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We study the dynamics of small inhomogeneities in an expanding universe collapsing to form bound
structures using full solutions of the Einstein-Vlasov (N-body) equations. We compare these to standard
Newtonian N-body solutions using quantities defined with respect to fiducial observers in order to bound
relativistic effects. We focus on simplified initial conditions containing a limited range of length scales, but
vary the inhomogeneities from small magnitude, where the Newtonian and general-relativistic calculations
agree quite well, to large magnitude, where the background metric receives an order one correction. For
large inhomogeneities, we find that the collapse of overdensities tends to happen faster in Newtonian
calculations relative to fully general-relativistic ones. Even in this extreme regime, the differences in the
spacetime evolution outside the regions of large gravitational potential and velocity are small. For standard
cosmological values, we corroborate the robustness of Newtonian N-body simulations to model large scale
perturbations and the related cosmic variance in the local expansion rate.
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I. INTRODUCTION

Recently, there has been a growing interest in quantify-
ing the importance of effects that are both nonlinear and
relativistic on the large scale evolution and development of
structure in the Universe [1–10]. This means studying
effects that may be missed by the standard tool for studying
cosmological structure formation: Newtonian N-body sim-
ulations. The motivation for such studies ranges from
answering claims that small scale nonlinearities may have
a strong “backreaction” on large scales on the one extreme
[11–15], to the desire to quantify small, subpercent
relativistic effects which may soon become observable in
the era of precision cosmology [16–18].
There are a number of challenges in performing a full,

nonperturbative general-relativistic (GR) calculation of
structure formation. Solving the Einstein equations requires
both solving a set of constraint equations (typically elliptic)
at the initial time and evolving hyperbolic equations for
the metric which have characteristics that propagate at the
speed of light. The latter imposes a severe restriction on
the timestep of the simulation compared to the case where
the gravity is completely determined by an elliptic equation
and the matter moves nonrelativistically. Resolving the
small scales of collapsed structures is already very chal-
lenging within the Newtonian framework [19,20], and this
restriction makes the GR case much more severe. Hence,
most calculations beginning with a range of length scales
very quickly become underresolved. One approach is to
only include some general-relativistic corrections which do

not break the elliptic description of gravity [21,22].
However, this requires making a priori assumptions about
which terms can be neglected.
GR simulations also tend to discretize the metric

functions on grids, which makes it natural to use a fluid
description of the cold dark matter which can be discretized
on the same grid. This is what has been done for most
full GR calculations of cosmological structure to date
(Refs. [9,10,23] are exceptions to this). However, such
fluid descriptions break down as soon as multistream
regions emerge, which of course are generic features of
structure formation.
Finally, there is the difficulty of distinguishing and

quantifying the magnitude of effects coming from non-
linear gravity, from those solely due to nonlinear perturba-
tions in the matter (which will be captured by standard
Newtonian calculations) [7]. For example, one cannot
simply look at how inhomogeneous various functions of
the metric are in a GR simulation. Related to this, when one
is considering nonlinear deviations from a homogeneous
spacetime, coordinate ambiguities make it difficult to
interpret the metric functions directly, and one has to be
careful to compute gauge invariant quantities in order to
make a meaningful comparison [9].
This work extends that of Ref. [7], where a direct

comparison of Newtonian and GR simulations of structure
formation was performed utilizing the dictionary of
Refs. [24,25] to generate consistent initial conditions in
both simulations and to compare observables. In Ref. [7],
a fluid description of the matter was used for the GR
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calculations, which meant that the comparison became
unreliable past the point where multistream regions would
develop. Here, we use the methods of Ref. [23] to solve
the Einstein-Vlasov equations, allowing us to continue the
comparison as bound structures are formed. We sidestep
some of the computational challenges mentioned above
by considering simplified initial conditions, where the
perturbations are concentrated at a single wavelength,
but consider various magnitudes for the inhomogeneities.
For large enough inhomogeneities (in excess of standard
cosmological values), we do find appreciable deviations
between the Newtonian and GR calculations, with the
collapse of overdensities happening faster in the former.
However, in the regime where this occurs, it is already clear
from the Newtonian calculation itself that deviations are
expected since the gravitational potential and velocities
relative to the speed of light are becoming comparable to
unity. Furthermore, even in such cases, we find that outside
the regions of large gravitational potential, the agreement
between the two methods in observables like the evolution
of the density and the propagation of light is still good.
The remainder of this paper is as follows. In Sec. II, we

describe the initial conditions we consider, the methods we
use to evolve in both a full GR and Newtonian framework,
and the diagnostic quantities we use to compare the two.
In Sec. III, we present the results of our calculations
evolving inhomogeneities of various magnitudes, and in
Sec. IV we conclude. In the appendix, we present results
estimating the numerical errors in our calculations. We use
units with G ¼ c ¼ 1 throughout.

II. METHODOLOGY

A. Initial conditions

Following Refs. [1,7], we consider a simple set of initial
conditions consisting of density perturbations about a
homogeneous solution. The homogeneous solution is
characterized by its initial expansion rate H0, and hence
and density ρ0 ≔ 8π=3H2

0, which sets the overall scale. The
perturbations are taken to be in each of the Cartesian
directions with initial wavelength that is four times the
Hubble radius at the beginning of the calculation. That is,
we take the Newtonian density contrast to be

δN ¼
X

i

δ̄i sinðkxiÞ; ð1Þ

with k ¼ πH0=2. We introduce a small asymmetry between
the different Cartesian directions by letting δi ¼ δ̄ð1; 0.9;
1.1Þ, and we consider varying magnitude density pertur-
bations δ̄ × 102 ¼ 0.25, 0.5, 1, and 5. The initial velocity is
given by the Zel’dovich approximation [26]

vi ¼ H0δi cosðkxiÞ=k: ð2Þ

These initial conditions have a maximum overdensity at
(0,0,0) and maximum underdensity at ðπ=k; π=k; π=kÞ.
As described in detail in Ref. [7], fully general-

relativistic initial data are calculated using the dictionary
of Refs. [24,25] to determine the approximate metric and
stress-energy tensor, and then solving the full Einstein
constraint equations in the conformal thin-sandwich for-
mulation [27] for any nonlinear corrections.

B. Newtonian simulations

The Newtonian N-body simulations are performed using
the GADGET-2 code [28] with a TreePM algorithm for the
gravity solver [29]. These simulations serve as a reference
to standard computational cosmology, where the evolution
of the cosmic density field is governed by Newtonian
gravity, and is fully separated from the background
expansion, described in turn by the Friedmann equation.
GADGET-2 has been validated in a number of comparison
studies verifying the accuracy and robustness of various
numerical implementations of cold dark matter cosmologi-
cal simulations (see, e.g., Refs. [30–32]).
We generate conditions by displacing particles from a

regular grid according to the field given by the Zel’dovich
approximation [26]

δxi ¼ −
4π

ρ0
∂iΨNða ¼ 1Þ; ð3Þ

where ΨN is the Newtonian gravitational potential given by

∂i∂iΨN ¼ 4πa2ρ0δN; ð4Þ

and by convention the scale factor a is set to unity at the
beginning of the calculation. The resulting density field that
is inferred from the positions of the particles reproduces
the input density up to the second order corrections in the
density contrast. As in Ref. [7], we apply the corrections by
means of a minimal adjustment of particle’s masses. The
particle masses are set in such a way that they compensate
all local differences between the actual (as calculated by the
employed density estimator, described below) and input
density evaluated at the position of every particle. We note
that the introduced corrections are small (subpercent level),
but they guarantee a high-accuracy match between initial
conditions of the Newtonian and GR simulations.
The density field is not explicitly evolved in the N-body

simulations, and it can only be derived from the positions
of the particles. Here, we employ a well-tested method for
measuring matter density in cosmological simulations of
cold dark matter, based on tracing the evolution of the
Lagrangian tessellation of the dark matter manifold in
phase space [33,34]. Density is estimated by means of
scaling the initial density according to a relative change
of the volume of tetrahedral mass elements defined in
the initial tessellation. In single-stream regions (no shell
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crossing), local density at a given position is determined
solely by a single tetrahedral cell containing this point,
while density in multistream regions (after shell crossing)
arises from multiple density contributions coming from all
locally overlapping tetrahedral cells.
The employed density estimator outperforms more tradi-

tional techniques such as cloud-in-cell (CIC) in several
respects. Here, we emphasize that the estimator can be
applied locally, and it does not suffer from undersampling
in single-stream regions, making it an ideal method for
tracing the density field in voids. On the other hand, density
estimates in multiple-stream regions should be regarded
with reservation, because the full robustness of the esti-
mator requires simulations with a computationally heavy
adaptive refinement of tessellation cells [35]. In particular,
density estimation in the center of dark mater haloes
depends on resolution, and there is no guarantee that the
computation can converge due to the cuspy nature of dark
matter density profiles, although precision estimated from
comparing results based on different tessellations at fixed
resolution is of the order of 0.1 dex [34]. The problem
of resolution dependence can be circumvented by employ-
ing a density estimator with a fixed smoothing scale in
comoving coordinates instead. Bearing this in mind, we
include CIC estimates of density in some cases for
comparison with the GR calculation (which does not utilize
tetrahedral cells).
Unless otherwise stated, the results shown here are

obtained used N ¼ 1963 particles. We also run select cases
using N ¼ 1283 in order to estimate numerical errors.
The simulations were carried out with a force softening of
5 × 10−4 (high resolution) and 8 × 10−4 (low resolution) in
units of the simulation domain length L.
In order to compute the trajectories of freely falling test

particles, we follow the evolution of the tetrahedral cells
containing the initial positions of the test particles. The
positions of the evolved test particles are then computed by
interpolating between the displacements of cells vertices,
which are always given by dark matter particles.

C. GR simulations

The fully general-relativistic N-body simulations are
performed using the methods described in Ref. [23].
This code was also recently used to follow black hole
formation from collisionless matter [36]. As in the
Newtonian simulations, we determine the initial particle
positions by starting from a uniform lattice of particles
and then displacing each particle slightly according to the
Zel’dovich approximation (given by Eq. (31) in Ref. [24]).
However, there will be a small nonlinear correction to the
density field which we will need to apply to the particle
distribution. To do this, we use slightly nonuniform masses
for the particles, given by rescaling the masses in propor-
tion to the ratio of the desired density to that obtained from
the Zel’dovich approximation.

Though the code used here does implement adaptive
mesh refinement (see Ref. [23]), for this study we restrict to
uniform grids. We do this mainly for efficiency, though we
note that the results in the appendix indicate that, at late
times in our simulations, the numerical error is mainly
dominated by the number of particles. For most of the
results presented here, we use resolution with 96 points
across the wavelength of the initial perturbation and 43

particles per grid cell. However, we run select cases at
multiple resolutions utilizing 2=3× and 4=3× as many grid
points in order to establish convergence and estimate
truncation error. See the appendix for details.
For comparison, we also include a few results that are

calculated by treating the matter as a pressureless fluid as
described in Ref. [7].

D. Comparing observables

In order to compare the results of the Newtonian and GR
N-body evolutions, we compute several quantities defined
with respect to fiducial observers, as detailed in [7]. We
compute the matter density along the worldlines of timelike
observers and use this quantity as a function of proper time
ρðτÞ to define an effective density contrast

δobsðτÞ ≔ ðρðτÞ=ρ0Þa−3p − 1; ð5Þ

where

ap ≔ ½3τH0=2þ 1�2=3 ð6Þ

is a convenient parametrization of the proper time using the
Lemaître-Friedmann-Robertson-Walker (LFRW) expres-
sion for the scale factor that would hold in the homo-
geneous case. We emphasize that since H0 (and hence
ρ0 ≔ 8π=3H2

0) is just a constant that sets the overall scale of
our initial conditions, δobsðapÞ is just a convenient repar-
ameterization of density as a function of proper time.
We also measure properties of the spacetimes using

null geodesics which are “emitted” and subsequently
“observed” by fiducial timelike observers. If ka is the four
momentum of the null geodesic and ua is the four velocity
of emitter/observer, we can compute a redshift factor

z ¼ −1þ ðuakaÞemit

ðuakaÞobs
: ð7Þ

For ua, we take the four velocity implied by the stress-
energy tensor Tab ¼ ρuaub, which weights the contribu-
tions from different particles in the case of multistream
regions. We can also use the deviation of neighboring
null geodesics to compute the luminosity distance (or,
equivalently through the reciprocity relation, the angular
distance [37]) as a function of the redshift DLðzÞ along
each null ray.
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For the GR simulations, these quantities are computed by
including extra tracer particles which are evolved in the
same way as the matter particles (but without backreact-
ing). For the Newtonian simulations, these quantities
are computed by reconstructing the effective spacetime
using the Newtonian-GR dictionary of [24,25] and inte-
grating the resulting geodesic equation. Hence, the
Newtonian calculation also includes relativistic effects in
the propagation of light, etc., and the comparison is really
of how much the spacetimes implied by the two methods of
calculation differ.

III. RESULTS

With the initial conditions we have chosen, as the
spacetime expands and the inhomogeneities move inside
the horizon, a growing void emerges at the point of
maximum underdensity, and a bound, multistream region
(i.e., a halo) is formed at the point of maximum overdensity.
In the top and middle panels of Fig. 1, we show the density
contrast measure δobs at these two points for cases with
different magnitudes of the initial inhomogeneities. The
Newtonian and GR calculations show good agreement at
the underdensity for all cases, even as the density contrast
becomes highly nonlinear.
For the overdensity, two differences are noticeable. The

first is that the collapse and halo formation occurs slightly
earlier for the Newtonian case, and this difference increases
as the initial inhomogeneities become larger (and hence
more relativistic). The second is that the saturation density
is significantly larger for the Newtonian case. We shall not
focus too much on the latter since this is fairly sensitive
to numerical effects such as the finite number of particles
and the smoothing length. In the bottom panel of Fig. 1, we
show for the δ̄ ¼ 0.01 case a comparison of how this
quantity changes, both with numerical resolution, and with
a particle versus pressureless fluid treatment of the matter.
Here it can also be seen that with a CIC estimate of the
density, the maximum density contrast for the Newtonian
calculation is much closer to the GR result (which similarly
deposits each particle’s stress energy on neighboring grid
points). In the GR pressureless fluid treatment, the calcu-
lation breaks down at shell crossing, whereas with the
particle treatment the density eventually saturates. In either
case, finite resolution tends to lead an underestimate of the
density around this point. However, even taking this into
account, the collapse happens faster in the Newtonian case
compared to the GR case. This discrepancy increases with
increasing inhomogeneity amplitude and becomes quite
pronounced for the case with δ̄ ¼ 0.05. For this extreme
case, the Newtonian calculation has to be terminated when
the magnitude of the Newtonian potential ψ becomes
∼1=2. We discuss this case in more detail below.
The differences in the evolution of multistream regions

can be tracked by considering a set of fiducial observers,

FIG. 1. Top: the δobs measure of the density contrast at the
points of minimum density for the cases δ̄ ¼ 0.0025, 0.005, 0.01,
and 0.05. (The Newtonian and GR curves for the underdensities
are essentially indistinguishable on the scale of the plot.) Middle:
same as above, but for the density contrast at the points of
maximum density. The curves labeled “CIC” use a cloud-in-cell
estimate of the density—similar to the way the calculation is done
for GR simulations—instead of the tetrahedral cell estimate.
Bottom: a comparison of this quantity at the point of maximum
overdensity for δ̄ ¼ 0.01 for several different resolutions and
utilizing a fluid versus particle treatment.
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comoving with the matter, that are initially displaced
from the halo by some distance, and comparing the
proper time it takes for them to eventually fall through
the point of maximum overdensity and begin to
oscillate around it. This is illustrated in Fig. 2, where
it is apparent that as the size of the inhomogeneities
increases, and the collapse takes place more quickly
and at scales more comparable to the Hubble scale, the
relative discrepancy between the Newtonian and GR
cases increases, with the Newtonian case exhibiting
faster collapse. (We note that in general these coor-
dinate distances are gauge dependent, but the time the
particles cross the overdensity is not.)
Figure 3 shows the differences between the Newtonian

and GR positions of freely falling particles from Fig. 2 as a

function of the absolute magnitude of the infall velocity
inferred from the Newtonian simulation. For the sake of
clarity, we only show the trajectories up until the time
where they first cross the halo center in the Newtonian run.
The comparison demonstrates that the Newtonian trajecto-
ries closely follow their GR counterparts, as long as infall
velocities do not exceed the limits of nonrelativistic
dynamics. Noticeable discrepancies between the two sim-
ulations occur when the particles reach relativistic veloc-
ities. The apparent differences reflect the limited accuracy
of the Newtonian simulations when there is a violation of
the nonrelativistic assumption. Particles in the Newtonian
simulations are accelerated to larger velocities, giving rise
to a faster collapse onto the central object than in the GR
simulations.

FIG. 2. The coordinate distances from the point of maximum density of a set of fiducial particles for the GR and Newtonian
simulations, as a function of the proper-time scale factor of the particle. For each panel, the top half shows the GR results, while the
bottom half shows the Newtonian results. The red, green, and blue curves correspond to particles initially displaced from the point of
maximum overdensity in the x, y, and z coordinate directions, respectively. The different panels correspond to (left to right, top to
bottom) δ̄ ¼ 0.05, 0.01, 0.005, and 0.0025. Though the actual distance is gauge dependent (which in particular is the reason for the
initial oscillations in the GR curves), the time the particles cross the overdensity is not. For the δ̄ ¼ 0.05 case, the Newtonian calculation
has to be terminated when the Newtonian potential becomes large.
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We can also compare the differences in the effective
spacetimes using the propagation of light. In Fig. 4, we
compare the luminosity–redshift relation for fiducial light
rays propagating between the points of minimum and
maximum density. From the comparison with the homo-
geneous solution shown in the left column of Fig. 4, one
can see that the cases considered here have large, nonlinear
deviations from the LFRW behavior. Nevertheless, as
evident in the right column, the differences between the
GR and Newtonian case remain much smaller, in most
cases subpercent and consistent with numerical truncation
error (see the appendix and Ref. [7]), indicating the
differences in the spacetimes are small.
For the larger amplitude inhomogeneities, light rays

emitted from the overdensity at later times have a DLðzÞ
that is slightly smaller for the GR calculation than the
Newtonian counterpart at small z, but slightly larger at
larger z as they move away from region of high gravita-
tional potential. For light rays emitted from the minimum
density void, the differences between the GR and
Newtonian calculations generally remain small—at the
subpercent level—until the overdensity is approached. In
the vicinity of the overdensity, the gravitational potential
can be strong enough to cause a blue-shift, as evident in the
top panel of Fig. 4.
Finally, we mention further details of the case with

δ̄ ¼ 0.05. This choice of initial conditions represents the
extreme limiting case where the Newtonian treatment

completely breaks down, and the Newtonian potential
reaches jψ j ∼ 1=2 after a 15-fold increase of scale factor.
As shown in Fig. 1, though the collapse at the overdensity
(middle panel) occurs faster (in terms of proper observer
time) in the Newtonian calculation than the full GR one,
and the two calculations begin to noticeably differ well
before halo formation, the evolution of the density in
the void (top panel) still agrees well, with very little
“backreaction” of the high-curvature region on the global
expansion. In Fig. 5, we also show the luminosity distance-
redshift relation for this case, which continues the trend
found in Fig. 4, with increasing deviation between the
Newtonian and GR calculations. Again, even for this
extreme case, the differences between the light propagation
in the void region are small. We are also not able to
continue the GR calculation forward indefinitely, but it
appears that a black hole is being formed at the overdensity.
However, accurately tracking the attendant small scales
requires adaptive mesh refinement, which we leave to
future work.

IV. DISCUSSION AND CONCLUSION

In this work, we have shown that a meaningful com-
parison can be carried out between standard N-body
simulations of cosmological structure formation, which
assume Newtonian-type gravity on the background of a
homogeneously expanding universe, and full solutions of
the Einstein-Vlasov equations, which make no assumptions
regarding a background cosmology. For computational
expediency, we have focused on a simple set of initial
conditions, with inhomogeneities at a single length scale,
but considered a range of amplitudes, including going
all the way to the limit where the nonrelativistic assump-
tions underlying the Newtonian calculation break down.
Tackling a more realistic power spectrum of density
fluctuations will require more advanced techniques, such
as adaptive mesh refinement, and will be quite computa-
tionally expensive given the stringent requirements place
on time steps due to the fact that information propagates at
the speed of light.
We find that for small initial density fluctuations, the

Newtonian and GR calculations show excellent agreement
(with differences typically subpercent and consistent with
truncation error) well into the regime where the deviations
from homogeneity become nonlinear. For large density
fluctuations, the dominant relativistic correction seems
to be that the collapse of overdensities occurs slower in
the full GR calculation compared to the Newtonian one.
These discrepancies can already be anticipated from the
Newtonian calculation alone as the gravitational potential
and infall velocities are approaching relativistic values.
Even for such cases, the effect on the expansion outside the
high density/velocity regions (e.g., in the voids) is found to
be small, bounding backreaction effects.
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FIG. 3. Differences in the coordinate distances between the GR
and Newtonian simulations for a subset of freely falling fiducial
particles from Fig. 2, as a function of the absolute magnitude of
infall velocity inferred from the Newtonian simulations. The
Newtonian trajectories follow their GR counterparts quite closely,
as long as the evolution is nonrelativistic. Significant differences
between the simulations occur when the evolution enters the
relativistic regime.
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Comparing the properties of light propagation in the
Newtonian and GR calculations, we demonstrated that the
resulting distance-redshift relations agree at the subpercent
level as long as the Newtonian potential does not exceed the

limit of a weak field approximation, i.e., jΨN j ≤ 0.1. As a
limiting case, we have considered initial conditions all
the way up to ones where the fluctuations in the density
exceed the average value at the corresponding scales in the

FIG. 4. The fractional difference in the luminosity distance versus redshift factor DLðzÞ for either the Newtonian or GR N-body
calculations from a homogeneous solution (left column), and from each other (right column), for a set of fiducial null geodesics that
are emitted at the point of maximum density in the direction of the point of minimum density, or vice versa. Top to bottom, the different
rows correspond to δ̄ ¼ 0.01, 0.005, and 0.0025. In the left column, the vertical axis is linear from −10−2 to 10−2 and logarithmic outside
this range. We note that z is defined individually for each null ray based on its emission time through Eq. (7), as opposed to being a
global quantity.
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standard ΛCDM model by factor of ∼500 (that is, at the
present time they roughly correspond to ∼0.5 at a Gpc
scale). Since our simulations test the evolution on cosmo-
logical scales of perturbations with amplitudes exceeding
those applicable to observational cosmology, we con-
clude that the obtained results provide a strong validation
of the standard Newtonian approach employed in obser-
vational cosmology. In particular, our comparison implies
that GR corrections to the Newtonian calculation of the
cosmic variance in the local measurement of the Hubble
constant are negligible. This strengthens the conclusion
that a ∼9% difference between the local and cosmic
microwave background (CMB) based measurements of
the Hubble constant, currently at 4.4σ statistical signifi-
cance [38], cannot be ascribed to the cosmic variance
which is estimated at ∼0.5 percent [39–41]. This in line
with the conclusion of a recent study in Ref. [42] that
looked at variations in the local expansion in a particular
gauge using GR-fluid simulations (that hence cannot
describe multistream regions) with a cosmologically
motivated power spectrum.
The methods described here could be applied to study

the formation of primordial black holes during a matter-
dominated era (see, e.g., [43] and references therein), or
scenarios where black holes make up some fraction of the
dark matter. They could also be used to study ultralarge
scale structure [44], which could be related to under-
standing persistent CMB anomalies at large angular scales,
which seem to indicate a violation of statistical isotropy
and scale invariance of inflationary perturbations [45].
Comparable scales will be also probed by the upcoming
deep imaging cosmological surveys. In particular, the Large
Synoptic Survey Telescope will reach an unprecedented
effective volume of ∼4H−3

0 [46].
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APPENDIX: NUMERICAL ERROR RESULTS

In this appendix, we include some results on numerical
convergence. For the GR simulations, we initially find the
numerical error to be dominated by the grid spacing,
which also sets the integration time step. However, at late
times, as large under and overdensities develop, the
number of particles used to sample the matter distribution
becomes important. In Fig. 6, we show the convergence
of the Einstein constraints with increasing numerical
resolution for the δ̄ ¼ 10−2 case. The results have been
scaled assuming second order convergence with grid
spacing.
In Fig. 7, we show the halo crossing time for this same

case as a function of resolution, for both the GR and
Newtonian simulations. The discrepancies with resolution
in the time of first crossing are small compared to the
differences between the GR and Newtonian simulations
(though they do become more pronounced for subsequent
oscillations).

FIG. 5. Results for the highest amplitude perturbation case with
δ̄ ¼ 0.05, showing the fractional difference in the luminosity
distance versus redshift factor DLðzÞ for either the Newtonian or
GR N-body calculations from a homogeneous solution, as in the
left column of Fig. 4.

FIG. 6. Convergence of the L2 norm of the generalized
harmonic constraint (Ca ≔ Ha −□xa) for the δ̄ ¼ 10−2 case,
shown as a function of a volume-averaged measure of the scale
factor. The different resolutions have been scaled assuming
second order convergence with the grid spacing, though at later
times error from the finite number of particles begins to dominate.

EAST, WOJTAK, and PRETORIUS PHYS. REV. D 100, 103533 (2019)

103533-8



Finally, we compare the resolution dependence of the
luminosity distance-redshift measures in Fig. 8. From this,
it can be seen that most of the ≲1% differences between
the GR and Newtonian simulations seen at early times
or in the propagation outside the very high density regime
are attributable just to truncation error. In contrast, the

significant differences in propagation in the vicinity of the
large overdensity exceed the truncation error and in some
cases are underestimated at lower resolutions.
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