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In this paper we discuss possible effects of nonlocality in black hole spacetimes. We consider a two-
dimensional theory in which the action describing matter is a ghost-free modification of the Polyakov
action. For this purpose we write the Polyakov action in a local form by using an auxiliary scalar field and
modify its kinetic term by including into it a nonlocal ghost-free form factor. We demonstrate that the
effective stress-energy tensor is modified and we study its properties in a background of a two-dimensional
black hole. We obtain the expression for the contribution of the ghost-free auxiliary field to the entropy of
the black hole. We also demonstrate that if the back-reaction effects are not taken into account, such a
ghost-free modification of the theory does not change the energy flux of the Hawking radiation measured at
infinity. We illustrate the discussed properties for black hole solution of a 2D dilaton gravity model which
admits a rather complete analytical study.
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I. INTRODUCTION

Nonlocal field theories have a long history, especially in
the context of attempts to manage the ultraviolet (UV)
behavior of quantum scattering amplitudes. There is a
subclass of nonlocal field theories that are called ghost-free
(GF) theories, which have particularly nice properties.
First, these ghost-free modifications of local field theories
do not lead to any extra propagating degrees of freedom at
tree level. As a consequence, while improving the behavior
at short distances, their behavior at large scales is very
similar to that of local theories. These theories have been
extensively studied in a large number of publications,
especially in the context of the resolution of cosmological
as well as black hole singularities [1–25]. Scattering on a
potential barrier in the framework of ghost-free theories,
vacuum fluctuations and nonlocal footprints in observables
has been analyzed in Refs. [26–29]. Thermal properties of
ghost-free theories in flat spacetime and the superradiance
effect were studied in [28,30].
There is an interesting related question as to how

nonlocality would affect the excitation rate of an Unruh-
DeWitt detector interacting with a ghost-free quantum
field on the background of a Rindler spacetime or a

Schwarzschild black hole. There has been some contro-
versy in the literature on this topic, see e.g., [31–34]. The
result of this discussion can be summarized as follows: An
Unruh-DeWitt detector is not sensitive to the nonlocality of
a ghost-free quantum field and will react exactly in the
same way as if it were interacting with a local field. The
explanation of this fact is quite simple. The response rate of
the Unruh-DeWitt detector is described by the temporal
Fourier transform of the Wightman function of the corre-
sponding quantum field. The Wightman function satisfies a
homogeneous equation and, for this reason, is the same as
for the local theory. Only quantities that are described by
the Feynman propagator or the retarded Green function,
which satisfy inhomogeneous equations, may be connected
with nonlocal aspects of the field [27].
The flux of Hawking radiation of an evaporating black

hole is described by the retarded propagator of the
corresponding scalar field [35]. Therefore it might depend
on the scale of nonlocality inherent to ghost-free theories.
On a given background of a black hole the Hawking
temperature is defined by the geometry of the black hole
and it evidently depends on the surface gravity of the
horizon only. The vacuum stress-energy tensor and the
value of the Hawking flux at infinity in their turn depend
also on the gray-body factors and on the characteristics of
the quantum field. Therefore the question about the effect
of nonlocality on the quantum mean value of the stress-
energy tensor of ghost-free fields is nontrivial.
In this paper we study quantum aspects of ghost-free

theories in the strong field regime. Dealing with nonlocality
in this context is not a simple problem. It requires serious
modifications of well-known approaches as well as the
development of entirely new approaches. Our main interest
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in this paper is to study how a ghost-free modification of a
local theory influences the stress-energy tensor of the
matter field and the Hawking radiation in particular. We
start with two-dimensional gravity, wherein the background
geometry of a two-dimensional black hole is considered to
be classical. The matter field, on the other hand, shall be
assumed to be quantum.
It is well known that in the case of a local two-dimensional

conformal scalar field, a quantum mean value of its stress-
energy tensor can be obtained as a variation of the Polyakov
action [36], see Eq. (4) further below. This action appears as
an effective action after quantization of conformal matter
fields in a given background geometry and can be obtained
by functional integration of the conformal anomaly [36–38].
By construction, the Polyakov action and other effective
actions are generically nonlocal functionals of the back-
ground fields and geometry. When the matter field is
nonlocal even before quantization, the effective action will
be nonlocal in any case. We do not propose a particular
rigorous prescription of quantization of nonlocal theories.
Instead we notice that, because the ghost-free modification
of the matter field does not introduce any new degrees of
freedom compared to the local theory, one can reasonably
expect that after the quantization the effective theory also
will not acquire extra poles in the propagators. Ghost-free
modifications, in the class of theories considered here,
contain a dimensional parameter of fundamental length l
which breaks conformal invariance of the theory. This fact
can have an imprint on all quantum averages of observables.
Let us consider a class of theories

S½gμν; ψ̂ � ¼ Sg½gμν� þ Smatter½gμν; ψ̂ � ð1Þ

where Sg is a gravitational action and Smatter is the action of
the quantummatter field ψ̂ in the background of g. After the
quantization of the matter fields ψ̂ , as well as renormaliza-
tion of the coupling constants of the gravitational action,
one obtains the effective action

W½gμν� ¼ Sg½gμν� þWmatter½gμν�: ð2Þ

Now suppose that gμν is a black hole solution of Sg½gμν�. In
this given background, we may ask how the ghost-free
deformation of the theory, described by Wmatter, affects the
effective stress-energy tensor and the Hawking radiation of
the black hole in particular.
The paper is organized as follows. In Sec. II we present

the standard Polyakov action in a local form by introducing
an auxiliary scalar field and the effective stress-energy
tensor associated with this action. We also discuss a relation
between the choice of the state and zero modes of the
□-operator. In Sec. III we describe a ghost-free modifica-
tion of the Polyakov action in the local form, obtain an
expression for the effective stress-energy tensor of such a
theory, and demonstrate that this tensor can be explicitly

written as a sum of two terms. The first one depends on the
form factor of the modified theory but is insensitive to
the choice of the state. The second term, describing the
dependence of the stress-energy tensor of the state, does not
“feel” the presence of nonlocality and coincides with the
corresponding expression for the original local (nonmodi-
fied) theory. Nonlocal contribution to the entropy of a 2D
black hole is discussed in Sec. IV. In Sec. V we demonstrate
that for a fixed background of a 2D black hole the nonlocal
modification of the theory does not change the energy flux
of Hawking radiation at spatial infinity. In Sec. VI we
analyze nonlocal effects for a special case of a 2D black
hole model connected to string theory and obtain explicit
expressions for the components of the effective stress-
energy tensor as well as contributions to the quantum
corrections of the black hole entropy. Section VII contains a
brief summary and discussion of the obtained results.
Useful formulas for the 2D geometry of a static lack hole
are collected in the Appendix.

II. 2D CONFORMAL ANOMALY
AND POLYAKOV ACTION

Let us consider a two-dimensional spacetime with a
metric gμν, and let ψ̂ be a conformally invariant quantum
field in this metric. Then, as it is well known, the quantum
average of the trace of the stress-energy tensor for such a
field has a following universal form:

hT̂μνigμν ¼ 2bR: ð3Þ

Here, R is the Ricci scalar for the metric gμν. The
dimensionless coefficient b depends on the nature of the
quantum field. For a conformal massless scalar field
b ¼ 1=ð48πÞ. Polyakov [36] demonstrated that the expres-
sion for the trace anomaly (3) can be obtained by variation
of the following nonlocal effective action1:

WPol½gμν� ¼ −
b
2

Z
d2x

ffiffiffiffiffiffi
−g

p
R
1

□
R: ð4Þ

One obtains

T ¼ Tμνgμν ¼
2ffiffiffiffiffiffi−gp δWPol

δgμν
gμν ¼ 2bR: ð5Þ

The Polyakov action (4) can be identically rewritten in a
local form by introducing an auxiliary field φ. To that end,
let us consider the action

WPol½gμν;φ� ¼ b
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
φ□φ − Rφ

�
: ð6Þ

1We use Misner-Thorne-Wheeler sign conventions for the
definition of the Riemann tensor and the signature (−;þ) [39].
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The scalar curvature here plays the role of a source for the
field φ. The variation of this action with respect to φ gives

□φ ¼ R: ð7Þ

By substituting this relation into (6) one returns to the
Polyakov action (4). It should be emphasized that the
effective action (6) depends on the classical fields gμν
and φ. It correctly reproduces the conformal trace anomaly,
but itself is not conformally invariant.
The effective action can be used to calculate not only the

trace but also all components of the effective stress-energy
tensor [35]

Tμν ¼ 2ffiffiffiffiffiffi−gp δWPol

δgμν

¼ b

�
φ;μφ;ν − 2φ;μν − gμν

�
1

2
φ;αφ;α − 2□φ

��
: ð8Þ

In this expression we understand

φ ¼ 1

□
R: ð9Þ

The tensor (8) is conserved, Tμα
;α ¼ 0, and its trace

reproduces (5). The expression 1=□ should be understood
as a corresponding Green function of the□-operator. In the
application to spacetimes with Lorentzian signature of the
metric, this Green function is to respect the initial con-
ditions of the problem under consideration. If there are no
incoming fluxes one should use the retarded Green func-
tion. This choice corresponds to the calculation of the
hinjT̂μνjini quantum mean value of the stress-energy tensor
operator of the conformal quantum field ψ̂ .2

Let us now turn to black holes. A static two-dimensional
metric can be written in the form

ds2 ¼ −fdt2 þ dr2

f
; ð10Þ

where f ¼ −ξμξμ and ξμ is the Killing vector (see the
Appendix). A solution of Eq. (7) can be written as a sum

φ ¼ Φ0 þ χ; ð11Þ

where

Φ0 ¼ − ln f ð12Þ

is a solution of the inhomogeneous equation and χ is a
solution of the homogeneous equation □χ ¼ 0. In other
words, χ is a solution constructed from zero modes of the
□-operator. We are looking for solutions that generate a

stationary stress-energy tensor (8). Such zero modes can be
written in the following form (see the Appendix):

χ ¼ wtþ kr�: ð13Þ

Here, w and k are two arbitrary constants and r� is a tortoise
coordinate,

r� ¼
Z

dr
f
: ð14Þ

Substituting (11) into (8) one obtains

Tμν ¼ Tμν
ðΦ0Þ þ Tμν

ðχÞ: ð15Þ

In the above, Tμν
ðΦ0Þ denotes the contribution of the Φ0-term

and Tμν
ðχÞ corresponds to the contribution of zero modes,

respectively. The first term is

Tμν
ðΦ0Þ ¼ b

�
Φ;μ

0 Φ
;ν
0 − 2Φ;μν

0 − gμν
�
1

2
Φ;α

0 Φ0;α − 2□Φ0

��
:

ð16Þ

Simple calculations allow one to write the following
explicit expression:

TðΦ0Þ
μ
ν
¼ b

 
−2f00 þ f02

2f 0

0 − f02
2f

!
: ð17Þ

The zero-mode contribution reads

TðχÞμν ¼ b

 
− k2þw2

2f wk

− wk
f2

k2þw2

2f

!
: ð18Þ

Different choices for the constants w and k correspond to
different states of the quantum field: When either w or k
vanishes the nondiagonal elements of the stress-energy
tensor vanish as well, that is, for such a choice of the state
there are no fluxes. The choice w ¼ 0, k ¼ 2κ, where κ is
the surface gravity

κ ¼ 1

2
f0jr¼rg ; ð19Þ

corresponds to the Hartle-Hawking state. Lastly, w ¼ κ,
k ¼ −κ defines the Unruh vacuum state. For details see the
Appendix.2For more details see the discussion in Ref. [35].
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III. GHOST-FREE MODIFICATION OF THE
POLYAKOV ACTION

A. Action

Let us now study a nonlocal modification of the action
(6) by substituting instead of the □-operator its ghost-free
version. To that end, let us consider a nonminimally
coupled ghost-free real scalar field in two dimensions:

WGF½gμν;φ� ¼
1

48π

Z
d2x

ffiffiffiffiffiffi
−g

p �
1

2
φAφ − Rφ

�
; ð20Þ

where the background is given by metric g and the operator
A is

A ¼ □ePð□Þ; PðzÞ ¼ ð−l2zÞN: ð21Þ

HereN is a positive integer number. We refer to this class of
theories as GNN [40]. The scalar field equation is

Aφ ¼ R; ð22Þ

where the Ricci scalar acts as a source for the field φ.
Integrating out the scalars from (20) one obtains the
action

WGF½gμν� ¼ −
1

96π

Z
d2x

ffiffiffiffiffiffi
−g

p
RA−1R

¼ −
1

96π

Z
d2x

ffiffiffiffiffiffi
−g

p
R
e−ð−l2

□ÞN

□
R: ð23Þ

In the limit l → 0 it corresponds to the Polyakov action.
For nonvanishing parameter of the nonlocality l the above
action (23) is a ghost-free deformation of the Polyakov
action. Our aim is to analyze how this modification affects
physical observables.
For the case of GF1 theory the action (23) can be written

in the form

WGF ¼ WPol þWl;

Wl ¼
Z

l2

0

dsW̃½s�;

W̃½s� ¼ −
1

96π

Z
d2x

ffiffiffiffiffiffi
−g

p
Res□R: ð24Þ

In the above, WPol denotes the Polyakov action (4) and the
term Wl describes its ghost-free modification. In the limit
l → 0 one hasWl ¼ 0 and one arrives back at the standard
theory without ghost-free modifications.

B. Trace of the effective stress-energy tensor

We derive here an expression for the trace of the stress-
energy tensor for the action (23). The expression for the

complete stress-energy tensor will be given in the next
subsection.
For the calculation of the trace we write a two-

dimensional metric in the conformal gauge,

gμν ¼ e2σημν;
ffiffiffiffiffiffi
−g

p ¼ e2σ: ð25Þ

Using this representation one obtains

□ ¼ e−2σ□; R ¼ −2□σ; ð26Þ

where □ denotes the flat d’Alembertian. The ghost-free
Polyakov action (23) then takes the form

WGF½σ� ¼ −
1

24π

Z
d2xe2σσe−ð−l2□ÞN□σ: ð27Þ

The trace of the energy-momentum tensor for the scalar
field can be obtained via

T ¼ gμνTμν ¼ 2gμνffiffiffiffiffiffi−gp δWGF

δgμν
¼ e−2σ

δWGF

δσ
: ð28Þ

Note that in the conformal gauge

δð ffiffiffiffiffiffi
−g

p
□Þ ¼ δ□ ¼ 0; δ□ ¼ −2δσ□: ð29Þ

The only term in Eq. (28) which requires new calcula-
tional techniques is e−Pð□Þ. The variation of the exponent of
an operator can be performed using the following relation
[41,42]:

δðeB̂Þ ¼
Z

1

0

dξeð1−ξÞB̂ðδB̂ÞeξB̂; ð30Þ

which is applicable to variation of an exponent of any self-
adjoint operator B̂. This relation allows one to obtain the
expression for the trace for an arbitrary GFN model. Here
we present the corresponding result for the simplest case of
GF1 theory. We obtain

T ¼ 1

24π
el

2
□Rþ l2

48π

Z
1

0

dξ½eð1−ξÞl2
□R�½eξl2□R�: ð31Þ

For l ¼ 0 this expression correctly reproduces the trace
anomaly of the Polyakov action T ¼ 1

24πR.

C. The effective stress-energy tensor

Variation of the action (20)–(23) over the metric gives
the effective stress-energy tensor. For example, in the case
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of GF1 theory one has B ¼ Pð□Þ ¼ −l2
□ and the effec-

tive stress-energy tensor reads

Tμν ¼ 1

48π

h
φ;μðe−l2□φÞ;ν − 1

2
gμνφ;αðe−l2□φÞ;α

− 2φ;μν þ 2gμν□φ
i

−
l2

48π

Z
1

0

dξ
n
ðe−ð1−ξÞl2□□φÞ;μðe−ξl2□φÞ;ν

−
1

2
gμνðe−ð1−ξÞl2□□φÞ;αðe−ξl2□φÞ;α

−
1

2
gμνðe−ð1−ξÞl2□□φÞðe−ξl2□□φÞ

o
: ð32Þ

Here, after thevariation, one can apply the field equation (22)
and write

φ ¼ A−1R ¼ el
2
□

□
R: ð33Þ

These formulas generalize (8)–(9) to the nonlocal GF1
theory. Similarly, one can easily derive the stress-energy
tensor for arbitrary GFN theory for other values of N. It is
straightforward to verify that by taking trace of (32) one
correctly reproduces (31).

D. State dependence

A solution (33) of Eq. (22) for the GF1 model can be
written as a sum

φ ¼ Φþ χ; ð34Þ

were Φ is a solution of the inhomogeneous equation (22)

Φ ¼ el
2
□Φ0; Φ0 ¼ − ln f; ð35Þ

and χ is a zero mode of the operator A. Since the form factor
el

2
□ calculated for an on-shell solution is equal to 1, zero

modes of the operator A are identical to zero modes χ of the
□-operator

□χ ¼ 0: ð36Þ

This is a property intrinsic to ghost-free theories and not
present in generic higher-derivative theories. Using these
results one can show that (32) splits into two terms,

Tμν ¼ Tμν
ðΦÞ þ Tμν

ðχÞ: ð37Þ

The first term is given by the same formula as (32) where
φ is replaced by Φ,

Tμν
ðΦÞ ¼

1

48π

�
Φ;μðe−l2

□ΦÞ;ν − 1

2
gμνΦ;αðe−l2□ΦÞ;α

− 2Φ;μν þ 2gμν□Φ
�

−
l2

48π

Z
1

0

dξ
n
ðe−ð1−ξÞl2□□ΦÞ;μðe−ξl2□ΦÞ;ν

−
1

2
gμνðe−ð1−ξÞl2□□ΦÞ;αðe−ξl2□ΦÞ;α

−
1

2
gμνðe−ð1−ξÞl2□□ΦÞðe−ξl2□□ΦÞ

o
: ð38Þ

The zero-mode dependent term Tμν
ðχÞ reads

Tμν
ðχÞ ¼

1

48π

�
χ;μχ;ν −

1

2
gμνχ;αχ;α − 2χ;μν

�

þ 1

48π
½Φ;μ

0 χ
;ν þ χ;μΦ;ν

0 − gμνχ;αΦα
0�: ð39Þ

Using the field equation □χ ¼ 0 one can check that its
trace vanishes, TðχÞ ¼ 0. The component Tμν

ðχÞ does not

depend on the parameter l and hence it coincides with the
corresponding expression for the Polyakov action dis-
cussed earlier. One can see that the nondiagonal compo-
nents of the effective stress-energy tensor describing the
fluxes are given by the state dependent term Tμν

ðχÞ. Therefore
one can conclude that, if the backreaction of the effective
stress-energy tensor on the metric is neglected, the
Hawking flux of energy at infinity does not feel the effects
of nonlocality. At the same time the diagonal part Tμν

ðΦÞ of
the stress-energy tensor depends on the nonlocality param-
eter l and its back-reaction on the metric modifies the
parameters of the black hole.

IV. BLACK HOLE ENTROPY

The representation (20) of the ghost-free action is useful
for determining the contribution of ghost-free fields to the
quantum corrections of black hole entropy. As it has been
proved by Myers [43], the Noether charge technique
proposed by Wald [44] can be successfully applied to
nonlocal theories as well. The purely gravitational part of
the action Sg½gμν� is local and obviously leads to a standard
Wald contribution to the entropy of the black hole. In what
follows, we shall be interested in the part stemming from
the ghost-free action (23). In this case, employing the local
representation (20), one can easily compute the ghost-free
contribution to the entropy3

3Here we use the letter S for the entropy, as it is traditionally
accepted, although previously we used the same symbol to denote
classical actions. We hope that it will not lead to confusion.
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SGF ¼
1

12
φ
���
r¼rg

; ð40Þ

where φ is given by (33). For GF1 theory we obtain

SGF ¼
1

12

el
2
□

□
R
���
r¼rg

: ð41Þ

In the limit l → 0 the ghost-free actionWGF reduces to the
Polyakov action WPol and one reproduces its standard
contribution SPol to the black hole entropy,

SPol ¼
1

12

1

□
R
���
r¼rg

: ð42Þ

Note that φ and the propagator 1=□ entering (41)–(42)
depend on the choice of the state, which in turn is reflected
in the proper boundary conditions for the Green function.
For every state these boundary conditions can be satisfied
by adding zero modes (13). For the Hartle-Hawking
vacuum the auxiliary field φ is finite on the bifurcation
point of horizons and takes the form

φ ¼ Φþ 2κr� þ c; ð43Þ
where Φ is given by (35) and c is a constant. Similarly, in
the case of the Polyakov action one gets

φ ¼ Φ0 þ 2κr� þ c; Φ0 ¼ − ln f: ð44Þ
Because zero modes are the same for the ghost-free and
Polyakov models, the constant c here is the same as in (43).
One can fix this constant by considering the pure Polyakov
model, wherein it is defined by the boundary conditions
and a proper gauge fixing for the conformal metric [43].
The difference of the entropies in these two models,
ΔS¼SGF−SPol¼ðΦþ lnfÞ=12, is finite, uniquely defined,
and does not depend on the state.

V. HAWKING FLUX

As we already mentioned, the analysis of the effective
stress-energy tensor allows one to conclude that the ghost-
free modification of the Polyakov action does not affect the
fluxes as measured at infinity. In this section we rederive
this result by using the Christensen-Fulling representation
for a general stationary conserved stress-energy tensor in
two-dimensional static spacetimes [45]. As is well known,
in two dimensions the Hawking flux can be evaluated if a
trace of the stress tensor is given. In particular, in the metric
of the form (10) the conservation of the stationary energy-
momentum tensor gives

∂rTr
t ¼ 0; ∂rðfTr

rÞ ¼
1

2
f0Tα

α: ð45Þ

The Hawking flux at infinity is given by [45]

dE
dt

¼ 1

2

Z
∞

rg

drf0ðrÞTα
αðrÞ; ð46Þ

where r ¼ rg corresponds to the black hole horizon such
that fðrgÞ ¼ ð∇rÞ2jr¼rg ¼ 0. From (45) it is clear that the
Hawking flux at infinity picks up a contribution from the
horizon, fðrgÞTr

rðrgÞ. Consequently there will be no con-
tribution to the Hawking flux from any Tr

r that is finite at
the horizon.
Using the representation WGF ¼ WPol þWl, see (24),

one can write the following expressions for the trace T of
the effective action and its (r; r) component, Tr

r:

T¼TðPolÞ þ
Z

s

0

dsT̃; Tr
r¼TðPolÞrrþ

Z
s

0

dsT̃r
r: ð47Þ

Here

T̃μν ¼ 2ffiffiffiffiffiffi−gp δW̃½s�
δgμν

ð48Þ

and W̃½s� is defined by Eq. (24). The trace T̃ can be easily
found by using the method explained in Sec. III B.
Let us now explain how the components of T̃μν can be

determined. We start with a general expression for the
variation of the action W̃½s�

δW̃½s� ¼
Z

d2x
ffiffiffiffiffiffi
−g

p
T̃μνδgμν: ð49Þ

After the variation is performed and T̃μν is obtained in an
arbitrary metric, let us substitute into this expression the
static metric (10). We now can consider special (static)
variations of the metric

δðds2Þ ¼ −
�
dt2 þ dr2

f2

�
δf: ð50Þ

Note that the integrand in (49) does not depend on time. As
the result of variation one obtains

2f
δW̃½s�
δf

¼ T̃r
r − T̃t

t: ð51Þ

Using these results one finds the following expressions for
T̃ and T̃r

r:

T̃ ¼ 1

48π

�
2fes□R00 þ 2f0ðes□RÞ0 þ Res□R

þ sf
Z

1

0

dξðeð1−ξÞs□RÞ0ðeξs□RÞ0
�
; ð52Þ

T̃r
r ¼

1

96π

�
4fðes□RÞ00 þ 2f0ðes□RÞ0 þ Res□R

þ s∂r

Z
1

0

dξfðeð1−ξÞs□RÞðeξs□RÞ0
�
; ð53Þ
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where ð…Þ0 ¼ ∂rð…Þ. Let us consider these two expres-
sions in two regimes: at the horizon where fðrgÞ ¼ 0, and
at spatial infinity where f ¼ 1 and R ¼ 0.
At spatial infinity, both T̃ and T̃r

r vanish. At the horizon
they are regular and finite. Note, however, that this
regularity of T̃r

r at the horizon implies

lim
r→rg

fT̃r
r ¼ 0: ð54Þ

Then the conservation of energy momentum (45) implies
that GF modification of the Polyakov action cannot affect
the total flux of Hawking radiation at spatial infinity.

VI. EXAMPLE: 2D DILATON BLACK HOLE

A. Action and solutions

In order to illustrate the effects of nonlocality on the
properties of black hole we consider a 2D theory described
by the effective action

S½gμν� ¼
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ 4ð∇ϕÞ2 þ 4λ2�: ð55Þ

Here R is the curvature of the 2D spacetime, ϕ is a dilaton
field and λ is a constant. This action arises in string theory
[46,47]. Its 2D black hole solutions were studied in
Refs. [48–51].4
A static black hole solution can be written as

f ¼ 1 −
M
λ
e−2λr; ϕ ¼ −λr: ð56Þ

Here, M is the mass parameter of this black hole solution.
The horizon is located at r ¼ rg with

rg ¼
1

2λ
ln
M
λ
: ð57Þ

The constant λ determines a scale. It is convenient to use
dimensionless coordinates (τ; x) defined as

τ ¼ 2λt; x ¼ 2λðr − rgÞ; ð58Þ

and write the “physical” metric ds̄2 in the form

ds̄2¼ 1

4λ2
ds2; ds2¼−fdτ2þdx2

f
; f¼1−e−x: ð59Þ

In what follows we perform our calculations in the dimen-
sionless metric ds2 using the dimensionless coordinates
(τ; x) and only at the very end restore the dimensionality of

the corresponding objects. For example, the surface gravity
in the physical metric is κ̄ ¼ ðdf=drÞjr¼rg=2 ¼ λ while in
the dimensionless one it is κ ¼ 1=2.
The dimensionless Ricci curvature of the black hole is

R ¼ e−x: ð60Þ

In what follows it will be convenient to use the dimension-
less curvature R instead of the coordinate x. In these
curvature coordinates the metric (59) takes the form

ds2 ¼ −ð1 − RÞdτ2 þ dR2

R2ð1 − RÞ : ð61Þ

B. Spectral representation

Our formulas describing the contribution of nonlocality
to the stress-energy tensor and black hole entropy contain
the quantity Fðs; RÞ ¼ es□R and other functions similar to
it. Let us calculate this object. This function Fðs; RÞ obeys
the following equation:

ð∂s −□ÞFðs; RÞ ¼ 0; Fð0; RÞ ¼ R: ð62Þ

The second equality plays the role of an initial condition. In
our calculations we shall use the curvature coordinates
(τ; R) in which the □-operator takes the form

□ ¼ R∂R½ð1 − RÞR∂R�: ð63Þ

Let us consider the following eigenvalue problem:

□ΨðRÞ ¼ λΨðRÞ; ð64Þ

and require that a real eigenfunction ΨðRÞ is finite both at
the horizon and at infinity. It is easy to show that at the
horizon, R ¼ 1, a general solution of (64) has the following
asymptotics:

ΨðRÞ ∼ a−1 lnð1 − RÞ þ a0 þ � � � ; ð65Þ

At infinity its asymptotics are

ΨðRÞ ∼ aþR
ffiffi
λ

p
þ a−R−

ffiffi
λ

p
: ð66Þ

Let us show that for a positive value of λ it is impossible
to satisfy simultaneously the condition of the finiteness of
Ψ on the horizon and at infinity. Let us denote

R� ¼ − ln

�
R

1 − R

�
: ð67Þ

Then, Eq. (64) can be written in the form

d2Ψ
dR2�

¼ λð1 − RÞΨ: ð68Þ
4Solutions for the action (55) with conformal classical and

quantum matter (the so-called CGHS model) have been discussed
in [52]. For a review see Refs. [53,54].
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The coordinate R� monotonically increases from −∞ at the
horizon to ∞ at the infinity The finiteness at the horizon
implies a−1 ¼ 0, so that

ΨjR�¼−∞ ¼ a0;
dΨ
dR�

����
R�¼−∞

¼ 0: ð69Þ

The constant a0 depends on the normalization of Ψ and we
can always choose it to be positive. Then the relation

dΨ
dR�

¼ λ

Z
R�

−∞
ð1 − RÞΨdR� ¼ λ

Z
R

0

dR
R

Ψ ð70Þ

implies that dΨ=dR� is a positive growing function of R�.
Hence Ψ grows at infinity and the second boundary
condition (66) cannot be satisfied. Thus λ ≤ 0. We denote
λ ¼ −p2 and write Eq. (64) in the form

□ΨpðRÞ ¼ −p2ΨpðRÞ: ð71Þ

For real p both asymptotics R�ip remain finite at infinity (at
R → 0). This implies that the corresponding eigenvalue
problem (64) has a continuous spectrum.
Using the eigenfunctions ΨpðRÞ one can write a solution

of (62) in the form

F̃ðs; RÞ ¼
Z

dpρpe−p
2sΨpðRÞ: ð72Þ

Here, the spectral density factor ρp is to be determined by
the boundary condition Fð0; RÞ ¼ R.
Eigenfunctions ΨpðRÞ can be found in an explicit form.

For this purpose let us notice that a complex function
ZpðRÞ,

ZpðRÞ¼Rip
2F1ðip;ipþ1;2ipþ1;RÞ; p∈R; ð73Þ

is a solution of Eq. (71). It is easy to see that

Z̄pðRÞ ¼ Z−pðRÞ: ð74Þ

Real solutions can be written in the form ℜ½ZpðRÞ� ¼
1=2½ZpðRÞ þ Z−pðRÞ� and ℑ½ZpðRÞ� ¼ ð1=2iÞ½ZpðRÞ−
Z−pðRÞ�. Therefore, if one does not impose the requirement
that a solution is finite at the horizon for a given eigenvalue
p2, there exist two real solutions. These functions can be used
for the construction time-dependent propagating modes of
the □-operator. In the present case, which relies on static
modes, one needs to impose the condition of the finiteness
the horizon.

Expanding ZpðRÞ close to R ¼ 1 one finds

ZpðRÞ ≈ bp þ cp logð1 − RÞ þOð1 − RÞ; ð75Þ

bp ¼ −
4ipΓðipþ 1

2
Þ

p
ffiffiffi
π

p
ΓðipÞ ½−iþ 2pγ þ 2pψðipÞ�; ð76Þ

cp ¼ −
4ipΓðipþ 1

2
Þffiffiffi

π
p

ΓðipÞ : ð77Þ

Here ψðipÞ is the digamma function. A real-valued solution
that is finite both at the horizon (R ¼ 1) and at infinity
(R ¼ 0), where it is oscillating, is then given by ðp ≥ 0)

ΨpðRÞ ¼ fp½ℜðcpÞℑðZpðRÞÞ − ℑðcpÞℜðZpðRÞÞ�: ð78Þ

For a given value p ≥ 0, the above procedure reduces the
number of solutions, that are real and finite at the horizon,
down to one. Incidentally, this solution is similar to a
standing wave.

C. Orthogonality and normalization
of the eigenfunctions

The Wronskian of two eigenfunctions Ψp and Ψq is

W½Ψp;Ψq� ¼ Rð1 − RÞ½ΨpðRÞ∂
↔

RΨqðRÞ�: ð79Þ
Since solutions are finite at spatial infinity (R ¼ 0) as well
as at the horizon (R ¼ 1), the Wronskian vanishes at these
points. Then one obtains

0 ¼
Z

1

0

dR∂RW½Ψp;Ψq�

¼ ðq2 − p2ÞhΨp;Ψqi;

hΨp;Ψqi ¼
Z

1

0

dR
R

ΨpðRÞΨqðRÞ: ð80Þ

The first equality follows because the solutions are finite at
the horizon (R ¼ 1) and at infinity (R ¼ 0). The last line
determines a scalar product in a space of solutions of the
equation (71). The relation (80) shows that eigenfunctions
with different eigenvalues are orthogonal in this scalar
product and these eigenfunctions with a proper choice of
the normalization constant satisfy the following relation5Z

1

0

dR
R

ΨpðRÞΨqðRÞ ¼ δðp − qÞ: ð81Þ

The normalizaton of the functions for the continuous
spectrum can be found from their asymptotics. This method
is described in detail in [55,56]. Note that the asymptotics
ZpðR → 0Þ ≈ Rip ¼ e−ipx imply

5Note that the functions Zp that diverge logarithmically at
R ¼ 1 do not satisfy the above orthogonality properties.
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ΨpðR→0Þ≈−fp½ℜðcpÞsinðpxÞþℑðcpÞcosðpxÞ�: ð82Þ

In order to extract the normalization factor fp we make use
of these asymptotics. At R → 0 one has

ΨpΨk≈p∼
1

2
jcpj2f2pcos½ðp−kÞx�þoscillating terms: ð83Þ

At the same time, for plane waves one has φpφk ∼ 1=ð2πÞ.
In order to have a similar normalization one finds

fp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

πjcpj2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

p tanhðπpÞ

s
: ð84Þ

The factor of
ffiffiffi
2

p
appears because

Z
∞

−∞
dx cosðpxÞ cosðkxÞ ¼ πδðpþ kÞ þ πδðp − kÞ: ð85Þ

At the horizon one has

Ψpð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p cothðπpÞ

p
: ð86Þ

We arrive at a regular, real-valued expression for the
function Fðs; RÞ (62) with a proper normalization:

Fðs; RÞ ¼
Z

∞

0

dpρpe−p
2sΨpðRÞ: ð87Þ

This function is at the foundation of all our subsequent
studies.

D. Implementing Fð0;RÞ=R
Inserting the boundary condition Fð0; RÞ ¼ R into

expression (87) gives

1 ¼
Z

∞

0

dpρp
ΨpðRÞ
R

ð88Þ

The orthogonality of the real regular solutions ΨpðRÞ
allows one to invert this relation:

Z
1

0

dRΨqðRÞ ¼
Z

1

0

dR
Z

∞

0

dpρpΨqðRÞ
ΨpðRÞ
R

ð89Þ

¼
Z

∞

0

dpρp

Z
1

0

dR
R

ΨpðRÞΨqðRÞ ð90Þ

¼
Z

∞

0

dpρpδðp − qÞ ¼ ρq; ð91Þ

Using this relation one can obtain the expression ρp as
follows. Let us denote

Fp ¼ 3F2ð1þ ip; 1þ ip; ip; 2þ ip; 1þ 2ip; 1Þ: ð92Þ

Then one has

dp¼
Z

1

0

dRZpðRÞ¼
Fp

1þ ip
;

ρp¼fp½ℜðcpÞℑðdpÞ−ℑðcpÞℜðdpÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psinhð2πpÞp
ffiffiffi
2

p
π3=2ð1þp2Þℜ

�
iþp
4ip

ΓðipÞΓ
�
1

2
− ip

�
Fp

�
: ð93Þ

It is possible to check thatZ
∞

0

dpρ2p ¼ 1

2
: ð94Þ

E. Quasilocal approximation

Let us note that the function Fðs; RÞ can, at least
formally, be expressed in the form of the following series:

Fðs;RÞ¼es□R¼
X∞
n¼0

sn□n

n!
R≈
XN
n¼0

sn□n

n!
R

¼Rþs∂rf∂rRþ1

2
s2ð∂rf∂rÞ2RþOðsNþ1Þ: ð95Þ

This representation by construction satisfies the boundary
condition Fð0; RÞ ¼ R. One might expect that for a small
value of the parameter sR ≪ 1 it is sufficient to cut the
series and to keep only a few first terms. As we will
demonstrate below, this expectation is correct. One can use
these expressions to determine the influence of nonlocality
on the trace T as well as the radial pressure Tr

r and the
Hawking flux. Inserting this power series in (31) one finds
the following series expansion for the trace:

T ¼
X∞
n¼0

sn

n!
TnðRÞ;

TnðRÞ ¼
1

48π

�
2□nRþ

Xn−1
p¼0

ð□pRÞð□n−p−1RÞ
�
;

TPolðRÞ ¼
R
24π

: ð96Þ

In the above, TPol is the trace anomaly captured by the
Polyakov action, and the terms Tn with n ≥ 1 contain
nonlocal corrections from the ghost-free deformation of the
Polyakov action.

F. Results

1. Ghost-free contributions to the trace

Having derived the explicit form of Fðs; RÞ, we may now
insert (87) into (31). In order to study the contribution of
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GF modification to the trace anomaly we split it to the local
term TPol coming from the Polyakov action and a GF
correction ΔT

T ¼ TPol þ ΔT; TPol ¼
1

24π
R;

ΔT ¼ 1

24π
½Fðs; RÞ − R�

þ s
48π

Z
1

0

dξF½ð1 − ξÞs; R�F½ξs; R�: ð97Þ

The correction ΔT captures the nonlocal contributions to
the trace anomaly. We evaluated ΔT using two approaches:
(i) the continuous spectrum representation developed in
Secs. VI B–VI D as well as (ii) the approximate method
detailed in Sec. VI E.
In Fig. 1 we presented the GF corrections to the trace of

the stress-energy tensor computed using both approaches.
One can see that ΔT is finite on the horizon and rapidly
vanishes at infinity. For small values of nonlocality,
s ¼ ð2λlÞ2 < 1, both methods of computation agree within
our resolution. We take it as an indication that our numerics
work well. For values s≳ 1 we cannot trust a series
expansion anymore and therefore one can use only
numerics to evaluate our exact representation.6 in terms
of hypergeometric functions. As depicted in Fig. 1, the GF
corrections grow for larger values of nonlocality scale l
and decay slower at far distances.

2. Ghost-free contribution to the black hole entropy

In the case of dilaton gravity (55)–(57) we can now
compute the quantum corrections to the black hole
entropy due to nonlocality. As before, we split the entropy

corrections into a well-known local part, see (42), as well as
a nonlocal correction term ΔS,

SGF ¼ SPol þ ΔS: ð98Þ

The Polyakov contribution takes the form [43]

SPol ¼ −
1

6
ϕ ¼ −

1

6
λrg ¼ −

1

12
ln
M
λ
; ð99Þ

where ϕ is the classical dilaton field.7 The nonlocal
contribution ΔS to the black hole entropy (98) reads

ΔS ¼ 1

12

Z
s

0

ds̃Fðs̃; 1Þ ð100Þ

¼ 1

12

Z
∞

0

dpρpΨpð1Þ
1 − e−sp

2

p2
: ð101Þ

It is a function of l via s ¼ ð2λlÞ2.
Note that in this expression it is sufficient to use the

values of the functions Fðs; RÞ and ΨpðRÞ taken at the
horizon, R ¼ 1. The considerations presented in Sec. VI B
guarantee that they are regular expressions. The multipli-
cative term involving l has the following properties: In the
limiting case l → 0 it vanishes, so that one has ΔS ¼ 0, as
it must be. Note that for arbitrary l it is regular at p ¼ 0.
Unfortunately, an analytic evaluation of the integral is

impossible, which is why we resort to numerical methods.
As we have already demonstrated in the above, the
numerical evaluation of Fðs; RÞ converges reliably. In this
case, the integrand is a rapidly decreasing function of p,
which greatly simplifies the numerics.

FIG. 1. Left: nonlocal GF corrections to the trace plotted over the distance x for a specific value of nonlocality of s ¼ ð2λlÞ2 ¼ 0.1,
where 1=ð2λÞ is the characteristic length scale of the background black hole, and l is the scale of nonlocality. The numerical evaluation
(labeled “numerical”) agrees well with the small-s expansion (labeled “Approx.” and performed to linear order in s). Right: evaluated
numerically nonlocal contributions to the trace anomaly are plotted over the distance x for a few values of nonlocality s.

6In this case, however, note that a large nonlocality s improves
the numerical convergence.

7Recall that the dilaton ϕ has nothing to with the auxiliary
scalar field φ, which we introduced to present the Polyakov action
in the local form (20).
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See Fig. 2 for a diagram of ΔS plotted as a function of
nonlocality l. In general, the corrections increase with a
larger parameter of nonlocality, and for l ¼ 0 they vanish,
as expected. It is interesting to note that for small values,
s ¼ ð2λlÞ2 ≲ 1, the functional dependence on l can be
approximately captured by a power law,

ΔSðl < ð2λÞ−1Þ ∼ const × s3.4: ð102Þ

For larger values of nonlocality, s > 1, this approximation
fails, but we are not aware of any closed form expression.

VII. DISCUSSION

Two dimensional dilaton gravity is often used for the
modeling of properties of four-dimensional spacetimes.
The reason is evident: they are much simpler and many
problems can be solved exactly. Quantum theory of
massless fields in 2D gravity is a well-known example.
A two dimensional metric is conformally flat, so that the
conformal invariance of such a theory reduces solving of
the field equations to a similar problem in flat spacetime.
The latter problem is technically much simpler. However,
the calculation of local observables of a quantum conformal
field requires renormalization, which breaks the conformal
invariance. The conformal trace anomaly makes the quan-
tum field feel the background. The response of the quantum
average of the stress-energy tensor hT̂μνðxÞiren can be
obtained via the variation of the Polyakov effective action
with respect to the two-dimensional metric tensor. In this
paper we demonstrated how this effective stress-energy
tensor depends on the choice of the quantum state and how
these states are related to zero modes of the □-operator.
An interesting problem is how the effects of nonlocality

modify hT̂μνðxÞiren. A natural way is to modify the kinetic
term in the action for the quantum field by introducing
the corresponding nonlocal form factor. For nonlocality in
the context of ghost-freeGFN theories this is equivalent to the
substitution of □ exp ½ð−l2

□ÞN � instead of the □-operator.

Unfortunately, the calculation of the effective action for such
a quantum theory becomes a very nontrivial problem. One
reason is that this form factor breaks the original conformal
invariance of the theory.
In the present paper we discuss another possible nonlocal

modification of the Polyakov effective action. Namely, our
starting point is a local action (6), which is equivalent to the
nonlocal Polyakov action, and which contains an auxiliary
field φ. The corresponding modification implies the intro-
duction of the form factor in the kinetic part of the auxiliary
field. The corresponding nonlocal action takes the form
(20)–(21). We obtained an expression for the nonlocal
modification of the effective action, calculated the corre-
sponding stress-energy tensor, and studied its dependence
on the state described by zero modes of the □-operator.
Our conclusion is that the main effect of nonlocality is to
modify the diagonal components of the stress-energy
tensor, while the fluxes, described by nondiagonal compo-
nents, remain unchanged.
In the application of these results to static two-

dimensional black hole spacetimes this means that the
backreaction of the effective stress-energy tensor produced
by the modification of the Polykov action changes the
parameters of the black hole: its mass, surface gravity, and
entropy. For a fixed background, however, the late-time
Hawking flux of the energy at infinity remains unchanged.
To illustrate the effect of nonlocality we considered a

special metric which is a solution of the effective action
for a two-dimensional string model. For this purpose we
studied solutions of the eigenvalue problem □Ψp ¼
−p2Ψp for time-independent functions Ψp. In the consid-
ered metric this problem can be solved analytically.
Moreover, we demonstrated that the corresponding spec-
trum is continuous and displayed the eigenfunctions
explicitly. These results allowed us to calculate the
stress-energy tensor for the effective action. We demon-
strated that its deformation due to the presence of non-
locality remains finite at the horizon. We also confirmed
our general conclusion that the energy flux at infinity in a
given fixed background is not affected by the presence of
nonlocality.
It would certainly be interesting to use the obtained

results and developed tools for the study of backreaction
effects. In particular, it would be worthwhile to understand
how these effects can change the structure of the black hole
interior where nonlocal contributions to the stress-energy
tensor become strong.
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APPENDIX: USEFUL FORMULAS
FOR TWO-DIMENSIONAL
STATIC GEOMETRIES

1. General relations

The geometry of a two-dimensional static spacetime is
rather simple. We collect here useful formulaS which are
used in the main body of the paper.
Let us consider a two-dimensional metric gμν which

admits a Killing vector ξμ such that

ξðμ;νÞ ¼ 0: ðA1Þ
We denote

f ¼ −ξμξμ: ðA2Þ
We assume that the spacetime is asymptotically flat
and normalize the Killing vector by the condition that at
infinity f ¼ −1. If this metric describes a 2D black hole,
then f ¼ 0 at the event horizon.
In what follows, we shall focus on the exterior domain

where f ≥ 0. We denote by ξ a one-form

ξ ¼ ξμdxμ: ðA3Þ
The trace of equation (A1) implies that

δξ ¼ 0; ðA4Þ
were δ ¼ ⋆d⋆ denotes the exterior coderivative, d is the
exterior derivative, and ⋆ is the Hodge dual. The above
relation implies that dð⋆ξÞ ¼ 0 and hence

η≡ ⋆ξ ¼ dr: ðA5Þ
Here r is a scalar function.
Since the relation ξ ∧ dξ ¼ 0 is identically valid in 2D

space, one has

ξ ¼ −βdt; ðA6Þ
where t and β are scalar functions. The minus sign in this
relation is chosen for convenience.
Thus the Killing vector allows one to introduce special

coordinates (t; r). In these coordinates

gtr ¼ gμνt;μrν ¼ −β−1ð⋆ξ; ξÞ ¼ 0: ðA7Þ
One also has

gtt ¼ gμνt;μtν ¼ −β−2f; ðA8Þ

grr ¼ gμνr;μrν ¼ ð⋆ξ;⋆ξÞ ¼ f: ðA9Þ

Thus the metric written in (t; r) coordinates takes the form

ds2 ¼ −
β2

f
dt2 þ 1

f
dr2: ðA10Þ

The relation ξμðξ2Þ;μ ¼ 0 implies that f ¼ fðrÞ. The

relation of ξðt;rÞ ¼ 0 for this metric gives

β0f − f0β ¼ 0; ðA11Þ

where ð…Þ0 ¼ ∂rð…Þ. This means that β ¼ β0ðtÞf. By
redefinition of the coordinate t the factor β0ðtÞ can be put
equal to 1. Thus the metric (A10) takes the form

ds2 ¼ −fdt2 þ 1

f
dr2 ¼ e2σð−dt2 þ dr2�Þ: ðA12Þ

Here σ ¼ 1
2
ln f and r� is a tortoise coordinate. The

following relation,

□σ ¼ −Rμν
ξμξν

ξ2
; ðA13Þ

is valid in any number of dimensions. In the 2D case, Rμν ¼
1
2
Rgμν and hence (A13) takes the form

□σ ¼ −
1

2
R: ðA14Þ

This means that a solution of the equation □φ ¼ R is

φ ¼ −2σ þ χ ¼ − ln f þ χ; ðA15Þ

where χ is a “zero mode”, that is, a solution of the
homogeneous equation □χ ¼ 0.
Let us demonstrate now that the functions t and r� are

zero mode solutions,

□t ¼ δðdtÞ ¼ −δ
�
ξ

f

�
¼ −⋆d⋆

�
ξ

f

�

¼ −⋆
�
d
⋆ξ
f

�
¼ −

δξ

f
þ 1

f2
⋆ð⋆ξ ∧ dfÞ ¼ 0: ðA16Þ

In the last equation we used δξ ¼ 0 and that both ⋆ξ and df
are proportional to dr. Similarly one has

□r� ¼ δ

�
dr
f

�
¼⋆d

�⋆dr
f

�
¼⋆d

�
ξ

f

�
¼⋆d2t¼ 0: ðA17Þ

Thus zero mode χ can be chosen as a linear combination
(with constant coefficients) of two functions t and r�. One
can also add a constant, but this trivial solution does not
contribute to Tμν and in what follows we shall ignore it for
that reason. We shall use the functions
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u ¼ t − r�; v ¼ tþ r�; ðA18Þ

instead of t and r�. These functions are nothing but retarded
and advanced time coordinates. For an eternal black hole, u
is regular at the past horizon, while v is regular at the future
horizon. They obey the equations

□u ¼ □v ¼ 0: ðA19Þ

In the next subsection we show how zero mode solutions
are related to the choice of the state in the theory. To finish
this section we add two useful expressions for the mass
function and the surface gravity of a two dimensional
black hole.
Suppose there exists a conserved symmetric tensor Tμν,

Tμν
;ν ¼ 0. Let us denote Jμ ¼ Tμνξ

ν a Killing current
connected with this tensor. Then one has

dð⋆JÞ ¼ ⋆δðJÞ ¼ 0: ðA20Þ

This relation implies that the form ⋆J is closed and there
exists such a mass function m that

dm ¼ −⋆J: ðA21Þ

For a stationary tensor Tμν in the coordinates (A12) one has

m ¼ −
Z

drT0
0: ðA22Þ

This relation allows one to obtain a contribution to the mass
of a black by the effective stress-energy tensor of a test field
calculated on the black-hole background.
One can also prove the following useful formula for the

surface gravity of a two-dimensional black hole [51],

κ ¼ 1

2

Z
Σ
RξμdΣμ: ðA23Þ

Here Σ is a one-dimensional surface (line) between the
horizon and infinity, and dΣμ is the corresponding surface
element. In the coordinates (A12) this formula takes the
form

κ ¼ 1

2

Z
∞

rg

Rdr ¼ 1

2
f0
���
rg
: ðA24Þ

2. The stress-energy tensor

We demonstrate now that different choices of zero mode
functions χ in a solution for the auxiliary field φ, see
Eq. (A17), result in a special form of the effective stress-
energy tensor related to a special choice of the correspond-
ing quantum state.

a. Boulware vacuum

Let us put φ ¼ − ln f. The calculations give

b−1tμν ¼diag

�
f02

2f
−2f00;−

f02

2f

�
; tμμ¼−2f00 ¼2R: ðA25Þ

This expression vanishes at Iþ and I− and is singular at
both future and past horizons. Hence it correctly reproduces
the quantum average of the stress-energy tensor in the
Boulware vacuum state.

b. Hartle-Hawking vacuum

Let us put φ ¼ − ln f þ kr�. One has

tμν ¼ b−1Tμ
ν ¼ diag

�
f02 − k2

2f
− 2f00;−

f02 − k2

2f

�
: ðA26Þ

For a general value of k this stress-energy tensor diverges at
the horizons. However, it remains finite for a special case
k ¼ f0jrg ¼ 2κ, where κ is the surface gravity. For this case
at infinity

tμν ∼ diagð−2κ2; 2κ2Þ: ðA27Þ

The corresponding state in this case is the Hartle-Hawking
vacuum.

c. Unruh vacuum

Let us put φ ¼ − ln f þ κu. Then in (t; r) coordinates
one has

ttt ¼ −2f00 þ 1

2f
ðf0 − 2κ2Þ; trt ¼ −κ2;

ttr ¼
κ2

f2
; trr ¼ −

1

2f
ðf0 − 2κ2Þ: ðA28Þ

Let us denote by Uμ ¼ ð−f; 1Þ a null vector which is
regular at infinity. Then, at large r, one has tμν ∼ κ2UμUν.
Hence the corresponding stress-energy tensor describes an
out-going flux of null fluid (radiation) at Iþ.
Let us demonstrate now that the stress-energy tensor

(A28) is regular at the future event horizon. To demonstrate
this we write our metric in advanced time coordinates
v ¼ tþ r� that are regular at the future horizon

ds2 ¼ −dv2 þ 2dvdr: ðA29Þ

The calculations give
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tvv ¼ 2ff00 −
1

2
f02 þ κ2;

tvr ¼ ttv ¼ −4f00 þ 1

2f
ðf02 − 4κ2Þ;

trr ¼ 2
f00

f
−

1

f2
ðf02 − 4κ2Þ: ðA30Þ

Near the horizon one has

f ¼ 2κðr − rgÞ þ
1

2
f2ðr − rgÞ2 þ

1

6
f3ðr − rgÞ3 þ � � � :

ðA31Þ

One has

tvv ¼ −κ2 þOðr − rgÞ; tvr ¼ −f2 þOðr − rgÞ;
trr ¼ f3=κ þOðr − rgÞ: ðA32Þ

These relations imply regularity of tμν at the future horizon.
Hence, this stress-energy tensor possesses the proper
boundary condition required for the Unruh vacuum state.
One can also see that negative energy flux through the
horizon, tvvjrg ¼ −κ2, is equal (with a minus sign) to the

outgoing energy flux at Iþ, tuujJþ ¼ κ2.
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