as discussed in
detail in Sec. III. Also note that here we have used the tetrad
to change the index character, i.e., Θμν ¼ θAμgνρΘA

ρ.
The gravitational part of the action Sg is defined via the

free function F ,

Sg½θ;ω� ¼
1

2κ2

Z
M
F ðT 1; T 2; T 3Þθd4x; ð5Þ

which depends on the three scalar quantities, which are
parity-even and quadratic in the torsion, and take the forms

T 1 ¼ TμνρTμνρ; T 2 ¼ TμνρTρνμ; T 3 ¼ Tμ
μρTν

νρ:

ð6Þ

This action defines a generic class of teleparallel gravity
theories, which has been discussed before in the literature
[27,28] and shall serve both as a generic example and as a
starting point for further extensions in future work.
By variation of the total action [Eq. (3)] with respect to

the tetrad, we find the field equations
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κ2Θμν¼
1

2
Fgμνþ2∇∘ ρðF ;1TνμρþF ;2T ½ρμ�νþF ;3Tσ

σ½ρgμ�νÞ

þF ;1Tρσ
μðTνρσ−2T ½ρσ�νÞþ

1

2
F ;2½Tμ

ρσð2Tρσν−TνρσÞ

þTρσ
μð2T ½ρσ�ν−TνρσÞ�−

1

2
F ;3Tσ

σρðTρ
μνþ2TðμνÞ ρÞ;

ð7Þ

where F ;i ¼ ∂F=∂T i with i ¼ 1, 2, 3, and ∇∘ is the
covariant derivative with respect to the Levi-Civita con-
nection of the metric gμν. These are the field equations we
will be solving in the remainder of this article. For this
purpose, we will make use of a post-Newtonian approxi-
mation of the teleparallel geometry, which will be detailed
in the following section.

III. POST-NEWTONIAN APPROXIMATION

The main tool we use in this article is the parametrized
post-Newtonian (PPN) formalism [29–31], which we
briefly review in this section, taking into account that
we intend to apply it to the class of extended teleparallel
theories of gravity detailed in the preceding section.
An important ingredient of the PPN formalism is the
assumption that the matter which acts as the source of
the gravitational field is given by a perfect fluid, whose
velocity in a particular, fixed frame of reference is small,
measured in units of the speed of light, and that all physical
quantities relevant for the solution of the gravitational field
equations can be expanded in orders of this velocity. In this
section we discuss how this expansion in velocity orders
proceeds for the quantities we need in our calculation in the
following sections, in particular for the tetrad.
The starting point of our calculation is the energy-

momentum tensor of a perfect fluid with rest energy
density ρ, specific internal energy Π, pressure p, and
four-velocity uμ, which is given by

Θμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν: ð8Þ
The four-velocity uμ is normalized by the metric gμν, so that
uμuνgμν ¼ −1. We will now expand all dynamical quan-
tities in ordersOðnÞ ∝ jv⃗jn of the velocity vi ¼ ui=u0 of the
source matter in a given frame of reference, starting with
the field variables. We choose to work in the Weitzenböck
gauge, and so we set ωA

Bμ ≡ 0. For the tetrad θAμ, we
assume an expansion around a flat diagonal background
tetrad ΔA

μ ¼ diagð1; 1; 1; 1Þ:

θAμ ¼ ΔA
μ þ τAμ ¼ ΔA

μ þ τ
1 A

μ þ τ
2 A

μ þ τ
3 A

μ þ τ
4 A

μ þOð5Þ:
ð9Þ

Here we have used overscript numbers to denote velocity
orders; i.e., each term τ

n A
μ is of order OðnÞ. Velocity orders

beyond the fourth order are not considered and will not be
relevant for our calculation.
For the tetrad perturbation τAμ, it will turn out to be

more convenient to lower the Lorentz index using the
Minkowski metric ηAB and convert it into a spacetime index
using the background tetrad ΔA

μ, so that we introduce the
perturbations

τμν ¼ ΔA
μηABτ

B
ν; τ

n

μν ¼ ΔA
μηABτ

n B
ν: ð10Þ

A detailed analysis shows that not all components of the
tetrad field need to be expanded to the fourth velocity order,
while others vanish due to Newtonian energy conservation
or time-reversal symmetry. The only relevant nonvanishing
components of the field variables we need to determine in
this article are given by

τ
2

00; τ
2

ij; τ
3

0i; τ
3

i0; τ
4

00: ð11Þ

Using the expansion [Eq. (9)] and the components listed
above, we can expand all geometric quantities appearing
in the field equations up to their relevant velocity orders.
This concerns in particular the metric, whose background
solution follows from the diagonal background tetrad ΔA

μ

to be a flat Minkowski metric, g
0

μν ¼ ημν, and whose
perturbation around this background is given by

g
2

00 ¼ 2τ
2

00; g
2

ij ¼ 2τ
2

ðijÞ; g
3

0i ¼ 2τ
3

ði0Þ;

g
4

00 ¼ −ðτ2 00Þ2 þ 2τ
4

00: ð12Þ

For later use, we also write out the relevant torsion
components, which take the forms

T
2
0
0i ¼ τ

2

00;i; T
2
i
jk ¼ 2δilτ

2

l½k;j�;

T
3
i
0j ¼ δikðτ2 kj;0 − τ

3

k0;jÞ; T
3
0
ij ¼ 2τ

3

0½i;j�;

T
4
0
0i ¼ τ

2

00τ
2

00;i − τ
3

0i;0 þ τ
4

00;i; ð13Þ

and which will be necessary for the decomposition of the
field equations into velocity orders. Here we have made use
of the additional assumption that the gravitational field is
quasistatic, so that changes are only induced by the motion
of the source matter. Time derivatives ∂0 of the tetrad
components are therefore weighted with an additional
velocity order Oð1Þ.
Using the expansion [Eq. (12)] of the metric tensor, we

can now also expand the energy-momentum tensor
[Eq. (8)] into velocity orders. For this purpose, we must
assign velocity orders also to the rest mass density, the
specific internal energy and the pressure of the perfect fluid.
Based on their orders of magnitude in the Solar System,
one assigns velocity ordersOð2Þ to ρ andΠ, andOð4Þ to p.
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The energy-momentum tensor [Eq. (8)] can then be
expanded in the form

Θ00 ¼ ρð1þ Πþ v2 − 2τ
2

00Þ þOð6Þ; ð14aÞ

Θ0j ¼ −ρvj þOð5Þ; ð14bÞ

Θij ¼ ρvivj þ pδij þOð6Þ: ð14cÞ

Finally, in order to expand also the gravitational side of
the field equations [Eq. (7)], we need to introduce a suitable
expansion for the free function F and its derivatives. For
this purpose, we use a Taylor expansion of the form

F ðT 1;T 2;T 3Þ ¼ F ð0;0;0Þ þ
X3
i¼1

F ;ið0;0;0ÞT i þOðT 2Þ:

ð15Þ

Higher orders beyond the linear approximation will not be
required. We further introduce the notation F ¼ F ð0; 0; 0Þ
and F;i ¼ F ;ið0; 0; 0Þ for the constant Taylor coefficients.
This will be used throughout the following sections.

IV. EXPANSION OF THE FIELD EQUATIONS
AND SOLUTION

In order to discuss the post-Newtonian parameters, we
need to expand the field equations to the required order in
the perturbation and then make use of the post-Newtonian
approximation. We will do so in the following sections.
Further, we will make use of a generic Ansatz for the tetrad
perturbations, which consists of post-Newtonian potentials
and constant coefficients, which we will also determine
here by solving the field equations. We proceed order by
order. The zeroth order, which corresponds to the back-
ground solution around which we expand, is discussed in
Sec. IVA. We then solve for the second order in Sec. IV B,
the third order in Sec. IV C, and finally the fourth order in
Sec. IV D.

A. Background field equations

We start our discussion with the zeroth order of the field
equations [Eq. (7)]. From the expansion in Eq. (14), it
follows that at the zeroth velocity order the energy-

momentum tensor vanishes, Θ
0

μν ¼ 0, so that we are left
with solving the vacuum field equations. Inserting our

assumed background values θ
0
A
μ ¼ ΔA

μ for the tetrad into
the respective field equations [Eq. (7)], we find that they
take the form

0 ¼ 1

2
Fημν: ð16Þ

It thus follows that the field equations are solved at the
zeroth order only for theories which satisfy F ¼ 0. This is a
consequence of our assumption that the background solu-
tion is given by a flat Minkowski metric, which therefore
excludes a cosmological constant. We will thus restrict
ourselves to theories satisfying this restriction for the
remainder of this article. This restriction will not be of
importance for any actual phenomenology, since the effects
of a nonvanishing cosmological constant in agreement with
cosmological observations would be negligible on Solar
System scales.

B. Second velocity order

We continue with expanding the gravitational part Eμν of
the field equations [Eq. (7)] in the perturbation τμν at the
second velocity order. The corresponding components take
the form

E
2

00 ¼ −ð2F;1 þ F;2 þ F;3Þτ2 00;ii þ 2F;3τ
2

i½i;j�j; ð17aÞ

E
2

ij¼4F;1τ
2

j½k;i�kþ2F;2ðτ2 i½k;j�kþτ
2

k½j;i�kÞ
þF;3½2τ2 k½k;i�j−τ

2

00;ijþðτ2 00;kkþ2τ
2

k½l;k�lÞδij�: ð17bÞ

It follows from their index structure that the tetrad
components τ00, τij should transform as a scalar and a
tensor, respectively, under spatial rotations [29,31]. Further
using their respective velocity orders and their relation to
the source matter, we can write down an Ansatz for the
tetrad as

τ
2

00 ¼ a1U; τ
2

ij ¼ a2Uδij þ a3Uij: ð18Þ

Here ai (and also the later appearing bi, ci) are constant
coefficients, which we will determine by solving the field
equations and by imposing gauge conditions, while U and
Uij are post-Newtonian functionals of the matter variables.
These functionals are related to the matter variables by the
differential relations

∇2χ¼−2U; Uij¼ χ;ijþUδij; ∇2U¼−4πρ; ð19Þ

where ∇2 ¼ δij∂i∂j is the spatial Laplace operator of the
flat background metric, and χ is the so-called superpoten-
tial, which is auxiliary in the definition of Uij [29]. For
the sake of convenience, we will from now on rewrite
the field equations making use of the shorthand notation

E
n

μν ¼ E
n

μν − κ2Θ
n

μν ¼ 0. Then, inserting the appropriate
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Ansatz [Eq. (18)] for the tetrad into the field equations
[Eq. (17)] at the second velocity order, and using the
relations in Eq. (19), we obtain

E
2

00¼−½κ2−4πa1ð2F;1þF;2þF;3Þþ8πða2þa3ÞF;3�ρ;
ð20aÞ

E
2

ij ¼ −½a1F;3 − ða2 þ a3Þð2F;1 þ F;2 þ 2F;3Þ�
× ð4πδijρþ U;ijÞ; ð20bÞ

where we can see that the terms contained in square
brackets in front of the post-Newtonian functionals must
be zero, in order for the equations to be solved for arbitrary
matter distributions. Further, note that we obtain only two
independent equations, while our Ansatz [Eq. (18)] con-
tains three free constants. This is a consequence of the
gauge freedom, which is related to the diffeomorphism
invariance of the theory. We thus may choose a gauge by
supplementing the system with one additional equation.
The standard PPN gauge mandates that the coefficient in
front of Uij vanishes, and so we make the gauge choice
a3 ¼ 0. Thus, we get for the coefficients

a1 ¼
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
;

a2 ¼
F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
; a3 ¼ 0:

ð21Þ

We will subsequently use this second-order solution in the
remaining higher-order field equations.

C. Third velocity order

At the third velocity order in the perturbation expansion,
we still work with linearized field equations, which are of
the forms

E
3

0i ¼ 2F;1ðτ2 ij;0j − τ
3

i0;jjÞ þ F;2ðτ2 ji;0j − τ
3

j0;ij

þ 2τ
3

0½j;i�jÞ þ F;3ðτ2 jj;0i − τ
3

j0;ijÞ; ð22aÞ

E
3

i0 ¼ 2F;1ð2τ3 0½j;i�j − τ
2

00;0iÞ þ F;2ð2τ3 ½jj0j;i�j

þ 2τ
2

½ij�;0j − τ
2

00;0iÞ þ F;3ð2τ2 j½j;j0ji� − τ
2

00;0iÞ: ð22bÞ

Observe that the components τ0i, τi0 must behave as
vectors under spatial rotations, which are of the third

velocity order, and so they can be expressed in terms of
PPN potentials in the forms

τ
3

i0 ¼ b1Vi þ b2Wi; τ
3

0i ¼ b3Vi þ b4Wi; ð23Þ

with the PPN vector potentials satisfying

∇2Vi ¼ −4πρvi; ∇2Wi ¼ −4πρvi þ 2U;0i: ð24Þ

In this case, proceeding analogously to the equation (20),
we obtain the third-order field equations

E
3

i0¼½κ2þ4πðb1þb2ÞF;2þ8πðb3þb4ÞF;1�
�
ρvi−

U;0i

4π

�
;

ð25aÞ

E
3

0i ¼ ½κ2 þ 8πðb1 þ b2ÞF;1 þ 4πðb3 þ b4ÞF;2�ρvi
þ
�
ðb1 − b2ÞF;3 − b2ð4F;1 þ F;2Þ

þ ðb1 − b3 − b4ÞF;2 þ
κ2

4π

F;3

2F;1 þ F;2

�
U;0i: ð25bÞ

We see that we obtain three independent equations, given
by the vanishing of the square brackets, for the four
coefficients b1;…; b4. This is again a consequence of
the gauge invariance which we encountered also for the
second-order equations (20) and coefficients (18). We
could thus fix the gauge also here by adding one more
equation. However, we will proceed differently in this case,
and leave one of the constant coefficients undetermined at
this stage. The reason for this will become clear at the
fourth velocity order, where this free constant will allow us
to choose the standard PPN gauge by eliminating one more
PPN potential. Choosing b4 ¼ b0 as the undetermined
parameter, we find

b1 ¼ −
1

ð2F;1 þ F;2Þ
κ2

4π
; b2 ¼ 0;

b3 ¼ −b0 −
1

ð2F;1 þ F;2Þ
κ2

4π
; b4 ¼ b0: ð26Þ

Again, we will make use of this (now only partial) solution
in the fourth-order equations, which we address next.

D. Fourth velocity order

Finally, for the fourth order, we find that we need to
consider only certain components of the field equations and
the linear combinations thereof. In particular, we need the
time component
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E
4

00 ¼ ð2F;1 þ F;2 þ F;3Þ
�
−τ4 00;ii þ τ

3

0i;0i þ τ
2

00τ
2

00;ii þ 2τ
2

ijτ
2

00;ij þ τ
2

00;i

�
τ
2

ðijÞ;j −
τ
2

00;i

2
− τ

2

jj;i

��

þ 2F;1τ
2

ij;kτ
2

i½k;j� − F;2τ
2

ij;kðτ2 k½j;i� þ τ
2

j½i;k�Þ þ
F;3

2

�
τ
2

ij;iτ
2

kj;k þ τ
2

ii;jτ
2

kk;j þ 2τ
2

ij;iτ
2

jk;k

�

þ 2F;3

h
τ
4

i½i;j�j þ τ
2

ij;kτ
2

j½k;i� þ 2τ
2

00τ
2

i½j;i�j − τ
2

ii;jτ
2

ðjkÞ;k þ τ
2

ij

�
τ
2

j½k;i�k þ τ
2

kði;jÞk − τ
2

kk;ij

�i
ð27Þ

and the trace of the spatial part of the field equations

E
4

ii ¼ 2ð2F;1 þ F;2 þ 2F;3Þ
�
τ
2

i½i;j�τ
2

jk;k − τ
4

i½i;j�j
�
− 2ðF;1 þ F;2 þ F;3Þτ2 ij;kτ

2

jk;i − ð2F;1 þ F;2Þτ2 ijτ
2

ij;kk

þ 2F;3

h
τ
4

00;ii − τ
3

0i;0i − τ
2

00;iτ
2

ij;j þ τ
2

iiτ
2

jk;jk − τ
2

ijτ
2

jk;ik þ τ
2

jiτ
2

ij;kk − τ
2

kkτ
2

ii;jj þ τ
2

00;ii

�
τ
2

00 þ τ
2

jj

�i

þ ð2F;1 þ F;2 þ 3F;3Þ
h
τ
2

ii;00 − τ
3

i0;i0 þ 2τ
2

00;iτ
2

j½j;i� þ 2τ
2

ij

�
τ
2

kk;ij − τ
2

kði;jÞk
�i

þ 1

2
ð2F;1 þ F;2 þ F;3Þτ2 00;iτ

2

00;i

þ F;1

h
2τ
2

ikτ
2

ij;jk þ 2τ
2

kj;iτ
2

ki;j þ τ
2

ij;k

�
τ
2

ij;k − 3τ
2

ik;j

�i
þ F;2

2

�
τ
2

ij;kτ
2

kj;i þ 2τ
2

ijτ
2

ik;jk

�
− 3F;3τ

2

ðijÞτ
2

00;ij

þ
�
2F;1 þ F;2 þ

3

2
c3

�h
τ
2

ii;j

�
2τ
2

kj;k − τ
2

kk;j

�
− τ

2

ij;iτ
2

kj;k

i
þ
�
2F;1 þ

3

2
F;2 þ 2F;3

�
τ
2

ij;kτ
2

ji;k: ð28Þ

In order to determine the post-Newtonian metric, we need to solve these equations for the tetrad component τ
4

00. Note that
this component should transform as a scalar under rotations, and thus we can consider an Ansatz of the form

τ
4

00 ¼ c1Φ1 þ c2Φ2 þ c3Φ3 þ c4Φ4 þ c5U2 ð29Þ

with the fourth-order scalar potentials

∇2Φ1 ¼ −4πρv2; ∇2Φ2 ¼ −4πρU; ∇2Φ3 ¼ −4πρΠ; ∇2Φ4 ¼ −4πp: ð30Þ

Finally, to eliminate the spatial component τ
4

ij of the tetrad, which appears in the field equations (27) and (28), but is not
relevant for our calculation, we make use of the linear combination

E
4 ¼ ð2F;1 þ F;2 þ 2F;3ÞE

4

00 þ F;3E
4

ii ð31Þ

and find

E
4 ¼ ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þf2b0U;00 þ 4π½c1ρv2 þ ðc2 þ 2c5ÞρU þ c3ρΠþ c4p� − 2c5U;iU;ig

þ κ2

4π
ð2F;1 þ F;2 þ 2F;3Þ

�
U;00 þ

κ2ρU
2F;1 þ F;2 þ 3F;3

�
− 3F;3κ

2p − ð2F;1 þ F;2 þ 3F;3Þκ2ρv2

− κ2ð2F;1 þ F;2 þ 2F;3Þ
�
ρΠþ κ2

32π2
U;iU;i

2F;1 þ F;2

�
: ð32Þ

In order to obtain the solution in the standard PPN gauge, the coefficient in front of the term U;00 must vanish, since it does
not correspond to any of the terms in the Ansatz [Eq. (29)] and would introduce a term violating the standard PPN gauge.
Together with the remaining, independent terms, we then find the six independent equations

4πð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þc4 − 3κ3F;3 ¼ 0; ð33aÞ

4πð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þc3 − κ2ð2F;1 þ F;2 þ 2F;3Þ ¼ 0; ð33bÞ
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4πð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þðc2 þ 2c5Þ þ
κ4

4π

2F;1 þ F;2 þ 2F;3

2F;1 þ F;2 þ 3F;3
¼ 0; ð33cÞ

2ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þb0 þ
κ2

4π
ð2F;1 þ F;2 þ 2F;3Þ ¼ 0; ð33dÞ

ð2F;1 þ F;2 þ 3F;3Þ½4πð2F;1 þ F;2Þc1 − κ2� ¼ 0; ð33eÞ

−2ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þc5 −
κ4

32π2
2F;1 þ F;2 þ 2F;3

2F;1 þ F;2
¼ 0: ð33fÞ

Solving these equations for the remaining six undetermined constants then yields their values:

b0 ¼ −
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

8π
; c1 ¼

1

ð2F;1 þ F;2Þ
κ2

4π
;

c2 ¼ −
ð2F;1 þ F;2 − 3F;3Þð2F;1 þ F;2 þ 2F;3Þ

ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ2
κ4

32π2
; c3 ¼

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
;

c4 ¼
3F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
; c5 ¼ −

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ
κ4

64π2
: ð34Þ

With this result, we have fully solved the general field
equations (7) at all velocity orders which are required to
determine the PPN metric and hence the PPN parameters.
This will be done in the following section.

V. PPN METRIC AND PARAMETERS

Using the solution obtained in the previous section, we
can now finally determine the PPN metric, and hence the
PPN parameters of the general class of teleparallel gravity
theories we consider in this article. We will do so in three
steps. In Sec. VA, we briefly recall the relevant tetrad
components and display their solutions after inserting the

constant coefficients we determined into the respective
Ansätze. From these components, we derive the metric
components in Sec. V B. Finally, in Sec. V C, we read off
the PPN parameters. We compare this result to observations
in Sec. V D, in order to obtain bounds on the class of
theories we consider.

A. Post-Newtonian tetrad

We start by briefly recalling the tetrad components and
displaying their solutions from Sec. IV. From the Ansatz
[Eq. (18)] together with the solutions in Eq. (21) for the
constant coefficients, we find the second-order components

τ
2

00 ¼
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
U; τ

2

ij ¼
F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
Uδij: ð35Þ

We then come to the third-order Ansatz [Eq. (23)], together with the solution in Eq. (26) and the missing coefficient b0 in the
solution in Eq. (34). This yields the components

τ
3

i0 ¼ −
1

2F;1 þ F;2

κ2

4π
Vi; τ

3

0i ¼ −
κ2

8π

ð2F;1 þ F;2 þ 4F;3ÞVi þ ð2F;1 þ F;2 þ 2F;3ÞWi

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
: ð36Þ

Finally, we recall the Ansatz [Eq. (29)] for the only fourth-order component we have to determine. With the solution in
Eq. (34), we find

τ
4

00 ¼
1

2F;1 þ F;2

κ2

4π
Φ1 −

ð2F;1 þ F;2 − 3F;3Þð2F;1 þ F;2 þ 2F;3Þ
ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ2

κ4

32π2
Φ2 þ

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
Φ3

þ 3F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
Φ4 −

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ
κ4

64π2
U2: ð37Þ

These are all tetrad components which are relevant to construct the post-Newtonian metric.
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B. Post-Newtonian metric

In the next step, we calculate the post-Newtonian metric.
For this purpose, we insert the tetrad components displayed
in Sec. VA into the metric expansion in Eq. (12). We start
with the second-order metric component

g
2

00 ¼
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

2π
U ¼ 2GU;

ð38Þ

which follows immediately from the second-order tetrad
perturbation [Eq. (35)]. Here we have introduced the
Newtonian gravitational constant G. Solving the normali-
zation condition G ¼ 1, as this is the conventional PPN
choice of units and yields the relation

κ2 ¼ 4π
ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ

2F;1 þ F;2 þ 2F;3
: ð39Þ

Using this normalization, we find for the remaining
components

g
2

ij ¼
2F;3

2F;1 þ F;2 þ 2F;3
Uδij ð40Þ

at the second order,

g
3

0i ¼ −
6F;1 þ 3F;2 þ 10F;3

2ð2F;1 þ F;2 þ 2F;3Þ
Vi −

1

2
Wi ð41Þ

at the third order, and finally

g
4

00 ¼
1

2F;1 þ F;2 þ 2F;3

�
−
6F;1 þ 3F;2 þ 7F;3

2
U2

þ 2ð2F;1 þ F;2 þ 3F;3ÞΦ1 − ð2F;1 þ F;2 − 3F;3ÞΦ2

þ 2ð2F;1 þ F;2 þ 2F;3ÞΦ3 þ 6F;3Φ4

�
ð42Þ

at the fourth order. Further components will not be
necessary in order to obtain the PPN parameters.

C. Post-Newtonian parameters

By comparing the metric components shown in Sec. V B
with the standard PPN form of the metric [29,31], we find
the PPN parameters for the theory as

ξ ¼ α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ 0; ð43Þ

from which we deduce that there is no violation of the
conservation of total energy-momentum, as well as no
preferred frame or preferred location effects; theories of this
type are called fully conservative. The only nontrivial result
is given by the PPN parameters

β ¼ 6F;1 þ 3F;2 þ 7F;3

4ð2F;1 þ F;2 þ 2F;3Þ
; γ ¼ F;3

2F;1 þ F;2 þ 2F;3
:

ð44Þ

More expressively, we find that their deviation from the
general relativity values βGR ¼ γGR ¼ 1 can be written in
terms of a single constant ϵ by defining

β− 1¼−
ϵ

2
; γ− 1¼−2ϵ; ϵ¼ 2F;1þF;2þF;3

2ð2F;1þF;2þ 2F;3Þ
:

ð45Þ

In particular, we obtain β ¼ γ ¼ 1 for 2F;1 þ F;2þ
F;3 ¼ 0, so that theories satisfying these conditions are
indistinguishable from general relativity by measurements
of the PPN parameters. We will discuss this particular case
later in Sec. VI, when we discuss specific examples.

D. Comparison to observations

For the discussion of experimental bounds, it is impor-
tant to take into account that the deviations [Eq. (45)] of the
PPN parameters from their general relativity values are not
independent. This fact is relevant for most measurements of
the PPN parameters, where the result depends on a linear
combination of the parameters, such as the perihelion shift
of Mercury or the Nordvedt effect [30]. The latter is in
particular remarkable, since from the values in Eq. (44)
4β − γ ¼ 3 follows, so that the Nordvedt parameter [42,43]

ηN ¼ 4β − γ − 3 −
10

3
ξ − α1 þ

2

3
α2 −

2

3
ζ1 −

1

3
ζ2 ð46Þ

vanishes identically, indicating the absence of the Nordvedt
effect independently of the theory under consideration.
Hence, lunar laser ranging experiments searching for the
Nordvedt effect will not be affected, and are thus insensitive
to the modifications we discuss here.
For measurements of the PPN parameter γ alone, the

most stringent bound is obtained from the Cassini tracking
experiment [44], which yields the bound

γ − 1 ¼ −2ϵ ≤ ð2.1� 2.3Þ × 10−5: ð47Þ

Comparable bounds on ϵ may be obtained from Solar
System ephemeris, which yields bounds on both γ and
β [45].
This concludes our discussion of the PPN parameters for

a general teleparallel theory. To illustrate our results, we
will present the most commonly encountered examples in
the following section.

VI. EXAMPLES

We now apply the general result we derived in the
previous sections to a number of example theories. We start
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with a simple rewriting of the gravitational Lagrangian in
its axial, vector, and tensor parts in Sec. VI A. In Sec. VI B,
we then consider new general relativity, in which the
general function F is replaced by a linear function of its
three arguments. In Sec. VI C, we finally consider the fðTÞ
class of theories, where f is a function depending on the
TEGR torsion scalar only.

A. GðTax;Tvec;TtenÞ theories
We begin by noting that the theory of gravity given in

Ref. [27] is identical to the class of theories we discussed
here, since its action is of the same form:

F ðT 1; T 2; T 3Þ ¼ GðTax; Tvec; T tenÞ; ð48Þ

with the torsion components

Tax ¼
1

18
ðT 1 − 2T 2Þ; T ten ¼

1

2
ðT 1 þ T 2 − T 3Þ;

Tvec ¼ T 3; ð49Þ

which are fully equivalent for expressing the action. It
follows that the Taylor coefficients

G ¼ GjT¼0; G;a ¼
∂G
∂Tax

����
T¼0

;

G;t ¼
∂G
∂T ten

����
T¼0

; G;v ¼
∂G

∂Tvec

����
T¼0

ð50Þ

are related by

F ¼ G; F;1 ¼
1

18
G;a þ

1

2
G;t;

F;2 ¼ −
1

9
G;a þ

1

2
G;t; F;3 ¼ G;v −

1

2
G;t: ð51Þ

Note in particular that G;a drops out whenever F;1 and F;2

appear only in the combination 2F;1 þ F;2. Hence, the axial
part does not contribute to the deviation [Eq. (45)] of the
PPN parameters from their general relativity values, since

ϵ ¼ G;v þ G;t

4G;v þ G;t
ð52Þ

contains only vectorial and tensorial parts. This agrees with
earlier findings, that purely axial modifications show up
only in higher post-Newtonian orders than considered in
the PPN formalism [36–39].

B. New general relativity

Next, we consider the new general relativity (NGR) class
of teleparallel gravity theories [21]. Its Lagrangian is given
by the general linear combination

F ðT 1; T 2; T 3Þ ¼ t1T 1 þ t2T 2 þ t3T 3 ð53Þ

with constant coefficients ti. It thus follows immediately
that the Taylor coefficients are given by F ¼ 0 and F;i ¼ ti,
i ¼ 1, 2, 3. The deviation [Eq. (45)] of the PPN parameters
is thus given by

ϵ ¼ 2t1 þ t2 þ t3
2ð2t1 þ t2 þ 2t3Þ

: ð54Þ

This result agrees with the values obtained for β and γ in the
original presentation [21] of the theory.

C. f ðTÞ theories
Another important class of theories which is covered by

the calculations we present in this article is given by the so-
called fðTÞ class of theories, whose Lagrangian is given by

F ðT 1;T 2;T 3Þ¼fðTÞ; T¼1

4
T 1þ

1

2
T 2−T 3: ð55Þ

HereT is the torsion scalar which constitutes the Lagrangian
of the teleparallel equivalent of general relativity (TEGR)
[2]. For the Taylor coefficients we find F ¼ fð0Þ, so that at
the zeroth order we get the condition F ¼ fð0Þ ¼ 0. The
remaining Taylor coefficients are given by F;1 ¼ 1

4
f0ð0Þ,

F;2 ¼ 1
2
f0ð0Þ, andF;3 ¼ −f0ð0Þ. As a consequence, we find

that the deviation in Eq. (45) of the PPN parameters from
their general relativity values vanishes identically, ϵ ¼ 0, for
any theories of this class. Hence, we find that any fðTÞ-type
theories cannot be distinguished from general relativity by
their PPN parameters.

VII. CONCLUSION

We derived the post-Newtonian limit of a general class of
teleparallel gravity theories, whose action is given by a
Lagrange function depending on three scalar quantities
formed from the parity-even contractions of the torsion
tensor [27,28]. We found that the post-Newtonian limit of
these theories is fully determined by a single constant,
which is calculated from four Taylor coefficients of the
Lagrange function at the zeroth and first orders. The zeroth
order, which plays the role of a cosmological constant,
must be set to zero to achieve consistency between the
background (vacuum) field equations and the post-
Newtonian Ansatz of a flat Minkowski background (or
at least sufficiently small such as not to affect the Solar
System dynamics). The post-Newtonian parameters are
then fully determined by the first-order Taylor coefficients.
We displayed these coefficients in two different represen-
tations, both through the canonical contractions of the
torsion tensor and its axial-vector-tensor decomposition.
Our results show that the class of theories we considered

is fully conservative in the sense that it does not exhibit any
preferred frame or preferred location effects, or violation of
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energy-momentum conservation, which is reflected by the
fact that only the PPN parameters γ and β potentially
deviate from their general relativity values. Further, due to
the aforementioned fact that deviations of the PPN para-
meters from their general relativity values are governed by
a single combination of the constant Taylor coefficients,
large parts of the parameter space of possible theories are
left with a post-Newtonian limit which is identical to that of
general relativity, so that these theories are indistinguish-
able by Solar System experiments at the respective post-
Newtonian order. Further, we found that the Nordvedt
effect is absent in the whole class of theories we considered.
We then applied our findings to two particular subclasses

of theories: new general relativity [21] and fðTÞ gravity
[6,7]. In the former case, the aforementioned Taylor
coefficients are given by the three constant parameters
which determine the new general relativity action, and our
findings agree with the original calculation of γ and β from
a static, spherically symmetric Ansatz [21]. In the latter
case, we find that the post-Newtonian parameters are
identical to those of general relativity, so that any fðTÞ
gravity theory is consistent with Solar System observations.
Our work invites numerous generalizations and exten-

sions. In particular, one may consider more general
theories, for example, one derived from a general con-
stitutive relation [46], possibly including also parity-odd

terms. Another possibility is to include a coupling to scalar
fields [47–52], up to Horndeski-like teleparallel theories
[53,54]. This would extend previous calculations of the
PPN parameters for specific theories in this class [55–57].
Further, taking inspiration from the so-called trinity of
gravity [1], one may consider extensions to the symmetric
teleparallel equivalent of gravity [58], and apply the para-
metrized post-Newtonian formalism to generalized theories
based on the symmetric teleparallel geometry [59–63].
Another possible extension would be studying the motion
of compact objects at higher orders in the post-Newtonian
expansion, in order to derive the emitted gravitational
waves [64].
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