
 

Effect of a second compact object on stable circular orbits
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We investigate how stable circular orbits around a main compact object appear depending on the
presence of a second one by using the Majumdar-Papapetrou dihole spacetime, which consists of the two
extremal Reissner-Nordström black holes with different masses. While the parameter range of the
separation of the two objects is divided due to the appearance of stable circular orbits, this division depends
on its mass ratio. We show that the mass ratio range separates into four parts, and we find three critical
values as the boundaries.
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I. INTRODUCTION

Recent progress in the observation of gravitational waves
supports the existence of binary black hole systems. The
LIGO Scientific and Virgo collaborations have already
detected gravitational waves ten times from binary black
hole mergers and once from a binary neutron star merger so
far [1–4]. Furthermore, since they have started the third
observation run, the number of detections will increase in
the future. These results imply that binary black hole
systems are a quite common phenomenon in our Universe.
A pure binary black hole system is a highly idealized

model, around which a third object or matter distribution
usually exists in realistic situations. Therefore, one of the
next issues is clarifying perturbative interactions with a third
body around them. As traditional problems in Newtonian
gravity, there are Poincaré’s three-body problem and the
Kozai mechanism. In recent years, some problems related to
these topics have been considered in the framework of the
relativistic three-body problem [5,6], in the context of
resonance in a compound extreme mass ratio inspiral/
massive black hole binary [7], and in gravitational wave
emission induced by a third body [8–11]. If a third body
itself is the target of observation,we canview it as a test body
in a fixed background. As a traditional problem in
Newtonian gravity, there is Euler’s three-body problem,
test particle motion in two fixed centers. The corresponding
relativistic system is the main topic of this paper.
The study of test body motion is significant for the

predictions of astrophysical phenomena around a gravita-
tional system such as a binary. In particular, the circular
orbit of a test body plays some essential roles in both theory
and observations. In the black hole spacetime, for instance,
the bending of light due to strong gravity makes a photon

orbit circular near the horizon. If the circular photon orbit is
unstable, it relates to the formation of the black hole
shadow. On the other hand, the sequence of stable circular
massive particle orbits is relevant to accretion disks and a
binary system. The innermost stable circular orbit (ISCO)
radius is a distinctive one because it is identified as the
inner edge of a standard accretion disk model and a
compact binary switches the stage of the evolution from
the inspiraling phase to the merging phase there [12,13].
Actual binary black hole systems exist as highly

dynamical systems so that one needs to use the numerical
method to analyze the phenomena around such systems; for
example, the study of the shadow of a binary black hole
system requires a fully nonlinear analysis of the numerical
relativity [14]. On the other hand, it is also significant to use
an analytical method for a qualitative understanding. To this
end, we often employ some axisymmetric and stationary (or
static) dihole spacetime as a toymodel. There are some exact
dihole spacetime solutions of the Einstein equation (or the
Einstein-Maxwell equation) such as the Weyl spacetime
[15], the Majumdar-Papapetrou spacetime [16–18], the
double-Kerr spacetime [19], etc. We can extract the specific
features of phenomena around a binary black hole system by
using these dihole spacetimes. Indeed, the eyebrows struc-
ture of the binary black hole shadow is reproduced in the
(quasi)static dihole spacetime [20–24].
The aim of the present paper is to reveal how the

marginally stable circular orbit (MSCO) or ISCO of the
dihole spacetime varies compared to those of the single
black hole spacetime. To achieve this, we adopt the
Majumdar-Papapetrou (MP) dihole spacetime, which con-
tains two extremal Reissner-Nordström black holes. The
circular orbit and its stabilities in the equal mass MP dihole
spacetime have been investigated [25–27]. In our previous
paper [25], we clarified the dependence of the positions of
MSCOs and ISCOs on the separation parameter in the equal
mass MP dihole spacetime. We found that the range of the
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dihole separation is divided into five ranges and obtained the
four critical values as the boundaries. In this paper, we
investigate the sequence of the stable circular orbit in the
different mass MP dihole spacetime, which consists of the
two different mass extremal Reissner-Nordström black
holes. Once we fix the mass scale of one of the two black
holes, the system depends on two parameters: the separation
and the mass ratio. As the result of our analysis, we divide
the mass ratio parameter range into four ranges and obtain
three critical values as the boundaries.
This paper is organized as follows. In the following section,

we introduce theMP dihole spacetimewith differentmass and
derive conditions for circular particle orbits on the back-
ground. Furthermore, we clarify the stability conditions of
these orbits in terms of the Hessian of a 2D potential function.
In Sec. III, while changing the mass ratio of the dihole, we
analyze the dihole separation dependence of the positions of
stable circular orbits. Due to some qualitative differences
of sequences of stable circular orbits, we classify the range of
dihole mass ratios into four parts and determine three critical
values of the mass ratio as the boundaries of the range.
Section IVis devoted to a summary and discussions. Through-
out this paper, we use units in which G ¼ 1 and c ¼ 1.

II. CONDITIONS FOR STABLE CIRCULAR
ORBITS IN THE MAJUMDAR-PAPAPETROU

DIHOLE SPACETIME

The metric and the gauge field of the MP dihole
spacetime in isotropic coordinates are given by

gμνdxμdxν ¼ −
dt2

U2
þ U2ðdρ2 þ ρ2dϕ2 þ dz2Þ; ð1Þ

Aμdxμ ¼ U−1dt; ð2Þ

Uðρ; zÞ ¼ 1þ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − aÞ2
p þ M−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðzþ aÞ2
p ; ð3Þ

where M� are each black hole mass located at z ¼ �a
(a ≥ 0). We introduce a mass ratio parameter

ν ≔
M−

Mþ
: ð4Þ

Without loss of generality, we assume that the black hole
with mass Mþ is larger than that with mass M−, i.e.,

0 ≤ ν ≤ 1: ð5Þ
We use units in which Mþ ¼ 1 in what follows.
The Lagrangian of a particle freely falling in the MP

dihole spacetime is given by

L ¼ 1

2

�

−
_t2

U2
þU2ð_ρ2 þ ρ2 _ϕ2 þ _z2Þ

�

; ð6Þ

where the dot denotes derivative with respect to an affine
parameter. Since the coordinates t and ϕ are cyclic, the
canonical momenta conjugate to them are constants of
motion:

E ¼ _t
U2

; L ¼ ρ2U2 _ϕ; ð7Þ

which are energy and angular momentum, respectively. We
normalize the 4-velocity _xμ so that gμν _xμ _xν ¼ −κ, where
κ ¼ 1 for a massive particle and κ ¼ 0 for a massless
particle. Rewriting the normalization condition in terms of
E and L, we have

_ρ2 þ _z2 þ V ¼ E2; ð8Þ

Vðρ; zÞ ¼ L2

ρ2U4
þ κ

U2
: ð9Þ

We can view Eq. (8) as an energy equation and V as a 2D
effective potential of particle motion in the ρ-z plane. In
terms of V, the equations of motion are written as

ρ̈þ 2Uz

U
_z _ρ−

2Uρ

U
_z2 þ Vρ

2
¼ 0; ð10Þ

̈zþ 2Uρ

U
_z _ρ−

2Uz

U
_ρ2 þ Vz

2
¼ 0; ð11Þ

where Vi ¼ ∂iV and Ui ¼ ∂iU (i ¼ ρ, z).
We focus on circular orbits with constant ρ and z. Then,

the energy equation (8) immediately reduces to

V ¼ E2: ð12Þ
Hence, V must be positive for circular orbits. In addition,
we find that constant ðρ; zÞ can be a solution to Eqs. (10)
and (11) when its position corresponds to an extremum
of V:

Vρ ¼ 0; ð13Þ

Vz ¼ 0: ð14Þ

We can rewrite the three conditions (12)–(14),
respectively, as

E2 ¼ E2
0ðρ; zÞ ≔ Vðρ; z;L2

0Þ; ð15Þ

L2 ¼ L2
0ðρ; zÞ ≔ −

ρ3U2Uρ

U þ 2ρUρ
; ð16Þ

Uz ¼
a − z

½ρ2 þ ðz − aÞ2�3=2 −
νðaþ zÞ

½ρ2 þ ðzþ aÞ2�3=2 ¼ 0: ð17Þ

From Eqs. (15) and (16), both values of E2
0 and L2

0 depend
on positions of circular orbits and must be positive.
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The positivity of L2 leads to that of E2 as seen from Eq. (9),
so that it is sufficient to pay attention only to the positivity
of L2.
Now we solve Eq. (17). If ν ¼ 0, then we obtain the

solution z ¼ a. If 0 < ν ≤ 1, we find from Eq. (17) that the
range of z is bounded in jzj < a. Solving it for ρ2 in this
range, we obtain the root

ρ20ðzÞ ¼
ða − zÞ2=3ðaþ zÞ2 − ν2=3ðaþ zÞ2=3ða − zÞ2

ν2=3ðaþ zÞ2=3 − ða − zÞ2=3 ;

z ≠
1 − ν

1þ ν
a: ð18Þ

When z ¼ að1 − νÞ=ð1þ νÞ holds, then Eq. (17) leads to
z ¼ 0, and hence ν ¼ 1. Note that the root ρ0 is real and
positive in the range

−a < z < −
1 −

ffiffiffi

ν
p

1þ ffiffiffi

ν
p a;

1 − ν

1þ ν
a < z < a: ð19Þ

The curve ρ ¼ ρ0 asymptotically approaches the line

z ¼ 1 − ν

1þ ν
a: ð20Þ

In particular, the intersection point of the line with the
symmetric axis ρ ¼ 0 corresponds to the center of mass of
the dihole. On the other hand, the curves terminate on ρ ¼
0 at z ¼ �a (i.e., the horizons) and

z ¼ −
1 −

ffiffiffi

ν
p

1þ ffiffiffi

ν
p a: ð21Þ

Therefore, we can find a circular orbit at a point in the ρ − z
plane if it is located on the curve ρ ¼ ρ0ðzÞ and satisfies
E2
0 ≥ 0 and L2

0 ≥ 0.
To determine the stability of a circular orbit, we need

further analysis. We consider the linear stability of circular
particle motion in terms of the Hessian Vij, where Vij¼
∂j∂iV (i;j¼ρ, z). Let h be its determinant, hðρ;z;L2Þ¼
detVij, and k be its trace, kðρ; z;L2Þ ¼ trVij. By using these
we define the region D in the ρ-z plane by

D ¼ fðρ; zÞjL2
0 > 0; h0 > 0; k0 > 0g; ð22Þ

where

h0ðρ; zÞ ¼ hðρ; z;L2
0ÞjUz¼0; ð23Þ

k0ðρ; zÞ ¼ kðρ; z;L2
0ÞjUz¼0; ð24Þ

where the restriction Uz ¼ 0 means to eliminate the terms
proportional to Uz. We can find stable circular orbits on the
curve ρ ¼ ρ0ðzÞ included in the region D.

III. DEPENDENCE OF THE SEQUENCE
OF STABLE CIRCULAR ORBITS

ON THE MASS RATIO

In this section, focusing on stable circular orbits in the
MP dihole spacetime, we analyze the dependence of
sequences of their orbits on the separation a for various
values of the mass ratio ν.

A. ν = 1

In the beginning, let us recall how sequences of
stable circular orbits change as the separation a varies in
the equal unit mass MP dihole spacetime (i.e., ν¼1 and
Mþ ¼ M− ¼ 1) [25]. For a > a0 ¼ 1.401 � � �, a sequence
of stable circular orbits exists in the range ρ ∈ ð ffiffiffi

2
p

a;∞Þ on
the equidistant symmetric plane z ¼ 0 from each black
hole. Furthermore, it bifurcates at ðρ; zÞ ¼ ð ffiffiffi

2
p

a; 0Þ and
extends towards each black hole. As a result, we have three
MSCOs, two of which are the ISCOs. At a ¼ a0, the three
MSCOs degenerate at ðρ;zÞ¼ð ffiffiffi

2
p

a0;0Þ. For a0 ≥ a>a� ¼
0.9713 � � �, a single sequence of stable circular orbits
appears on z ¼ 0 in the range ρ ∈ ð ffiffiffi

2
p

a;∞Þ, and this
inner boundary corresponds to the ISCO. At a ¼ a�, the
single sequence is marginally connected at a point
where h0 has a saddle point. For a�≥a>ac¼0.3849���,
we have two sequences of stable circular orbits on z ¼ 0.
This phenomenon implies the possibility of double accre-
tion disk formation in this system. In particular, for
a� > a > a∞ ¼ 0.5433 � � �, the outer sequence exists from
infinity to an MSCO and the inner sequence from an
MSCO to the ISCO, while for a∞ ≥ a > ac, the outer
boundary of the inner sequence is no longer a marginally
stable circular massive particle orbit but turns into a circular
photon orbit; that is, infinitely large energy would be
required for the stable circular orbit. At a ¼ ac, the inner
sequence just disappears. For ac ≥ a ≥ 0, we only have a
single sequence of stable circular orbits from infinity to the
ISCO on z ¼ 0.
In the following subsections, dividing the range of ν into

four parts, we consider the dependence of sequences of
stable circular orbits on the separation a in each range of ν.

B. 1 > ν > ν∞ = 0.7698 � � �
We consider sequences of stable circular orbits for

various values of a in the MP dihole spacetime with mass
ratio ν ≃ 1 but ν ≠ 1. We show sequences of stable circular
orbits for several values of a in the case ν ¼ 0.9 in Fig. 1.
On the basis of these typical plots, we discuss some
qualitative properties of stable circular orbits and critical
values of a. Specific numerical values for critical values a0,
a�, a∞, and ac in this subsection are those for ν ¼ 0.9.
For a large value of a, we have two sequences of stable

circular orbits on both sides of the dihole [see Fig. 1(a)].
The sequence on the large black hole side exists from
infinity to the ISCO near the large black hole. On the other
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hand, the sequence on the small black hole side is restricted
within a finite region. The inner boundary near the small
black hole corresponds to the ISCO, and the outer boundary
to an MSCO. As the value of a approaches a critical value
a0ð¼ 2.111 � � �Þ from above, the MSCO and the ISCO on

the small black hole side approach each other. At a ¼ a0,
these merge into one, and then the sequence on the small
black hole side just disappears [see Fig. 1(b)]. If a becomes
smaller than a0, the sequence on the small black hole side
no longer exists. We can interpret this disappearance as a

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 1. Sequences of stable circular orbits in the Majumdar-Papapetrou dihole spacetime with mass ratio ν ¼ 0.9. The black solid lines
denote the curve ρ ¼ ρ0. The shaded regions denote the regionD, where h0 > 0, L2

0 > 0, and k0 > 0. The boundaries ofD are shown by
the blue solid lines on which h0 vanishes and the blue dashed lines on which L2

0 diverges. The black solid lines in the shaded regions
show the positions of stable circular orbits. The green dots indicate the position of marginally stable circular orbits, and the red dots
indicate the position of the innermost stable circular orbits. The orange dots show the positions of stable circular photon orbits, and the
orange triangles show those of unstable ones.
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consequence of relativistic effects because the correspond-
ing sequences in Euler’s three-body system, which is
governed by Newtonian gravity, always exist for arbitrary
values of a.
In the range a0 ≥ a > a�ð¼ 0.9252 � � �Þ, there exists a

sequence of stable circular orbits only on the large black
hole side, which appears from infinity to the ISCO [see
Fig. 1(c)]. At a ¼ a�, the boundary of the regionD touches
the curve ρ ¼ ρ0 [see Fig. 1(d)]. This implies that two
sequences of stable circular orbits are marginally connected
at a point.
In the range a� ≥ a > acð¼ 0.4679 � � �Þ, two sequences

of stable circular orbits appear [see Figs. 1(d)–1(g)].
The outer sequence exists from infinity to the outermost
MSCO. On the other hand, the behavior of the inner
sequence divides this range of a into two parts. For
a� ≥ a > a∞ð¼ 0.5198 � � �Þ, the inner sequence exists
between an MSCO and the ISCO. However, at a ¼ a∞,
the outer MSCO disappears because infinitely large energy
and angular momentum would be required for a massive
particle [see Fig. 1(f)]. In other words, a circular photon
orbit appears there. For a∞ ≥ a > ac, the inner sequence
appears between the stable circular photon orbit and the
ISCO [see Fig. 1(g)]. At a ¼ ac, the stable circular photon
orbit and the ISCO merge into one, and then the inner
sequence just disappears [see Fig. 1(h)]. In the range
ac ≥ a ≥ 0, there only exists a sequence of stable circular
orbits, which appears from infinity to the ISCO [see
Fig. 1(i)].
Consequently, we divide the range of a into five parts on

the basis of typical behaviors of the sequence of stable
circular orbits and introduce four critical values of a as the
boundaries of these ranges as we have done in the case
ν ¼ 1. Note that, however, each meaning of critical values
is slightly generalized from those of ν ¼ 1. Here, let us
summarize how we define the four critical values:

(i) a ¼ a0: The sequence of stable circular orbits on the
small black hole side disappears.

(ii) a ¼ a�: The sequence of stable circular orbits on the
large black hole side is divided into two parts.

(iii) a ¼ a∞: A stable circular photon orbit appears at the
outer boundary of the inner sequence of stable
circular orbits on the large black hole side.

(iv) a ¼ ac: The inner sequence of stable circular orbits
on the large black hole side disappears.

In the following, according to the difference in the
appearance of these critical values, we classify the range
of the mass ratio ν into four parts. In each range of ν, we
discuss the behavior of the sequence of stable circular orbits
depending on a. Figure 6(a) shows the dependence of the
radii of the MSCOs, the ISCOs, and the circular photon
orbits on a in the case ν ¼ 0.9. In the range ac < a ≤ a∞,
the radius of the ISCO (red solid line) is smaller than the
one of the stable circular photon orbit (orange solid line in
the middle of the three). In addition, the discontinuous

transition of the position of the ISCO occurs at a ¼ ac.
These phenomena are also seen in the equal mass MP
dihole spacetime [25].

C. ν= ν∞ = 0.7698 � � �
If we decrease the value of ν from ν ¼ 1, then at

ν ¼ ν∞ ≔
4

ffiffiffi

3
p

9
¼ 0.7698 � � � ; ð25Þ

the stable circular photon orbit no longer appears for any
value of a. In other words, the critical value a∞ disappears
at ν ¼ ν∞. We can interpret that the gravity of the small
black hole is not sufficiently strong to make a photon
orbit circular in the region far from the large black hole
even if two black holes get close each other. In what
follows, we consider sequences of stable circular orbits in
the case ν ¼ ν∞.
For a > 1=2, the behavior of sequences of stable circular

orbits is similar as that discussed in the previous subsection.
Indeed, we find two critical values a0 ¼ 2.269 � � � and
a� ¼ 0.8740 � � �. We note that, however, qualitative
differences from the case in the previous subsection appear
at a ¼ 1=2. In the limit as a↘1=2, we find that the MSCO
and the ISCO at the boundaries of the inner sequence merge
into one at ðρ;zÞ¼ ð2 ffiffiffi

2
p

=3;1=6Þ¼ ð0.9428 � � � ;0.1666 � � �Þ
(see Fig. 2). Simultaneously, infinitely large energy and
angular momentum are required for a massive particle to
orbit circularly here. In other words, here is a stable/
unstable circular photon orbit. These behaviors mean that
ac and a∞ are degenerate at a ¼ 1=2, that is, a ¼ ac ¼
a∞ ¼ 1=2.
In the range a < 1=2, there is only a single sequence of

stable circular orbits that appears from infinity to the ISCO,
which is the same as that discussed in the previous section.

FIG. 2. Sequences of stable circular orbits in the Majumdar-
Papapetrou dihole spacetime with mass ratio ν¼ ν∞ ¼ 0.7698 � � �.
The roles of each element in these plots are the same as those in
Fig. 1.
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D. ν∞ > ν > ν� = 0.5306 � � �
We consider sequences of stable circular orbits for

various values of a in the case where ν∞> ν> ν� ¼
0.5306 � � �. We can see typical sequences of stable circular
orbits for ν ¼ 0.7 in Fig. 3. On the basis of these plots, we
discuss the appearance of critical values a0, a�, and ac in
this range. Specific numerical values for these critical
values in this subsection are those for ν ¼ 0.7.
For a relatively large value of a, a sequence of stable

circular orbits appears from infinity to the ISCO on the
large black hole side, while a sequence appears between
an MSCO and the ISCO on the small black hole side

[see Fig. 3(a)]. When a becomes smaller and smaller, at
a ¼ a0ð¼ 2.285 � � �Þ, the sequence on the small black hole
side disappears [see Fig. 3(b)]. When a becomes smaller
and smaller yet, at a ¼ a�ð¼ 0.8520 � � �Þ, the sequence on
the large black hole side is divided into two parts. In the
range a� ≥ a > acð¼ 0.6454 � � �Þ, there are two sequences,
the inner and the outer. As a result, we find three MSCOs as
the boundaries of these sequences, and the innermost one
corresponds to the ISCO. At a ¼ ac, the inner sequence
disappears. Note that the critical value a∞ no longer
exists in this range of ν. In the range 0 ≤ a < ac, we find
a single sequence that appears from infinity to the ISCO.

(a) (b) (c)

(d)

(g)

(e) (f)

FIG. 3. Sequence of stable circular orbits in the Majumdar-Papapetrou dihole spacetime with mass ratio ν ¼ 0.7. The roles of each
element in these plots are the same as those in Fig. 1.
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The dependence of the radii of the MSCOs, the ISCOs, and
the circular photon orbits on a in the case ν ¼ 0.7 is shown
in Fig. 6(b). The parameter range of a is divided by a0, a�,
and ac into four parts. The discontinuous transition of the
ISCO on the large black hole side still occurs at a ¼ ac. For
any value of a, stable circular photon orbits do not exist.

E. ν = ν� = 0.5306 � � �
We focus on sequences of stable circular orbits for

various values of a in the case ν ¼ ν� ¼ 0.5306 � � �. For
large a, we can see similar behavior of the sequences of
stable circular orbits as is shown in the previous subsection.
Indeed, we obtain the critical value a0 ¼ 2.189 � � �. We
should note that the inner sequence of stable circular orbits
appearing at ðρ; zÞ ¼ ð2.279 � � � ; 0.3637 � � �Þ for a ¼ a� ¼
0.8327 � � � disappears as soon as it appears [see Fig. 4(d)].
This means that the critical values a� and ac are degenerate.

Consequently, we have no inner sequence of stable circular
orbits on the large black hole side.

F. ν� > ν > ν0 = 0.0110134 � � �
Let us consider sequences of stable circular orbits for

various values of a in the case where 0 < ν < ν�.
Observing typical sequences for ν ¼ 0.3 in Fig. 5, we
discuss the appearance of the critical value a0 in this range.
The specific numerical value of a0 in this subsection is that
for ν ¼ 0.3.
For a large value of a, we find two sequences of stable

circular orbits on both sides of the dihole [see Fig. 5(a)]. On
the large black hole side, the sequence appears from infinity
to the ISCO. On the small black hole side, the sequence
appears from the outer MSCO to the ISCO. If a becomes
smaller and reaches a ¼ a0ð¼ 1.762 � � �Þ, the sequence on
the small black hole side disappears. Therefore, there still
exists the critical value a0 [see Fig. 5(b)]. In the range
a < a0, however, any qualitative change of the sequence of
stable circular orbits occurs on the large black hole side.
The dependence of the radii of the MSCOs, the ISCOs, and
the circular photon orbits on a in the case ν ¼ 0.3 is shown
in Fig. 6(c). The parameter range of a is divided by a0 into
two parts. The continuous transition of the ISCO on the
large black hole side no longer occurs because there are no
separated sequences of stable circular orbits on the large
black hole side.

G. 0 ≤ ν ≤ ν0
We mention the sequence of stable circular orbits in the

range 0 ≤ ν ≤ ν0. When the value of ν reaches ν0 from
above, the critical value a0 is equal to zero. This means that
the sequence on the small black hole side does not vanish
unless the two black holes coalesce into one. If we make the
value of ν smaller than ν0, any critical values of a do not
appear. According to Fig. 6(d), where we set ν ¼ 0.01, for

FIG. 4. Sequences of stable circular orbits in the
Majumdar-Papapetrou dihole spacetime with mass ratio
ν ¼ ν� ¼ 0.5306 � � �. The roles of each element in this plot are
the same as those in Fig. 1.

(a) (b) (c)

FIG. 5. Sequence of stable circular orbits in the Majumdar-Papapetrou dihole spacetime with mass ratio ν ¼ 0.3. The roles of each
element in these plots are the same as those in Fig. 1.
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a > 0, both the large and the small black holes have the
sequence of the stable circular orbits; i.e., two MSCOs—
one of these is also the ISCO—always appear on the small
black hole.

IV. SUMMARY AND DISCUSSIONS

We have investigated the sequence of stable circular
orbits around the symmetric axis in the Majumdar-
Papapetrou dihole spacetime with different masses. Once
we fix the mass of the large black hole to 1, the MP dihole
spacetime is characterized by two parameters: the separa-
tion a and the mass ratio ν.
When ν ≃ 1 but ν ≠ 1, the sequence of the stable circular

orbits changes as a varies in common with the case of
ν ¼ 1, but we have generalized the definitions of the critical
values of a to be valid for the case of the different mass MP
dihole from those in the equal mass MP dihole spacetime
[25]. When the value of a is relatively large, the sequence of
stable circular orbits on the large black hole side exists from
infinity to the ISCO while that on the small black hole side

is restricted to a finite range. At a ¼ a0, the sequence on the
small black hole side disappears. This phenomenon occurs
due to the relativistic effect of the appearance of the ISCOs;
that is, since the radius of the outer MSCO on the small
black hole side decreases faster than the one of the ISCO as
a decreases, the positions of the MSCO and the ISCO
coincide with each other at a ¼ a0, and then the sequence
on the small black hole side disappears [see the green and
red dashed lines in Figs. 6(a)–6(c)]. For a < a0, the
sequence of stable circular orbits appears only on the large
black hole side. When a ¼ a�, the sequence on the large
black hole side is marginally connected at a point. In the
range ac < a < a�, two sequences of the stable circular
orbits appear on the large black hole side. The outer
boundary of the inner sequence is an MSCO in a∞ < a <
a� while a stable circular photon orbit in ac < a ≤ a∞.
Finally, for 0 ≤ a ≤ ac, since the inner sequence vanishes,
we have a single connected sequence from infinity to the
ISCO on the large black hole side.
We have also revealed the dependence of the sequence

of stable circular orbits on ν. Figure 7 shows the relation

FIG. 6. Dependence of the radii of MSCOs and circular photon orbits on the separation parameter a in the MP dihole spacetime with
mass ratio: (a) ν ¼ 0.9, (b) ν ¼ 0.7, (c) ν ¼ 0.3, and (d) ν ¼ 0.01. The green and red solid lines show the radii of MSCOs on the large
black hole side, and the green and red dashed lines show those on the small black hole side. In particular, the red lines indicate each
ISCO. The orange solid lines show the radii of circular photon orbits on the large black hole side, and the orange dashed lines show those
on the small black hole side. The dashed green and red lines merge at a ¼ a0 and then the sequence of the stable circular orbits on the
small black hole side disappears. In cases (a) and (b), the green solid lines emerge at a ¼ a�, and the outer exist in the range
ac < a < a�. The inner in case (a) exists in the range a∞ < a < a� while the one in case (b) exists in the range ac < a < a�. In case (a),
the stable circular photon orbits appear on the large black hole side in ac < a < a∞ whereas they do not in the other cases. In case (d),
the sequence on the small black hole side always exists because there is no critical value of a.
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between ν and the critical values of a. For
ν > ν∞ ¼ 0.7698 � � �, the sequences of the stable circular
orbits are qualitatively the same as these of the case ν ≃ 1.
At ν ¼ ν∞, the two critical values a∞ and ac merge with
each other, so that the parameter range of a is divided into
four parts. At ν ¼ ν� ¼ 0.5306 � � �, the critical values a�
and ac coincide with each other. For ν < ν�, the sequence
on the large black hole side does not separate into two parts.
The remaining critical value a0 also disappears when
ν ¼ ν0 ¼ 0.01101 � � �. When we make the value of ν
smaller than ν0, the sequences of stable circular orbits
on both sides do not vanish until the two black holes merge
into one [see Fig. 6(d)].
The phenomena we have revealed are not caused by

electric charges of the black holes, but by the presence of
two black holes. Hence, in our Universe, we can observe
such phenomena occurring around a compact object
accompanied by a second compact object. The sequence
of stable circular orbits is not on a flat plane because of the
existence of a second compact object. Therefore, we may
observe a deformed accretion disk that indicates the
existence of another gravitational source. Furthermore,
for any value of ν, the radius of the ISCO on the large

black hole side tends to be more inner than the case of a
single black hole. This suggests that high energy x-rays can
be detected compared to the single black hole case because
the effective temperature of the standard disk is higher as
the radius of the ISCO is smaller [28,29]. In the ranges
ν� < ν ≤ 1 and ac < a < a�, we may observe double
accretion disks. Since a relativistic effect causes the inner
disk, we can use it in the testing of gravitational theories.
The observation of the accretion disk of a main black hole
with the second companion object (e.g., blazar OJ287) may
help us to explore the effect of the second compact object
[30]. The presence of the stable circular photon orbit in
the ranges ν∞ < ν ≤ 1 and ac < a ≤ a∞ is a characteristic
property of the dihole spacetime and is associated with
distinctive phenomenological features, such as the chaotic
behavior of the null geodesics. We can observe qualita-
tively different chaotic features in the dihole shadow [24].
Our findings indicate that the existence of the second

compact object can affect gravitational wave emission
from a test particle orbiting a main supermassive black
hole because the inspiral phase tends to be longer than the
case of a single black hole because of the shift of the ISCO
radius. In the context of the quasinormal mode, the
frequency is known to correspond to the orbital frequency
of the unstable circular photon orbit. Since our results show
that the orbital frequency can be comparable to that of a
circular massive particle orbit, we can expect that the
resonant excitation of the quasinormal mode occurs [31].
The MP dihole spacetime we have used in the back-

ground is static, but a realistic binary system is a dynamical
system. Therefore, we should take into account dynamical
features in future work.
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