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The detection of gravitational waves has offered us the opportunity to explore the dynamical and strong-
field regime of gravity. Because matched filtering is more sensitive to variations in the gravitational
waveform phase than the amplitude, many tests of gravity with gravitational waves have been carried out
using only the former. Such studies cannot probe the non-Einsteinian effects that may enter only in the
amplitude. Besides, if not accommodated in the waveform template, a non-Einsteinian effect in the
amplitude may induce systematic errors on other parameters such as the luminosity distance. In this paper,
we derive constraints on a few modified theories of gravity (Einstein-dilaton-Gauss-Bonnet gravity, scalar-
tensor theories, and varying-G theories), incorporating both phase and amplitude corrections. We follow
the model-independent approach of the parametrized post-Einsteinian formalism. We perform Fisher
analyses with Monte Carlo simulations using the LIGO/Virgo posterior samples. We find that the
contributions from amplitude corrections can be comparable to the ones from the phase corrections in case
of massive binaries like GW150914. Also, constraints derived by incorporating both phase and amplitude
corrections differ from the ones with phase corrections only by 4% at most, which supports many of the
previous studies that only considered corrections in the phase. We further derive reliable constraints on the
time evolution of a scalar field in a scalar-tensor theory for the first time with gravitational waves.
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I. INTRODUCTION

So far, general relativity (GR) is the most successful
theory of gravitation. This century-old theory which
exquisitely describes gravity as the curvature of spacetime
has passed numerous tests with high precision [1].
Nonetheless, GR is not expected to be a complete descrip-
tion of gravity. The inconsistencies in galaxy rotation
curves [2–8] and the accelerated expansion of the
Universe [9–16] are difficult to explain within the formu-
lation of GR without introducing dark matter and dark
energy. Moreover, a new theory is required to reconcile
quantum mechanics with classical gravity [17,18]. Hence,
one needs to continue testing GR through various experi-
ments and observations. Gravitational wave (GW) obser-
vations are one of the most recent additions to this venture
[19–23], which have enabled us to probe the formerly
inaccessible strong, highly nonlinear, and dynamical
regime of gravity. Since the strong-field regime is precisely
the place to look for evidence of beyond-GR phenomena
due to quantum gravity corrections [24,25], it is important
to extract as much physics as possible from the available
GW data.
One can adopt either a model-independent or a theory-

specific method for testing gravity, although the former is
more efficient if one wishes to achieve constraints on
multiple theories with GW observations. One of the first
works on the theory-agnostic approachwas taken in [26–28],

where each post-Newtonian (PN) term in the GR wave-
form phase were treated independent and the authors
proposed to study the consistency among them. One
drawback of such an approach is that it cannot capture
the non-GR effects entering at PN orders that are absent
in GR (like the −1 PN order common in scalar-tensor
theories). To overcome this, Yunes and Pretorius proposed
a new framework called parametrized post-Einsteinian
(PPE) formalism by introducing generic corrections at
any PN order to both the phase and the amplitude [29,30].
A theory-agnostic data analysis pipeline named TIGER
has been developed [31,32], and the LIGO and VIRGO
Scientific Collaboration (LVC) recently employed the
generalized IMRPhenom (gIMR) waveform model which
has a one-to-one mapping with the PPE formalism in
the inspiral part of the waveform phase. With such wave-
forms, tests of gravity with the GW phase have been
carried out in [19–22,33,34].
Many of the previous studies on tests of GR with GWs

focused only on the phase corrections, though scenarios
where amplitude corrections bear importance are not uncom-
mon. In some parity-violating theories, one of the circularly
polarized modes is amplified while the other one is sup-
pressed; an effect called amplitude birefrigence [35–38].
Such an effect enters only in the GWamplitude of circularly
polarized modes. Probing amplitude corrections is also
important in constraining gravitational theories with GW
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stochastic backgrounds [39]. Furthermore, theories with flat
extra dimensions [40], Horndeski gravity [41], and fðRÞ
gravity [42] may predict amplitude damping that scales with
the cosmological distance. Such phenomena have been
studied in Ref. [43] in terms of a generalized GWpropagation
framework. Possible bounds on the PPE amplitude parameters
at various PNorderswere studied in [44]while both amplitude
and phase corrections were included in [45] for generic
theories with scalar dipole radiation.
We here study how much impact the amplitude correc-

tions may bring to tests of GR with GWs and provide
justifications for previous studies that only considered the
phase corrections. PPE amplitude corrections due to gen-
eration mechanisms in various example theories have been
derived analytically in Ref. [46]. We compute the con-
straints on some of those theories from both the phase and
amplitude, focusing on leading PN corrections to the
tensorial modes only. We choose theories where the leading
correction enters at a negative PN order and the sensitivities
of black holes (BHs) are known. Such criteria lead us to
choose Einstein-dilaton-Gauss-Bonnet (EdGB) gravity,
scalar-tensor theories, and varying-G theories. We carry
out Fisher analyses with Monte Carlo simulations utilizing
the parameter posterior samples of GW151226 and
GW150914 released by LVC [47].1 Such analyses with
actual posterior samples produce more reliable results
compared to the ones with sky-averaged waveforms. In
fact, when implementing such samples, we can determine
the credibility of the small coupling approximation in
scalar-tensor theories, which allows us to place reliable
bounds on the time evolution of the scalar field from GW
observations for the first time.

We find that the constraints derived from the phase and
the amplitude can be comparable in the case of massive
binary systems like GW150914. Whereas for less massive
binaries with a larger number of GW cycles, the phase
always yields stronger constraints. Moreover, the inclusion
of an amplitude correction to the waveform impacts the
bound on the phase correction as well since the former can
easily be related to the latter provided the dissipative and
conservative corrections do not enter at the same order.
The amount and direction of such effects vary with the PN
order of the corrections. All such constraints in the theories
under consideration are summarized in Table I.
The rest of the paper is organized as follows. Section II A

briefly reviews PPE formalism, while Sec. II B summarizes
the data analysis techniques. Section III A is devoted to
justifying our formalism against the one by LVC in massive
gravity [19], while we derive constraints on EdGB,
scalar-tensor, and varying-G theories in Secs. III B–III D.
Section IV presents a summary of our work while discus-
sing the effects of an amplitude correction on that of phase.
The Appendix compares the PhenomB and PhenomD
waveforms for constraining PPE parameters.

II. METHODOLOGY

In this section, we explain how we perform our analysis.
We first explain the PPE formalism and the non-GR
waveform template. We then describe the Fisher analysis
and how we construct probability distributions of non-GR
parameters.

A. PPE waveform

We begin by reviewing the PPE formalism briefly. PPE
gravitational waveform for a compact binary inspiral in the
frequency domain is given by [29]

TABLE I. 90% credible constraints on representative parameters of various modified theories of gravity from GW150914 and
GW151226. For each of the GWevents, the “phase” and “amplitude” correspond to the cases where we include non-GR corrections only
to the GW phase and amplitude, respectively, while “combined” is the case where we include both corrections in the waveform and
reduce the two constraints to a single one according to Sec. II B. ᾱEdGB is the EdGB coupling parameter which is related to the
dimensionless coupling by ζEdGB ≡ 16πᾱ2EdGB=m

4 with m being the total mass of the binary. m1
_ϕ corresponds to a dimensionless

parameter in scalar-tensor theories where m1 is the mass of the primary BH, while ϕ is the scalar field. The bounds are derived by
assuming subdominant non-GR corrections, which is realized whenever ζEdGB ≪ 1 (m1

_ϕ ≪ 1) in EdGB (scalar-tensor) gravity.
Numbers inside brackets mean such criterion is violated, and the constraints are unreliable. G is the gravitational constant with the
subscript 0 representing the time of coalescence. An overhead dot denotes a derivative with respect to time.

Constraints

GW150914 GW151226

Theories Representative parameter Phase Amplitude Combined Phase Amplitude Combined

EdGB [48]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijᾱEdGBj

p
[km] (50.5) (76.3) (51.5) 4.32 10.5 4.32

ζEdGB 3.62 32.4 3.91 0.0207 0.709 0.0207
Scalar-tensor [49,50] j _ϕj [104=sec] (3.64) (7.30) (3.77) 1.09 (5.60) 1.09

jm1
_ϕj 6.87 16.4 7.15 0.688 3.66 0.688

Varying-G [46,51] j _G0=G0j [106=yr] 7.30 137 7.18 0.0224 0.382 0.0220

1We choose GW151226 and GW150914 as representatives of
low-mass and massive binaries, respectively, following [20].
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h̃ðfÞ ¼ h̃GRð1þ αPPEuaÞeiδΨ; ð1Þ

where h̃GR is the gravitational waveform in GR. αPPEua is a
correction to the GWamplitude with u≡ ðπMfÞ1=3,M≡
ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass with component
masses m1 and m2, and f is the frequency of the GW. The
constant αPPE controls the overall magnitude of the cor-
rection, while the index a specifies at which PN order the
correction enters. One can write the non-GR phase cor-
rection δΨ in a similar manner as that of the amplitude as

δΨ ¼ βPPEub: ð2Þ

Together ðαPPE; aÞ and ðβPPE; bÞ are called the PPE
parameters.
PPE modifications in Eq. (1) can enter through the non-

GR corrections to the binding energy and the GW lumi-
nosity [29,30], or alternatively, to the frequency evolution
and the Kepler’s law [46]. We will follow the latter
approach and write the modified Kepler’s law as

r ¼ rGRð1þ γrucrÞ; ð3Þ

and the frequency evolution as

_f ¼ _fGRð1þ γ _fu
c _fÞ: ð4Þ

Here, ðγr; crÞ and ðγ _f; c _fÞ parametrize the non-GR correc-
tions to the binary separation r and the frequency evolution
_f, respectively. To leading PN order, the GR contribution is
given by [52,53]

rGR ¼
�
m
Ω2

�
1=3

; _fGR ¼ 96

5
π8=3M5=3f11=3; ð5Þ

wherem represents the total mass of the binary andΩ ¼ πf
is the orbital angular frequency.
Utilizing the stationary phase approximation [54,55] and

the quadrupole formula for the metric perturbation [56], one
can easily derive the amplitude and phase of the dominant
quadrupolar mode in Fourier space from Eqs. (3) and (4) as

ÃðfÞ ¼ ÃGR

�
1þ 2γrucr −

1

2
γ _fu

c _f

�
; ð6Þ

and

Ψ ¼ ΨGR −
15γ _f

16ðc _f − 8Þðc _f − 5Þ u
c _f−5; ð7Þ

respectively. Equation (7) is already in the PPE format, while
Eq. (6) can be reduced to such a form by keeping only the
dominant correction.2

In fact, the PPE phase and the amplitude parameters may
be related as follows. If the dissipative correction (correc-
tion entering in the GW luminosity) dominates over the
conservative one (correction entering in the binding energy
and Kepler’s law), we find

αPPE ¼ 8

15
ða − 8Þða − 5ÞβPPE; ð8Þ

while for the conservative-dominated case, we obtain

αPPE ¼ 8

15

ð8 − aÞð5 − aÞða2 − 4a − 6Þ
a2 − 2a − 6

βPPE: ð9Þ

On the other hand, when the aforementioned corrections
enter at the same PN order, no direct relation between αPPE
and βPPE exists. The exponents a and b in the correction
terms are related by the following equation, which is valid
for all three cases,

b ¼ a − 5: ð10Þ

The above formalism needs to be slightly modified for
theories containing time-varying gravitational constants.
Variations in the gravitational constants cause the masses
of the binary components to vary as well [57], and one
needs to take this into account when deriving the PPE
parameters [46].

B. Data analysis formalism

We adopt a Fisher analysis [58] to estimate the statistical
errors of the non-GR parameters in various theories. Such
an analysis is valid for GW events with sufficiently large
signal-to-noise (SNR) ratios. We make the assumptions that
the detector noise is Gaussian and stationary. Let us write
the detector output as

sðtÞ ¼ hðtÞ þ nðtÞ; ð11Þ

where hðtÞ and nðtÞ are the GW signal and the noise,
respectively. Let us also define the inner product of two
quantities AðtÞ and BðtÞ as

ðAjBÞ ¼ 4ℜ
Z

∞

0

df
Ã�ðfÞB̃ðfÞ

SnðfÞ
: ð12Þ

Here, ÃðfÞ is the Fourier component of A, an asterisk (�)
superscript means the complex conjugate, and SnðfÞ is the
noise spectral density. With the above definitions, the
probability distribution of the noise can be written as

Pðn ¼ n0ðtÞÞ ∝ exp ½−ðn0jn0Þ�; ð13Þ

and the SNR for a given signal hðtÞ can be defined as2A detailed derivation can be found in Ref. [46].
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ρ≡ ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
: ð14Þ

Under the assumptions of Gaussian and stationary noise,
the posterior probability distribution of binary parameters
θa takes the following form:

PðθajsÞ ∝ pð0ÞðθaÞ exp
�
−
1

2
ΓabΔθaΔθb

�
; ð15Þ

where Δθa ¼ θ̂a − θa with θ̂a being the maximum like-
lihood values of θa. pð0ÞðθaÞ gives the probability distri-
bution of the prior information, which we take to be in a
Gaussian form for simplicity. Γab is called the Fisher
information matrix which is defined as

Γab ¼ ð∂ahj∂bhÞ; ð16Þ

where ∂b ≡ ∂
∂θb. One can estimate the root mean square of

Δθa by taking the square root of the diagonal elements of
the inverse Fisher matrix Σab,

Σab ¼ ðΓ̃−1Þab ¼ hΔθaΔθbi; ð17Þ

where Γ̃ab is defined by

pð0ÞðθaÞ exp
�
−
1

2
ΓabΔθaΔθb

�
¼ exp

�
−
1

2
Γ̃abΔθaΔθb

�
:

ð18Þ
To save computational time, we use IMRPhenomB wave-

form. Reference [20] showed that the difference in con-
straints on PPE phase parameters between IMRPhenomB
and IMRPhenomD waveforms are negligible for propaga-
tion mechanisms at any PN order and for generation
mechanisms at negative PN orders. In the Appendix, we
perform a similar comparison for generation mechanism
corrections in the amplitude using sky-averaged waveforms
and show that the former is at least suitable for constraining
generation mechanisms that enter at negative PN orders,
which is what we will consider in Sec. III.
We choose the following parameters as our variables for

the Fisher analysis:

θa ≡ ðlnMz; ln η; χ; lnDL; ln t0;ϕ0; α; δ;ψ ; ι; θPPEÞ; ð19Þ
where Mz is the redshifted chirp mass, η≡m1m2=ðm1 þ
m2Þ2 is the symmetric mass ratio, and χ is the effective spin
parameter.3 α; δ;ψ , and ι are the right ascension, declina-
tion, polarization, and inclination angles, respectively, in
the detector frame. The non-GR parameter is represented
by θPPE ¼ αPPE or βPPE. We perform a Monte Carlo
simulation by using each set of the posterior samples

released by LIGO [47] for ðMz; η; DL; χ; α; δ; ιÞ, while
we randomly sample the polarization angle ψ and the
coalescence phase ϕ0 in [0; π] and ½0; 2π�, respectively. We
impose prior information such that −1 ≤ χ ≤ 1,
−π ≤ ðϕ0; α;ψÞ ≤ π, and −π=2 ≤ ðδ; ιÞ ≤ π=2.
We use the detector sensitivity of Advanced LIGO

(aLIGO) O1 run [59], and we consider the two detectors
at Hanford and Livingston. For simplicity, we assume that
the Livingston noise spectrum is identical to that of
Hanford [55]. For the Fisher integration, the minimum
frequency is taken to be 20 Hz, while the maximum
frequency is the same as the cutoff frequency above which
the signal power is negligible [60].
Now we are going to discuss how we compute the

probability distribution of a non-GR parameter from the
output of a Fisher analysis with a Monte Carlo simulation.
We set the fiducial value of any non-GR parameter to be
zero for our analysis. We perform the following integration
numerically to obtain the compound probability density
function4 of any parameter ξ:

PðξÞ ¼
Z

PðξjσξÞPðσξÞdσξ; ð20Þ

where PðξÞ is the marginal (unconditional) probability
density function of ξ. PðξjσξÞ ∝ exp½−ðξ − ξ̄Þ2=2σ2ξ � is the
conditional probability density function of ξ, which we
assume to be a Gaussian distribution with a mean ξ̄ and a
standard deviation σξ. PðσξÞ is the probability distribution
of σξ computed from the Fisher analysis for the entire
posterior distribution.
Let us finish this section by explaining how we can

utilize both amplitude and phase corrections to derive
constraints on some theory. One can include αPPE or
βPPE as variables to the Fisher analysis as in Eq. (19)
and map them to a non-GR parameter of a theory to derive
constraints from the phase and amplitude independently.
We refer to such constraints as the “phase-only” and
“amplitude-only” bounds, respectively. How can we
achieve a single constraint that accommodates both of
them? Recall the relations between the PPE parameters in
Sec. II A. One can rewrite αPPE in the waveform in terms of
βPPE according to Eqs. (8) or (9) and eliminate the former
variable from the analysis. We refer to such constraints as
the “phase and amplitude combined” bounds.5

3The effective spin parameter is defined as χ ≡ ðm1χ1 þ
m2χ2Þ=ðm1 þm2Þ, where χA with A ¼ ð1; 2Þ is the dimensionless
spin of the Ath body.

4If the distribution of a random variable y depends on a
parameter x, and if x follows a certain distribution PðxÞ (called
the mixing or latent distribution), the marginal distribution of y is
called mixture distribution or compound probability distribution
and is given by PðyÞ ¼ R

PðyjxÞPðxÞdx [61].
5Alternatively, one can rewrite the PPE corrections in the phase

and the amplitude in terms of non-GR parameters of a theory.
Performing Fisher analyses with such parameters as variables
lead to similar constraints as the “phase and amplitude combined”
bounds, although such an approach is not theory agnostic.
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III. RESULTS IN EXAMPLE THEORIES

We now apply our analysis to some example theories.
We begin by studying massive gravity that yields correc-
tions in the phase through propagation mechanisms. We
compare bounds from the Fisher analysis to those from
LVC’s Bayesian analysis to justify the former. We next
study EdGB gravity, scalar-tensor theories, and varying-G
theories, which achieve the corrections through generation
mechanisms entering at negative PN orders. Bounds on
these theories are summarized in Table I.

A. Validation of the fisher analysis: Massive gravity

The idea of introducing the mass to gravitons is rather
old [62], and many attempts have been made to construct a
feasible theory that allows one to do so [63]. Such a theory
may arise in higher-dimensional setups [64] and has the
potential to solve the cosmic acceleration problem [63].
Although gravitons with nonvanishing masses may have
additional polarizations as well [65], we here restrict our
attention to the non-GR effects on the tensor modes due to a
massive dispersion relation.
We will focus on the non-GR corrections specifically to

the GW phase. Thus, the purpose of this section is simply to
compare our Fisher analysis with the Bayesian one per-
formed by the LVC. Gravitons with a nonvanishing mass
travel at a speed smaller than the speed of light, and the
non-GR effects accumulate over the distance. The modified
dispersion relation for such gravitons is given by
E2 ¼ p2c2 þm2

gc4, where mg is the mass of the graviton
while E and p are the energy and the momentum,
respectively. The PPE phase parameters are [66]

βMG ¼ π2

λ2g

M
1þ z

D; b ¼ 3; ð21Þ

where

D ¼ z
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩM þ ΩΛ

p
�
1 −

z
4

�
3ΩM

ΩM þ ΩΛ

�
þOðz2Þ

�
: ð22Þ

Here, ΩM and ΩΛ are the energy density of matter and dark
energy, respectively. H0 is the Hubble constant while z is
the redshift of the source. λg is the Compton wavelength of
the graviton that is related to mg as λg ≡ h=ðmgcÞ, where h
is Planck’s constant.
We compute the probability distribution of λg from

GW150914 according to the procedure outlined in
Sec. II and compare with the one obtained by the LVC
[19] (Fig. 1). The Fisher analysis with Monte Carlo
simulations yields λg < 1.2 × 1013 km at 90% C.L., which
is in a good agreement with the LVC bound of 1.0 ×
1013 km and thus shows the validity of the former. The
difference in the two cumulative distributions of λg pre-
sented in Fig. 1 can be attributed to the fact that the LVC

used a more accurate Bayesian analysis and imposed a
uniform prior on the graviton mass. The GW bound has
recently been updated by combining multiple events [21].
The new bound is stronger than binary pulsar constraints
[67,68] but slightly weaker than the updated solar system
bounds [69]. The bound is also weaker than the ones from
the observations of galactic clusters [70–72], gravitational
lensing [73], and the absence of superradiant instability in
supermassive BHs [74].

B. Einstein-Dilaton-Gauss-Bonnet gravity

EdGB gravity endows one of the simplest high-energy
modifications to GR [75,76]. Such a theory is motivated
from low-energy effective string theories and also arises as
a special case of Horndeski gravity [77,78]. The EdGB
action is given by introducing a quadratic-curvature cor-
rection (Gauss-Bonnet invariant) to the GR action, which is
nonminimally coupled to a scalar field (dilaton) with a
coupling constant ᾱEdGB [79].6

In EdGB gravity, BHs acquire scalar monopole charges
which may generate scalar dipole radiation if they form
binaries [48,80–82]. Such radiation leads to an earlier
coalescence of BH binaries compared to that of GR and
modifies the gravitational waveform with the PPE param-
eters given by [20,48]

βEdGB ¼ −
5

7168
ζEdGB

ðm2
1s̃

EdGB
2 −m2

2s̃
EdGB
1 Þ2

m4η18=5
; ð23Þ
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FIG. 1. The cumulative probability distribution of the graviton
Compton wavelength from GW150914. We show the ones
obtained from a Fisher analysis with Monte Carlo simulations
(blue solid) and from a Bayesian analysis by the LVC (red solid).
Each of the vertical dashed lines corresponds to the lower bound
of the distribution of the same color with 90% confidence.
Observe how the two different analyses give similar bounds.

6We use barred quantities for coupling constants in order to
distinguish them from the PPE parameters.
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with b ¼ −7 and

αEdGB ¼ −
5

192
ζEdGB

ðm2
1s̃

EdGB
2 −m2

2s̃
EdGB
1 Þ2

m4η18=5
; ð24Þ

with a ¼ −2. Here, ζEdGB ≡ 16πᾱ2EdGB=m
4 is the dimen-

sionless EdGB coupling parameter and s̃EdGBA are the spin-
dependent factors of the BH scalar charges given by
s̃EdGBA ≡ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χA

2
p

− 1þ χA
2Þ=χA2 [81,82].7

We now derive constraints on EdGB gravity from
GW150914 and GW151226. First, we estimate how well
these events satisfy the small coupling approximation
ζEdGB < 1. To do so, we extract the 90% C.L. upper bound
ΔζEdGB from each sample of the posterior distribution of a
particular event. We then create histograms with all the
samples (see Fig. 2) and calculate the fraction satisfying
ΔζEdGB < 1. For GW150914, 72% (42%) of the samples
satisfy the small coupling approximation if ΔζEdGB is
derived from the phase (amplitude) correction only, while
71% of the posterior distribution satisfies such approxi-
mation if the phase and amplitude corrections are com-
bined. A similar analysis with GW151226 gives 98% and
87% for the phase and amplitude corrections, respectively,
while combining the two yields almost the same result as
that of the phase-only case. Since the fraction of samples
satisfying ζEdGB < 1 is much higher for GW151226 than
GW150914 due to a larger number of GW cycles and
slower relative velocity of the binary constituents, the
former event places more reliable constraints on EdGB
gravity compared to the latter one.

Figure 3 presents cumulative probability distributions of
ᾱ2EdGB

8 for GW150914 for three different cases with vertical
lines representing the 90% C.L. of the corresponding
distribution. We found the 90% C.L. constraints onffiffiffiffiffiffiffiffiffiffiffiffi
ᾱEdGB

p
from each of the phase and amplitude corrections

as 50.5 km and 76.3 km, respectively. Notice that these
bounds have the same order of magnitude. On the other
hand, combining the amplitude and phase corrections leads
to an upper bound of 51.5 km, which is weaker than the
phase-only constraint by 2% (to be discussed more in
Sec. IV). Though the above constraints may not be reliable
as the 90% C.L., bounds on ζEdGB do not satisfy the small
coupling approximation, which is shown in Table I.
We now look at bounds on GW151226. We found that

this event yields 4.32 km and 10.5 km, respectively, from
the phase and amplitude corrections, while combining the
two only changes the result from the phase-only case by
0.01%. These bounds are consistent with those in a recent
paper [84] that utilized the LVC posterior samples includ-
ing the non-GR phase corrections at a −1 PN order, while
Ref. [85] found even stronger bounds by combining
multiple GW events. These GW bounds are comparable
to the one obtained from low-mass x-ray binaries [86].
Although GW150914 leads to weaker constraints on

EdGB gravity compared to GW151226, the effect of
amplitude correction is more manifested for the former
event. This is because GW150914 has a smaller number of
GW cycles, and thus, the amplitude contribution becomes
relatively higher than GW151226.
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FIG. 2. Histogram distributions of the 90% C.L. bounds on
ζEdGB from a Fisher analysis with the phase correction only (blue
solid), the amplitude correction only (red dashed) and combining
the two corrections (green dotted-dashed). Fiducial values are
taken from the posterior samples of GW150914. The samples that
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small coupling approximation with 90% C.L.
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FIG. 3. Cumulative probability distributions of ᾱ2EdGB obtained
from GW150914 for the same three cases as in Fig. 2. Each
vertical dashed line shows the corresponding 90% C.L. upper
bound of a solid line of the same color.

7For ordinary stars like neutron stars, s̃EdGBA are zero [48,83].

8We show the distribution of ᾱ2EdGB instead of
ffiffiffiffiffiffiffiffiffiffiffiffi
ᾱEdGB

p
as it is

the former that directly enters in the waveform.
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C. Scalar-tensor theories

Scalar-tensor theories of gravity emerge from the dimen-
sional reduction of higher-dimensional theories such as the
Kaluza-Klein theory [87,88] and string theories [89,90].
In addition to the spacetime curvature, scalar fields mediate
an additional force which is introduced through nonmini-
mal couplings of scalar fields and gravity [78,91,92]. Such
theories can explain the accelerated expansion of the
Universe [93–97], inflation [98–100], primordial nucleo-
synthesis [101–104], and the structure formation [105].
Certain scalar-tensor theories predict scalarization of

neutron stars [106,107], which can also happen to BHs if
the scalar field evolves with time cosmologically [108,109].
Compact binaries formed by such objects emit dipole
radiation which modifies the GW phase with [46,110,111]

βST ¼ −
5

7168
η2=5ðα1 − α2Þ2 ð25Þ

with b ¼ −7, and the GW amplitude as [46]

αST ¼ −
5

192
η2=5ðα1 − α2Þ2 ð26Þ

with a ¼ −2. Here, αA represents the scalar charge of
the Ath binary component and depends on specific theories
and the type of compact objects. If we consider a binary
consisting of BHs in a theory where the scalar field ϕ obeys
a massless Klein-Gordon equation, αA is given by [109]

αA ¼ 2mA
_ϕ½1þ ð1 − χ2AÞ1=2�; ð27Þ

where _ϕ is the rate of change of ϕ with time.
One can use Eqs. (25)–(27) and the numerical analysis

described in Sec. II B to find constraints on _ϕ as long as the
small coupling approximation mA

_ϕ < 1 is satisfied. In this
regard, only 11.7% (13.5%) of the samples of GW150914
satisfies such approximation with 90% confidence level
for the phase (combined) correction, while all of the
samples fail to do so for the amplitude correction.
Hence GW150914 cannot place any meaningful bound
on scalar-tensor theories considered here. On the other
hand, 90.4% of the samples from GW151226 meets the
small coupling criterion for the phase-only and combined
analyses, while the fraction is only 25% for the amplitude
correction. Thus, we derive reliable constraints from
GW151226 with the phase-only and combined analyses,
with both leading to _ϕ < 1.1 × 104= sec.9 This constraint is

10 orders of magnitude weaker than the current most
stringent bound obtained from the orbital decay rate of
quasar OJ287 [109], though this is the first bound obtained
in the strong/dynamical regime.

D. Varying- G theories

Many metric theories of gravity that violate the strong
equivalence principle [1,112,113] predict time variation in
the gravitational coupling parameter G [114]. Scalar-tensor
theories are examples where G varies as a function of the
asymptotic scalar field [115], which may vary over time.
Any such time dependence of G leads to a variation in the
effective masses of compact bodies, which in turn makes
them experience anomalous cosmic acceleration [57].
Such phenomena alter the gravitational waveform through
the modifications of the binary orbital evolution and the
energy balance law [46].
We now show the PPE modifications due to a time

variation in the gravitational constant. In fact, the amount
of gravitational coupling that appears in different sectors of
a gravitational theory may not be unique. The Einstein-Æ
ther theory [116] and the Brans-Dicke theory with a
cosmologically evolving scalar field [115] are examples
of such theories in which various gravitational constants
exist. Reference [46] studied a generic case with two distinct
gravitational constants in Kepler’s law (conservative sector)
and GW luminosity (dissipative sector). Here, we place
constraints on the special case where these two constants
coincide with each other. Let the masses and the Newton’s
constant vary according to the following equations:

mAðtÞ ≈mA;0 þ _mA;0ðt − t0Þ; ð28Þ

GðtÞ ≈ G0 þ _G0ðt − t0Þ: ð29Þ

Here, a subscript 0 denotes that the quantity is measured at
the time t ¼ t0, and an overhead dot means a derivative with
respect to time. Equations (28) and (29) modify the GW
phase and amplitude as [46]

β _G ¼ −
25

851968
_G0η

3=5
0 ½ð11þ 3s1 þ 3s2Þm0

−41ðs1m1 þ s2m2Þ� ð30Þ

with b ¼ −13, and

α _G ¼ 5

512
η3=50

_G0½−ð7 − s1 − s2Þm0

þ13ðs1m1 þ s2m2Þ� ð31Þ

with a ¼ −8, respectively. Here, sA is the sensitivity of the
Ath binary component defined as

9A previous analysis with the sky-averaged waveform in
Ref. [20] could not place a reliable bound on scalar-tensor
theories. Since the posterior distributions of the GW events were
not available then, one could not determine how well those events
satisfied the small coupling approximation from a simple Fisher
analysis.
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sA ¼ −
G
mA

∂mA

∂G
����
t0

: ð32Þ

Employing Eqs. (30) and (31), GW150914 (GW151226)
imposes constraints on j _G0=G0j from the phase-only and
amplitude-only analyses as 7.30 × 106 yr−1 (2.24×
104 yr−1) and 1.37 × 108 yr−1 (3.82 × 105 yr−1), respec-
tively, with the combined analyses yielding slight improve-
ments over the phase-only results. Unlike the EdGB and
scalar-tensor cases, the amplitude-only analyses yield much
worse bound than that from the phase-only cases even with
GW150914. Notice also that for varying-G theories, the
combined bound is slightly stronger than the phase-only
bound (to be discussed more in the subsequent section).
These bounds are much less stringent compared to the other
contemporary constraints [115]. However, future space-
borne detectors such as LISA [117,118] will be able to
obtain constraints up to 13 orders of magnitude stronger
compared to the aLIGO ones [51,119].

IV. CONCLUSION AND DISCUSSION

In this analysis, we have derived constraints on scalar-
tensor, EdGB, and varying-G theories from GW150914
and GW151226. To do so, we performed Fisher analyses
with Monte Carlo simulations using the posterior samples
constructed by LVC. In particular, we derived reliable
constraints on the time evolution of the scalar field in
scalar-tensor theories fromGWobservations for the first time.
We explored how amplitude corrections contribute to the

constraints on such theories. We derived three sets of
bounds on each theory: phase only, amplitude only, and
from both phase and amplitude combined. We found that
for binaries with large masses such as GW150914, where we
have less number of cycles, the bounds from the amplitude
and phase can be comparable to each other. On the other
hand, combined analyses yield constraints that differ from
the phase-only case at most by 3.6% for the theories under
consideration. Hence, at least in theories where the leading
corrections enter at negative PN orders, the phase-only
analyses as done in previous literature [20,84,85,119,120]
can produce sufficiently accurate constraints.
Depending on the prior information and the PN order of

the non-GR correction, a combined analysis can yield
stronger or weaker constraint compared to a phase-only
one. With the priors mentioned in Sec. II B, the fractional
difference between βPPE for the two cases is presented in
Fig. 4. From the −4 PN to −2.5 PN correction, the
combined analyses give rise to slight improvements over
the phase-only constraints, while for other cases, the former
is weaker with a maximum deterioration of 8.5% at the
−1 PN order. Nonetheless, it would be safer to include
both phase and amplitude corrections in the analysis as a
lack of the former in the waveform may cause systematic
errors on GR parameters such as the luminosity distance if
non-GR corrections exist in nature.

In this paper, we considered only the leading PN
corrections in the inspiral part of the waveform, but how
important are higher-PN corrections and modifications in
the merger-ringdown portion? Reference [20] partially
addressed this question by taking Brans-Dicke theory as
an example whose leading correction enters at the −1 PN
order, similar to EdGB gravity and scalar-tensor theories
considered here. Appendix B of [20] shows that including
higher-PN corrections only affects the bound from the
leading PN correction by 10% at most for GW150914.
Moreover, for EdGB gravity, including the correction to the
black hole ringdown frequency and damping time only
affects the bound from the leading PN corrections in the
inspiral by 4.5% for GW150914 [121]. Thus, it is likely
that the bounds presented here are valid as order-of-
magnitude estimates.
A possible avenue for future work includes repeating the

calculation presented here but with a Bayesian analysis
using a more accurate waveform such as PhenomD,
PhenomPv2, or effective-one-body ones. In particular, it
would be interesting to investigate whether the amplitude
correction contribution entering at positive PN orders is
negligible like the negative PN cases reported here. It is
also interesting to repeat the analysis here to all the other
events in GWTC-1 [59] and study how much the bounds on
each theory improve by combining these events. Another
possibility is to take into account nontensorial polarization
modes following, e.g., [30]. For future detectors with
improved sensitivities, the ability to measure amplitude
corrections may be dominated by calibration errors.10
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n PN
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FIG. 4. Comparison of combined and phase-only analyses at
different PN orders from GW150914 with a sky-averaged
phenomB waveform. We show δβ ¼ ðβcomb − βphaseÞ=βphase,
where βphase and βcomb are bounds on βPPE from phase-only
and combined analyses, respectively. When δβ is positive
(negative), the combined analyses yield weaker (stronger) bounds
than the phase-only ones.

10The calibration error on the amplitude for the O2 run was
3.8% [59].
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APPENDIX: COMPARISON OF BOUNDS ON PPE
PARAMETERS WITH PHENOMB AND

PHENOMD WAVEFORMS

Even though the PhenomD waveform produces more
accurate results, we utilized the PhenomB one in this paper
throughout because the latter is simpler and saves computa-
tional time when performing Monte Carlo simulations. In
this Appendix, we compare constraints on the PPE param-
eter αPPE from both waveforms to justify our method.
Let us discuss the distinct features of the two waveforms

first. Both PhenomB and PhenomD waveforms are spin-
aligned (nonprecessing) frequency-domain phenomeno-
logical models of gravitational waveforms [60,122]. The
PhenomB waveform is calibrated for mass ratios up to
m1=m2 ¼ 4, and spin components of χi ∈ ½−0.85; 0.85�
are unified into a single effective spin. On the other hand,
the PhenomD waveform covers a larger region of the
parameter space with mass ratios up to 18 and spins of
χi ∈ ½−0.95; 0.95�, with both spins introduced independ-
ently. The waveform contains a much higher order in PN
terms in the inspiral than the PhenomB waveform and
further introduces an intermediate phase connecting the
inspiral and merger-ringdown portions, which make such
waveforms more reliable than the PhenomB ones.
We now estimate the constraints on the PPE amplitude

modification from the two waveforms. Since modifications
to propagation mechanisms used for massive gravity in
Sec. III A do not give rise to amplitude corrections, we here
focus on modifications to generation mechanisms. We
performed Fisher analyses with sky-averaged PhenomB
and PhenomD waveforms and derived upper bounds on
αPPE at different PN orders. As shown in Fig. 5, the results
from the two waveforms agree very well at negative PN
corrections but deviate from each other at the positive ones.
On the other hand, truncating the Fisher analyses at the end
of the inspiral phase show significant agreement between
the two waveforms at positive PN orders (Fig. 6), sug-
gesting that the deviation in Fig. 5 originates mainly from
the intermediate/merger-ringdown portion.
The example theories considered in this paper acquire

leading non-GR corrections either from propagation effects
or from the generation effects with the latter entering in
negative PN orders. A comparison between the PhenomB
and PhenomD results for constraining βPPE presented in

Ref. [20] reveals consistency on constraining modifications
to propagation mechanisms at both positive and negative
PN orders, while the two waveforms show agreement
only at negative PN orders for constraining modifications
to generation mechanisms. Together with the results on
amplitude corrections discussed above confirms that the
results of this paper should not change significantly if one
utilizes the PhenomDwaveform instead. On the other hand,
for constraining theories like dynamical Chern-Simons or
noncommutative gravity where the leading correction
enters at a positive PN order, the PhenomB waveform is
not expected to produce reliable results.
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FIG. 5. Comparison of 90% confidence constraints on αPPE
from GW1501914 with the PhenomB and PhenomD waveforms
for generation effects.
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FIG. 6. Similar to Fig. 5 but with inspiral signals only. The
Fisher analyses are truncated at 104 Hz which is corresponding to
the transition frequency between the inspiral and merger portions
of the PhenomB waveform, and we use the inspiral portion of the
PhenomD waveform all the way up to this cutoff frequency.
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